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Abstract

Parity encoded redundant disk arrays provide highly reliable, cost effective secondary storage with
high performance for reads and large writes. Their performance on small writes, however, is much
worse than mirrored disks - the traditional, highly reliable, but expensive organization for second-
ary storage. Unfortunately, small writes are a substantial portion of the 1/0 workload of many impor-
tant, demanding applications such as on-line transaction processing. This paper presents parity
logging, a novel solution to the small write problem for redundant disk arrays. Parity logging applies
journalling techniques to substantially reduce the cost of small writes. We provide detailed models of
parity logging and competing schemes - mirroring, floating storage, and RAID level 5 - and verify
these models by simulation. Parity logging provides performance competitive with mirroring, but
with capacity overhead close to the minimum offered by RAID level 5. Finally, parity logging can
exploit data caching more effectively than all three alternative approaches.
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1. INTRODUCTION

The market for disk arrays, collections of independent magnetic disks linked together as a single
data store, is undergoing rapid growth and has been predicted to exceed 13 billion dollars by 1997
[DiskTrend94]. This growth has been driven by three factors. First, the growth in processor speed has
outstripped the growth in disk data rate. This imbalance transforms traditionally compute-bound
applications to I/0-bound applicatior '>achieve application speedup, I/O system bandwidth must be
increased by increasing the numb, disks. Second, arrays of small diameter disks often have
substantial cost, power, and perfor, advantages over larger drives. Third, such systems can be
made highly reliable by storing a small amount of redundant information in the array Without this
redundancy, large disk arrays have unacceptably low data reliability because of their large number of
component disks. For these three reasons, redundant disk arrays, also known as Redundant Arrays of
Inexpensive1 Disks (RAID), are strong candidates for nearly all on-line secondary storage systems
[Patterson88, Gibson92l.

Figure 1 presents an overview of the RAID systems considered in this paper. The most promising
variant, RAID level 5, employs distributed parity with data striped on a unit that is one or more disk
sectors.

RAID level 5 arrays exploit the low cost of parity encoding to provide high data reliability [Gibson93].
Data is striped over all disks so that large files can be fetched with high bandwidth. By distributing the
parity, many small random blocks can also be access3ed 1 arallel without hot spots on any disk.

While RAID level 5 disk arrays offer performanc ; r,' .bility advantages for a wide variety of

Disk 0 Disk I Disk 2 Disk 3 Disk 4 Disk 5 Disk 0 ')isk 1 Disk 2 Disk 3 Disk 4 Disk 5

0 DO Di D2 D3 D4 D5 0 DO D D3 D4 P0-4

1 D6 D7 D8 D9 D1O Dll 1 D5 D6 D7 D8 D9 P5-9

2 D12 D13 D14 D15 D16 D17 2 D1O D11 D12 D13 D14 P10-14

3 DiS D19 D20 D21 D22 D23 3 D15 D16 D17 D15

RAID Level 0: Nonredundant RAID Level 4: Block-Interleaved Parity

Disk 0 Disk 1 Disk 2 Disk 3 Disk 4 Disk 5 Disk 0 Disk 1 Disk 2 Disk 3 Disk 4 Disk 5

0 DO DO D1 D1 D2 D2 0 DO D1 D2 D3 D4 P0-4

1 D3 D3 D4 D D5 D5 1 D6 D7 D8 D9 P5-9 D5

2 D6 D D7 D7 D8 D8 2 D12 D13 D14 P10-14 D10 Dll

3 D9 rD9 DlO[ D1O Dll[E Dli 3 D18 D19 P15-19 D15 D16 D17

RAID Level 1: Mirroring 4 D24 P20-24 D20 D21 D22 D23

5 P25-29 D25 D26 D27 D28 D29

RAID Level 5: Rotated Block-Interleaved Parity

Fig. 1. Data Layout in RAID Levels 0, 1, 4 and 5. This figure shows the first few units on each disk in each of the RAID
levels. 'D" represents a block, or unit, of user data (of unspecified size, but some multiple of one sector) and "Px-y" a parity unit
computed over user data units x through y. The numbers on the left indicate the offset into the raw disk, expressed in data
units. Shaded blocks represent redundant information, and non-shaded blocks represent user data. Level 0 is nonredundant
and does not tolerate faults. Level 1 is simple mirroring, in which two copies of each data unit are maintained. Levels 4 and 5
exploit the fact that failed disks are self-identifying, achieving fault tolerance using a simple parity (exclusive-or) code,
lowering the capacity overhead to only one disk out of six in this example. Levels 4 and 5 differ only in the placement of the
parity. In level 5, the parity blocks rotate through the array rather than being concentrated on a single disk, avoiding a parity
access bottleneck.

1. In current industry usage, the "I" in RAID denotes "independent".
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TPC Benchmark Scaling Requirements

get request from terminal Record Minimum Quantity Record Size (Bytes)
begin transaction Type per TPS

update account record

write history log Account 100K 100
update teller record Teller 10 100
update branch record

commit transaction Branch 1 100
respond to terminal History 30KHistoy 30K50

Total 11.5 MB per TPS

Fig. 2. OLTP Workload Example. The transaction processing council (TPC) benchmark is an industry standard
benchmark for OLTP systems stressing update-intensive database services [TPCA89J. It models the computer processing for
customer withdrawals and deposits at a bank. The primary metric for TPC benchmarks is transactions per second (TPS).
Systems are required to complete 90% of their transactions in under 2 seconds and to meet the scaling constraints listed above.
Customer account records are selected at random from the local branch 85% of the time, and from a different branch 15% of
the time. Because history record writes are delayed and grouped into large sequential writes and teller and branch records are
easily cached, the disk 1/0 from this benchmark is dominated by the random account record update.

applications, they possess at least one critical limitation: their throughput is penalized by a factor of
four over nonredundant arrays for workloads of mostly small writes [Patterson88l. This penalty arises
because a small write request may require the old value of the user's targeted data be read (we call this
a preread), overwriting this with new user data, prereading the old value of the corresponding parity,
then overwriting this second disk block with the updated parity. In contrast, systems based on mirrored
disks simply write the user's data on two separate disks and, therefore, are only penalized by a factor of
two. This disparity, four accesses per small write instead of two, has been termed the small write
problem.

Unfortunately, small write performance is important. The performance of on-line transaction
processing (OLTP) systems, a substantial segment of the secondary storage market, is largely
determined by small write performance. The workload described by Figure 2 is typical of OLTP and
nearly the worst possible for RAID level 5, where a single read-modify-write of an account record will
require five disk accesses. The same operation would require three accesses on mirrored disks, and only
two on a nonredundant array. Because of this limitation, many OLTP systems continue to employ the
much more expensive option of mirrored disks.

This paper describes and evaluates a powerful mechanism, parity logging, for eliminating this small
write penalty. Parity logging exploits well understood techniques for logging or journalling events to
transform small random accesses into large sequential accesses. Section 2 of this paper develops the
parity logging mechanism. Section 3 introduces a simple model of its performance and cost. Section 4
describes alternative disk system organizations, develops comparable performance models and
contrasts them to parity logging. Section 5 provides an analysis of small-write overhead in parity
logging with respect to configuration and workload parameters, and analyzes potential load imbalances
in a parity logging system. Section 6 introduces our simulation system, describes implementations of
parity logging and alternative organizations, and contrasts their performance on workloads of small
random writes and an OLTP workload. Section 7 analyzes extensions to multiple-failure tolerating
arrays. Section 8 discusses how the large write optimization can be accomodated in a parity logging
disk array. Section 9 reviews related work. Section 10 closes with a few comments on future work in
redundant disk arrays for small write intensive workloads.

2. PARITY LOGGING

This section develops parity logging as a modification to RAID level 5. Our approach is motivated by
the fact that disks deliver much higher bandwidth on large accesses than they do on small. A parity
logging disk array batches small changes to parity into large accesses that are much more efficient. Our
model is introduced in terms of a simple, but impractical RAID level 4 scheme, then refined to the
realistic implementation used in our simulations.

The duration of a disk access can be broken down into three components: seek time, rotational
positioning time, and data transfer time. Small disk writes make inefficient use of disk bandwidth
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Disk 0 Disk 1 Disk 2 Disk 3 Disk 4

Fig. 4. Basic Parity Logging Model.

because the data transfer component is much smaller than the seek and rotational positioning
components. Thus a disk servicing a small-access-dominated workload spends the majority of its time
positioning instead of transferring data. Figure 3 shows the relative bandwidths of random block, track
and cylinder accesses for a modern small-diameter disk [IBM06611. This figure largely bears out the
lore of disk bandwidth: random cylinder accesses move data twice as fast as random track accesses
which, in turn, move data ten times faster than random block accesses.

