Improved approximation guarantees for minimum-weight k-trees and prize-collecting salesmen

Baruch Awerbuch Yossi Azar Avrim Blum Santosh Vempala
August 1994
CMU-CS-94-173

Carnegie Mellon

Reproduced From Best Available Copy
Improved approximation guarantees for minimum-weight k-trees and prize-collecting salesmen

Baruch Awerbuch Yossi Azar Avrim Blum
Santosh Vempala
August 1994
CMU-CS-94-173

School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213
Keywords: Algorithms, approximation algorithms, performance guarantees, traveling salesman problem, prize-collecting TSP, minimum-weight trees.
Abstract

Consider a salesperson that must sell some quota of brushes in order to win a trip to Hawaii. This salesperson has a map (a weighted graph) in which each city has an attached demand specifying the number of brushes that can be sold in that city. What is the best route to take to sell the quota while traveling the least distance possible? Notice that unlike the standard traveling salesman problem, not only do we need to figure out the order in which to visit the cities, but we must decide the more fundamental question: which cities do we want to visit?

In this paper we give the first approximation algorithms with poly-logarithmic performance guarantees for this problem, as well as for the slightly more general PCTSP problem of Balas, and a variation we call the "bank-robber problem" (also called the "orienteering problem" by Golden, Levi, and Vohra). We do this by providing an $O(\log^2 k)$ approximation to the k-MST problem which is defined as follows. Given an undirected graph on n nodes with non-negative edge weights and an integer $k \leq n$, find the tree of least weight that spans k vertices. (If desired, one may specify in the problem a "root vertex" that must be in the tree as well.) Our result improves on the previous best bound of $O(\sqrt{k})$ of Ravi et al. and comes quite close to the bound of $O(\log k)$ of Garg and Hochbaum for the special case of points in 2-dimensional Euclidean space.
1 Introduction

The problem. Consider a salesperson that must sell some quota of R brushes in order to win a trip to Hawaii. This salesperson has a map (a weighted graph) of n cities in which each city has an attached demand specifying the number of brushes that can be sold in that city. What is the best route to take to sell the quota while traveling the least distance possible? Notice that unlike the standard traveling salesman problem, not only do we need to figure out the order in which to visit the cities, but we must decide the more fundamental question: which cities do we want to visit?

R. Ravi, Sundaram, Marathe, Rosenkrantz, and S.S. Ravi [RSM+94] considered the cleanest case of above problem, called the minimum-weight k-tree, or k-MST problem. In this problem, one is given a graph on n vertices with non-negative distances on the edges, and a number $k \leq n$, and the goal is to find a tree of least total cost that spans k vertices. For $k = n$ this is the (easy) minimum spanning tree problem. For general k, however, the problem is NP-complete and has the same main difficulty faced by the above salesperson: which points to include and which to ignore? In fact, the k-MST problem nicely focuses on just that issue since once the set is determined, the least weight tree on that set is easy to find.

Cheung and A.Kumar [CK94] call this problem the “quorum-cast” problem, whose application are in the domain of communication networks. Other applications for this problem include fault-tolerant distributed computing and data management.

The bank robber problem is the following: given the map of a city including the amounts of money in each bank, and a car with bounded gas tank, the robber has to rob the maximum amount of money without refueling after first robbery (thus avoiding being reported to the police). This problem is also called the “orienteering problem” by Golden, Levi, and Vohra [GLVS-].

Existing work. Ravi et al. [RSM+94] provide an algorithm that achieves an approximation ratio of $O(\sqrt{k})$ for the k-MST problem on general graphs (i.e., the tree found is at most $O(\sqrt{k})$ times heavier than the optimal tree) and ratio $O(k^{1/4})$ for the special case of points in 2-dimensional Euclidean space. Garg and Hochbaum [GH94] improve the ratio for the latter case to $O(\log k)$.

Heuristics for this problem have been given by Cheung and A.Kumar [CK94].

