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Preface

This report is a primer on the subject of structural dynamics, oriented
toward the analysis of the intake structures that fall under the authority of
the U.S. Army Corps of Engineers. It is a part of the work sponsored by
the Computer-Aided Structural Engineering Program sponsored by the
Directorate, Headquarters, U.S. Army Corps of Engineers (HQUSACE)
under the Structural Engineering Research Program. Funds for publica-
tion of the report were provided from those available for the Computer-
Aided Structural Engineering (CASE) project managed by the Information
Technology Laboratory (ITL) at the U.S. Army Corps of Engineers Water-
ways Experiment Station (WES) at Vicksburg, MS. H. Wayne Jones is the
CASE project manager. Technical monitor for the project is Mr. Lucien
Guthrie, HQUSACE.

The work was performed at WES under the direction of Dr. Robert M.
Ebeling, Interdisciplinary Research Group, Computer-Aided Engineering
Division (CAED), ITL. The report was prepared by Professor Samuel E.
French of the University of Tennessee at Martin, Dr. Ebeling, and
Mr. Ralph Strom, North Pacific Division, U.S. Army Corps of Engineers.
This report is part of a general development of design manuals intended
for use primarily by district personnel whose background does not include
advanced dynamics. The work was accomplished under the general direc-
tion of Dr. Reed L. Mosher, Acting Chief, CAED, and the general supervi-
sion of Dr. N. Radhakrishnan, Director, ITL.

At the time of publication of this report, Director of WES was
Dr. Robert W. Whalin. Commander was COL Bruce K. Howard, EN.

The contents of this report are not to be used for advertising, publication,
or promotional purposes. Citation of trade names does not constitute an
official endorsement or approval of the use of such commercial products.




Conversion Factors, Non-Sl to Sl
Units of Measurement

Non-SI units of measurement used in this report can be converted to SI
(Systeme Internationale) units by applying the following factors:

Multiply By To Obtain

angular degrees 0.01745329 radians

cycles per second 1.000 Hertz

cycles per sacond 6.28318531 radians per second

feet 0.3048 meters

fest per second per second 30.4838 centimeters per second per second
gravitational acceleration 980.665 centimeters per second per second
gravitational acceleration 32.174 feet per second per second
gravitational acceleration 386.086 inches per second per second
inches 254 centimeters

pounds 4.4822 Newtons

tons 8.896 kilonewtons

vi
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1 Single-Degree-of-Freedom
Systems

introduction

This report presents the fundamental concepts of the dynamics of in-
take towers. The theory is quite general, however, and will apply to multiple-
degree-of-freedom (MDOF) systems other than intake towers. The
ultimate purpose is to present the computer-aided analysis of distributed-
mass towers such as the step-tapered tower shown in Figure 1i. The devel-
opment of the theory therefore becomes slanted toward distributed-mass
towers as it progresses. In this chapter of the report systems having a
single degree of freedom (SDOF systems) are discussed. The single
lumped-mass systems depicted in Figure 1 are typical examples of such
SDOF systems.

The primary source of dynamic excitation of structures is earthquake
motion. A brief summary of earthquake loading as it is characterized in
terms of response spectra is presented in Chapter 2 of this report. Distributed-
mass systems such as towers are presented in Chapter 3 as an application
of the Rayleigh method. While the distributed-mass systems of Chapter 3
are recognized as MDOF systems, the Rayleigh method allows them to be
examined one degree of freedom at a time. Multistory lumped-mass sys-
tems are presented in Chapter 4. Such systems are MDOF systems that
can also be examined one degree of freedom at a time.

The lumped-mass systems (but not the distributed-mass systems)
shown in Figure 1 can oscillate in only one way, that is, the motion of the
single mass can be only a back-and-forth motion across its initial at-rest
position. Figure 2 is a sketch of such an oscillating system. The position
of the mass at any point in time in the system is entirely predictable.

Chapter 1 Single-Degree-of-Freedom Systems
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Figure 1. Common types of osclillating systems

Figure 1 shows several common types of single- and distributed-mass
oscillating systems. If any one of these systems is given an initial dis-
placement of amplitude ug! and then released, it will oscillate at its
natural frequency, continuing to oscillate with ever-decreasing amplitude
(and ever-decreasing energy) until it finally returns to its at-rest state.

The causes of the decreasc in amplitude might be such things as hyster-
esis losses, inelastic behavior, or any one of many other sources of energy
dissipation. The cause could also include man-made shock absorbers de-
liberately placed to reduce oscillations. Taken together, these losses in

For convenience, symbols and abbreviations are listed in the notation (Appendix B).

Chapter 1 Single-Degree-of-Freedom Systems




energy are called damping
effects; without damping, =

the mass could theoreti-
cally oscillate forever rourT
with no lees in amplitude. arae
Shown scaematically,

damping effects are usu- W
auy lumped together and
shown as a viscous shock wo
absorber called a dashpot, MOTON . e

such as that shown in ' L2

Figure le.
Figure 3 shows the dis- ;
placement of an oscillat- OCOCILLATION LEFT

ing mass both with and
without damping. The
damping will affect only o

the force resulting from % Monox
the velocity of the mass in
motion. Damping effects
are greatest when the
mass is at its highest ve- OSCILLATION MaiT
locity. As velocities de-
crease, the damping also
decreases, resulting in an

asymptotic decrease in am- a6 2. Oscillations of a lumped-mass

Figure 3 also indicates
the period of oscillation,
T. The period is the time
in seconds for the mass to complete one full oscillation, or cycle. The fre-
quency of oscillation f is another commonly used property; the frequency
is the number of cycles completed in one second (Hz). Mathematically,
frequency is the reciprocal of the period T. The rotational speed ® is an-
other commonly used property and is the angular velocity in radians per
second where there are 2= radians in one complete cycle.

i o1 )
f in cycles/second = T reconds
® in radians/second = 21 _radians/cycle ¥))
T seconds

Figure 3 shows that the period of oscillation T for this structure is es-
sentially the same for both damped and undamped oscillations. At very
high levels of damping, there will in fact be a slight elongation in the
period T (TpampED > TUNDAMPED): but for ordinary structures working
at elastic levels of stress, the level of damping is so low that any such

Chapter 1 Single-Degree-of-Freedom Systems




Figure 3. Damped oscillations

difference can be safely ignored. The dominant effect of damping is to re-
duce the velocity of oscillation, t*sreby producing the asymptotic reduc-
tion in amplitude shown in Figure 3.

The angular velocity ® does not always appear physically in an oscillat-
ing system, but the symbol o usually does. Figure 4, in which an imagin-
ary wheel is added to a laterally oscillating system, shows a means to
visuali. - a rotational velocity when none actually exists. The rotational
velocity of the imaginary wheel is ®.

Figure 4. Rotational velocity for a linear oscillation

Chapter 1 Single-Degree-of-Freedom Systems
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Equation of Motion

The equation of motion for lumped-mass systems having a single de-
gree of freedom (termed SDOF systems) is derived from Newton’s second
law, force = mass times acceleration. Consider the system shown in Fig-
ure 5 in which the oscillating mass has been removed as a free body at
some instant in time t. An externally applied dynamic force p(t) is acting
on the system. The force p(t) varies with time and is called a forcing
Junction.

: MASS m =1, EXTERNAL  fl_— — P
1 =4 FORCE p(t) +—
,l' — I/ L
l ]
"_spane constanTx 'k

kR

a) ldealized System b} Forces acting on the mass

Figure 5. Common SDOF oscillating system

The free body shown in Figure 5 is subject to four forces, each one
varying with time.
a. The inertial force (f; = mit) is given by D’ Alembert’s principle to be
a force acting through the center of mass, opposite in direction to
the imposed motion.

b. The restoring force (fy = ku) is the stiffness k (in pounds of force
per unit of displacement) times the displacement u.

c. The damping force (f4 = cu) is the damping constant c (in pounds of
force per unit of velocity) times the velocity u at any time t.

d. The fourth force is that of the forcing function [p(t)], which may or
may not exist at any given time.

The sum of forces yields the equation of basic force equilibrium:

i~ ~fy+p0)=0 3)

Chapter 1 Single-Degree-of-Freedom Systems




All of these forces may be expressed in terms of the displacement u,
where, as noted earlier:

Jy = mid (40)
f‘ = cl (4b)
g =t (4c)

Substituting Equations 4a, b, and c into Equation 3 yields the basic
equation of motion for an SDOF system subjected to an externally applied
forcing function:

mi + cu + ku = p(f) (5)

This same equation applies equally to all of the SDOF systems shown
in Figure 1. For the rotational oscillations of Figure 1h, rotational dis-
placement ® would have to be substituted for lateral displacement u.

In al) of the lumped-mass systems of Figure 1, the mass of the system
is understood to be rigid. Consider, for example, the idealized one-story,
single-bay building frame of Figure 1d. Under the indicated displace-
ment, it is assumed that the rigid mass does not undergo any bending; only
the columns will experience bending. Therefore, all of the restoring force
fy in this system must come from bending in the columns.

The equation of motion (Equation 5) for the systems of Figure 1 in-
cludes a forcing function p(t) applied to the mass m. An earthquake, how-
ever, does not produce such a tangible force acting on the system. Rather,
an earthquake will produce displacements of the foundations of the struc-
ture. It is these displacements, rather than taagible forces, which the

carthquake imposes on the system.

The results of such earthquake-induced displacements are shown in the
free body of Figure 6. The earthquake ground motions are shown as u(t),
which are random motions in time. The total displacement of the mass rel-
ative to its at-rest position, u(t), is shown in Figure 6a. The displacement
u again represents the displacement of the structural mass relative to the
base of the structure at any time t. The geometry of Figure 6a shows that
the total displacement u(t) is given by

u() = u‘(t) + u(1) 6)

Figure 6b shows the forces associated with the free body of Figure 6a.
In this case, however, the inertial force f; created by the total acceleration
3,(t) becomes:

Jy = mifo) = mii‘(t) + mu 0)

Chapter 1 Single-Degree-of-Freedom Systems




a) Displacoments b) Forces acting on the mass

Figure 6. Relative displacements of SDOF systems

Forces are summed as before, yielding the equation of force equilibrium:

L+ +5=0 (®
where
fg =cu
f, =ku

These values of displacements are substituted into Equation 8, yielding:

miis(t)+mii+cic+ku=0 9)

Rearranging terms produces the final form of the equation of motion for a
structure subjected to earthquake displacements at its base:

mi + cu + ku = —miis(t) (10)

Equation 10 is essentially the same as Equation 5, with the forcing func-
tion being the effective force -mil_(t). The amount of force exerted on a
structure is therefore a function of the mass of the structure itself. Light-
weight steel or timber structures will experience much less force from
carthquake motions than will heavier concrete or masonry structures.

Equation 10 is the general equation of motion for a single-mass struc-
ture subjected to a dynamic forcing function such as an earthquake. A typ-
ical example of such a structure is shown schematically in Figure 7.

Figure 7 shows that under the actual excitation, the earth is moving relative

Chepter 1 Single-Degree-of-Freedom Systams
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Figure 7. SDOF system under earthquake forcing function

to the mass whereas under the equivalent excitation, the mass is moving
relative to the earth.

The major part of this report is devoted to the solution of Equation 10.
As with any differential equation, the solution of Equation 10 consists of

two parts:

a. The general solution of the homogeneous equation, that is, a
solution with the forcing function ﬂ,(t) = 0 and the structure
undergoing unforced (free) oscillations.

b. A particular solution of the general equation, that is, a solution with
the forcing function in place and the structure being forced to undergo
the same displacements as the forcing function, but with a time lag.

The solution for the unforced free oscillations will be developed first.

Undamped Free Oscillations

The equation of motion given by the homogeneous portion of Equa-
tion 10 will be solved first without any damping. Damping will then be
added, and the final form of the solution will be developed.

At some instant t = tg, an SDOF system is assumed to have a known dis-
placement ug and a known velocity g . Thereafter, the system is allowed to

oscillate freely without any further forcing function being applied. The equa-
tion of motion for the undamped free oscillations is then given by:

mi + ku =0 (11a)
or,

u+ (/mu =0 (11b)

Chapter 1 Singie-Degree-of-Freedom Systems




ﬁaﬁduﬁonolthhord‘mrydiﬂmnti&lequﬁonisz
u = A sin(wr) + B cos(cx) (12)

where o is the constant circular frequency of the solution in radians per
second and A and B are the constants of integration.