D Data units per track 12 V Tracks per cylinder 14

V Cylinders per disk 949 N Number of disks in array 22

S Average seek time 12.5 ms M Single track seek time 2.0 ms

R Average rotational delay 6.95 ms H Head switch time 1.16 ms
(1/2 disk rotation time)

B Number of regions per disk -100 CD Cylinders of data per region -200

CL Cylinders of log per region -9 Cp Cylinders of parity per -9
region

K I Tracks buffered per region 1 L Log striping factor 1

Fig. 5. Model Parameters. The bandwidth utilization models of Section 2, 3, and 4 are presented in terms of the
parameters list above. The first table presents common disk parameters and the second, parameters specific to parity logging.
The first and fourth columns in each table show the symbol used in the text; the second and fifth column describe what a
symbol denotes; and the third and last column show the default value of the parameter as used in this text. Note 'ms" stands
for milliseconds and a tilde (-) indicates an approximate value.

Logically, we develop our scheme beginning with Figure 4 in which a RAID level 4 disk array is
augmented with one additional disk, the log disk. Initially, this disk is considered empty. As in RAID
level 4, a small write prereads the old user data, then overwrites it. However, instead of similarly
updating parity with a preread and overwrite, the parity update image (the result of XORing the old
and new user data) is held in a dedicated block of memory called a log buffer. When enough parity
update images are buffered to allow for an efficient disk transfer (one or more tracks), they are written
to the end of the log on the log disk.

When the log disk fills up, the out-of-date parity and the log of parity update records are read into
memory using sequential cylinder accesses. The logged parity update images are applied to the in-
memory image of the stale parity and the resulting updated parity is written with large sequential
writes. When this completes, the log disk is marked empty and the logging cycle begins again.

1467

97 I -_

Block Track Cylinder

Fig. 3. Peak I10 Bandwidth. This figure shows the sustainted data rate in kilobytes per second that can be read from or
written to an IBM 0661 drive using random one block (2KB), one track (24 KB), and one cylinder (336KB) accesses (see Figure 12
for disk parameters).
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Because only parity updates (not data changes) are deferred, this scheme preserves single failure
tolerance2 . If a data disk fails, the log disk (and any buffered parity updates) are first applied to the
parity disk, which is then used to reconstruct the lost data in the same manner as is done in RAID level
5. If the log or parity disk fails, the system can simply recover by reconstructing parity from its data
onto the surviving parity or log disk. The failed drive is then replaced with a new empty log disk. If the
controller fails, its buffered parity updates are lost, but, after the controller has been repaired or
replaced, parity can be updated in the same way as if a log disk had been lost.

The addition of a log disk allows substantially less disk time to be devoted to parity maintenance
than in a comparable RAID level 4 or 5 array. This can be shown by computing the average disk busy
time devoted to updating parity. Assume there are D data units per track, T tracks per cylinder, and V
cylinders per disk (refer to the glossary in Figure 5). Each user write requires a preread of the
corresponding data unit, which introduces an overhead of one block (data unit) access per write. In
addition, each user write to a data unit consumes buffer memory equal to the size of the unit, and so a
track's worth (D) of small (unit-sized) writes issued to the array causes one track write to the log disk
to occur. Next, a disk's worth (TVD) of small writes causes the log disk to fill up, which must then be
emptied by updating the parity. This update involves reading the entire contents of the parity and log
disks (2V cylinders), and then writing the entire parity disk (V cylinders) at cylinder transfer rates.
On average, then, for every TVD small user writes there are TVD block accesses, TV sequential track
accesses, and 3 V cylinder accesses for maintenance of the parity information. Recall track accesses are
D times larger than random small writes but about 10 times more efficient and cylinder accesses are
twice as efficient and T times larger than track accesses. Thus, parity maintenance for a disk's worth
(TVD) of small user writes consumes about as much disk time as

TVD + TV(D/10) + 3V(T/2 x D110) = 5TVD14

random small accesses. In a standard RAID level 4 or 5 disk array, parity maintenance for TVD small
writes would consume about as much disk time as 3TVD random block accesses. The ratio of parity
maintenance work performed by parity logging to RAID level 4 or 5 is therefore

5TVD/4 5
3TVD 12

Thus, by logging parity updates, we have reduced the disk time consumed by parity maintenance by
about a factor of two.3

In many cases, it may be possible to avoid the preread of the user data. For example, in the TPC
benchmark (Figure 2), the update of a customer account record is a read-modify-write operation; an
account record is read, modified in memory, then written back to disk. In these cases, the old data value
is usually known (cached) at the time of the write and the preread of the data may be skipped
[Menon931. Under these conditions, the overhead for RAID levels 4 or 5 is just two random block
accesses per small write, or 2TVD random block accesses per TVD small user writes, and the
overhead for parity logging is

TV (D/10) + 3V (T/2 xD110) = TVD/4

random small accesses. Therefore, in these cases, parity logging reduces disk time consumed by parity
maintenance by about a factor of eight.

2.1. Partitioning the Log Into Regions

As stated, however, this scheme is completely impractical: an entire disk's capacity of random access
memory is required to hold the parity during the application of the parity updates. Figure 6(a) shows
that this limitation can be overcome by dividing the array into manageably-sized regions. Each region
is a miniature replica of the array proposed above. Small user writes for a particular region are

2. Our failure model treats disk and controller failures as independent. If concurrent controller and disk failures must be
survived, controller state must be partitioned and replicated [Schulze89, Gibson93, Cao931.
3. Notice that we make no attempt to reduce the cost of the overwrite of the target data block. Additional savings are possible if
data writes are deferred and optimally scheduled [Solworth90, Oiji93].
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Disk0 DiskI Disk2 Disk3 Disk 4 Disk Disk I Disk 2 Disk3 Disk 4

LogParity

0 Data Data Data Parity Log Data Data Darta Lg 0 aga
a ~~RegO1 RegO1RgI e

2Data Data Data Party Data Data Parity Log Data Dt
Rag 1 Rg 2 Re Rag 1e Rag

Dat Data Datag Data Parity LogPrt 09 Da Data Data

Reg 3 Reg 3 Reg 3 Reg 3

4 Dt DaaData Parity Log Data Data Data Prt
Reg 4 Rag 4 Reg 4 Reg 4

(a) (b)

Fig. 6. Parity Logging Regions.

journalled into that region's log. When a region's log fills up, only that region's log is required to update
that region's parity. This reduces the size of the controller memory buffer needed during parity
reintegration from the size of a disk to a manageable fraction of a disk. Section 2.4 shows that optimal
number of regions is dependent on disk capacity, but is about 100 in our example 22 disk array.

Each region requires its own log buffer. Each log buffer holds a few (typically less than three) tracks
of parity update images. When one of these buffers fills up, the corresponding region's log is appended
with an efficient track (or multi-track) write. Thus, the sequential track writes of the single-log scheme
are replaced by random track (or multi-track) writes in the multiple-region layout. While random track
writes are less efficient than sequential track writes, Section 3 will show that this more practical
implementation still has dramatically lower parity maintenance overhead than RAID level 4 or 5.

2.2. Striping Log and Parity for Parallelism

As in the RAID level 4 case, the log and parity disks may become performance bottlenecks if there are
many disks in the array. In particular, the maximum aggregate bandwidth for log accesses is just the
bandwidth of single disk. This limitation can be overcome by distributing parity and log information
across all the disks in the array, as indicated in Figure 6(b). This distribution boosts the aggregate log
bandwidth to the bandwidth of the array. However, the log and parity bandwidth for a particular region
remains that of a single disk.

Following the example of RAID level 5, Figure 7 shows a layout in which the parity for each region is
distributed across the array to increase bandwidth. This distribution decreases the latency of
reintegrating parity updates for a particular region by using all N - 1 non-log disks to effect the parity
read and write. So that these operations are also efficient, the granularity of distribution is large; there
is one contiguous set of parity units per disk per region. The log, however, remains a potential
bottleneck.

The log bottleneck may also be eliminated by distributing the log for each region over multiple disks.
Figure 8 shows a parity logging array with the log for each region striped across two disks. Since parity
update records in the log are logically part of the parity, they cannot be placed on the same disks as the
data they protect. If they were, the failure of that disk would cause both data and parity to be lost,
which is an unrecoverable failure in a disk array using a parity-based code. To avoid data loss, data and
log for each region are restricted to disjoint sets of disks. Thus, log striping reduces the number of disks
on which data for a particular region may be placed. If, for example, the log is striped over 3 disks, the
data for that region may be placed only on the other N- 3 disks.