Results of this paper. In this paper, we describe an algorithm that achieves an approximation ratio $O(\log^2 k)$ for the k-MST problem on general graphs, improving the bound of [RSM+94] and coming quite close to the bound of [GH94] for the special case of points in the Euclidean plane. Our results hold for both the rooted and unrooted versions (is there a required “start” vertex?). This result immediately implies an $O(\log^2 R)$ approximation for the quota-driven salesperson described above: simply treat a vertex with “demand” d as a cluster of d vertices, find the R-MST, and then tour the tree in the standard way. In fact, our algorithm actually achieves the somewhat better bound of $O(\log^2(\min(R, n)))$ for this problem.

Our algorithm also extends easily to a $O(\log^2(\min(R, n)))$ bound for the prize-collecting traveling salesman problem (PCTSP) due to Balas [Bal89] on undirected graphs. The PCTSP problem is just like the quota TSP problem but in addition there are non-negative penalties attached to each city and the salesperson’s cost is the sum of the distance traveled plus the penalties on cities not visited. (So the quota problem is the special case in which penalties are 0.) The $O(\log^2(\min(R, n)))$ bound for the PCTSP follows immediately by concatenating the tour found by our algorithm (which
ignores the penalties) to a tour found by a 2-approximation algorithm by Goemans and Williamson [GW92] to a relaxed version of the PCTSP in which the quota requirement is removed. (In the original PCTSP there is also a restriction that each city not be visited more than once; if this is desired, we can achieve the same bound assuming distances obey the triangle inequality.)

We also derive an approximation algorithm with similar bounds for the bank robber problem.

\section{The k-MST problem}

We begin by presenting an algorithm for the k-MST problem that achieves an approximation ratio of $O(\log^3 k)$. We then describe an improvement that removes one of the logarithmic factors to achieve the ratio of $O(\log^2 k)$. Before presenting the algorithm, however, let us point out that the "rooted" and "unrooted" versions of the problem are essentially equivalent from the point of view of approximation for the following reason.

Given an algorithm for the rooted problem, to solve the unrooted case one can simply try all possible start vertices and then choose the smallest tree found. Given an algorithm for the unrooted version, to solve the rooted case when the weight ℓ of the optimal tree is known just throw out all vertices of distance greater than ℓ from the root, solve the unrooted problem, and then connect the tree to the root for an added cost of at most ℓ. If the optimal cost ℓ is not known, simply sort the distances from the root to each of the n points in increasing order, run the algorithm n times throwing out the i farthest points in the ith iteration, and pick the best result.

In the rest of this section we will use OPT to denote the optimal k-tree and ℓ to denote its total weight.

Our algorithm and analysis contain two main ideas. The first is a measure used for grouping points into components in a Kruskal-like manner. The second is a bucketing technique that allows one to prove this measure to be useful. The measure we use is the following: given two components C_i, C_j, we examine the ratio: $d(C_i, C_j)/\min(|C_i|,|C_j|)$, where $d(.,.)$ is the distance according to the shortest-path metric and $|.|$ is the size in terms of number of points. The general step of the algorithm will be joining together (using the shortest path) the two components for which this ratio is smallest.

The bulk of the argument will be for proving correctness of an algorithm for the following slight relaxation of our goal, which is similar to the "maximal dense" tree concept in [AAG93]. Given k, we will find a tree on at least $k/4$ points whose weight is at most $O(\log^2 k)$ times the weight of the minimum k-tree. With this algorithm in place, it will be easy to remove the relaxation and solve our original problem. The Kruskal-like algorithm for this relaxed problem is as follows:

\textbf{Algorithm Merge-Cluster:}

1. Begin with n components, one for each point.

2. Join the two components such that the ratio of the distance between the components to the number of points in the smaller one, i.e. $d(C_i, C_j)/\min(|C_i|,|C_j|)$, is least.

3. Repeat Step (2) until some component has size at least $k/4$.

\textbf{Theorem 1} The weight of the largest component produced by \textbf{Algorithm Merge-Cluster} is at most $4(\log_2 k)^2$ times the weight of the optimal k-tree.
The proof of Theorem 1 follows immediately from Lemmas 1 and 2 below.

Lemma 1 If at any time the largest ratio used by algorithm Merge-Cluster so far is \(r \), then any component of \(p \) points will have total weight at most \(rp \log_2 p \).