The circular frequency ® is found from the solution as:
o = Vk/m (13)

The natural period of oscillation T can now be determined, even before
the constants of integration have been evaluated:

T = 2z \m/k (14)
Equation 14 shows that the natural period of oscillation of an un-
damped SDOF system is dependent only on the mass of the system and
the stiffness of the system. No boundary conditions or any other factors
affect the undamped natural period T.

The constants of integration A and B can be found as usual by evaluat-
ing the boundary conditions:

Attimet = 0, u = u) = A sin[0(0)] + B cos[(0)]
uy = B (15) ﬂ
The velocity « at any time t is given by:
u=A® cos (o) - Bw sin (o)
Attimer =0, ¥ = i) = A®
U/ = A (16)
The final solution is then given by:
4 = uy cos () + ("'o/@ sin (o) 17)

The maximum amplitude given by Equation 17 will occur when the deriva-
tive of the amplitude (the velocity) is zero:

u=0=—um sin (o) + (i/m) ocos (o)

or,

0 = — ity sin (aw) + (i4y/m) cos (c) (18)

Chepler 1 Single-Degree-of-Freedom Systems
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Equation 18 is squared:
0.0 3 sin? (@) - Qugie/oh sin (w0 con (@) + Giy@i? cor () (19)

Equation 17 is squared:
(20)

o = o3 col () + Qg7 sin (@) cos (@) + Gigyen’” sia? ()

Equations 19 and 20 are summed to yield the maximum amplitude u .
that can be produced by the motions of Equation 17.

u, =g + /o’ @n

The motion described by Equation 17 for an undamped, unforced SDOF
system is summarized schematically in Figure 8.

INITIAL CONDITIONS
u“-u'
ﬁu'ao w
MASS m
s ]
D s - /
4 ¢
,I ey
/ 4
7»'7 W‘
LATERAL DISPLACEMENT

,._.u,._/ : ) :“/_ e
U@ = U, COS @1+ %mm g i
_\<

WHERE 0= /X

re2X

RS

Figure 8. Undamped, unforced oscliilations
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Damped Free Osclilations

The foregoing solution for free oscillations did not include damping.
When damping is included (still without a forcing function), the homoge-
neous part of Equation 10 becomes:

mu+cu+ku=0 (22)

The equation is divided by m to put it in standard form:

i + 2Bow + a?u = 0 (23a)
where the constant
B =c/2mw (23b)

For B < 1, the solution of Equation 23a is:

“ + 24
u = P uocosmpx+%:m——u9sinmbt ' @4

The motion described by Equation 24 for B < 1 is summarized in Figure 9,
It is a periodic function having an exponentially decaying amplitude and a

damped circular frequency op:

®, = 0 V1 - B2 = k(1 - p*/m (25)

where o is, as usual, the circular frequency of the undamped system.

The damped period for the motion of Equation 24 is found from Equa-

tion 25:
where T is, as previously defined, the natural period of oscillation of the
undamped system.

If the factor B in Equation 26 could be made equal to 1, the natural pe-
riod of the damped system would become infinite. Such a system would
simply return to its original at-rest position following a displacement, i.e.,
there would be no oscillations. For the case in which B = 1, the damping
coefficient ¢ as given by Equation 23 is its value of critical damping:

c= ccritical = 2mo 1)

Chapter 1 Single-Degree-of-Freadom Systems "
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Figure 9. Damped, unforced oscillations

Further examination of Equation 23a reveals that the factor B may be
regarded as the fraction of critical damping in a system, i.e.:

B=c2mo =c/c . (28)

For typical structures working in their elastic ranges, the factor p has
been found to be less than 0.1, or, stated another way, the maximum
amount of damping in a typical structure will normally be less than 10 per-
cent of its critical damping. Substitution of this maximum value of B = 0.1
into Equation 26 indicates that for typical structures, the effects of damping
on the period of oscillation are indeed negligible and can be ignored, i.e.:

Chapter 1 Single-Degree-of-Freedom Systems
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T=T, (29)

Forced Oscillations with a Dynamic Forcing
Function

As stated earlier, the intended solution of Equation 10 would consist of
the general solution of the homogeneous equation, both with and without
damping, plus a particular solution of the general equation, both with and
without damping. Equations 17 and 24 satisfy the first part of this solu-
tion. They are the required general solutions of the homogeneous equa-
tion. It remains now to find a particular solution of Equation 10, both
with and without damping, when the system is subjected to a dynamic
forcing function.

When a forcing function is included, Equation 10 takes its most general
form:

mu + cu + ku = -miig(r) (10)

The forcing function mii_(t) is the mass of the structure times the ground
acceleration; physically, l‘thc result is a force. The nature of this force has
yet to be defined.

Two cases of dynamic forcing functions will be considered for examina-
tion, one being a harmonic variation and the other being the random varia-
tion produced by an earthquake. The first case considers a forcing
function that has a harmonic variation similar to that of the natural oscilla-
tions of the structure. The forcing function, however, is assumed to have
some frequency which is not necessarily the same as the natural fre-
quency of the structure:

~mii = p, sin &¢ 30)
where p,, is the maximum magnitude of the forcing function.

When a harmonic forcing function such as that of Equation 30 is ap-
plied to a damped SDOF structure, the response of the structure will con-
sist of two parts, as noted earlier. The first part, the free oscillation part,
is that given by Equation 24. This free oscillation soon decays, however,
leaving only the second part. The second part is the continuous steady-
state response that is being imposed on the system by the forcing function.
This steady-state response is the particular solution of Equation 10. The
forcing function is physically forcing the SDOF system to follow the mo-
tions of the forcing function.

Chapter 1 Single-Degree-of-Freedom Systems
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However, the forcing function is not acting on the oscillating mass.
The forcing function acts at the base of the columns as shown earlier in
Figure 7. The motion of the mass is being created by a back-and-forth
ground motion at the base of the columns. At any time t, the force im-
parted to the columns is that given by Equation 30.

The displacements of the mass will follow the same harmonic displace-
ments as the ground motion. There will be a lag in time, however, be-
tween the motion of the ground and the motion of the mass. The lag
occurs as the columns develop enough lateral force to produce (or to
change) the motion in the mass. It is well to note also that the amplitude
of motion of the mass need not be equal to the amplitude of motion of the
ground. Such a difference is indicated in Figure 10.

mmmepo

mmm.p‘,am

/] e
/-
\ /
/’
HARMONIC MOTION ufe v, i (@t- ©)
Figure 10. Steady-state response due to harmonic ground motion
The displacement u of the oscillating mass at any time t is:
u=u,, sin (@ - 0) 31

where 0 is the lagging phase angle between the motion of the ground and
the motion of the mass.

The solution for the response of the system to various excitation fre-
quencies ® is mathematically quite complex, far beyond the scope of an
clementary treatment such as this (see Paz, Structural Dynamics 1991).
The end result of the solution, however, is relatively simple. The displace-
ment u at any time t is given by the solution as:

u=usin (& - 0) (32a)

Chapter 1 Single-Degree-of-Freedom Systems




Ynax 1 (32b)

e~ V1 - @RI + (28 @0
and the lagging phase angle 0is given by

® = tan™! 2f(av ) (32c)
1 ~ (/o)?

In Equations 32a and 32b, the displacement u,, is the displacement that
the maximum force p, would produce if the force were to be applied as a
static force (i.e., u,, = py/k). All other symbols in Equations 32a, b, and ¢
were introduced and defined earlier.

Equation 32b reveals that there are two primary variables. The first
variable is up,./uy, which indicates the relative level of magnification
of displacement at various forcing frequencies @. The second variable is
@/® , which is the ratio of the forcing frequency @ to the natural fre-
quency ®. (The third variable B, the ratio of critical damping, can be as-
signed whatever value the physical conditions warrant.)

Figure 11 presents a graph of Equation 32b for various levels of damp-
ing. The most significant feature of the graph is, of course, the sharp in-
crease in displacement as the frequency of the forcing function
approaches the natural frequency of the system. A second significant fea-
ture of the graph is the effect of the damping. A large amount of damping
is required if a pronounced reduction in the peaking effect is required.

Figure 11 reveals the phenomenon of resonance. The peak value of dis-
placement given by Equation 32b occurs when the forcing frequency @ is:

Bpeqs = @VI - 28 (33)

In comparison, the damped natural frequency o is:
o, = oVi - ? (34)

The resonant frequency is therefore not exactly equal to the damped
natural frequency of the system, but for low values of damping, the
difference is quite small. In general, this small difference is ignored,
and the resonant frequency is taken to be essentially equal to the natu-
ral frequency. '

Insofar as the structural design is concerned, it is considered prudent to
keep the natural frequency of a structure as far away as possible from the
frequency ® of any known dynamic loading. Since the natural frequency
of the structure is a function only of stiffness and mass:

Chepter 1 Single-Degree-of-Freedom Systems
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RATIO OF FORCING FREQUENCY TO
NATURAL FREQUENCY. /0

ith & harmonic forcing function

Figure 1. SDOF system W
o = VGk/m 13)
a designer might deliberately alter the structural stiffness or the structural
mass in order 0 change the natural frequency and decrease any chance of
accidental resonance.

In the case of earthquakes, however, the motion is irregular, .- there
is no single value for &. Therefore, the structural design should include
i load over & broad range of forcing fre-

sed further in Chapter 2.

16 Chapter 1 Smh’p.'“-d'mm Systsms




Forced Osclilations Under Earthquake Ground
Motions

For the general case of loading in which the forcing function is that of
random earthquake motions, the equation of motion, Equation 10, remains
in its most general form:

mii + ci + ku = -mii (1) (10)
In its standard integrable form, Equation 10 becomes:
i+ 2Pow + 0u = - (1) (35)

The problem of a damped SDOF system shaken by a time-varying ground
acceleration is equivalent to the problem of a damped SDOF system rest-
ing on a fixed base and being subjected to a time-dependent force p(t) of
magnitude -m - 5,(‘)’ as shown in Figure 12,

k k
¢ AMASS, m — ¢ MASS, » ——
m'd~a

GROUND ACCELERATION

STEP 1, SOLVE

mii(g) +°ﬁ(t)+m(l)--mﬂmu(t)
STEP 2, SOLVE
Tomi(® = 3O + U grouna (D

Figure 12. Equivalent dynamic SDOF system problems

The total dynamic response of the SDOF system problem is computed
in two steps:

Step 1) Solve for the relative response of the damped SDOF system

as governed by the ordinary differential equation,
Equation 35.

Chapter 1 Single-Degree-of-Freedom Systems
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Step 2) Sum the relative response with the motion of the ground to
obtain the total response.

Step 1 assumes that the contribution of the general solution is negligible
compared with the contribution of the particular solution.

For simple harmonic ground accelerations, ¢.g., 4, = constant - sin (04)),
closed-form solutions to Equation 35 are avzailable in numerous textbooks
on both mechanical vibrations and structural dynamics. This procedure is
impractical for solving earthquake engineering problems due to the irregu-
lar nature of ground acceleration/time histories.

A second procedure used to solve for the relative displacement of the
SDOF system involves the representation of the load/time history
pit) = -m - ii,(t) as a series of impulse loadings P(t) applied to the SDOF
system for infinitesimal time intervals dt. Duhamel’s integral for a
damped SDOF system is given by:

u() = <(1/0p) ]:) iis(t) eBo-9) ip [0, (¢t - Dldt @6

where
op = the damped angular frequency of vibration.
® = the undamped angular frequency of vibration.
B = the fraction of critical damping.

The irregular forms of acceleration/time histories require numerical solu-
tions to be used to solve Duhamel’s integral (e.g., Paz 1991, or Clough
and Penzien 1993).

In usual applications to earthquake engineering problems, numerical
methods are used to solve Equations 35 and 36 for the relative displace-
ment of the SDOF mass because of the irregular nature of ground accelera-
tion/time histories. In general, there are two categories of numericai
methods used for solving the dynamic equilibrium equation: 1) direct inte-
gration methods, and 2) frequency domain methods. The reader is re-
ferred to broks on structural dynamics, e.g., Paz 1991, Clough and
Penzien 1993, or Ebeling 1992 for a description of these two methods.