This reduction in data striping in a region increases the disk space overhead as follows. Let L be the
number of disks over which each log is striped and Cp the number of cylinders of parity per region. The

number of data cylinders per region, CD, is related to the size of the parity, Cp, according to the

standard RAID level 4 and 5 rule for data striped over N - L disks:
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Disk 0 Disk I Disk 2 Disk 3 Disk 4

0 Data/ Data/ Data/ Data/ Log Disk 0 Disk 1 Disk 2 Disk 3 Disk 4
Parity Parity Parity Parity Reg0 D D D P

D D D P

1 Data/ Data/ Data/ Log Data/ D D Paty D P
Parity Pari rit y Reg I Parity D D D P

C21 D update D
2 Data/ Data/ Log Data/ Data/ D D P"-

Parity Parity Pg Parity Paty p D

3 Data/ Log Data/ Data/ Data/ D '
Parity Reg 3 Parity Parity Parity

Log Data' Data/ Data' Data'
Rag4 Parity Parity Parity Parity [D I D ] W

Fig. 7. Block Parity Striping. The inset shows a detailed layout of a sample region.

CD = (N-L-1)Cp

where N is the number of disks in the array. Because the log is equal in size to the parity, CL, the num-

ber of cylinders of log per region, equals Cp. Hence, the disk space overhead (the fraction of the array

containing log and parity) equals
(Cp+CL)/(CL+CP+CD) = 2/(N-L+1)

and rises as the degree of log striping, L, increases. Figure 9 shows the disk space overhead for differ-
ent degrees of log striping for an array of 22 disks. Section 6 will show, however, that the performance
advantages of log striping are substantial.

2.3. The Impact of Varying Log Length

The previous subsection assumes that the same amount of disk space for log (CL cylinders) and

Disk 0 Disk I Disk 2 Disk 3 Disk 4

Par 0 Par 0 Par 0 Par 0 Par 0

Log 0 Log 0

Par Par Data 0 Data 0 Data 0

Data Data Pa Par 1 Par I

LOg I Logi1

Par2 Par2 Par 2 Par 2 Data

Laog Data2 Data2 Data2 Par2

Par 3 Log 2

Date 3 Par 3 Par 3 Par3 Par3

Log 3 Log 3Par 4 Par 4 Par 4Dt 3 Data 3

Data 3 Data 3
Par 4 Par 4 Par 4

Par 4 Par 4
Data 4 Data 4 Data 4

Log4 Log4

Fig. 8. Distributed Parity Logs.
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Fig. 9. Disk Storage Overhead.. The horizontal line shows the capacity overhead of a RAID level 5
configuration of the same array.

parity (Cp cylinders) is allocated in each region because our introduction adds exactly one log disk to

an array. Given the more flexible striped log and parity model of Figure 8, the efficiency and space
overheads of parity logging can be altered by increasing or decreasing the amount of log allocated per
region.

Let A be the ratio of total log space to total parity space (A = CL/CP) in each region. The disk space

overhead then becomes
CL+CP ACp + CP 1+A

CL+Cp+CD ACp+Cp+(N-L-I)Cp N-L+A

Now the log for each region fills up after ATCpD small user writes into that region. Updating the

parity still requires prereading old data on each small user write (ATCpD blocks) (assuming the old

data is not cached), writing the log buffers (ATCp tracks), plus, every time the log fills, reading the

parity (Cp cylinders), reading the log (ACp cylinders), and writing the updated parity (Cp cylinders),.

Thus the parity maintenance work for ATCpD uncached small user writes is
DTDl• 23 1

ATCpD+ATCp(D) + (2+A)Cp(- = (-X-2+ 1-- )ATCpD
1-0 2 1 0 2-0 lOA

random small accesses, or an overhead of (23/20 + 1/10A) random small accesses per uncached small
user write. Performance can therefore by traded for space, as shown in Figure 10. Applying this to an
example 22 disk array with logs striped over two disks (L = 2), allocating twice as much log as parity
(A = 2) increases the space overhead from 9.5% to 13.6% of the total capacity, but decreases the parity
maintenance overhead from 41.7% to 40% of that of RAID level 5, where three related parity accesses
occur for each small user write. Halving the amount of log (A = 0.5) decreases the disk space overhead
to 7.3% while only increasing the parity maintenance work to 45% of RAID level 5.

If the old data is cached, RAID level 5 does two parity-related accesses for each small user write and
parity logging does (3/20 + 1/10A). Applying this cached workload to our 22 disk array with logs
striped over two disks does iot change the space overheads. However, in this cached case, doubling log
size reduces parity maintenance work from 12.5% to 10% of RAID level 5 while halving log size
increases the work to 17.5% of RAID level 5.

2.4. Accounting for and Managing Buffers

The primary benefit of parity logging, that parity maintenance operations access disks using large,
efficient transfers, requires expensive controller memory buffers. This buffer memory is used in two
ways. First, each region delays the most recent parity update images until efficient log-append accesses
can be performed. If K tracks are transferred in a log-append operation and there are B regions, then,
conservatively, KB tracks of buffer memory are required to delay log appends. Second, whenever the
log for a region fills, the parity for that region is read into memory, the newly full log is read and applied
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to it, and the updated parity is written back. This parity reintegration operation requires CPT tracks of

buffer memory, where Cp is the number of cylinders of parity per region and T is the number of tracks
per cylinder. Since the number of cylinders of parity per region is the same as the total cylinders per
disk, V, divided by the number of regions, B, the total buffer memory space is TV/B + KB, measured
in tracks.

By selecting B as .T•Ik, the memory buffer space is minimized to 2 TV . If the ratio of the cost
of a byte of memory and a byte of disk is X then the buffer memory space cost, relative to the cost of the

array of N disks is 2XJTf/R/ (NTV) = 2X/NfT-VIK . If memory costs 30 times as much as disk
[Feigel94], then an array of 22 IBM 0661 (Figure 12) disks buffering a single log track per region
(K = 1) requires about 5.6 MB of buffer, costing the equivalent of about 2% of the array's cost.

In practice, parameters such as the number of regions must be discrete. If we further require that the
size per region of the log appends, sublogs (the portion of a region's log on one disk), as well as parity
and data, per region, be an integral number of tracks, then a significant fraction of the overall disk
space may be wasted. We have found that if the number of regions, B, is allowed to vary from the
optimum by ±10%, then a set of integral parameters can be found such that the wasted disk space is
less than 1% of the array's total space.

If, however, the size per region of the sublogs, parity and data, per region, are only required to be an
integral number of disk sectors (rather than tracks), substantially less disk space is wasted when the

number of regions, B, is selected as an integer near .TfIK. Relaxing this discrete-tracks condition
will cause additional head switches and single cylinder seeks to occur during log and parity accesses,
but because these positioning overheads are small relative to track access times, parity logging
performance is only slightly affected (3% for our experiments).

A more significant performance degradation results if small user writes are blocked during the
reintegration of a region's log into its p 4 rity. This blocking should be minimized by managing the per-
region buffers as a single global buffer pool. Using this approach, user writes are only blocked if the
entire buffer pool is full of parity updates images that have not yet been appended to their appropriate
logs.

2.5. Summary

In summary, parity logging buffers parity updates until they can be written to a log efficiently. It then
further delays their reintegration into a redundant disk array's parity until there are enough parity
updates in the log to make a complete revision of the parity efficient. To accommodate limited memory
for reintegration of parity records, the disk array is partitioned into regions with per-region logging.
Then, to avoid bandwidth bottlenecks, parity and log information is striped over multiple disks. This
parity logging scheme reduces the extra work done by RAID level 5 arrays for small random writes to
little more than is done in the much more expensive, traditional mirrored approach even if write

25%
3.0

- ParPariLaggingi
Parity Logging 20% ParitYD Lgging

.... RAID levelI5 202.5
>0 15%_

a 0 2.0
"".10%

11 1.5O M15% ............................................................................
1 .0

0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0
Log to Parity Ratio (A) Log to parity ratio (A)

Fig. 10. Log Length and Efficiency
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caching is ineffective.

3. MODELING PARITY LOGGING

In this section we present a utilization-based analytical model of a parity logging redundant disk
array. This n.odel predicts saturated array performance in terms of achieved disk utilization, disk
geometry, and access size. The variables used in this model are defined in Figure 5.

