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Abstract

Consider a salesperson that must sell some quota of brushes in order to win a trip to Hawaii. This
salesperson has a map (a weighted graph) in which each city has an attached demand specifying
the number of brushes that can be sold in that city. What is the best route to take to sell the quota
while traveling the least distance possible? Notice that unlike the standard traveling salesman
problem, not only do we need to figure out the order in which to visit th= cities. but we must decide
the more fundamental question: which cities do we want to visit?

In this paper we give the first approximation algorithms with poly-logar:*hmic performance guar-
antees for this problem, as well as for the slightly more general PCTSP problem of Balas. and a
variation we call the “bank-robber problem” (also called the “orienteering preblem” by Golden,
Levi, and Vohra). We do this by providing an O(log? k) approximation te the k-MST problem
which is defined as follows. Given an undirected graph on n nodes with non-negative edge weights
and an integer k¥ < n, find the tree of least weight that spans k vertices. (If desired. one may
specify in the problem a “root vertex” that must be in the tree as well.) Our result improves on
the previous best bound of O(v/k) of Ravi et al. and comes quite close to the bound of O(log k) of
Garg and Hochbaum for the special case of points in 2-dimensional Euclidean space.
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1 Introduction

The problem. Consider a salesperson that must sell some quota of R brushes in order to win a
trip to Hawaii. This salesperson has a map (a weighted graph) of n cities in which each city has an
attached demand specifying the number of brushes that can be sold in that city. What is the best
route to take to sell the quota while traveling the least distance possible? Notice that unlike the
standard traveling salesman problem, not only do we need to figure out the order in which to visit
the cities, but we must decide the more fundamental question: which cities do we want to visit?

R. Ravi, Sundaram, Marathe, Rosenkrantz, and S.S. Ravi [RSM*94] considered the cleanest
case of above problem, called the minimum-weight k-tree, or k-MST problem. In this problem,
one is given a graph on n vertices with non-negative distances on the edges, and a number & < n,
and the goal is to find a tree of least total cost that spans k vertices. For & = n this is the (easy)
minimum spanning tree problem. For general k£, however, the problem is NP-complete and has the
same main difficulty faced by the above salesperson: which points to include and which to ignore?
In fact, the k-MST problem nicely focuses on just that issue since once the set is determined. the
least weight tree on that set is easy to find.

Cheung and A.Kumar [CK94] call this problem the “quorum-cast” problem, whose application
are in the domain of communication networks. Other applications for this problem include fault-
tolerant distributed computing and data management.

The bank robber problem is the following: given the map of a city including the amounts of
money in each bank, and a car with bounded gas tank, the robber has to rob the maximum amount
of money without refueling after first robbery (thus avoiding being reported to the police). This
problem is also called the “orienteering problem” by Golden, Levi, and Vohra [GLVS7].

Existing work. Ravi et al. [RSM*94] provide an algorithm that achieves an approximation ratio

of O(Vk) for the k-MST problem on general graphs (i.e.. the tree found is at most O(Vk) times

heavier than the optimal tree) and ratio O(k!/*) for the special case of points in 2-dimensional

Euclidean space. Garg and Hochbaum [GH94] improve the ratio for the latter case to O(log k).
Heuristics for this problem have been given by Cheung and A.Kumar [CK94].

Results of this paper. In this paper, we describe an algorithm that achieves an approximation
ratio O(log? k) for the k-MST problem on general graphs, improving the bound of [RSM*94] and
coming quite close to the bound of [GH94] for the special case of points in the Euclidean plane. Our
results hold for both the rooted and unrooted versions {is there a required “start™ vertex?). This
result immediately implies an O(log? R) approximation for the quota-driven salesperson described
above: simply treat a vertex with “demand” d as a cluster of d vertices, find the R-MST. and then
tour the tree in the standard way. In fact, our algorithm actually achieves the somewhat better
bound of O(log?(min(R,n))) for this problem.

Our algorithm also extends easily to a O(logz(min(R,n))) bound for the prize-collecting travel-
ing salesman problem (PCTSP) due to Balas [Bal89] on undirected graphs. The PCTSP problem is
just like the quota TSP problem but in addition there are non-negative penalties attached to each
city and the salesperson’s cost is the sum of the distance traveled plus the penalties on cities not
visited. (So the quota problem is the special case in which penalties are 0.) The O(log?(min(R.n)))
bound for the PCTSP follows immediately by concatenating the tour found by our algorithm (which




ignores the penalties) to a tour found by a 2-approximation algorithm by Goemans and Williamson
[GW92] to a relaxed version of the PCTSP in which the quota requirement is removed. (In the
original PCTSP there is also a restriction that each city not be visited more than once; if this is
desired, we can achieve the same bound assuming distances obey the triangle inequality.)