The solution of Duhamel’s equation with B = 0 yields a useful relation-
ship between displacement, velocity, and acceleration (Appendix A, Ebel-
ing 1992).

u= ou (37a)
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i = 0%u (37b)

It is important to recognize that the relationships given by Equations 37a
and b are exact only when damping is zero. The velocity u computed
from Equation 37a is called pseudovelocity and the acceleration @ com-
puted from Equation 37b is called pseudoacceleration. Equations 37a
and b define the interrelationship between spectral displacement u,
pseudovelocity u, and pseudoacceleration i, three terms to be discussed in
detail in Chapter 2.

Chapier 1 Single-Degree-of-Freedom Systems
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2 Design Response Spectra

Introduction

Earthquake loading is typically represented in a dynamic analysis
either by a ground acceleration/time history or by a response spectrum. A
response spectrum is a graphical relationship of maximum values of accel-
eration, velocity, and displacement response of SDOF systems having a
natural frequency f. The graph is drawn over the usual range of frequen-
cies for elastic SDOF systems.

To prepare such a response spectrum, Equation 35 is evaluated for the
relative accelerations ii of an SDOF system during a particular earthquake
excitation. The evaluation is made for the frequency f (or period T) of the
SDOF system and its level of damping B. As indicated in Figure 13, the
absolute acceleration response spectrum SA is then computed as the maxi-
mum absolute value of the sum of this computed relative acceleration/time
history for the SDOF system plus the ground acceleration/time history
from step 2 of Figure 12.

Also indicated in Figure 13, the solution is then searched over the en-
tire time history for the maximum absolute acceleration SA of the SDOF
system, which is found and recorded. The corresponding value of
pseudoacceleration S, is also computed and recorded, where Sy = mZSD.
The procedure is performed repeatedly at close intervals of frequency.
The resulting sets of values for frequency f and pseudoacceleration S, are
then plotted as the spectra of responses for the various SDOF systems. A
key feature of a response spectrum is that it has been made independent of
time.

As more recordings of earthquake acceleration/time histories became
available during the 1970’s, statistical analyses of response spectra of
carthquake ground motions were conducted by several groups of earth-
quake engineers and seismologists. The results of some of the early
ground motion studies are summarized in Seed, Ugas, and Lysmer (1976),
Mohraz (1976), and Newmark and Hall (1982). Their studies showed that
the spectral frequency contents of the recorded accelerograms were depen-
dent on the earthquake magnitude, distance from causative fault to site,

Chapter 2 Design Response Specira
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Figure 13. Absolute accelerations and pseudoaccelerations for elastic SDOF systems
(Ebeling 1992)

the type of substratum on which the recording station was founded (i.c.,
rock, shallow alluvium, or deep alluvium), and the tectonic environment
(i.e., strike-slip faulting, normal faulting, thrust faulting, subduction
zones, etc.). A summary of the studies of Seed, Ugas, Lysmer, Mohraz,
Newmark and Hall is presented in EM 1110-2-6050.

The response spectra developed and plotted from such studies are quite
rough and jagged, but a general form can be readily deduced. Figure 14
shows an example of such a plot for a hypothetical plot of accelerations
from three earthquake records. The overall average value of
pseudoacceleration is a smoothed line as shown, drawn manually between
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Figure 14. Smoothing of raw response data

the peak values. The overall accuracy increases, of course, as the number
of records increases.

With an adequate number of records (see the appendix of EM 1110-2-
6050), such smooth curves can be developed well within the range of accu-
racy of the earthquake projections themselves. All of the smooth-shaped
spectra are drawn using this technique.

Smooth-Shaped, Broad-Band Design Response
Spectra

Early ground motion studies identified the factors affecting the re-
sponse spectra for earthquake motions, characterizing shape or the fre-
quency content of the earthquake spectrum for the category under study
and developing smooth, broad-band spectra for use in the design of struc-
tures for earthquake loadings. A broad-band spectrum ensures that suffi-
cient seismic energy is delivered to all frequencies.
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wide use by dynamicists and structural engineers:

* The Newmark and Hall response spectra.
* The Applied Technology Council ATC 3-06 response spectra.

Both spectra are nonsite-specific and both can be applied in general struc-
tural applications.

Newmark and Hall Response Spectra

In the Newmark and Hall approach for developing design response
spectra, it is necessary first to identify the peak ground acceleration
(PGA), peak ground velocity (PGV), and peak ground displacement
(PGD) for the design carthquake. These peak values are then mulitiplied
by appropriate spectral amplification factors to obtain the corresponding
displacements, velocities, and accelerations of SDOF systems throughout
a range of natural frequencies. The results are presented graphically in a
particular type of graph called a tripartite graph. Figure 15 is an example
of such a design response spectrum adapted from Newmark and Hall 1982.

A=05X271«135¢g
V w61 X2.90 = 140 cr/sec

FREQUENCY, Hz

Figure 15. Newmark and Hall design response spectrum for a site having
a stiff soil
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There are four logarithmic scales used in Figure 15 to show the follow-
ing three quantities as functions of the frequency f.

e D’ is the maximum relative displacement between the ground and
the mass of an SDOF system having a natural frequency f, at
whatever point in time it occurs.

* V’is the maximum pseudovelocity ®?D’ of the SDOF mass.
e A’is the maximum pseudoacceleration @22’ of the SDOF mass.

Since all four quantities are interrelated, the tripartite plot provides a con-
venient means to show the entire interrelationship in a single curve. It can
be shown (Hudson 1979 or Ebeling 1992) that for low levels of damping,
the pseudovelocity and the pseudoacceleration are nearly equal to the max-
imum relative velocity and maximum relative acceleration. This approxi-
mation applies over most of the usual frequency range, with the
pseudoacceleration being more accurate than the pseudovelocity. (For ad-
ditional details regarding these issues, see Ebeling 1992.)

For reference, the maximum ground motion is shown in dashed lines
on the graph of Figure 15. The ground motion shows only values of PGD,
PGV, and PGA without regard to time.

In order to draw a SDOF response curve, a ground motion curve must
be established, which means that the values of PGD, PGV, and PGA must
be established. To establish these peak values of ground motion, it is nec-
essary first to adopt a design basis earthquake. There are two minimum
design basis earthquakes in use by the Army Corps of Engineers for intake
towers (ER 1110-2-1806 and EM 1110-2-2401):

e Operational Basis Earthquake (OBE): The OBE is the level of
ground motion for which the structure is expected to remain
functional with little or no damage. Ordinarily, the OBE is defined
as a ground motion having a 50 percent probability of exceedance
during the design life of 100 years (a 144-year return period). The
associated performance level is normally the requirement that the
structure will function within the elastic range with little or no
damage and without interruption of function. Because the purpose
of the OBE is to protect against economic losses from damage or
loss of service, alternative choices of return period for the OBE
may be made on the basis of an economic analysis. The OBE is
normally based on a probabilistic site hazard analysis (PSHA).

*  Maximum Design Earthquake (MDE): The MDE is the maximum
level of ground motion for which the structure is designed or
evaluated. The associated performance level is the requirement
that the structure perform without catastrophic failure, such as
uncontrolled release of a reservoir, although severe damage or
economic loss may be tolerated. For critical structures (refer to
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ER 1110-2-1806), the MDE is the same as the maximum credible
earthquake (MCE). For noncritical structures (refer to ER 1110-2-
1806), the MDE may be chosen as a lesser ecarthquake than the
MCE to provide economical designs meeting appropriate safety
standards. For noncritical structures, the MDE can be determined
by a PSHA.

The maximum credible earthquake (MCE) is defined as the greatest
earthquake that can reasonably be expected to be generated by a specific
source, on the basis of seismological and geological evidence. Since a
project site may be affected by earthquakes generated by various sources,
each with its own fault mechanism, maximum earthquake magnitude, and
distance from the site, multiple MCE’s may be defined for the site, each
with characteristic ground motion parameters and spectral shape. The
MCE is determined by a Deterministic Seismic Hazard Analysis (DSHA).

Moderate levels of damage may be acceptable in existing intake towers
if it can be demonstrated that the structure will continue to function fol-
lowing an OBE event. The acceptance of a higher level of damage in ex-
isting intake towers will depend on the cost of retrofitting to preclude
damage versus the cost of repairs following an OBE event.

There are two special cases for defining the MDE to be the same as the
MCE. In the special case in which failure of the tower due to an earth-
quake can lead to failure of the dam and loss of the reservoir, the MDE
should be the maximum credible earthquake (MCE).

The other special case in which the MDE is defined as the MCE occurs
when the intake tower is required to operate after a severe earthquake.
The tower may be damaged but its ability to function is not impaired by
damage sustained during ground motions in excess of the minimum design
basis earthquake. The MDE is the MCE for this case so that the
postearthquake functionality of the intake structure can be demonstrated.

When site-specific information is not available, Newmark and Hall rec-
ommend that a v/a ratio of 48 in/sec/g (122 cm/sec/g) be used for a compe-
tent (stiff) soil. For rock, they recommend a v/a ratio of 36 in/sec/g
(91 cm/sec/g). To ensure that the spectrum mcludes an adequate band
width of frequencies, they recommend that ad/vZ be taken at 6. (In these
recommendations, a, v, and d are the values of the peak ground accelera-
tion, peak ground velocity, and peak ground displacement, respectively.)
From these recommended values, the value of d/a is found to be 90 cm/g
for competent soil and 51 cm/g for rock.

The smooth elastic design spectrum shown in Figure 12 is an 84th per-
centile spectrum developed for a site located on a competent soil with an
estimated PGA value of a = 0.5g. In the spectrum of Figure 15, a value of
122 cm/sec/g is used for v/a, and a value of 90 is used for d/a. For a value
of a = 0.5g, the corresponding value for velocity v is 61 cm/sec and for
displacement d is 45 cm.
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In an carlier paper, Newmark and Hall (1978) provided values of ampli-
fication factors for the different parts of the spectrum. These spectrum
amplification factors are shown in Table 1 for various damping ratios.

For the MDE, the spectrum amplification factors at 5 percent damping are
2.71, 2.30, and 2.01 for acceleration A, velocity V, and displacement D, re-
spectively, of the SDOF system.

;:hcu‘:un Ampiification Factors for Horizontal Elastic Response

(Source: Adapted from Newmark and Hall 1962)

Demping One sigma (84.1%) Medien (50%)
m A v D A v D
0.5 5.10 3.04 3.04 3.68 250 2.01
1.0 4.3 3.38 .73 3.21 2.3 1.82
20 3.68 292 242 2.74 2.03 1.63
3.0 3.24 264 2.24 248 1.88 1.52
8.0 .M 2.30 2.01 212 1.65 1.3
7.0 2.3¢ 2.08 1.85 1.89 1.51 1.29
10.0 199 1.84 1.69 164 1.37 1.20
20.0 1.2 137 1.38 1.17 1.08 1.01

For these amplification factors, the following bounds for the response
spectrum are computed:

A’ = A x PGA = 2.71 x 0.5g = 1.35
V =V x PGV = 2.30 x 61 cm/sec = 140cm/sec
D=DxPGD=201x45cm =90cm

The resulting elastic response spectrum is that shown in Figure 15. As
shown there, Newmark and Hall (1982) connect the SDOF acceleration at
8 cps to the peak ground acceleration at 33 cps, thereby completing the
high-frequency portion of the spectrum. They do not, however, specify at
what frequency the SDOF displacement should be connected to the peak
ground displacement to complete the low-frequency portion of the spectrum.
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'ATC 3-06 Response Spectra

In studies and analyses separate from those of Newmark and Hall, the
Applied Technology Council (ATC) developed another form of the
broad-band, smooth-shaped response spectra. The results of their anal-
yses are presented in publication ATC 3-06, dated 1978.

The ATC 3-06 broad-band, smooth-shaped spectra were based on the
smoothed mean spectral shapes from the study by Seed, Ugas, and Lysmer
(1976) shown in Figure 16. These average spectra are based on 104 re-
cords mostly from earthquakes from the western part of the United States
and having a Richter magnitude range of 5.25 to 7.5.