Consider a single small user write in a parity logging array. User data must be preread, then
overwritten. This is done in an access which seeks to the cylinder with the user's data, waits for the
data to rotate under the head, reads the data, waits for the disk to rotate around once, then updates the
data.4 Defining S as the average seek time, R as the time for one-half of a disk rotation, and recalling
that D is the number of data units per track, the time to perform this operation, trmwI is

trmw = (S+R) +2R/D+ (2R-2R/D) +2R/D = S+ (3+2/D)R (1)

-F 7- _T
Seek and Data preread Data write

rotational delay Rotational delay

disk secor.-Is, on average.
As mentioned earlier, in many cases it may be possible to predictably avoid the preread of the user

data. Without prereading, the dis' asy time needed for a small write access, tw, is

tw = S- (1+2/1D)R (2)

disk seconds.
Each region has K tracks worth of log buffers. On average, for every KD small user writes, one

region's buffers will fill and be written to the region's log in a single K-track write. Defining H as the
disk's head-switch time, the numb, of disk seconds required to do this, tKtrack, is

tKtrack = (S+R) 2RK+ (K-1)H = S+ (2K+ 1)R+ (K-1)H (3)

Seek and rotational delay Head switch time

Data transfer time

assuming all K tracks are on the same cylinder.5

Finally, recall that each region's log consists of CL cylinders, each of which has T tracks of D data

units. Therefore, on average, for every DTCL small user writes, one region of logged parity must be
reintegrated. Consider the case of an array that does not stripe its log (Figure 7). The reintegration
consists of three steps: a sequential read of CL cylinders from the log, a striped read of the parity from

N - 1 disks, and a striped write of the parity back onto N - 1 disks. Defining M as the time taken to
seek one cylinder, the time for the sequential log read (tcL) is

= (S+R)+CL (2RT+ (T-1)H)+M(CL-1) (4)
CLL L\

Seek and rotational delay CL-I single cylinder seeks

Read time for 1 Cylinder

4. This single access could be separated into two accesses each taking S+R+2RID disk seconds for a total of 2S+(2+4 ID)R.
For most modern disks S is about twice R, so the single access is more efficient.

5. Disks that support zero-la4ency writes [Salem86] can eliminate the initial rotational positioning delay. This can reduce
the 1/0 time by up to 26% in drives such as the IBM 0661 (which does not support this feature), if only a single track is buffeted
(K= 1). However, the impact of zero-latency write support on parity logging is small (under 3%), because the track-sized log writes
are only a small contributor to parity logging's overhead (Figure 11).
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Log Write Log Read Parity Read Parity Write

0 1 2 3 4 5 6 ms)

Fig. 11. Parity Logging Overheads. The amortized overhead cost of parity and log accesses done in our example
parity lo&;ing array is shown above. The log writes contribute approximately 40% of the overhead (2.78
milliseconas). while the cylinder rate log reads, parity reads and parity writes each contribute about 20% (1.29
miiliseconds). For comparison, the parity accesses done by RAID level 5 cost nearly 35 milliseconds per small write.

disk seconds, and may be rewritten as
tCL = S+ (2TCL+ 1)R+ (T- 1)HCL + (CL- 1)M (5)

The striped parity accesses each consist of N - 1 sequential transfers of Cp/ (N - 1) cylinders. Each

of these sequential transfers takes

(S+R) + (Cp/(N-1)) (2RT+ (T- 1)H) + (Cp/(N-1)-1)M

Cylindera per ubaessI

S CrSingle track seeks
First seek and Read time for 1 cylinder per subaccess
rotational delay

disk seconds. The total striped access, tC, takes

tcP= (N- 1) (S+R) +Cp(2RT+ (T- 1)H) +M(Cp-N+ 1) (6)

disk seconds.
Thus, on average, the disk utilization induced by a small write, tamw, is

1 +___ t ___2top

tamw = trmw + 1 [tKtrack] + tCL + 2tC- (7)rm KDDTCL DTCL
I .d- and rit

Log write Log read adty read and write

Figure 11 shows the contributions to disk busy time of the three terms after trmw in equation 7 for
the example disk array given in Figure 12.

The analysis for a parity logging disk array with a striped log (Figure 8) is similar. When a region's
log buffer fills, it will be written to one of the regions sublogs in a single K-track write. The cost of this
operation is the same as in the unstriped case. Log reintegration still occurs every DTCL small user

writes, but now consists of three striped I/Os: a striped (over L disks) read of the log, and a striped

(over N disks) read and write of the parity. Each of the L accesses in the striped log read costs

(S+R) + (CLIL) (2RT+ (T- 1)H) + (CLIL- 1)M

Cylinders per subaccess Single track seeks per subaccess

First seek and rotational delay Read Time for 1 Cylinder

for a total of
tC(L) =L(S+R) +CL(2RT+ (T-1)H) + (CL-L)M (8)

disk seconds. Similarly, the striped parity reads and writes will consume
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Workload Parameters

Access size: Fixed at 2 KB
Alignment: Fixed at 2 KB
Write Ratio: 100%
Spatial Distribution: Uniform over all data
7Temporal Distribution: 66 closed loop processes

Gaussian think time distribution

Array Parameters

Stripe Unit: Fixed at 2KB
Number of Disks: 22 spindle synchronized disks.
Head Scheduling: FIFO
Power/Cabling: Disks independently powered/cabled

Disk Parameters

Geometry: 949 cylinders, 14 heads, 48 sectors/track
Sector Size: 512 bytes
Revolution Time: 13.9 ms
Seek Time Model: 2.0 + 0.01 • dist + 0.46. JdIiit (m,)

2 ms min, 12.5 ms avg, 25 ms max
Track Skew: 4 sectors
Head Switch Time: 1.16 ms

Fig. 12. Simulation Parameters. The access size, alignment, and spatial distribution are representative of OLTP
workloads, while a 100% write ratio emphasizes the performance differences of the various array organizations. Assuming
disks have independent support hardware, disk failures will be independent, allowing a parity group to be single fault tolerant
[Gibson93J. Disk parameters are modeled on the IBM Lightning drive [IBM0661]. Note that the dist term in the seek time
model is the number of cylinders traversed, excluding the destination. As is commonly done in SCSI disks, the track skew is
chosen to equal the head switch time, optimizing data layout for sequential multitrack access.

t CP= N (S +R) +Cp(2RT + (T-1)H) + (Cp-N) M (9)

disk seconds. Thus, striping introduces an additional overhead of L (S + R - M) disk seconds to the log
reintegration. This increases the parity maintenance overhead per small write by
L (S + R - M) /DTCL disk seconds. As Section 6 will show, this increase in parity maintenance work is
worthwhile because it reduces long reintegration periods during which disk queues grow, the system
becomes underutilized, and maximum performance falls far short of expectations.

4. MODELING ALTERNATIVE SCHEMES

Only a few array designs have addressed the problem of high performance, parity-based, disk storage
for small write workloads. The most notable of these is floating data and parity [Menon92]. This section
reviews and estimates the performance of four designs: nonredundant disk arrays (RAID level 0),
mirrored disks (RAID level 1), distributed N+1 parity (RAID level 5), and floating data and parity. The
notation and analysis methodology are the same as used in Section 3.

In nonredundant disk arrays (RAID level 0), a small write requires a single disk access which
consumes

(S + R) + 2R/Di1 -1
Seek and rotational delay Data write

disk-arm seconds. No long-term storage is required in the controller.
In mirrored systems, every data unit is stored on two disks, and all write requests update both

copies. Each access takes as much time as a small write in a nonredundant disk array, S + (1 + 2/1)) R.
Hence, each small user write utilizes disks for a total of 2S + (2 + 4/1D) R seconds. While mirrored
disks' write operations are more efficient than RAID level 5, half of their capacity is devoted to
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Block Block

Track 0 1 2 3 4 Track 0 1 2 3 4

0 DO Dl D3 D4 0 DO DI D3 D4

I D5 D6 D7 D8 D9 1 D5 16 D7 D8 D9

2 D10 DlI D12 ID13 D14 2 D10 DII D12 D13 D14

3 Free Free Free Free 3 Free Free Free Free

Fig. 13. Floafting DotAPrify. This figure shows the movement of data within a cylinder caused by a write in a floating
data and parity array. Each grid represents one cylinder of four tracks, with five blocks per track. When updating block D2,
the controller searches for a free block within the cylinder that is rotationally close to block D2. In this case, it finds the block
at offset 3 into track 3. Immediately following the preread of block D2, the controller writes the new block to the new location,
and updates mapping tables. The preread of old information and the write of new information are thus effectively done in
slightly more than the time of one access.

redundant data. As in the RAID level 0 case, controllers for mirrored disk arrays do not require long-
term buffer memory.