Lemma 2 Algorithm Merge-Cluster never uses a ratio larger than \(\frac{(8 \ell \log_2 k)}{k} \) where \(\ell \) is the weight of the optimal \(k \)-tree.

To prove Theorem 1 from these lemmas, just note that the only way in which the largest component produced could have size greater than \(k/2 \) is for the additional vertices to be included “for free” in the shortest path that makes up the final connection. Thus combining the bounds of the two lemmas yields the theorem.

We begin with a proof of the simpler lemma.

Proof of Lemma 1. Consider a joining of two components. Since the length of the connection used is at most \(r \) times the number of points in the smaller component, we can “pay for” the connection by charging a cost of at most \(r \) to each of the points in the smaller component. Any time a point is charged, the size of the component it belongs to at least doubles. So, any point in a component of \(p \) points has been charged a total cost at most \(r \log_2 p \). Since the weight of a component is at most the total charge to points inside it, this proves the lemma.

Proof of Lemma 2. In contradiction, suppose at some time all components produced by the algorithm have size less than \(k/4 \) and the distance between any two is greater than \(r = \frac{(8 \ell \log_2 k)}{k} \) times the number of points in the smaller. Group the components into buckets based on size, where the \(i \)th bucket contains those components with between \(k/2^i \) and \(k/2^{i+1} \) points (\(i = 2, 3, \ldots \)). Now, throw out all components that do not intersect the optimal \(k \)-tree. Clearly the optimal \(k \)-tree can have at most \(k/4 + k/8 + \ldots < k/2 \) points inside buckets that contain only one component. So, there is some bucket containing at least 2 components such that \(\text{OPT} \) has at least \(k/(2 \log_2 k) \) points inside that bucket. Say all components in this bucket have size between \(s \) and \(2s \). This means that the balls of radius \(rs/2 \) about each component do not touch each other and \(\text{OPT} \) must intersect at least \(k/(4 s \log_2 k) \) components. Therefore \(\text{OPT} \) must have a connection cost greater than \(rk/(8 \ell \log_2 k) = \ell \), a contradiction.

Algorithm Merge-Cluster immediately gives us a simple \(O(\log^3 k) \) approximation algorithm for the \(k \)-MST problem as follows. For simplicity, we consider the rooted version. Also, for the moment suppose that we know the weight \(\ell \) of the optimal \(k \)-tree. In the procedure below, we view Algorithm Merge-Cluster as taking “\(k \)” as an argument.

Algorithm Connect-Clusters:

1. Mark as “to be ignored” all vertices of distance greater than \(\ell \) from the root.

2. Run algorithm Merge-Cluster several times. First run it on the unmarked vertices remaining after Step (1). (By this we mean that the distance between two components is still the shortest path distance in the original graph, but only unmarked vertices are considered in computing a component’s size.) Then, mark as “to be ignored” those vertices in the component that was found and again run the algorithm on the unmarked vertices, but this time
with argument "k" now set to the number of vertices we still need (i.e., $k - k_1$ if the first invocation returned a component of size k_1).

Continue this process, at each stage running the algorithm so that it only considers vertices not in components found so far (and that are within distance ℓ from the root) and with "k" as the number still needed, until we have found a set of components whose combined size is at least k.

3. Connect together all the components found in Step (2).

Theorem 2 Algorithm Connect-Clusters finds a tree of at least k points whose weight is at most $O(\log^3 k)$ times the optimal.

Proof. Suppose in the invocations of Algorithm Merge-Cluster so far we have found components with k' points total. Then, the optimal k-tree contains at least $k - k'$ points in the graph remaining, and all these are within distance ℓ from the root. Thus, the next invocation of the algorithm will find a tree on at least $(k - k')/4$ points, at cost at most $O(\ell \log^2 k)$. So the algorithm will be run at most $O(\log k)$ times and the sum total cost of all components found is at most $O(\ell \log^3 k)$. The cost to connect them together is a low-order $O(\ell \log k)$.