4 T T T T T
TOTAL NUMBER OF RECORDS ANALYSED: 104 SPECTRA FOR 9% DAMPING

SOFT TO MEDIUM CLAY AND SAND - 1§ RECORDS
DEEP COMESIONLESS SOLLS (200 FT) -39 RECORDS

Figure 16. Average acceleration spectra (Seed, Ugas, Lysmer 1976)

Like the Newmark and Hall analysis, the end product of the ATC analy-
sis is a graph. The ATC graph is a linear graph on which the periods of
SDOF systems are plotted against the normalized spectral acceleration
(pseudoacceleration divided by the peak ground acceleration). An exam-
ple of the ATC 3-06 response spectra, drawn for 5 percent damping, is
shown in Figure 17; a distinct advantage of the ATC response spectra is
that the various soil conditions are included directly with the spectra.

In Figure 17, the nonsite-specific response spectra appropriate for use
at a given site are distinguished between the three site classifications
given in Table 2.

The abscissa of the ATC 3-06 response spectra of Figure 17 is normal-
ized, that is, it is the ratio of peak SDOF pseudoacceleration to peak
ground acceleration. Note also that Figure 17 is a linear plot rather than a
log plot.
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Figure 17. ATC 3-06 response spectra, 5 percent damping

Table 2
Soll Types
Type Descriptions

A soll profile with either:

a. A rock-ilke material characterized by a shear wave velocity
greater than 2,500 fps or by other sultable means of classification.

or
1 b. SWif or dense soil condition where the soil depth is less than 200 ft.
2 mmmmmmum.mmmmm

A 90l profile 70 ft or more in depth and containing more than 20 ft of soft fo
3 medium-stiff clay but not more than 40 ft of soft clay.

For SDOF systems founded on rock or stiff soils (Type 1 soils), the
maximum normalized value of 2.5 occurs in SDOF systems having a natural
period between 0.2 to 0.4 sec. For SDOF systems founded on Type ! soils
but which have periods longer than 0.4 sec, the normalized values
decrease in amplitude inversely proportional to the period T, as indicated
in Figure 17 (recall that T = 1/f).
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For soils softer than Type 1 soils, the peak normalized acceleration is
elongated significantly, extending to periods of 0.6 sec for Type 2 soils
and to 0.9 sec for Type 3 soils. Even when acceleration does start to de-
crease in Types 2 and 3 soils, the rate of decrease is less than that in stif-
fer soils. Such long periods are more characteristic of flexible structural
systems than rigid structural systems, indicating that when soils are soft,
spectral accelerations are likely to be high for both flexible and rigid struc-
tural systems.

The greatest dynamic amplification of ground motion occurs in struc-
tures when the fundamental period of the structure is close to the charac-
teristic period of the ground motions. This means that flexible or
long-period structures on soft sites will respond more to carthquake
ground motions than flexible structures on stiff sites. The ATC 3-06 stan-
dard spectra for various site conditions attempts to capture this phenomenon.

As a matter of interest, the smoothed plot for rock foundations as it
was proposed in the Seed, Ugas, Lysmer study is shown in Figure 18. It
has already been noted that the ATC curves evolved from this study.
Shown also for comparison are the plot as it was finally adopted for the
ATC 3-06 curve and the corresponding plot taken from a Newmark and
Hall response spectra for the same rock foundation.

| i
0 05 1.0 15 20 25 30
PERIOD - SECONDS

Figure 18. Comparison of design response spectra for rock foundations

Comparing the ATC curve with the Seed curve (a “mean” curve) shows
that ATC truncated Seed’s peak normalized acceleration at 2.5. This maxi-
mum of 2.5 is applied to all soils in the ATC spectra (see Figure 17), not
just rock. Also, ATC more than tripled the range of periods which would
experience the maximum normalized acceleration of 2.5.

Comparing the two major response spectra of Newmark and Hall and
ATC 3-06 shows that the maximum magnitude of the ATC response is
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significantly higher than that of Newmark and Hall (a “median” curve),
and remains higher for all values of T. It is concluded that the ATC 3-06
spectrum is somewhat more conservative than the Newmark and Hall spec-
trum for all frequencies.

The ATC 3-06 spectra also appear in the 1991 Uniform Building Code
as a general nonsite-specific design requirement. They are included as
well in the recommended Lateral Force Requirements of the Structural
Engineers Association of California (SEAOC) and are also used in the
tri-services manual TM 5-809-10-1, SEISMIC DESIGN MANUAL FOR
ESSENTIAL BUILDINGS. The ATC 3-06 Type 1 response spectra are
used in EM 1110-2-2401 intake tower example problems.

Standard spectra, such as ATC 3-06, are intended to be used only for
preliminary structural evaluations when site-specific response spectra are
not yet available for the site. Another procedure for developing standard
spectra to be used in preliminary structural evaluations is described in
ER 1110-2-1806.
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3 Distributed-Mass Systems

Period of Oscillation of Distributed-Mass
Systems

A true SDOF system is one in which only one deflection pattern can
occur. All of the lumped-mass systems shown in Figure 1 are such SDOF
systems. In solutions to SDOF systems there was never any need to con-
sider multiple patterns of oscillations.

A distributed-mass system such as the tower shown in Figure 19 is not
an SDOF system. The tower could have a number of patterns of oscilla-
tions as shown, and it could also oscillate in two or more of these patterns
at the same time. The distributed-mass system of Figure 19 is, in fact, a
multiple-degree-of-freedom (MDOF) system with an infinite number of
degrees of freedom. '

MASS m o/ UNIT LENGTH [ 1000 —f 100 —1 = 1o -—l

7

7
l
- ] 9 _u{x v
— 2 o Z
SHAPE

FUNDAMENTAL SECOND
""-"—".'n SHAPE SHAPE

'l'-’lgure 19. Distributed-maas system
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If, however, it is assumed that the tower oscillates in only a single de-
flection shape at any one time, the system could be analyzed as an SDOF
system. Such an assumption is the basis of analysis of distributed-mass
systems, i.c., that the system can in fact be limited to a single pattern of
deflections at a particular time. The Rayleigh method provides such an
analysis of distributed-mass systems.

In the Rayleigh method, it is assumed that the deflection u(x,t) is lim-
ited to a single shape and that the single shape can be expressed as vari-
ables separable:

u(x.0) = ywix)(r) (38)

Inherently, the variables-separable solution uncouples the sulution for
displacements from the solution for frequency; each can be solved inde-
pendently of the other. The rime function v(t) defines only the magnitude
of the horizontal displacement at some reference level r at any time t. The
displacement function y becomes only a shape function, defining the
relative shape of the tower at any point x along its height as shown in
Figure 20.

For the sake of simplicity, the reference level r in this report is always
taken at the top of the cantilever, that is, x in Equation 38 equals L.

_-_v.,—_..| ggyﬁ\ ooy ———y

had L] (X Y= ¥(x)

A V074
GHAPE

TOTAL
FUNCTION DISPLACEMENT

Figure 20. Shape function
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KE = Vimis2

(39)

=¥ I: m(x) [k () dx
The stored potential energy PE in the system is the strain energy due to
flexure:

40
PEa'Aj:Mde “0)

where M is the moment on the cross section and 0 is the rotation of the
cross section about the neutral axis. The rotation 0 is given by the Ber-
noulli equation:

Ll oM _d% “n
A

The final form of the PE equation is then:

42
PE =4 I: El() WP ds “2)

An important observation is appropriate at this point. Note that the
potential energy used in the Rayleigh solution is limited to the flexural
moment-times-rotation strain energy. Shear deformations, axial deforma-
tions, and torsional rotations are all ignored. The Rayleigh solution is,
therefore, most accurate in those applications in which the flexural energy
dominates all other strain energy sources to such an extent that they may
be safely ignored.

It should be noted that for squat towers the shear displacement can be a
significant part of the total lateral displacement (flexural and shear). In-
take towers with height-to-width aspect ratios of 3 or less should be de-
signed for earthquake ground motions using procedures that include shear
stiffness capability.

The variation in KE at any time interval must be equal and opposite to
the variation in the PE over the same interval since there is no damping in
this conservative system. The resulting solutions of Equations 39 and 42
are rather complicated sol'itions in the calculus of variations (Paz 1991)
which yields the Rayleigh solution:

m*u(t) + keo(f) = Pg*® (43)

Chapter 3 Distributed-Mass Systems




where

me = _':' m(x)v:dt = generalized mass 40
ke = J': EXx) [P dx = generalized stiffness (40)
(44¢)

Pw‘(') = -5, j: m(x) ywdx = generalized load

In Equations 43 and 44, the asterisks denote that the functions are general-
ized functions which occur at the reference level r at the top of the cantilever.

A careful examination of Equations 43 and 44 reveals that the Rayleigh
solution is actnally a solution for a lumped-mass system rather than for a
distributed-mass system. Such an equivalent system is shown in Fig-
ure 21.

As indicated in Figure 21, the Rayleigh solution given by Equation 43
is an equivalent solution for the oscillations of a generalized mass m* at
the reference level r with respect only to time. The solution for v(t) is no
longer a function of the height x. This indicates that the Rayleigh solution
transforms an MDOF distributed-mass system into an equivalent SDOF
lumped-mass system at the reference level r.

/—marmmn
L—“—«; I——‘q
” / . mml G.SW f)q——
I /\-«’-a’
/ i " Armmj / L
2 //
] /
y ———
ugld
2) ACTUAL DISTRIBUTED-MASS SYSTEM b) EQUIVALENT LUMP-MASS SYSTEM

Figure 21. Equivalent Rayieigh lumped-mass system
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M“Mnotinchdam i.e., there is no loss of energy
nyvlauh&olym ltwushowneuher.howem.thatthemal
period of oscillation is not affected by damping (for low levels of damp-
ing), so the period computed by use of Equation 43 will still be correct.

The solution of Equation 43 takes the form:

B + ke/mov(0) = ~(L,/me) i (0 (45)
where
(46)
Ly = [ marwas

The natural frequency of this system remains, of course, the unforced fre-
quency. Again, the unforced solution for v(t) is harmonic, i.e.,

uf) = v, sin o 47
and
u(xr) = W(x)v, sin o¢ (48)

where v, is the maximum value of displacement at the reference level r.

With no damping, the energy in this conservative system remains con-
stant. The sum of KE (Equation 39) and PE (Equation 42) is therefore a
constant. At maximum amplitude, the velocity is zero, and all the energy
in the system at that time is in the form of PE:

PE=W j: EI(x) u” dx “2)
Equation 48 is substituted, yielding:

PE = 11} j: EKX) [V dx (499)
or ‘

PE = Vs v} ks (49b)

where v, is the displacement at the reference level r.

Similarly, when displacement u(x,t) is zero, all of the energy in the sys-
tem is in the form of KE:
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. 39
KE = W I: m(x) [ie (x.0)) 2 dx

Equation 48 is substituted, where, with cos(ot) = | when u(x.t) is at its
maximum:
(50a)
KE = Vv’ j: m(x) (v ()] 2 dx

or
KE = V39l ofme (50b)

Equations 49 and 50 must be equal in a conservative system. Equating
them produces the result:

o? = ke/m* (51a)
or equivalently, |
T = 2% Nm*/k+ ' (51b)

When Equation 51a is substituted into Equation 45, the result is the
final form of the Rayleigh solution:

W) + wPo() = ~«L,/m%) i (1) (52)

where the natural period T and the circular frequency o are those given by
Equations 51a and b. -

The factor L,/m* on the right-hand side of Equation 52 is an important
feature of the Rayleigh solution. It is a dimensionless number, a multi-
plier that is applied to the ground acceleration { g(t). As such, it becomes
a part of the forcing function and, consequently, it automatically becomes
the same multiplier of the spectral quantities Sp, Sy, and S, (to be dis-
cussed later).

Equation 52 shows that the factor L,, by itself is the “normalization”
factor between the actual ground acceleration fig(t) and the response by
the generalized mass m*. When divided by m*, the entire factor Ly/m* be-
comes the normalization ratio factor between fig(t) and VU per unit of gener-
alized mass.

Equation 51a has more than one solution. The only requirement for a
solution is that the strain energy stored in a given deformation shape be ex-
actly equal to the work done by the mass in moving into that shape. For a
distributed mass, there are an infinite number of shape functions that will
satisfy all the energy relations and thus be a solution to Equation 51a.
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Each such shape function will have its own corresponding circular fre-
quency ® and period T.