We also derive an approximation algorithm with similar bounds for the bank robber problem.

2 The k-MST problem

We begin by presenting an algorithm for the k-MST problem that achieves an approximation ratio
of O(log®k). We then describe an improvement that removes one of the logarithmic factors to
achieve the ratio of O(log? k). Before presenting the algorithm, however, let us point out that the
“rooted” and “unrooted” versions of the problem are essentially equivalent from the point of view
of approximation for the following reason.

Given an algorithm for the rooted problem, to solve the unrooted case one can simply try all
possible start vertices and then choose the smallest tree found. Given an algorithm for the unrooted
version, to solve the rooted case when the weight ¢ of the optimal tree is known just throw out all
vertices of distance greater than ¢ from the root, solve the unrooted problem. and then connect
the tree to the root for an added cost of at most ¢. If the optimal cost £ is not known. simply sort
the distances from the root to each of the n points in increasing order, run the algorithm n times
throwing out the i farthest points in the ith iteration, and pick the best result.

In the rest of this section we will use OPT to denote the optimal k-tree and ¢ to denote its total
weight.

Our algorithm and analysis contain two main ideas. The first is a measure used for grouping
points into components in a Kruskal-like manner. The second is a bucketing technique that allows
one to prove this measure to be useful. The measure we use is the following: given two components
C;, Cj, we examine the ratio: d(C;,C;)/ min(|C|,|C;]). where d(-,-) is the distance according to
the shortest-path metric and | -| is the size in terms of number of points. The general step of the
algorithm will be joining together (using the shortest path) the two components for which this ratio
is smallest.

The bulk of the argument will be for proving correctness of an algorithm for the following slight
relaxation of our goal, which is similar to the “maximal dense” tree concept in [AAG93]. Given k.
we will find a tree on at least k/4 points whose weight is at most O(log? k) times the weight of the
minimum k-tree. With this algorithm in place, it will be easy to remove the relaxation and solve
our original problem. The Kruskal-like algorithm for this relaxed problem is as follows:

Algorithm Merge-Cluster:
1. Begin with n components, one for each pcint.

2. Join the two components such that the ratio of the distance between the components to the
number of points in the smaller one, i.e. d(C;,C;)/ min(|C;],|C}|), is least.

3. Repeat Step (2) until some component has size at least &/4.

Theorem 1 The weight of the largest component produced by Algorithm Merge-Cluster is at
most 4(log, k)? times the weight of the optimal k-tree.




The proof of Theorem 1 follows immediately from Lemmas 1 and 2 below.

Lemma 1 If at any time the largest ratio used by algorithm Merge-Cluster so far is r, then any
component of p points will have total weight at most rplog, p.

Lemma 2 Algorithm Merge-Cluster never uses a ratio larger than (8flog, k)/k where { is the
weight of the optimal k-tree.

To prove Theorem 1 from these lemmas, just note that the only way in which the largest component
produced could have size greater than k/2 is for the additional vertices to be included “for free”
in the shortest path that makes up the final connection. Thus combining the bounds of the two
lemmas yields the theorem.

We begin with a proof of the simpler lemma.

Proof of Lemma 1. Consider a joining of two components. Since the length of the connection
used is at most r times the number of points in the smaller component, we can “pay for” the
connection by charging a cost of at most r to each of the points in the smaller component. Any
time a point is charged, the size of the component it belongs to at least doubles. So, any point
in a component of p points has been charged a total cost at most rlog, p. Since the weight of a
component is at most the total charge to points inside it, this proves the lemma. &

Proof of Lemma 2. In contradiction, suppose at some time all components produced by the
algorithm have size less than k/4 and the distance between any two is greater than r = (3¢log, k)/k
times the number of points in the smaller. Group the components into buckets based on size. where
the ith bucket contains those components with between k/2° and k/2'*! points (i = 2.3....). Now.
throw out all components that do not intersect the optimal k-tree. Clearly the optimal A-tree can
have at most k/4 + k/8 + ... < k/2 points inside buckets that contain only one component. So.
there is some bucket containing at least 2 components such that OPT has at least k/(2log, k)
points inside that bucket. Say all components in this bucket have size between s and 2s. This
means that the balls of radius rs/2 about each component do not touch each other and OPT must
intersect at least k/(4slogy k) components. Therefore OPT must have a connection cost greater
than rk/(8log, k) = ¢, a contradiction. W

Algorithm Merge-Cluster immediately gives us a simple O(log® k) approximation algorithm
for the £-MST problem as follows. For simplicity, we consider the rooted version. Also. for the
moment suppose that we know the weight ¢ of the optimal k-tree. In the procedure helow, we view
Algorithm Merge-Cluster as taking “k” as an argument.