We can remove the knowledge of the optimal cost ℓ from the above algorithm in the same manner as was done for converting the rooted version of the k-MST problem to the unrooted version. For improved efficiency, note that the true ℓ satisfies $\lambda \leq \ell \leq k\lambda$, where λ is the distance of the kth farthest vertex from the root. So we can begin with a guess of $\ell = \lambda$ and then double our guess if the numbers and sizes of the components found do not satisfy the guaranteed bounds, for a total of $O(\log k)$ iterations maximum.

We now show how to modify Algorithm Connect-Clusters to achieve an $O(\log^2 k)$ approximation. To do this, we use the following corollary (in [BCC+94]) to a result by Goemans and Williamson [GW92]. In [BCC+94] this is called a (3,6)-TSP approximator.

Fact 1 Given a weighted graph on n points and an $\epsilon > 0$, let L_ϵ be the length of the shortest tour that visits at least $(1 - \epsilon)n$ points. One can find in polynomial time a path of length at most $6L_\epsilon$ that visits at least $(1 - 3\epsilon)n$ points.

For simplicity, we describe the modified algorithm as either finding a tree of k points with cost at most $O(\ell \log^2 k)$ or else finding a tree on at least $k/4$ points with cost $O(\ell)$. It is not hard to see that this suffices because the latter case removes an $O(\log^2 k)$ factor from the bounds of Theorem 1 (which is even better). The new algorithm works as follows.

Algorithm Improved-Connect: Run Algorithm Connect-Clusters until components totaling at least $\frac{15}{16}k$ points have been found. This requires only a constant number of applications of Algorithm Merge-Cluster. If the optimal k-tree intersects less than a $(1 - \frac{3}{15})$ fraction of these points (and so contains at least $k/4$ new points), then one final application of Merge-Cluster (with argument $k/4$) will find a new component with at least $k/16$ points and we are done. On the other hand, if the optimal k-tree intersects at least a $(1 - \frac{3}{15})$ fraction of these points, then by applying the algorithm of Fact 1, we can find a path of length $O(\ell)$ that visits at least $(1 - \frac{9}{15})k = \frac{3}{8}k$ points. Thus, the MST on these points is a tree of cost $O(\ell)$ on more than $k/4$ points.

We thus have the following theorem.
Theorem 3 Algorithm Improved-Connect provides an $O(\log^2 k)$ approximation for the k-MST problem and runs in polynomial time.

3 Extensions of the basic k-MST algorithm

We now describe how the algorithms of the previous section can be used to give guaranteed approximations to the other problems mentioned in the introduction, such as

- the quota TSP problem,
- the prize-collecting salesman problem, and
- the bank robber (orienteering) problem.

3.1 Algorithms for quota-driven salesmen

In the quota TSP problem each vertex in the graph has some attached integral value $w_i \geq 0$ and the salesman has a target quota R. The goal is to find a route as short as possible that visits vertices whose sum total value is at least R. The salesman may visit a given city more than once. (If salesman is restricted to one visit per city, the same approximation ratios can be reached in the standard way in the case that the distances obey the triangle inequality.)

First, it is immediate that we can approximate the quota TSP to a factor of $O(\log^2 R)$. Simply replace each vertex of value w by w vertices all at the same location, find the approximate R-MST, and then traverse it at most twice. Notice that this bound might not be so good if R is much larger than n. We show now that the algorithm in fact achieves the better bound of $O(\log^2(\min(R,n)))$.

It will be simplest to view Algorithm Merge-Cluster as acting directly on the weighted vertices, merging the two components C_i, C_j that minimize $d(C_i,C_j)/\min(wt(C_i), wt(C_j))$ where $wt(C)$ is the sum of the values of the vertices contained in C. Let us call this algorithm Merge-Weighted-Cluster (even though it is really exactly the same algorithm). For the analysis corresponding to Lemma 1, however, when two components are merged we will “pay for” the cost by charging to the smaller one in number, not in weight. This still means that for a connection of ratio r a vertex of weight w will be charged at most rw (if we charge vertices proportionally to their weight). But, now it is clear that a vertex will be charged at most $\log(p)$ times if it is in a component of p vertices (as opposed to a component having weight p). Thus we have the following lemma. (We also give a more formal proof below.)