Small writes in RAID level 5 disk arrays require four accesses: data preread, data write, parity read,
and parity write. These can be combined into two read-rotate-write accesses, each of which takes

(S + R) + 2R/D+(2R-2R/D)+2R/D

Datapirread -_7 Data write
Seek and rotational delay Rotational delay

disk seconds for a total disk busy time of 2S + (6 + 4/1D)R. Again, no long-term controller storage is
required.

The floating data and parity modification to RAID level 5 was proposed by Menon and Kasson
[Menon92]. In its most aggressive variant, this technique organizes data and parity into cylinders that
contain either only data or parity. As illustrated in Figure 13, by maintaining a single track of empty
space per cylinder, floating data and parity effectively eliminates the extra rotational delay of RAID
level 5 read-rotate-write accesses. Instead of updating the data or parity in place, a floating data and
parity array will write modified information into the rotationally nearest free block. With floating data
and parity, the rotational term 2R - 2R/D in the RAID level 5 disk arm busy time expression above is
replaced with a head switch and a short rotational delay. Using disks similar to those in our sample
array, Menon and Kasson report an average delay of 0.76 data units. So, the expected disk busy time for
each access in a floating data and parity array is

(S + R) + 2R/D + H + 0.76 (2R/D) + 2R/D

Data preread 1  Rotational delay T
Seek and rotational delay Head switch

which may be rewritten as S+ (1+5.52/D)R + H. Hence, the total disk busy time for a small
random user write in a floating data and parity array is 2S + (2 + 11.04/D)R + 2H. Note that if the
number of data units per track, D, is large and the head-switch time, H, is small, this is close to the
performance of mirroring.

Even with a spare track in every cylinder, floating data and parity arrays still have excellent storage
overheads. For an N disk array with T tracks per cylinder, floating data and parity has a storage
overhead of (T + N- 1)/ (TN) .6 Floating data and parity arrays, however, require substantial fault-
tolerant storage in the array controller to keep track of the current location of data and parity.7 For

6. Each disk gives up IIT of its capacity for free space and the array gives up I/N of the remaining space for parity. Thus the array

storage efficiency is (T-1XN-1)/TN and the array storage overhead is 1-(T-1)(N-1)/TN = (T+N-1)/TN.
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Preread User Data 48.5
C No Preread (Cache Hit)1 Both 36.7

225 24.3 24.3

RAID Floating Mirroring Parity Nonredundant
Level 5 Data/Parity Logging

Fi1 . 14. Model Estimates. User writes per second per disk as predicted by the bandwidth models of Sections 3 and 4. These
predictions assume 100% dish utilization, FIFO disk arm scheduling, and an unbounded number of requestors. RAID level 5
and parity logging disk arrays both benefit substantially from not having to preread user data. Floating data and parity
substantially reduces the overhead of the user preread and therefore achieves less benefit from its elimination. Mirroring and
nonredundant disk arrays do not need to preread user data. The parity logging estimates assume the log is not striped.

each cylinder, an allocation bitmask is maintained. This requires DT bits per cylinder. In addition, a
table of current block locations for each cylinder is required. This consumes D (T - 1) [ log (DT) 1 bits

per cylinder. Thus, with V cylinders per disk, a total of VD (T+ (T- 1) Flog (DT)1) bits of fault-
tolerant controller storage are required. For the disks in Figure 12, this is 1,343,784 bits (164 KB) per
disk. The total controller storage in a 22 disk array is about 3,608KB, roughly comparable to parity
logging. Note, however, that controller memory in parity logging need not be fault-tolerant.

While floating data and parity substantially improves the performance of small writes relative to
RAID level 5, its performance for other types of accesses is degraded. Within a cylinder, logically
contiguous user data units are not likely to be physically contiguous. In the worse case, two consecutive
data units may end up at the same rotational position on two different tracks, requiring a complete
disk rotation to read both. In addition, the average track has only D (T- 1) IT valid data units. Thus,
even on disks with zero-latency reads, the maximum sequential read bandwidth is reduced, on average,
by (T-1)/T.

5. ANALYSIS

Figure 14 compares these models' estimates for maximum throughput of the example array based on
Figure 12. Throughput at lower utilizations may be calculated by scaling the maximum throughput
numbers by the disk utilization. Figure 14 predicts that parity logging and floating data and parity will
both substantially improve on RAID level 5, approaching the performance of mirroring. Varying the
model's parameters from our example 22 disk array does not substantially change the relative
performance of parity logging and its alternatives except for the effects of the number of data units per
track and the ratio of average seek time to rotational latency. This section describes the effects of these
parameters and the effects of log striping degree on array load balance.

Of the model's parameters, the number of data units per track, D, has the greatest impact on
performance. Parity logging transfers each data unit two more times than RAID level 5 and four more
times than mirroring. If the transfer time of a unit is small, parity logging will be efficient. Figure 15
shows the relative performance when data caching is ineffective (i.e, a preread is required) of parity
logging, mirroring, and RAID level 5 for different values of numbers of data unit per track in for our
example array. The performance of mirroring exceeds that of parity logging with 13 or fewer data units
per track (D _13), and RAID level 5 performance exceeds that of parity logging with the unlikely case
of 1 or 2 data units per track (D 5 2). Industry estimates, however, show that track capacity within a
given form factor is increasing at over 20% a year. Consequently, it is reasonable to assume that the
number of data units per track may not decrease even as database account record sizes grow.

The ratio of average seek time (S) to rotational latency (R) has a substantial impact on the
performance of parity logging disk arrays. Figure 16 plots the performance of parity logging, RAID
level 5 and mirroring relative to RAID level 0 as this ratio changes. The performance of mirroring

7. The nature of fault tolerance in a storage controller depends on the underlying failure model. If only power failure is of con-

cern, then nonvolatile storage will suffice, while other failure models require redundant controllers.
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Fig. 15. Effects of track size on throughput. The performance of parity logging is highly sensitive to the number of data
units per track. The figure above shows the performance in the example 22 disk array of mirroring, parity logging, and RAID
level 5 on a workload of 100% blind small writes for varying number of data units per track.
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Fig. 16. Peak throughput, normalized to nonredundant array performance, as a function of the ratio of average
seek time to rotational iatencL Altering the ratio of average seek time (S) to the rotational latency (R) of the disk changes
the relative performance of mirroring, floating data and parity, nonredundant and parity logging disk arrays. Shown above is
the relative performance of these approaches on the example 22 disk array (Figure 12) as the average seek time for the drive is
varied. The average seek time is varied from 20% of the Lightning average seek to twice that of the Lightning average seek. This
parameter range models a large spectrum of drives, from those with very fast positioning to Lightning-like drives spinning at
7200 RPM. The X-axis has been linearly scaled so that 1.0 corresponds to the ratio of average seek time to rotational latency of
the Lightning drive.

achieves as much benefit from decreased seek time as nonredundant arrays because its two accesses
are each equivalent to the single nonredundant access. RAID level 5 and parity logging, however, do
more rotational work for each seek so decreasing seek time relative to rotational latency hurts their
performance relative to nonredundant arrays. Moreover, parity logging does more rotational work to
avoid the parity write seek of RAID level 5. Consequently, the relative advantage of parity logging over
RAID level 5 decreases as the seek time to rotational latency ratio decreases. This ratio, however, is
nearly unity for all modern drives, and shows no particular trend in any direction.

Figure 14 assumes the user requests access data uniformly. While this assumption is reasonable for
huge OLTP databases, other workloads may exhibit substantial locality. In the worse case, all user 1/0
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is concentrated within one region. Choosing an appropriate data stripe unit [Chen90] will balance the
user I/O across the actuators that contain data for this "hot" region; however, log and data traffic are
partitioned over non-overlapping disks. If this traffic is not balanced, parity logging performance will
fall short of Figure 14.