In order to compute the period of the structure from Equation 51b, it is
necessary to know the mass m(x) and its distribution, the stiffness EI(x)
and its distribution, and the shape function y. Where EI is constant or var-
ies in discrete steps, it is known from the Bernoulli equation that the re-
storing force on the system is the fourth derivative of the displacement

function y:
dy & (M)_» (53)
&t dd (EI) T EI

This restoring force at any point is equal to the spring constant k times
the deflection y, with the direction of the force always opposite to the di-
rection of the deflection y:

ky = —p (54)
Equating these two values for p yields an equation of the form:

¥’ = (constant) (V) (55a)
or,

¥ — (constant) () = 0 (55b)
The solution of an equation of this form is given by:

¥ = A sin (a2) + B cos (az) + C sinh (a2) + D cosh (a2) (56)

where z = x/L and a is a constant involving the rotational frequency
® (a* = mm?/El, Clough and Penzien 1993).

There are only four constants of integration in the solution, which lim-
its the boundary conditions to four. There are five unknowns, however,
since a is also unknown. Therefore, a fifth condition is required. One
way to develop the fifth condition is to assign some arbitrary value (such
as unity) to y at the reference level r (at the top of the cantilever, see Fig-
ure 21). The solution will then be a reference solution, or normalized solu-
tion, in terms of unit displacement at r.

An example will illustrate the format of the solution. The first three
shape functions for the cantilever of Figure 22 will be found. The four
boundary conditions for the cantilever are:

1) The deflection at the base of the cantilever is zero

atz=0, y=0

Chapter 3 Distributed-Mass Systems

&
*

37




| __—UNFORM STIFFNESS E1

ponanm o
—
—

/‘BASE
W/ ///Y/ /1A
|

Figure 22. Typical distributed-mass cantilever

2) The slope of the elastic curve at the base is zero

atz=0, y=0
3) The moment at the free end is zero

atz=1, y'=0
4) The shear at the free end is zero

atz=1, y'=0
The derivative forms of Equation 56 are:

¥ = Asin (az) + B cos (az) + C sinh (az) + D cosh (az)
¥ = a A cos (az) - aB sin (az) + aC cosh (az) + aD sinh (az)

v = -a%A sin (az) - aB cos (az) + aZC sinh (az) + aD cosh (az)
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V‘r"‘- a‘Ksh(u)o-a‘B cos (az) + a%C sinh (az) + a*D cosh (az)
These are substituted into the boundary conditions to find:
Atz=0,y =0=B+D

as 187510
A = +0.96705
8 = -0.50000
C = -0.38703
D = +0.50000
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Atz=0,y =0= A4+C

a= 400400
A = -0.50023
8 = +0.50000
C = +0.50023
D = -0.50000

Atz=1, ¢y’ =0=-Asin(a) - B cos (a) + C sinh (a) + D cosh (a)
Atz =1, v’ = 0 =-Acos (a) + B sin (2) + C cosh (a) + D sinh (a)

A fifth condition is now imposed to obtain the required fifth equation.
The value of y at the free end of the cantilever (reference level r) is as-
signed a value of unity, yielding:

Atz=1, y=1= Asin(a)+ B cos (a) + C sinh (a) + D cosh (a)

A set of equations such as these five, having a variable coefficient in
the matrix, is called a characteristic problem or an eigenproblem. A solu-
tion will exist only for particular values of the variable a; these values of
a are called the characteristic values or the eigenvalues.

There are an infinite number of values of a in any distributed-mass sys-
tem. Each value of a corresponds to a shape function; the lowest value of
a correspoanding to the first shape function, the next lowest value of a cor-
responding to the second shape function, and so on. For the sake of brev-
ity, only three shape functions are presented here.

These five simultaneous equations are solved using conventional com-
puter software (e.g., Maple, MathCAD, Matlab, Mathematica, etc.),
though there are also specialized hand-held calculators available (e.g.,
HP 488, TI 81, TI 85, etc.) that could solve such a set of equations. The
first three solutions are:

a= 785476
A = +0.40081
B = -0.50000
C = -0.49961
D = +0.50000

Depending upon the particular software, the trial values of a are entered
interactively by the engineer. The lowest value of a for which a solution
can be obtained will yield the first shape function. The next lowest value
of a will yield the second shape function, and so on. It is reccommended




and so on. It is recommended that the graphics capability of the software
be used to verify each shape function so obtained. The number of curva-
tures corresponds to the number of the shape function (see Figure 23).

Therefore, the equations of the first three shape functions are:

¥; = 0.367 sin (1.875z) - 0.500 cos (1.8752)
-~ 0.367 sinh (1.8752) + 0.500 cosh (1.875z2)

¥, = —0.509 sin (4.6942) + 0.500 cos (4.6942)
+ 0.509 sinh (4.6942) ~ 0.500 cosh (4.6942)

¥, = 0.500 sin (7.855z) - 0.500 cos (7.8552)
— 0.500 sinh (7.8552) + 0.500 cosh (7.8552)

The configurations of the shape functions ¥ corresponding to these first
three solutions are shown in Figure 23.
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Figure 23. Shape functions for a cantilever having a uniformly distributed
mass

The three equations for y are now used to evaluate the generalized
functions for m*, k*, and L, given by the integrals of Equations 44a and
b and Equation 46 (or, equivalently, 44c). The integrals may be evaluated
by conventional software or by specialized hand-held calculators. The
generalized values for the three shape functions of Figure 20 are listed in
Table 3, along with the rotational frequencies and the natural periods.
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mlud Values for a Distributed Mass Cantilever
Shepe Functien 1 Shape Punction 2 Shape Function 3
M* = 0.25000 myL m* = 0.24008 m L m* = 0.25019 m
k* = 3.09088 E* k° = 121.3003 EIL? k* = 952.3417 EN?
L, = 030140 mL L, =-021701 my L, =0.12758 mt.
L/m* = 156500 Ly/m* = -0.86811 Ly/m* = 0.50905
o® = 1236 (EUm Y o' = 485.5 (EVm LY o® = 3806 (EVm LY
T = 2n/0 Ta2n/m Tw2n/0

Flexural Stiffness El for OBE and MDE

The value of k* given in Table 3 is a function of the modulus of elastic-
ity E and the moment of inertia I. For concrete structures under the OBE,
the value of El is taken conservatively as that of the uncracked concrete
section. The uncracked value of EI is used for determination of both the
accelerations and displacements under an OBE earthquake.

For the maximum design earthquake, it is recognized that the worst-
case values of acceleration and velocity will occur if the section does not
crack this because the higher the stiffness, the higher the structural system
frequency and corresponding spectral acceleration and velocity. The un-
cracked section is, therefore, used when calculating accelerations and
velocities under the MDE. For displacements, however, the largest dis-
placements will occur when the concrete cracks, resulting in a reduction
in stiffness which increases the period of the structure and its correspond-
ing spectral displacement. Under the MDE, therefore, the uncracked
value of EI is used to determine accelerations. To determine displace-
ments, a flexural stiffness equal to half the gross section flexural stiffness
is generally used. This value is considered an approximate typical effec-
tive stiffness for reinforced concrete structures loaded to yield levels.

Combined Effects In Distributed-Mass Systems

The values of the period T found from the Rayleigh solution are used
to find the spectral values of Sp, Sy, and S,, cither from standard spectra
such as Newmark and Hall or ATC 3-06 or from a design response spectra
developed for the specific site. There will, of course, be three sets of spec-
tral values, one for each shape function. Since the cantilever can experi-
ence all three (or even more) of the oscillation shapes at the same time,
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the spectral values must now be combined. A means to combine the spec-
tral values from several shape functions is presented in this section.

Finding a rational means to combine several shape functions is a major
consideration if a set of SDOF solutions is to be taken as the solution to
an MDOF problem. Because a system may oscillate in more than one fre-
quency at any one time, a combination of SDOF shapes will undoubtedly
occur in any MDOF oscillating system. For each of these participating
shapes, a spectral maximum displacement S can be found, along with its
corresponding spectral maximum pseudovelocity Sy and its spectral maxi-
mum pseudoacceleration S,. The spectral values are the maximum values
for each frequency. Since it is unlikely that all these maxima will occur
at the same time, some reasonable basis for combining these maximum
values is obviously needed.

There are two methods in common use for combining several SDOF so-
lutions to obtain a single MDOF solution:

¢ square root of the sum of the squares (SRSS), and

¢ complete quadratic combination (CQC)
The older and more universal of these two methods is the SRSS method,
which is an approximate method. Any number of spectral values can be

combined by SRSS, but the usual number is three. When combined using
SRSS, the spectral values for n SDOF solutions are:

Sp = Vs3, + ng + Elf,s $n Einn (57a)
_ 3

Sy = NSy, + 5, + 84 +....5% (57b)

S, = NS4, + 8%, + 83, +....55, (57¢)

The more recent CQC method is based on random vibration theory and
it accounts for the interaction between two shape functions that have peri-
ods relatively close to each other. The method uses a cross-function coef-
ficient py;, where i and j are any two shape functions and where r = Ty/T;:

0, = 882 (1 +r) r1S (58)
V-2 apr+n?

Figure 24 shows a graph of pij- For values of damping less than 5 per-
cent, the periods must be within about 25 percent of each other for signifi-
cant cross-function interaction to occur.
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Figure 24. Cross-function coefficient Py}

The spectral values for a CQC combination are given by:

“’ LA (59a)
Sp= VY X SpiPySpy

im}] j=]

o ’ (59b)
Sy= VX 3 SypySy

isl j=]

-\, < (5%)
Sp= VX X S90Sy

i=] j=1

When the periods between functions are well separated, the cross-function
coefficient p,. approaches zero for all cases where i # j. For the case i
which i=j, the value of p,; becomes 1, and the CQC method degenerates
into the SRSS method. Most large structures will have distinct separation
between periods and will fall into this default category in which the SRSS
method will apply.

Table 3 shows that the normalization factor L, can have different alge-
braic signs for different shape functions. When the CQC method is used,
those signs must be preserved throughout the calculations. Further, when
combining east-west, north-south and up-down contributions to any spec-
tral quantity, the contributions must be added algebraically before being
used either in the SRSS method or the CQC method (EC 1110-2-6050).

The following example illustrates the procedure for finding the spectral
response of a distributed-mass system in which Rayleigh’s solution is
used to find the period T.
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Example Solution for a Stepped Tower

Probiem statement

Calculate the forces, overturning moment, and displacements on the
square step-tapered intake tower under the maximum design carthquake,
using the uncracked section for computing forces and the fully cracked
and rotated section for computing the displacements. The Type 1 ATC 3-06

response spectrum is to be used. Maximum ground acceleration is 0.45g,
the foundation is rock, Yognc = 150 Ib/ft3, and Gross E = 3.6 x 10° Ibvin.2

Compute
a. Natural periods of oscillation for the first three shape functions.

b. Spectral displacements, velocities, and accelerations for the first
three shape functions.

¢. Combined accelerations for the first three shape functions.
d. Base shear under the combined accelerations.
e. Overturning moment under the combined accelerations.

/. Displacements of the cracked and damaged tower.

T =

. s mp = 1984 slugs/ft = 1.00m 5
- Iy = bit/12 = 712,470 f* = 1.0001,

my, = 2534 slugs/ft = 1.28m
[~ | I, = b¥/12 = 106,260/ = 1.4661,

e i | e

my, = 3261 slugs/ft = 1.64m

WW — I, = bi?/12 = 145,830 = 2.0121,
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Bocanse the shape functioa is discontinuous at the steps, it is defined
by three discontinuous equations:

0sz< A w= A sin (az) + B cos (az) + C,sinh (az) + D cosh (az)
<2< % w= Aysin (az) + B,cos (az) + C,sinh (az) + D,cosh (az)
B <z<1: = Agsin (az) + Bycos (az) + Cysinh (az) + Dycosh (az)
Boundary conditions are:
Atz=0, y,=0andy’, =0
Atz=lh ¥ =¥, =¥y My =Myand V, = V,
Atz= ¥, =¥, ¥ =¥ My=M;and V, =V,
Atz=1, M;=0andV;=0
where
M = moment
V = shear

These 12 boundary conditions apply to 13 unknowns. The 13 condi-
tion is obtained by setting the displacement w3 = 1 at the top of the tower.