Lemma 3 If at any time, the largest ratio used by the algorithm Merge-Weighted-Cluster so far is r, then any component of p points and total vertex-weight w will have total edge weight (cost) at most $rw \log_2 p$.

Proof: We prove it by induction. It is true when initially since the cost begins at 0. When merging two clusters C_i and C_j into C we note that

\[
cost(C) = \cost(C_i) + \cost(C_j) + d(C_i,C_j)
\]
\[\leq r \cdot \text{wt}(C_i) \cdot \log(|C_i|) + r \cdot \text{wt}(C_j) \cdot \log(|C_j|) + r \cdot \min\{\text{wt}(C_i), \text{wt}(C_j)\} \]

\[\leq r \cdot (\text{wt}(C_i) + \text{wt}(C_j)) \cdot \log(|C_i| + |C_j|) \]

\[\leq r \cdot \text{wt}(C) \cdot \log(|C|) \]

We can similarly improve Lemma 2 as follows.

Lemma 4 Algorithm **Merge-Weighted-Cluster** never uses a ratio larger than \(O(t \log_2 n)/R)\) where \(t\) is the (edge) weight of the optimal tree having vertex-weight \(R\).

Proof. Following the proof of Lemma 2 we have buckets containing the components of vertex-weight \(R/4\) to \(R/8\), \(R/8\) to \(R/16\), etc. We stop, however, at weight \(R/(10n)\) and put all components of that weight or less into one single bucket. Now there are only \(O(\log n)\) buckets instead of \(O(\log R)\) and the final small bucket intersects the optimal tree in at most \(R/10\) total weight and so can be "thrown out" in the analysis. The rest of the proof of Lemma 2 then can be followed directly.

The above two lemmas imply that Algorithm **Improved-Connect** of Theorem 3 in fact achieves a ratio of \(O(\log^2 n)\) as well as \(O(\log^2 R)\), which gives us our desired bound.

3.2 Algorithms for prize-collecting salesmen

As already mentioned in the introduction, an approximation algorithm to the quota TSP problem can be transformed into an approximation algorithm to the PCTSP problem [Bal89] (which has the additional complication of penalties attached to vertices and the "cost" of a tour equals its length plus the sum of penalties on points not visited) as follows. Concatenate the tour found by the quota TSP approximator to a tour found by a 2-approximation algorithm of [GW92] to a version of the PCTSP in which the quota requirement is removed. (Removing the quota restriction only decreases the cost of the optimum solution.) Thus we have the following theorem.

Theorem 4 There is a polynomial time algorithm that approximates the PCTSP problem of [Bal89] on \(n\)-vertex undirected weighted graphs to a ratio \(O(\log^2(\min(R, n)))\), where \(R\) is the required vertex weight to be visited.

3.3 The bank robber (orienteering) algorithm

The bank robber (orienteering) problem [GLV87] is much like the problem faced by our quota-driven salesperson, except that the distance \(d\) that may be traveled is fixed and the goal is to maximize the total value \(R\) of points visited. If we do not require a specified starting point, then we can approximate this problem to the same ratio as the quota-TSP problem as follows. We "guess" the value \(R\), we run the quota TSP approximator to find a path of length \(O(d \log^2(\min(n, R)))\) visiting vertex-weight \(R\), we break the path found into segments of length \(d/2\), and then we choose the segment that contains the most vertex-value inside. Notice, however, that this does not approximate the orienteering problem with a specified start vertex (root) since there is no guarantee the "good" segment found will intersect the root.
4 Open questions

The obvious open question is whether there exist polynomial-time algorithms with better approximation ratios, i.e. logarithmic, or even constant, for the problems considered in this paper. Alternatively, one would like to prove improving approximation is impossible unless P=NP.

Another open question is finding a polynomial-time poly-logarithmic approximation for the rooted version of the bank robber (orienteering) problem. Intuitively, the difficulty with approximating the rooted problem is that many of the points on the optimal tour might be at distance just about \(d/2 \) from the root.

Acknowledgements

We thank Noga Alon and Prasad Chalasani for helpful discussions.

References