Algorithm Connect-Clusters:

1. Mark as “to be ignored” all vertices of distance greater than ¢ from the root.

2. Run algorithm Merge-Cluster several times. First run it on the unmarked vertices remain-
ing after Step (1). (By this we mean that the distance between two components is still the
shortest path distance in the original graph, but only unmarked vertices are considered in
computing a component’s size.) Then, mark as “to be ignored” those vertices in the com-
ponent that was found and again run the algorithm on the unmarked vertices, but this time




with argument “k” now set to the number of vertices we still need (i.e., k& ~ ky if the first
invocation returned a component of size &, ).

Continue this process, at each stage running the algorithm so that it oniy considers vertices
not in components found so far (and that are within distance ¢ from the root) and with “k”°
as the number still needed, until we have found a set of components whose combined size is
at least k.

3. Connect together all the components found in Step (2).

Theorem 2 Algorithm Connect-Clusters finds a tree of at least k points whose weight is at most
O(log? k) times the optimal.

Proof. Suppose in the invocations of Algorithm Merge-Cluster so far we have found com-
ponents with &’ points total. Then, the optimal k-tree contains at least £ —~ &’ points in the graph
remaining, and all these are within distance ¢ from the root. Thus, the next invocation of the
algorithm will find a tree on at least (k — k’)/4 points, at cost at rost O(£log? k). So the algorithm
will be run at most O(logk) times and the sum total cost of all components found is at most
O(Llog> k). The cost to connect them together is a low-order O(llog k). ®

We can remove the knowledge of the optimal cost £ from the above algorithm in the same manner
as was done for converting the rooted version of the k-MST problem to the unrooted version. [or
improved efficiency, note that the true ¢ satisfies A < ¢ < kA, where A is the distance of the £th
farthest vertex from the root. So we can begin with a guess of { = A and then double our guess if
the numbers and sizes of the components found do not satisfy the guaranteed bounds, for a total
of O(log k) iterations maximum.

We now show how to modify Algorithm Connect-Clusters to achieve an O(log? k) approx-
imation. To do this, we use the following corollary (in [BCC*94]) to a result by Goemans and
Williamson {GW92]. In [BCC+94] this is called a (3,6)-TSP approximator.

Fact 1 Given a weighted graph on n points and an € > 0., let L. be the length of the shortest tour
that visits at least (1 — €)n points. One can find in polynomial time a path of length at most 6L,
that visits at least (1 — 3¢)n points.

For simplicity, we describe the modified algorithm as either finding a tree of k points with cost
at most O(£log? k) or else finding a tree on at least k/4 points with cost O(¢€). It is not hard to see
that this suffices because the latter case removes an O(log? k) factor from the bounds of Theorem
1 (which is even better). The new algorithm works as follows.

Algorithm Improved-Connect: Run Algorithm Connect-Clusters until components to-
taling at least -}%k points have been found. This requires only a constant number of applications of
Algorithm Merge-Cluster. If the optimal &-tree intersects less than a (1 - %) fraction of these
points (and so contains at least k/4 new points), then one final application of Merge-Cluster (with
argument k/4) will find a new component with at least /16 points and we are done. On the other
hand, if the optimal k-tree intersects at least a (1 — 1—3'5) fraction of these points, then by applying
the algorithm of Fact 1, we can find a path of length O(¢) that visits at least (1 — T)i24 = 24

i5
points. Thus, the MST on these points is a tree of cost O(¢) on more than k/4 points.

We thus have the following theorem.




Theorem 3 Algorithm Improved-Connect provides an O(log? k) approzimation for the k-MST
problem and runs in polynomial time.

3 Extensions of the basic k-MST algorithm

We now describe how the algorithms of the previous section czn be used to give guaranteed ap-
proximations to the other problems mentioned in the introduction, such as

¢ the quota TSP problem,
o the prize-collecting salesman problem, and

¢ the bank robber (orienteering) problem.

3.1 Algorithms for quota-driven salesmen

In the quota TSP problem each vertex in the graph has some attached integral value w; > 0 and
the salesman has a target quota R. The goal is to find a route as short as possible that visits
vertices whose sum total value is at least R. The salesman may visit a given city more than once.
(If salesman is restricted to one visit per city, the same approximation ratios can be reached in the
standard way in the case that the distances obey the triangle inequality.)