Atz = 1.000, y, = 1.000

The three equations of the shape function are substituted into these
13 boundary conditions, producing 13 equations in 13 unknowns. The
equations are independent of mass.

0=B, +D,

O= A+ Cl

0= (A,-A,) sin (Vsa) + (B,-B,) cos (44a)
A é éz) sinh (158) + (D,-D,) cosh (1Aa)

0= (A,-A,) cos (V42) - (B,-B,) sin (Vsa)
+ (C ’Cz) cosh (Ysa) + (D,-D,) sinh (}4a)

0=-(I,A;-L,A,) sin (Vsa)-c-(l B, -l ) cos (Y5a)
171zA2 + (IlCl-Iz 2) sl 3\4.) +(1 1D;-1,D,) cosh (Ysa)




0=-(1,A,-I,A,) cos (Yse) - (1,B,-L,B,) sin (V4a)
et + (I,C,-lzdz)lccl»zshz(%a) + (I,D,-1,D,) sinh (V48)

0= (Az'As) sin (%) + (B -B3) cos (%a)
+ (%2-C3) sinh (%a) + (D,-D,) cosh (¥a)

0= (A,-A,) cos (¥a) - (B,-B,) sin (¥3a)
+ (C,-C,) cosh (%a) + (D,-D,) sinh (348)

0= -( -1.A,) sin (%) + (1,B,-1,B,) cos (¥a)
Arshs o (1,C,-1,C%) Sinih (348) + (I,D,-1,D) cosh (38)

0=-(I,A,-1.A,) cos (3a) - (1,B,-1,B.) sin (34a)
2yt + (12C2-13é3)2co%h3(%n) + (I,D,-1,D,) sinh (#a)

0= -A, sin (a) - B3 cos (a) + C; sinh (a) + D3 cosh (a)
0 =-A, cos (a) + B, sin (a) + C; cosh (a) + D3 sinh (a)
I= A, sin (a) + B3 cos (a) + C, sinh (a) + D, cosh (a)

It is well to observe at this point that the boundary conditions will al-
ways include the four end conditions (at the base and at the top) plus four
conditions for each discontinuity in moment of inertia. There will be as
many of these interior discontinuities as there are changes in EI. Each dis-
continuity will simply add four more equations to the set of simultaneous
equations. Since the computer will solve forty equations as readily as
four, the additional equations cause no more labor than making some addi-
tional entries in the mathematics software.

The foregoing equations also show that the shape function of any
distributed-mass MDOF system is independent of the distribution of the
mass. Additional masses may be added or deleted at will, but as long as
the stiffness is unchanged, the shape of the deflection curve will remain
the same. The mass and its distribution will affect the magnitude of the
displacements (and the period T), but not the shape function.

The 13 equations of the example are solved by the mathematics soft-
ware, as usual, to find the coefficients at the three steps. The coefficients
are listed in Table 4. Trial entries of 2, 5, and 8 for the value of a were
used in finding the three shape functions shown in Table 4.
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Table 4

Shape Function Coefficients

v e - e L

First step, 0 S 25 1/3
A, = +0.24070 A, = -0.33202 A, = +0.34858
8, = -0.35659 B, = +0.34887 B, = -0.35227
C, = -0.24070 C, = +0.33292 C, =-0.34856
D, = +0.35650 D, = -0.34887 D, = +0.35227

Second step, 13525 2/3
Ag = +0.25608 A, = -0.37481 A, = +0.40870
By = -0.46345 B, = +0.41823 B, = -0.40996
C, = -0.39978 C, = +0.40194 C, = +0.35635
D, = +0.50951 D, = -0.39552 D,=-0.35675

Third step, 23<z<5 1
Ay = +0.23485 Ay = -0.43826 Ay = +0.50011
By = -0.55413 By = +0.52886 By = -0.49329
C, = -0.66003 Cy = -1.82776 Cy=-8.49612
Dy = +0.75725 Dy = +1.83547 Dy = +8.49651

The equations defining the first shape function are:

0 Sz < 1A w=0.241 sin (2.150z) - 0.357 cos (2.150z)

- 0.241 sinh (2.150z) + 0.357 cosh (2.150z)

14<2<245: y=0.257 sin (2.150z) - 0.463 cos (2.150z)
- 0.400 sinh (2.150z) + 0.510 cosh (2.150z)

% <z<1: y=0.235 sin (2.150z) -0.554 cos(2.150z)
- 0.660 sinh (2.150z) + 0.757 cosh (2.150z)
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The generalized mass m® and generalized stiffness k* for the first
shape function are found by evaluating the integrals of Equations 44a and
b. For the uncracked section:

me = I: m L [0.24] sin (2.150z) - 0.357 cos (2.1502)
~ 0.241 sinh (2.150z) + 0.357 cosh (2.1502)) 2dz

+ f: m L [0.257 sin (2.1502) — 0.463 cos (2.1502)
~ 0.400 sinh (2.150z) + 0.510 cosh (2.1502)] 2dz

1
+ [, mal 10235 sin 2.1509 ~ 0.554 cos (21502
~ 0.660 sinh (2.1502) + 0.757 cosh (2.1502)] 2dz

= 90,560 slugs

k¢ = f: (EL/L% [-1.114 sin (2.1502) + 1.650 cos (2.1502)
~ 1.114 sinh (2.150z) + 1.650 cosh (2.1502)] 2dz

+ [: (EL/L%) [-1.188 sin (2.1502) + 2.140 cos (2.1502)
— 1.849 sinh (2.150z) + 2.357 cosh (2.1502)} 2dz

1
* _[% (EL/L%) [~1.086 sin (2.1502) + 2.560 cos (2.1502)
— 3.051 sinh (2.150z) + 3.499 cosh (2.1502)} 2 dz

= 36.15 x 100 W/t
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L= I: my, L [0.241 sin (2.1502) - 0.357 cos (2.1502)
~ 0.241 sinh (2.1502) + 0.357 cosh (2.1502)] dz

+ I: mplL [0.257 sin (2.1502) — 0.463 cos (2.1502)
- 0.400 sinh (2.150z) + 0.510 cosh (2.1502)] dz

1
+ I% m plL [0.235 sin (2.150z) — 0.554 cos (2.150z)
~ 0.660 sinh (2.1502) + 0.757 cosh (2.1502)] dz

= 151,215 slugs

The remaining constants are calculated from the following values:

Circular frequency o = Vke/m* = 19.98 rad/sec
Period T =2r/0 = 0.314 sec
Frequency f=1/T = 3.186 cps

The values for the other shape functions are found similarly.

First Shepe Function Second Shape Function | Third Shape Function
m* = 90,560 shugs m* = 77,800 siugs m* = 79,700 slugs

k* = 36.2 x 10° Iyt k* = 851 x 10% v/t k* = 6,116 x 10° b/t
L, = 151,215 slugs L, = -79,480 siugs L, = 50,540 slugs
L/m" = 1.670 L/m* =-1.022 L/m® = 0.834

® = 19.98 rad/sec o = 105 rad/sec o = 277 rad/sec

T =0.314 sac T = 0.060 sec T = 0.023 sec

The spectral accelerations are found from Figure 17 for the periods just

calculated.
First Shape Funotion Second Shape Function Third Shape Function
SA-1-125° SA-O.nOg SA-O.S“Q
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Effects of Submergence

It is again noted that the foregoing solution for the period of the exam-
ple step-tapered tower is mathematically exact. The solution in common
use for the period of such towers when they are used as intake structures
(EM 1110-2-2401, or Goyal and Chopra 1989) includes the additional
mass of water, both inside and outside the intake tower, that is being accel-
erated by the motion of the tower. Figure 25 shows a schematic of such
added mass for two pool levels. Even though the Chopra procedure for
finding the added mass of water is approximate, it indicates that the added
mass that lies below the waterline can sometimes triple the effective mass.
The overall result is to increase markedly the natural period T above that
of a “dry” tower.

———

DRY POOL HALF POOL HEIGHT FULL POOL HEIGHT

Figure 25. Added mass due to acceleration of water

The increase in mass due to the added water poses no particular prob-
lem in the Rayleigh solution. The added mass of water is computed in
stepped increments as prescribed in the Chopra procedure and is then
added to the mass of the tower. It is not necessary that the steps in the
water mass match the steps in the tower mass. If the steps do not happen
to coincide, the steps in water mass will simply create some new dis-
continuities in the integration for m*. As noted earlier, however, the
shape function remains unchanged by the addition of hydraulic mass.

Since the added mass does not affect stiffness, the generalized stiffness

k* remains constant for all levels of water both inside and outside the
tower. Since the period is proportional to the square root of the mass m*
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(T = 2x Y78 ), the effact of submergence is computed by evaluating
m*® for various lovels of submergence and then recaiculating T for each of
these levels. Figure 26 is a plot of the results of such calculations for the

example step-tapered tower.
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Figure 26. Effects of submergence on natural period

The magnitude of the added hydrodynamic mass is a function of the
cross-sectional geometry of the tower and the depth of submergence.
Gradual changes in the tower geometry produce gradual changes in effec-
tive mass and stiffness, whereas abrupt changes in the tower geometry pro-
duce abrupt changes in mass and stiffness. The effect of taper on the
generalized stiffness is quite distinct. The periods will be distinctly differ-
ent (as much as 50 percent different) between a tower that has a uniform
cross section and one that has a tapered cross section, even when the mass
is the same (EM 1110-2-2401).

Effects of Bridge Structures

Another feature of intake structures that has not been included in the
previous discussions is the existence of the bridge structure that is com-
monly placed at the top of intake towers to permit service access. Such a
bridge structure is shown in Figure 27. In an earthquake, the existence of
the bridge structure can change the effective mass, and in some cases can
add a restraint that must be included as a boundary condition.
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Figure 27. Bridge structure on an intake tower

Unless the bridge is anchored to the tower by pinned or fixed connec-
tions, large relative displacements between the bridge and tower can
occur. These displacements, unless accounted for in the design, can lead
to hammering or to a loss of the bearing support at the bridge seat. The
preferred solution (not always done) is to tie the bridge and tower
together, forcing the two elements to perform as a single system. The po-
tential for damage due to hammering or to loss of support is then elimi-
nated. The.type of bearing supports at the bridge seats will determine
whether the bridge can be handled simply as an added mass or whether a
separate boundary condition will be necessary.

In many intake structures, the bridge beam bearings are pinned in one
direction, but in many others they are pinned in two directions. Further,
the bridge beams might also be pinned at their far ends at the supporting
pier. The flexibility of the tall piers is enough to dissipate any thermal ef-
fects on the doubly pinned beams. With restraints such as these, lateral
forces will be created at the top of the tower due to the bridge.

For earthquake motions transverse to the longitudinal axis of the
bridge, the force on the pinned bearings at the tower is the inertia force of
the half of the bridge supported by the tower. The additional inertial force
may be included in the Rayleigh solution by converting the vertical beam
reaction at the tower to an equivalent mass distributed over the height of
the bridge. The step in mass thus created adds yet one more discontinuity
in the Aistribution of mass. The integration for the generalized mass m* is
then made as usual; the extra discontinuity simply adds another term to
the integration.
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For motions transverse to the axis of the bridge, the addition of the
bridge mass has no effect on the displacement function y of the tower;
stiffness remains unchangca. Insofar as displacements are concerned,
only the magnitudes of the displacements are changed by attaching the sep-
arate bridge mass.

For earthquake motions parallel with the longitudinal axis of the
bridge, the force on the pinned bearings at the tower depends on the type
of bearings used at the pier at the far end of the beams. If the far bearings
are rollers, the force created at the tower would be the inertial force of the
entire mass of the bridge, not just the reaction at one end. The recalcula-
tion of m* would proceed as before but with the larger added mass. If the
far bearings are pinned, however, the force at the tower would be the iner-
tial force of the entire bridge plus the force due to the spring constant k,
of the adjacent pier as it is deformed laterally by the motions of the tower.
The existence of such a shear at the top of the tower can be handled
readily in the Rayleigh solution by the boundary condition ¥ = kyy at
z = 1; this boundary condition would be used instead of ¥’ = 0.

Base Shear and Overturning Moment

There are two static loads that occur on a cantilever as a result of earth-
quake motions. One is the base shear, and the other is the overturning
moment. These loads are
shown on the distributed-
mass structure of Figure 28.
These two loads are com-
puted by simple statics, .tr'm“.dl
and the procedure is pre-
sented in this section.