The log, parity and data traffic can be balanced by determining the appropriate degree of log striping,
L. Recall that every DTCL small user writes (where D, T, and CL are the number of data units per

track, tracks per cylinder, and cylinders of log per region, respectively) to the N - L data disks of a
particular region will cause TCL/K writes of K tracks to the striped log, and then a full log read and a
full read and full write of the parity for that region to effect parity reintegration. Parity reads and
writes are spread out over all disks, so a uniform load is maintained if the work per data disk equals
the work per sublog disk. That is,

DTCLt Z (TCL/K) tKtrack + tCL (L)

N-L 
L

where tKtrack (Equation 3), and tCL (L) (Equation 8) are the service times for a K-track write and a full

log read striped over L disks, respectively, N the number of disks in the array, and tZ the disk service

time for a small user write. When data caching is effective, tZ equals tw (Equation 2). When caching

is ineffective, tz equals trmw (Equation 11). Expanding tcL (L) in Equation 10 yields a quadratic equa-

tion in L whose solution is omitted here because it is unnecessarily complex. Because tCL (L) is domi-

nated by transfer time (2RTCL), we approximate this balance equation as a linear equation in L

whose solution is

L + (11)
1 + (KDtz) / (tKtrack + 2KR)

Using this approximation and the disk array parameters from Figure 12, one obtains L = 0. 16N for
blind writes (when t. = trmw) and L = 0.11N when caching is effective (when t_ = tw). Therefore, to

balance the load over all disks in a single region, the example 22 disk array must have two to four
sublogs per region.

6. SIMULATION

To validate the analytic models presented in Sections 3 and 4 and to explore response time for these
arrays, we simulated the example array described in Figure 12 under five different configurations:
nonredundant, mirroring, RAID level 5, floating data and parity, and parity logging. Parity logging was
simulated with a single track of log buffer per region (K = 1) for several different degrees of log
striping (L). The simulations were performed using the RAIDSIM package, a disk array simulator
derived from the Sprite operating system disk array driver [Ousterhout88], which was extended with
implementations of parity logging and floating data and parity.

In each simulation, a request stream was generated by 66 user processes, an average of three per
disk. Each process requests a 2KB write from a disk selected at random, waits for acknowledgment
from the disk array, then "thinks" for some time before issuing another request. Process think time has
an exponential distribution, but the mean is dynamically adjusted until the desired system throughput
is achieved. If the disk array is unable to sustain the offered load, think time is driven to zero.
Simulations were run until the 95% confidence interval of the response time became less than 5% of the
mean. Because this makes all confidence intervals directly computable, the subsequent performance
plots do not show them.

6.1. The Need for Log Striping

Figure 17 shows peak throughput, response time8 and response time variance as the degree of log
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Fig. 17. Pariy Log Stripng. Figures 17(a) and (b) show the achieved user 11Os per disk per second, average user
response time, and the standard deviation of the response time under peak load for various degrees of parity log striping. All
metrics improve substantially as the striping degree is increased from one (no striping) to four. The difference in performance
between striping over 4 to 13 disks is slight, indicating the robustness of the technique.
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Fig. 17(b): Response time and response time standard deviation at peak load

striping (L) is varied from one (unstriped) to thirteen. As predicted in Section 5, when the log is
striped over a small number of disks, performance is substantially lower than in configurations with
more widely striped logs. This behavior results from a "convoy effect" in which processes issuing
blocking writes queue behind very long sublog read accesses. Figure 18 shows sublog read times for low
degrees of log striping. While these long accesses are efficient, they completely tie up a disk for seconds
at a time. During this period, any access to the disks involved in the striped log read will block,
reducing the effective concurrency in the system. This concurrency reduction causes other disks in the
array to become idle until the log read completes, reducing peak throughput and utilization. This
convoy effect also has a substantial impact on response time; requests that block behind these long read
requests will have very long response times, leading to an increase in both average response time and
response time variance. Fortunately, a modest degree of striping eliminates the convoy effect. Figure 17
shows that striping the log over six disks achieves most of the available throughput without greatly
increasing disk space overhead.

With convoys avoided by a log striped over six disks, Figure 19 compares the performance of a parity
logging array with one track buffered per region against Section 4's alternative organizations:
nonredundant, mirroring, RAID level 5, and floating data and parity. The graphs of this figure present
performance in terms of response time as a function of throughput. Figures 19(a)-(b) assume that the
user data must be preread (data cache miss), and Figure 19(c) presents the corresponding data for the
no preread (data cache hit) case.

These simulation response time results may be summarized as follows. Nonredundant disk arrays
perform a single disk access per user write, so they have the lowest and most slowly growing response

8. The simulations reported herein consider a user write in a parity logging array complete when the user data is on disk and the
parity update record has been buffered. The alternatives (nonredundant, mirroring, floating data and parity, and RAID level 5)
consider a user write complete when data and parity are on disk.
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Figure 19(a): Response times

Fig. 19. User Response Times and Disk Utilization. Figures 19(a)-(c) present the average user response times and
response time standard deviations as a function of the number of small random writes achieved per disk per second. Figures
19(a) and (b) present the results when the user data must be preread, while the results in Figure 19(c) assume the user data
was cached, making the preread of the user data unnecessary. In addition to reducing the amount of I/O required, cached user
data allows the user write and parity update to occur concurrently, significantly reducing response time for RAID level 5 and
floating data and parity. The reported times are in milliseconds. The response time standard deviation for the no preread case
is essentially identical to Figure 19(b).

time. Mirroring shows a similar behavior, but is driven into saturation with half as much load. In
contrast, each small user write in RAID level 5, when user data must be preread, sequentially executes
two slow read-rotate-write accesses. 9 Unloaded system response time is thus quite high and queuing
effects cause it to grow quite rapidly with load. While the response time for parity logging on a lightly
loaded system is approximately 14 ms (one revolution) higher than mirroring because of the data read-
rotate-write accesses, the peak throughput and response time are quite similar. Similar to RAID level
5, floating data and parity arrays require two read-rotate-write accesses per user write, but by
minimizing rotational delays, floating data and parity achieves peak throughput similar to parity
logging and mirroring. Response time, however, is significantly longer.

Figure 19(c) shows the performance of all configurations when data cache hits eliminate the need for
prereads. As expected, this has no effect on mirrored or nonredundant systems, but improves the
performance of the other three configurations. RAID level 5 benefits substantially from eliminating the
full rotation delay incurred by a data preread. In addition, a user's data write and parity update can be
issued concurrently, further improving the response time and array utilization. Floating data and
parity achieves a lesser benefit from elimination of the preread because its preread overhead is much
less. Response time does drop, however, because of the ability to issue user write and parity update
accesses simultaneously. The response time of parity logging improves by a full rotational delay
because of the elimination of the preread rotate, providing an unloaded response time comparable to a

9. In a highly aggressive implementation, it is possible to initiate the parity read-rotate-write access after the preread of the old
user data completes, but we assume that no status is returned until the entire read-rotate-write access completes.
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Fig. 19(c): Response times without prereads

nonredundant array. This also reduces the actuator time per access by nearly one third, allowing
throughput and response time to improve proportionately.

The variance in user response time, however, is larger with parity logging than with mirroring or
floating data and parity, although it is not as large as with RAID level 5. This results from the basic
structure of parity logging: most accesses are fast because inefficient work is delayed. However, some
accesses see long response times as delayed work is (efficiently) completed. With this higher variance in
mind, we conclude that the response time estimates in Figure 19 show that parity logging is a viable,
and much lower cost, alternative to mirroring for small-write intensive workloads.

RAID level 5 FloatingD/P Mirroring Parity Logging Nonredundant

Preread 83.7 82.8 89.7 83.5 81.1
Required

No Preread 86.7 87.0 89.7 81.2 81.1

Fig. 20. Diek Utilization at Peak Load
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6.2. Analytic Model Agreement with Simulation

The analytical model estimates in Figure 14 predict the vertical asymptotes (saturation throughputs)
of Figure 19(a) and (c). A direct comparison, however, will display significant discrepancies because of
the relatively small number of simulated processes. With a fixed number of requesting processes, the
deep queue of one overloaded disk can periodically go idle. Figure 20 shows the disk utilizations at peak
load for the configurations simulated. These peak-load disk utilizations differ according to the number
of concurrent disk accesses issued by a user write in each configuration. RAID level 5 and floating data
and parity, when user data is not cached, and parity logging and nonredundant disk arrays, regardless
of caching, present only one disk access request at a time per process. Mirroring and the data-cached
cases for RAID level 5 and floating data and parity keep the array busier because each user write issues
two concurrent disk accesses. Figure 21 shows that, when these difference are accounted for by scaling
the model predictions of Figure 14 by the disk utilizations of Figure 20, simulation throughput agrees
with analytic predictions to within 5%.