First, it is immediate that we can approximate the quota TSP to a factor of O(log? R). Simply
replace each vertex of value w by w vertices all at the same location, find the approximate f-MST.
and then traverse it at most twice. Notice that this bound might not be so good if R is much larger
than n. We show now that the algorithm in fact achieves the better bound of O(log2(111in( R.n))).

It will be simplest to view Algorithm Merge-Cluster as acting directly on the weighted vertices.
merging the two components C;,C; that minimize d(C;,C;)/ min(wt(C;), wt(C;)) where wt(C) is
the sum of the values of the vertices contained in C. Let us call this algorithm Merge-Weighted-
Cluster (even though it is really exactly the same algorithm). For the analysis corresponding to
Lemma 1, however, when two components are merged we will *pay for™ the cost by charging to
the smaller one in number, not in weight. This still means that for a connection of ratio r a vertex
of weight w will be charged at most rw (if we charge vertices proportionally to their weight). But.
now it is clear that a vertex will be charged at most log(p) times if it is in a component of p vertices
(as opposed to a component having weight p). Thus we have the following lemma. (We also give a
more formal proof below.)

Lemma 3 If at any time, the largest ratio used by the algorithm Merge-Weighted-Cluster so
far is r, then any component of p points and total vertez-weight w will have total edge weight (cost)

at most rwlog, p.

Proof: We prove it by induction. It is true when initially since the cost begins at 0. When merging
two clusters C; and C; into C we note that

cost(C) = cost(C;) + cost(C;) + d(C:,C;)




r - wi(C;) - log(|Cil) + r - wt(C,)log(|C;|) + r - min{wt(C,), wt(C,)}
- (wi(Cy) + wt(C;)) - log(ICif + |C;))
r-wt(C)-log(|C]) ®

IA A A

We can similarly improve Lemma 2 as follows.

Lemma 4 Algorithm Merge-Weighted-Cluster never uses a ratio larger than O({(log, n}/R)
where { is the (edge) weight of the optimal tree having vertez-weight R.

Proof. Following the proof of Lemma 2 we have buckets containing the components of vertex-
weight R/4 to R/8, R/8 to R/16, etc. We stop, however, at weight R/(10n) and put all components
of that weight or less into one single bucket. Now there are only O(log n) buckets instead of O(log R)
and the final small bucket intersects the optimal tree in at most R/10 total weight and so can be
“thrown out” in the analysis. The rest of the proof of Lemma 2 then can be followed directly. @

The above two lemmas imply that Algorithm Improved-Connect of Theorem 3 in fact achieves
a ratio of O(log? n) as well as O(log? R), which gives us our desired bound.

3.2 Algorithms for prize-collecting salesmen

As already mentioned in the introduction, an approximation algorithm to the quota TSP problem
can be transformed into an approximation algorithm to the PCTSP problem {Bai89] (which has the
additional complication of penalties attached to vertices and the “cost™ of a tour equals its length
plus the sum of penalties on points not visited) as follows. Concatenate the tour found by the
quota TSP approximator to a tour found by a 2-approximation algorithm of [GW92] to a version
of the PCTSP in which the quota requirement is removed. (Removing the quota restriction only
decreases the cost of the optimum solution.) Thus we have the following theorem.

Theorem 4 There is a polynomial time algorithm that approzimates the PCTSP problem of [Bal89]
on n-verter undirected weighted graphs to a ratio O(logz(min(R, n))), where R is the required verter
weight to be visited.

3.3 The bank robber (orienteering) algorithm

The bank robber (orienteering) problem [GLV87] is much like the probiem faced by our quota-driven
salesperson, except that the distance d that may be traveled is fixed and the goal is to maximize
the total value R of points visited. If we do not require a specified starting point. then we can
approximate this problem to the same ratio as the quota-TSP problem as follows. We “guess™ the
value R, we run the quota TSP approximator to find a path of length O(dlog?(min(n. R))) visiting
vertex-weight R, we break the path found into segments of length d/2, and then we choose the
segment that contains the most vertex-value inside. Notice, however, that this does not approximate
the orienteering problem with a specified start vertex (root) since there is no guarantee the “good™
segment found will intersect the root.




4 Open questions

The obvious open question is whether there exist polynomial-time algorithms with better approxi-
mation ratios, i.e. logarithmic, or even constant, for the problems considered in this paper. Alter-
natively, one would like to prove improving approximation is impossible unless P=NP.

Another open c.sstion is finding a polynomial-time poly-logarithmic approximation for the
rooted version o .e bank robber (orienteering) problem. Intuitively. the difficulty with approx-
imating the r .ied problem is that many of the points on the optimal tour might be at distance
just about d/2 from the root.
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