In the Rayleigh solu-
tion for a distributed
mass, the acceleration of
the mass m* at the refer-
ence level r is found by

11

N N

multiplying the spectral N TUANG MOMENT
acceleration S, times the

normalization ratio
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shape function, the accel- Y ~a———— SANESEAR
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mass at all other points ————

along the height of the o

tower is found by multi-

plying the acceleration at

the reference level r by Figure 28. Base shear and overturning

the shape function. The moment
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result then becomes the acceleration function (Table S). Such a calcula-
tion for the step-tapered tower of the preceding example is demonstrated

in the following procedure.
Table §
Acceleration Function Coefficients
Normaltzstion Ratio 1.670 | Normaiization Ratio -1.022 | Normaiizstion Ratio 0.834
Sepe Rincaon (Tabie 4) | Shape Ainction (Table ¢ | Shape Hnction (Teble 4)
8 = 2.150458 a=4.83578 a=7.05376¢
Flrst slop, 0<x < 1/3
A, = +0.45222 A, = +0.24498 A, = +0.12243
B, = -0.66004 B, = -0.28671 8, =-0.12373
C, = -0.45222 C, = -0.24496 C, = -0.12243
D, = +0.66004 D, = +0.25671 D, = +0.12373
Second step, 1/3< xS 2/3
Ag = +0.48280 Ay = +0.27565 A, = +0.14355
B, = -0.87071 B, = -0.30775 B, = -0.14399
C, = -0.75100 Cp = -0.20576 Cy = 4012518
D, = +0.95724 D, = +0.20104 D, = -0.12530
Third step, 2/3<x< 1
Ag = +0.44122 Ay = +0.32240 Aq = +0.17568
By = -1.04107 B, = -0.38016 By = -0.17326
Cy = -1.24003 Cy = +1.34494 Cy = -2.98413
D, = +1.42268 D, = -1.35081 Dy = +2 3428

With these coefficients, the accelerations are given by the following
sets of three discontinuous equations, now termed the acceleration

functions.

First acceleration function

0525 1/3: w = 045222 sin (2.150452) — 0.66994 cos (2.150452)
- 0.45222 sinh (2.150452) + 0.66994 cosh (2.150452)
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‘ “; - Q75100 sleh (3199450 + 095724 sash (2.150430)
23225 ¢ve 04412 sia (2.150450) ~ 1.04157 cos (2.190452)
= 124008 siah (2.15045) + 1.42268 cosh (2.150452)

Second acceleration function

0L 1/% yw= 0.24498 sin (4.83575) ~ 0.25671 cos (4.835752)
= 0.24498 sish (4.535752) + 0.25671 cosh (4.833752)

/3525 2/% v = 0273565 sla (4.835750) - 0.30775 ces (4.835750
= 0.29576 siah (4.835752) + 0.29104 cosh (4.83575%2)

2735251 y= 032249 sin (4835750 - 0.38916 cos (4.835752)
+ 1.34494 sinh (4.535752) - 1.35061 cosh (4.835752)

Third acceleration function

0SS 1/3: y = 0.12243 sin (7.853762) — 0.12373 cos (7.853762)
- 0.12243 sinh (7.853762) + 0.12373 cosh (7.853762)

17328 22/3% y = 0.14355sia (7.853762) ~ 0.14399 cos (7.853762)
+ 0.12516 sinh (7.853762) - 0.12530 cosh (7.85376¢)

/3$:< 1 v = 0.17566 sin (7.853762) ~ 0.17326 cos (7.853762)
- 2.98414 sinh (7.853762) + 2.93428 cosh (7.85376z)

Figure 29 is a graph of the acceleration functions along with their
SRSS combined accelerations. The CQC method of combining shape func-
tions degenerates to the SRSS method in all of the shape functions encoun-
tered so far. The ratio T/T; is so small that there is never any
cross-interaction.
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Figure 29. Acceleration functions
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The acceleration is now computed each 10 ft along the height of the
tower for each of the three acceleration functions. The calculations are
made from the foregoing equations, again using the mathematics software.
The results of these calculations are shown in the following tabulation.

Elov. Aocoslerstion in g’s

From [First  [Second |Thid  [SRSS  iner.  [iner.  |Cumulstive

Bess [Accel. [Acosl.  [Accel.  [Combined {Mess |Force |Moment

ft_ [Punction |Function [Function |AcosL  [siugs |kips |kip-n

175 [+1.0036 [-0.6426 [+0.2809 [1.935 19,840 | 1,298’ 7,000

165 (416833 |-04572 [+0.1208 [1.720  [19,840 | 1,000 14,000]

155 [+1.5034 |o02757 loo00ee [1528  [i0840 | 978 [ 36,000

145 [+1.3847 |01088 [-01210 [1364  [ies40 | o7 #0,000|

135 |+12081 [v00814 o037  [1225  [ieee0 | 783 | 111,000

125 |+1.0850 [+0.1824 [-02174 [1.102 19640 | 704 | 160,000

115 J+«09268 [+02823 ([o.1075 [oose  [25340 | 807 | 217,000

105 [+0.730 [+03811 [-01351 os7a  [25340 | 716 | 282,000
o5 l.008ss {03016 [00521 fo774 25340 | 632 | 354,000]
85 |+05482 [e04020 [s00972 [oe7e 25340 | ss4 [ 432,000
75 |s04342  [.03083 Js0.1167 [o0593  [25340 | 484 [ 516,000
65 [+03342 [.03451 Js01715  fos10  [25340 | 416 | 604,000
85  [+0.2488 |+03030 [+0.1923 [o43s 32610 | 457 | 697,000
45 [+0.4703  [+02328 [+0.182¢ [0.341 32610 | ass | 794,000]
35 [+0.1061  [+0.1505 [+0.1468 |0.241 32610 | 253 | 895,000
25 l.00857 w0091 |+00047 fo14s 22610 | 150 | eee.000
15 [+0.0208 [+00363 [.0.0418 Joose  [s2610 | €2 | 1104000
5 [+0.0024 [+00044 [+00055 Jooor  [32.810 7 | 1,200,000
0 0 0 0 0 0 o | 1.246.000

% = Base Shear = 10,565 kips
119389 x [———————3’"2'?:"'“"] X 19,840 shigs = 1,236,170ibs = 1,238 kips

The tabulated calculations give the three accelerations that occur at the
middle of each 10-ft increment. Each of these accelerations is the maxi-
mum spectral acceleration for its particular shape function. The three
maximum accelerations at each increment are then combined into a resul-
tant acceleration using SRSS. The force at the middle of each 10-ft incre-
ment is the mass of the 10-ft segment times the combined acceleration at
that level.
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forces and is included as the last column in the tabulation. Figure 30
shows a sketch of the resulis.
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Figure 30. Forces and moments on the step-tapered tower

The remaining calculation to be made is that for the displacement of
the tower after it has sustained some cracking from the maximum design
carthquake (MDE). The generalized mass m* and the normalization fac-
tor L,, are unchanged in this event, but since EI is assumed to be reduced
by half, the stiffness k*® is reduced by 1/42. With these revisions, the
Rayleigh constants and the natural frequencies become those listed in the

following tabulation.

h Constants for MDE Displacements
First Shape function Second Shape Function Third Shape Function
m* = $0,560 slugs m* = 77,800 siugs m* = 79,700 siugs
k* = 28.8 x 10° /Rt k* = 602 x 10° Rt Kk* = 4,325 % 10° I/
Ly = 151,218 slugs L, = -79,480 slugs L, = 50,540 slugs
Lym* = 1.670 Ly/m* = -1.022 L,/m* = 0.834
o« 18.81 rad/sec o = 88.0 rad/sec ® = 233 rad/sec
T = 0.374 sec T = 0.071 sec T = 0.027 sec
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The revised spectral accelerations are found from Figure 17 for the

periods just caiculated.
First Shape Funotion, g Second Shepe Function, g | Third Shepe Function, g
SA - 1.1” SA - 0.770 s‘ - 0.572

With these revised values of spectral acceleration, the entire procedure
introduced earlier is repeated to find the revised equations for the three ac-
celeration functions. The new accelerations are then recomputed from the
revised acceleration functions at 10-ft intervals along the tower. The dis-
placements corresponding to these new accelerations are computed simply
by dividing the accelerations by ®2. The results of such calculations are
given in the following tabulation.

Displecoments
m Dispiscements Under MDE, ft Under OBE, ft
Sase First Second Third SRSS Uncracked
ft Function [Function |{Function Combined Section
178 +0.2055 -0.0029 +0.0002 0.2055 0.1455
165 +0.1884 -0.0020 +0.0001 0.1884 0.1334
185 +0.1713 -0.0012 -0.0000 0.1713 0.1213
145 +0.1544 -0.0005 -0.0001 0.1544 0.1097
135 +0.1377 +0.0002 -0.0001 0.1377 0.0975
125 +0.1214 +0.0008 -0.0001 0.1214 0.0858
115 +0.1058 +0.0013 -0.0001 0.1056 0.0747
108 +0.0904 +0.0018 -0.0001 0.0904 0.0640
95 +0.0758 +0.0018 -0.0000 0.0758 0.0537
8s +0.0821 +0.0019 +0.0000 0.0621 0.0440
75 +0.0495 +0.0018 +0.0001 0.0495 0.0350
es +0.0381 +0.0016 +0.0001 0.0381 0.0270
85 +0.0281 +0.0014 +0.0001 0.0281 0.0200
45 +0.0194 +0.0010 +0.0001 0.0194 0.0137
36 +0.0121 +0.0007 +0.0001 0.0121 0.0086
25 +0.0064 +0.0004 +0.0001 0.0084 0.0044
15 +0.0024 +0.0002 +0.0000 0.0024 0.0017
+0.0003 +0.0000 +0.0000 0.0003 0.0002
0.0000 0.0000 0.0000 0.0000 0.0000
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Note that in the tabulation, the three revised acceleration functions
have been divided by @* and have thus become three displacement func-
tions. The three displacements at each elevation are combined using
SRSS as shown.

The displacements for this particular tower under the MDE are com-
pletely dominated by the first displacement function. For the sake of com-
parison, the displacements under the OBE were calculated separately and
are listed in the last column of the tabulation. The displacements under
the OBE were similarly found to be completely dominated by the first
displacement function.
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4 Multistory Lumped-Mass
Systems

Multiple Lumped-Mass Systems

The Rayleigh solution presented in the previous sections applies to sys-
tems having a distributed mass. The mass in those systems may be uni-
formly distributed as shown in Figure 31a; it may vary in steps as shown
in Figure 31b; or it may vary continuously as shown in Figure 31c. While
the computation of the generalized mass and the generalized stiffness may
be quite complex, the use of mathematics software to perform the integra-
tions makes such solutions readily possible in modern practice.

However, not all systems are distributed-mass systems. Rigid frame
buildings, for cxample, have the building masses lumped at each floor,
with comparatively slender columns and negligible masses between the
floors. Such a structure is shown schematically in Figure 32. When the

T ﬂ

W, 9 D

o) UNIFORM DISTRIBUTION  b) STEPPED DISTRIBUTION ©) VARYING DISTRIBUTION

Figure 31. Distributed-mass systems
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Figure 32. Lumped-mass system

building is deformed laterally, as in an earthquake, all of the restoring
force is provided by flexure in the columns.

The multistory lumped-mass system shown in Figure 32 is not a single-
degree-of-freedom sysiem. Later discussions will show that this three-
mass system will have three degrees of freedom, three natural frequencies,
and three deformation shapes. It is classed as a multiple-degree-of-freedom
(MDOP) system.

As previously stated, however, the distributed-mass systems treated in
the Rayleigh solution were also MDOF systems, but it was possible to
examine their dynamic responses by considering only one degree of free-
dom (one shape function) at a time. Therefore, the multiple lumped-mass
systems may also be examined by considering only one degree of freedom
(one mode shape) at a time. The shape of the deformation curve in a
lumped-mass system is called the mode shape and is analogous to the
shape function of the Rayleigh solution.