6.3. Performance in More General Workloads

Up to this point, all of the analysis has been specialized for workloads whose accesses are 100% small
(2KB) random writes. This section examines a mixed workload, defined in Figure 22, modeled on
statistics taken from an airline reservation system [Ramakrishnan92]. With this more general
workload, the results of the earlier sections are modified by two important effects: reads and medium to
large writes. The issues encountered in extending floating data and parity to handle variable sized
access are beyond the scope of this paper and this technique is omitted from this section. Among the
other array configurations, parity logging, mirroring and RAID level 5, there is no difference in read
performance. This will have the effect of compressing the overall performance differences between
configurations. Writes that are not small, however, will hurt the performance of parity logging as is
discussed in Section 5.

4% With prereads Without prereads

3%
2%
1% arity

N Mirroring
-1% RAID level 5 Floating Nonredundant-1%1 Data/Parity

-2%
-3%
-4%
-5%

Fig. 21. Model errors. This figure shows the percent error between the models of sections 3 and 4 and the simulations of
Section 6. The model predictions have been scaled by the achieved disk utilizations of Figure 20. In all cases, the
disagreement between the simulation and the models is less than 5 percent. Note that the 95% confidence interval on the
simulation response time is also ±5+% of the mean.

Type % of workload Size (KB) Type % of Workload Size(KB)

Read 20 1 Read 20 2

Read 33 4 Read 9 24

Write 9 1 Write 7 8

Write 2 24

Fig. 22. Airline reservation workload. The I/0 distribution shown above was selected to agree with general statistics from
an airline reservation system [Ramakrishnan92j. This workload is reported as approximately 82% reads, a mean read size of
4.61 KB, and a median read size of 3 KB. The mean write size was larger, 5.71 KB, but the median write size was smaller, 1.5
KB. Locality of reference and overwrite percentages were not reported. All accesses are assumed to occur on their natural
boundaries.
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Fig. 23. Airline reservation simulation. Shown above are the results of simulation using the access size distribution of
Figure 22. The access distribution is uniform throughout the 22 disk array (Figure 12). For all configurations, the data unit
size was 24KB, so no access spans more than a single drive. For RAID level 5 and parity logging, results are shown both for
the case where all writes are blind, and when the old data for all writes is cached (no preread). While CVSCAN [Geist87J
scheduling improves throughput and response of all workloads, mirrored and nonredundant disk arrays improve the most,
since seek time is a larger proportion of their underlying I/Os.

Figure 23 presents the results of simulations of four of the array configurations - nonredundant,
mirroring, RAID level 5, and parity logging - on this more realistic OLTP workload. With FIFO disk
scheduling, used throughout the rest of this paper, parity logging is always superior to RAID level 5
and is equivalent to mirroring when data caching of writes is effective. 10 With CVSCAN [Geist87], all
configurations deliver higher throughput with lower average response times, but mirroring and
nonredundant arrays benefit most. Nonetheless, parity logging remains superior to RAID level 5 and is
comparable to mirroring when data caching of writes is effective.

7. MULTIPLE FAILURE TOLERATING ARRAYS

A significant advantage of parity logging is its efficient extension to multiple failure tolerating
arrays. Multiple failure tolerance provides much longer mean time to data loss and greater tolerance
for bad blocks discovered during reconstruction [Gibson92]. Using codes more powerful than parity,
RAID level 5 and its variants can all be extended to tolerate f concurrent failures. Figure 24 gives an
example of one of the more easily-understood double failure tolerant disk array organizations. This two
dimensional parity and the more familiar one dimensional parity used in the rest of this paper are
called binary codes because a particular bit of the parity depends on exactly one bit from each of a
subset of the data disks. If, instead, generalized parity (check information) is computed as a multiple-

10. Our simulations do not explicitly model a disk or file cache. We consider accesses satisfied in such a cache to not contrib-
ute to the disk array workload. Cache write hits are special-cased because the disk access is modified by the availability of the
prior data values.
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bit symbol, dependent on a multiple-bit symbol from each of a subset of the data disks, then the code is
a non-binary code (Macwilliams77, Gibson92l. Non-binary codes can achieve much lower check
information space overhead in a multiple failure tolerating array. In particular, a variant of a Reed-
Solomon code called "P + Q Parity" has been used in disk array products to provide double failure
tolerance with only two check information disks [ATC90].

Disk 0 Disk I Disk 2

Disk 3 Disk 4 Disk 5 Parity
Row 1

Disk 5 Disk 6 Disk 7 Parity
Row 2

Parity Parity
Column 0 Column 2

Fig. 24. Two dimensional parity. One disk array organization that achieves double failure tolerance is two dimensional
parity. Parity disks hold the parity for the corresponding row or column. In the example above, the parity disk for column 0
holds the parity of disks 0, 3 and 5. Similarly, the parity disk for row 0 holds the parity of disks 0, 1 and 2. Whenever a unit
in a data disk is written, the corresponding units in both row and column parity disks are also updated. Thus a write to disk
1, in the example above, would require updating the parity on the shaded parity disks, parity row 0 and parity column 1.

This paper is not concerned with the choice of codes that might be used for f-failure tolerance, except
to note that the best of these codes all have one property important to small random write performance
[Gibson89]: each small write updates exactly (f+ 1) disks - f disks containing check information
(generalized parity) and the disk containing the user's data. This check maintenance work, which
scales up with the number of failures tolerated, is exactly the work that parity logging is designed to
handle more efficiently.

Multiple failure tolerating parity logging disk arrays arise as a natural extension of multiple failure
tolerating variants of RAID 5. As with single failure tolerating parity logging, the underlying disk
array is augmented with a log. However, to maintain f-failure tolerance, the log itself must be (f- 1 )-
failure tolerant. One way to achieve (f- 1 )-failure tolerance is to replicate the log f times. Figure 25
shows one region of a double-fault tolerant parity logging disk array based on a nonbinary code such as
"P+Q Parity."

The log management cycle is quite similar to that of a single fault tolerant parity logging disk array
When a region's log buffers fill up, the corresponding parity update records are written once into each of
the f logs. When these logs fill up, one copy of the log is read into the reintegration buffer, along with
the check information for the region. The updated check information is then rewritten, all log copies are
truncated, and the logging cycle starts again.

Mirroring and floating data and parity also extend to multiple failure tolerance in straightforward
manner. Mirroring becomes f-copy shadowing [Bitton88]. Floating data and parity becomes floating
data and check, requiring f "floated" read-rotate-write accesses per blind write.

The overhead associated with maintaining check information can be divided into two components:
preread bandwidth overhead and nonpreread bandwidth overhead. The bandwidth needed to preread
the old copy of the user's data is independent of the number of failures to be tolerated. Nonpreread
bandwidth, the disk work done to update the check information given a data change, grows linearly
with the number of failures to be tolerated. Parity logging has the smallest cost for this latter, linearly
growing component of check maintenance overhead because all check information accesses (log and
generalized parity) are done efficiently.

Figure 26 shows the maximum rate that small random writes can be completed in zero, single,
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Fig. 25. A parity-logging array that uses a nonbi nary code to achieve double-fault tolerance. By using nonbinary
codes, disk arrays can achieve double failure tolerance with only two disks of check data. Shown above is a single region of a
double fault tolerant parity logging disk array with nonbinary check information. The parity of a single fault tolerant array is
replaced with two sets of check information. The shaded area shows an example pair of check information blocks and the data
blocks that they protect.

7T achieve double fault tolerance in such a parity logging array, the striped log for each region is duplicated. In the
picture above, each log is striped over two disks. Note that the contents of this duplicated log are identical and are not
associated with a particular copy of the check information.

Nonredundant
Parity Logging

40 Mirroring
RAID Level 5

30Floating D/P

S 30

10 V

0'0 2 3
Disk failures tolerated

Fig. 26. Performance of multiple failure tolerating arrays. While the performance of all array configurations declines
with the number of failures tolerated, parity logging declines the least, decreasing in performance by about 15% per degree of
failure tolerated. The highest performing alternative, mirroring, has a huge disk space overhead, requiring 3 or 4 disks per
disk of user data in the double and triple failure tolerating cases, respectively. The performance of RAID level 5 and floating
data and parity both decline rapidly, achieving less than 10 user writes per second in the triple failure tolerating case. The
shaded portion of each bar shows the performance when the data to be rewritten is not cached, while the full height indicates
performance when data is cached.

double, and triple failure tolerating arrays using mirroring, RAID level 5, floating data and parity and
parity logging. This data is derived from the models of sections 3 and 4 and applied to the example disk
array of figure 12..

The maximum I/O rate of the parity logging array declines more slowly than the other configurations
because parity logging has a substantially lower nonpreread overhead. For example, while triple
failure tolerating parity logging arrays should sustain about 35% of the I/O rate of nonredundant
arrays for random small writes, quadruplicated storage (triple failure tolerating mirroring disk arrays)
will sustain only 25%.

8. ACCOMMODATING THE RAID LEVEL 5 LARGE WRITE OPTIMIZATION

In parity-based disk arrays, a large write operation, which is defined as a write that updates all the
data units associated with a particular parity unit, can easily be serviced more efficiently than a small
write operation. Since all data units in the stripe are updated, the new parity can be computed in
memory from the new data and written directly to the parity unit. This 'large write optimization"
avoids the preread of data and parity associated with small writes, improving write performance by
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about a facto- of four [Patterson88l.
This optimization can not be applied directly to parity logging disk arrays as we have described them

so far because there may exist outstanding (not yet reintegrated) logged updates for a particular parity
unit at the time when a large write overwrites that parity unit. If these logged updates were ignored
and a parity overwrite were done, the parity could be erroneously updated with the stale logged
updates when reintegration occurs. This problem can be corrected by placing the new parity into the log
instead of writing it directly to disk."1 Parity placed in the log by a large write operation is marked as a
special "overwrite" record, and the reintegration process, which normally XORs each log record into the
corresponding parity unit, now distinguishes between a normal "update" log record and the new
overwrite record. Update records are XORed into the accumulating parity unit, while overwrite records
are simply copied in.

This approach has the disadvantage of forcing the log to be processed sequentially rather than
concurrently. If the log were guaranteed to contain only update records, the log records could be applied
to the parity ima ge in any order, increasing parallelism. The existence of overwrite records forces the
reintegration process to determine the sequence in which the log updates occurred and to apply the log
records accordingly.

This new sequentiality constraint potentially lengthens the reintegration time, which, as section 6
will show, can substantially degrade performance at high loads. In the simplest case, a region's logs
must be in read in the order they were written and merged to produce a update/overwrite image before
any of the parity is processed. Given sufficient buffer memory for a region's parity and log, full
parallelism could be achieved during the log and parity reads, but the application of logs to parity
would still have to be deferred until these reads complete. At this point, a sequential in-memory
reintegration could be performed. However, as long as log buffers are written to sublogs in a round-
robin fashion, it is reasonable to assume that parallel sublog reads will return parity records in nearly
sequential order. Based on this observation and because overwrite records eliminate all prior
information, the following highly parallel algorithm can be used. Each block in the reintegration buffer
is initially zeroed and marked "non-overwrite". Parity and log for the target region are all read in
parallel. A parity block is applied if the corresponding buffer is marked "non-overwrite," and discarded
if the buffer is marked "overwrite." If a logged record is an update and the block is "non-overwritten",
the record is XORed in, but is buffered until all earlier log records have been processed. If a log record is
an overwrite, the target block is overwritten and marked as "overwritten by record X." Any buffered
updates that have already been applied should occur after this overwrite are reapplied. Overwrite or
update records preceding X are not applied to a block marked "overwritten by X." As long as parallel
reads on different sublogs proceeded at nearly the same rate, this algorithm will not consume much
extra buffer space. If buffer exhaustion occurs, the algorithm can simply serialize.

9. RELATED WORK

Bhide and Dias [Bhide92] have independently developed a scheme similar to parity logging. Their
LRAID-X4 organization maintains separate parity and parity-update log disks, and periodically applies
the logged updates to the parity disk. In order to allow writes from the user to occur in parallel with log
reintegration, they duplicate both the parity and the parity log for a total of four overhead disks.
LRAID-X4 does not distribute parity or leg information. Instead of breaking down the log disk into
regions to reduce the required storage in the controller, LRAID-X4 sorts buffered parity updates in
memory according to the parity block to which they apply This allows LRAID-X4 to write a "run" of
updates for ascending parity blocks to a log disk. When this log disk is full, further updates are sorted
into runs and written to the second log disk while the first log disk reintegrates its updates with the
parity by reading from one parity disk and writing to the other. The reintegration of a full log disk uses
an external sorting algorithm to collect subse,,uences applying to one area of parity from each run on
the log disk. If this area is large, all log reads and parity reads and writes will be efficient.

LRAID-X4 reaches its performance maximum of 34.5 writes per disk per second with 20 disks (16
data, 2 parity, 2 log) for a 100% write workload with 5% of a disk's worth of memory [Stodolsky93].
Additional disks do not increase performance. In comparison, the parity logging disk array sin, ulated in
Section 6, whose controller requires about 2% of a disk's worth of memory, is predicted to achieve 36 7
I/Os per disk per second in Section 3 on the same workload, and its performance continues to increase

11. An alternative way to correct the problem is to write the new parity directly to disk and place a "cancel" record in the log.
Tnc reintegration process would then discard all previous log entries for the identified parity unit when it detects a cancel record.
This solution has the potential to reduce the log traffic by making cancel records only a few bytes in size.
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with increasing numbers of disks.
Less closely related research efforts can be characterized by their use of three techniques that are

frequently exploited to improve throughput in disk arrays: write buffering, write-twice, and floating
location.

Write buffering delays users' write requests in a large disk or file cache to achieve deep queues, which
can then be scheduled to substantially reduce seek and rotational positioning overheads [Seltzer90,
Solworth9O, Rosenblum9l, Polyzois93]. Data loss on a single failure is possible in these systems unless
fault-tolerant caches are used.

The write-twice approach attempts to reduce the latency of writes without relying or, fault-tolerant
caches. Similar to floating data and parity, several tracks in every disk cylinder are reserved, and an
allocation bitmap is maintained. When a write is issued, the data is immediately written (typically in a
self-identifying manner) to a rotationally close empty location in a reserved track, making the data
durable. The write is then acknowledged, but the data is retained in the host or controller and
eventually written to its fixed location. When the data has been written the second time, the
corresponding bit in the allocation bitmap is cleared. While significant memory may be required for the
allocation bitmaps, mapping tables, and write buffers, this storage is not required to be fault tolerant,
limiting controller cost. Write-twice is typically combined with one of the write buffering techniques to
improve the efficiency of the second write. This technique has been pursued most fully for mirroring
systems [Solworth9l, Orji93].

The floating location technique improves the efficiency of writes by eliminating the static association
of logical disk blocks and fixed locations in the disk array. When a disk block is written, a new location
is chosen in a manner that minimizes the disk arm time devoted to the write, and a new physical-to-
logical mapping is established. We have described one such scheme, floating data and parity
[Menon92], in this paper. An extreme example of this approach is the log structure filesystem (LFS), in
which all data is written in a segmented log, and segments are periodically reclaimed by garbage
collection [Rosenblum9l]. Using fault-tolerant caches to delay data writes, this approach converts all
writes into long sequential transfers, greatly enhancing write throughput. However, because logically
nearby blocks may not be physically nearby, the performance of LFS in read-intensive workloads may
be degraded if the read and write access patterns differ widely. The distorted mirror approach
[Solworth9l] uses the 100% storage overhead of mirroring to avoid this problem. one copy of each block
is stored in fixed location, while the other copy is maintained in floating storage, achieving higher write
throughput while maintaining data sequentiality [Orji93]. However, all floating location techniques
require substantial host or controller storage for mapping information and buffered data.

10. CONCLUDING REMARKS

This paper presents a novel solution to the small write problem in redundant disk arrays based on a
distributed log. Analytical models of the peak bandwidth of this scheme and alternatives from the
literature were derived and validated by simulation. The proposed technique achieves substantially
better performance than RAID level 5 disk arrays on workloads emphasizing small random accesses.
When data must be preread before being overwritten (writes miss in the cache), parity logging achieves
performance comparable to floating parity and data without compromising sequential access
performance or application control of data placement. When the data to be overwritten is cached,
performance is superior to floating parity and data and mirroring array configurations. This
performance is obtained without the 100% disk storage space overhead of mirroring. The technique
scales to multiple failure tolerating arrays and can be adapted to accommodate the large write
optimization.

While the parity logging scheme presented in this paper is effective, several optimizations should be
explored. More dynamic assignment of controller memory should allow higher performance to be
achieved or a substantial reduction in the amount of memory required. Application of data compression
to the parity log should be very profitable. The interaction of parity logging and parity declustering
[Holland92] merits exploration. Parity declustering provides high performance during degraded-mode
and reconstruction while parity logging provides high performance during fault-free operation. The
combination of the two should provide a cost-effective system for OLTP environments.
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