In most existing building systems, the floor beams are much stiffer in
flexure than the columns. The structure will therefore deform essentially
as if the columns were fixed at each floor and can be analyzed as the
close-coupled system shown in Figure 32 with a deformed shape as shown
in Figure 33. The structural idealization is designated as close-coupled be-
cause only the lateral displacements at each floor level are allowed to in-
fluence the distribution of inertial forces at the various floor levels. The
current seismic desiga practice, however, is to provide columns that are
stronger than the beams. The stronger column system prevents early de-
velopment of plastic hinging in the columns. Plastic hinging in columns
can lead to collapse of the building. When analyzing strong column/weak
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Figure 33. Lateral deformations of a lumped-mass system

beam systems for earthquake ground motions, it is desirable to use a far-
coupled analysis procedure. A far-coupled structural idealization is one
that includes the effects of beam/column joint rotations on the distribution
of inerial forces at the various floor levels. The close-coupled system,
however, is used in the following example to analyze lumped-mass build-
ing systems for earthquake ground motions.

There are two cases of deformation that occur in the columns shown in
Figure 33, that of a beam fixed at both ends and that of a beam fixed at
only one end. The two cases are shown in Figure 34 along with the formu-
las for calculating the deflections produced by a transverse load P applied
at the ends. The beams depicted in Figure 34 may look more familiar if
they are turned 90 deg counterclockwise.

For the beam loaded at one end only, the spring constant k is computed
as the force per unit deflection,

3EI in (60)
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Figure 34. Force-deflection relations in beams

Similarly for the beam fixed at both ends, the spring constant k is com-

puted as
k= P 12 Ib/in. 61)
A 3

The spring constant k is commonly called the stiffness of a member in
flexure, whether a beam or a column. It is the restoring force per unit de-
flection that will be exerted by a beam or a column having a flexural mo-
ment of inertia I.

Modal Analysis of a Lumped-Mass System

Figure 35 shows a frame of a typical MDOF lumped-mass building.
The stiffness k shown between two lumped masses is the sum of the
stiffnesses of all columns that undergo the same lateral displacement. At
each level i, the mass is denoted m;, the displacement of the mass is de-
noted y;, and the forcing function on the mass is denoted F(t).

Forces are summed on the undamped free body in Figure 35 as follows:
“my; =k g O =N ) H R O =)+ P =0 (62)
When the foscing function does not exist, the resulting mode shape at

any level i will be that of free vibration of an undamped system supported
laterally by the masses above and below it. The equation is:
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Figure 35. Forces acting on a lumped mass
my, + @)y, =0 (63)
where 2k, = kl__“ + k“H
The solution to Equation 33 is, as before:
Y; = a; sin (0 — @) (64)

where a, is the maximum amplitude of the displacement y,. For this value
of y;:

¥ = —a,0” sin (¢ - @) = -0y, (65)

These values for y; and §; are substituted into Equation 53 to find, with
F,(t) = 0:
i

mola ~k_,, @ -a_)+k, . @, ~a)=0 (66)
In a more easily remembered form, the equation may be written:
kbclowabelow + (mi mz = z.kl) q, + kaboveaabove =0 (67)
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"”M!ﬂhﬂh«&dh"&&fmm though it might
also be called the “threc-amplitude equation.” Combined with appropriate
software for solving simultancous equations, its use permits a very simple
and direct solution for the natural frequencies and mode shapes of lumped-
mass systems. The following example illustrates its use.

Example Solution for a Three-Story Bullding

Given: Three-story, lumped-mass system as shown below.

Find: 1) Natural periods of oscillation, and
2) Mode shapes corresponding to each period

WT=345k

=160 IN' | 1=300IN' | 12300IN' | 1160 iN* |12

WT=a35k '

? b
1220 | 1=400N' | 1-400iN |1=220N* |12

WT=490k '
1=505IN' | 129501 | 1-950IN* | 1505 l1e

‘_2‘- II: 24 N 24 -
Solution:

Masses and stiffnesses are computed for each level.

m; = 490,000/32.2x12 = 1,268 1b/in/sec/sec
m2 = 435,000/32.2x12 = 1,126 1b/in/sec/sec
m3 = 345,000/32.2x12 = 893 Ib/in/sec/sec

kyy = 3V = 3 x 30 x 105 (505 + 950 + 950 + 505/(16 x 12)° = 37,003 Ibvin
tu-lzsm?-ux 30 x 10° (220 + 400 + 400 + 220/(12 x 12)° = 149,498 IbVin

kyy = 126713 = 12 x 30 x 10° (160 + 300 + 300 + 160/(12 x 12)° = 110918 Ivin
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The computed values are shown on a lumped-mass sketch.

I K« 111,000 LBAN

K= 111,900 LOAN

LK o 98800 LA

K = 37000 LA

The three-force equations are written for each mass.

MassNo.1: 0  +(1,26802 - 186,000)a, + 149,000a, = 0
Mass No. 2: 149,000a, + (1,12602 - 260,000)a, + 111,000a, = 0
Mass No. 3: 111,000a, + ( 893w?-111,0000a,+ 0 =0

The result at this point is three equations in four unknowns, with the
variable o appearing as a coefficient. As in the distributed-mass solu-
tion, the lumped-mass solution is an eigenfunction, having one eigenvalue
of o? for each equation. The amplitude a4 at the top level of the building
is now set equal to unity, reducing the set of equations to three equations
in three unknowns. All of the other amplitudes will then be found as mul-
tiples of amplitude a3, termed normalized amplitudes.

The three simultaneous equations are solved using conventional mathe-
matics software. No matter how the set of equations is solved, the solu-
tion for ¢ will always be an n® degree polynomial in ®®. Thus, there will
always be n solutions for the set of n equations. This set of equations will
therefore have three solutions, one for each natural frequency ®. The
starting value of ® (required by the software) is varied manually until all
three solutions are found. (See Appendix A for an alternate solution proce-
dure for ® using inatrix methods.)

o, = 3.150 rad/sec ®, = 11.602 rad/sec #y = 18.903 rad/sec
T = 1.900 9ec T = 0542300 T = 0.33290c
&, = +0.791 a, = -0.805 a = +1.048

8 = +0.920 ay = -0.083 ap=-1.878

8y = +1.000 8y = +1.000 8y = +1.00¢
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A significant feature revealed by this solution is that the lateral deflec-
tion of the first-floor mass is quite high. Aimost 80 percent of the total de-
flection in the first mode shape occurs in the first floor. One cause of this
high deflection is that the first-floor columns are longer than the other col-
umns, a common design feature. Further, the first-floor columns are hinged
at their bases rather than being fixed, making them much more flexible.

As a point of interest, if the columas at the first level could be fixed at
their bases, the building would be much more rigid, and the first-floor de-
flections would be reduced. The following calculations show why this is
”'

For fixed-column bases at ground level, the stiffness factor at the first
level becomes:

koy = 12EI/L? = 148,000 Ib/in.
This value is used in the three-force equation for mass No.1,
Mass No. 1: 0 +(1,2680? - 297,000)a, + 149,000a; = 0

With this change in the set of three-force equations, the computer solution

now yields:
o = 8.302 rad/sec »; = 13.358 rad/sec o, = 19.568 rad/sec
T = 1.185 900 T = 0.470sec T = 0.321 s0c
8, = 40441 8 =-0.918 8, = +1.644
8 = 40.774 8y = -0.438 8y = -2.080
8y = 4+1.000 8= +1.000 8y = +1.000
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The following sketches show the mode shapes for this more rigid structure.

P41

When this second (more rigid) response is compared with the first
(more flexible) response, it can be seen that the deflections of the first
mass are reduced considerably in the first two modes, with but little
change in the third mode deflection. In the first mode, the deflection is re-
duced to about half of what it was. Assuming that all the upper floors de-
flect the same amount in both solutions, the total lateral deflection of the
building has been reduced approximately 35 percent. The most striking
difference, however, is in the two periods. The first-mode period of the
more flexible building is almost 67 percent longer than the period of the
more rigid building. This period elongation brings the response of the
more flexible structure well below the peak values of spectral accelera-
tions given by the ATC 3-06 curves shown in Figure 17. Since a further
clongation of the period would reduce the spectral accelerations even
more, such an alternative seems worth pursuing.

The results of the foregoing comparisons suggest that the design might
be improved by base isolation. For that case, the ground floor would be
raised off the foundations at each column by isolators, each having a stiff-
ness of 5,000 Ib/in. Such a base isolation system is shown in the follow-
ing sketch. For best utilization of the base isolation, the ground-floor
columns are fixed (rather than hinged) to the ground-floor girders.

WY » 3408 -,
VT =438% l'
WT = 400K L3
wreom == .

ADD BASE ISOLATORS & = $,000 LIMN BACH
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: Mkﬁmsmh Therefore, the
mﬂb&mk soc. The stiffncss of each of the four
Mkmasmmhtw:dffmunﬂniwhmﬂenlof
20,000 Io/in. The three-force equations become:

MassNo.0: 0  +(1,400w” - 168,000)a, + 148,000a, = 0
Mass No. 1: 148,0008, + (1,267w? - 297,000)a, + 149,008, = 0
Mass No. 2: 149,000s, + (1,1250? - 260,000)a, + 111,000a, = 0
Mass No. 3: 111,000a, + ( 8920%-111,000)a;+ 0 =0

The solutions of these four equations yield the following results for the
three-story lumped-mass building with base isolators.

®, = 1.969 rad/sec oy = 8.837 rad/sec @y = 15.038 rad/sec
T =« S.194 000 T = 0711 s0c T = 0.4188ec
g = +0.8538 8y = -0.797 8y = +0.774

8, = +0.917 8, = -0.318 a,=-0.774

8y = +0.960 8 = +0.372 ay =-0.819

8y = +1.000 8y = +1.000 ay = +1.000

The following sketches show the shape functions with base isolators,
with ground-floor columns fixed at their bases.

1,000 1.000 1.000
0.0% ; esn2 0810
oy ose o7

FIRST MODE SEOOND MODE THIRD MOOE
G~ 1907 adions @« $.537 radiene = 15008 radiec

The base isolators take about 80 percent of the total lateral displace-
ment, thereby sharply decreasing the relative displacements in the struc-
ture shown in the previous sketch. Further, the isolators significantly
increase the period T, bringing the spectral response from the ATC 3-06
curves well down from the peak value.
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Thus, it can be concluded that a principal advantage of base isolators is
that they lengthen the natural period, thereby reducing the spectral acceler-

ations and consequent inertial forces. One of the disadvantages is that
large overall displacements must be accommodated in the building design.

Modal Participation Factor for a Lumped-Mass

System
The n-story building shown in Figure 36 is subject to earthquake excita-
tion. The equations of motion for the building are obtained by summing

forces on the free body of each lumped mass.

MsSm, Ja_.
K-t Yo
MASS m ¢ ==
Kp2nt Y2
MASS m l | J LTI )
A S AT "
| 1 1 3
MASS m o k1 Sy
Ky2 FREE BODY OF
Ys TYPICAL
MASS m 4 ATLEVEL|
K01
FRAME DEFORMATIONS

Figure 36. Typical lumped-mass building

The equations of motion are:

"‘1531 + ko O ~4) = kyy 0y ) =0
myyy + Ky (0 =) = ky3 03 -y) = 0
(68)

mn-l.):n-l + kn—2.n-l ‘yn—l .yn—Z) - kn-l.n Op Pp-1) =0

mn.’;u + kn-l.n Op Fn- =0
As was done with SDOF systems, Equation 6, the coordinate displace-
ment y; is transformed into the displacement relative to the ground by the
transformation:
Chapter 4 Multistory Lumped-Mass Systems
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where u, is the displacement of the mass m, relative to the ground.
Sabstitution into the equations of motion yields:

¥y + Ryt ~ big =) = g0
gy + b1z ey =) - by vy -wg) = —mpiyn
ST (70)

uuuuuuuuu

L PRL R L T YRR a1 " "'n-liigm
My ¥ k), Gy~ Wy ) =m0
The system of equations is uncoupled by transforming the displace-

ments u; into a set of time functions z(t) times the undamped modes, one
function z; for each mode:

“l -allzl +¢lzzz+al323+ .......
uz-az'zl+%+%+ .......

)

where the second subscript for the amplitude a denotes the mode.
These equations are substituted back into the equations of motion.

With some rather complex matrix manipulations (Paz 1991), the final solu-
tion for the time functions z; for each mode are:

Z, + oz = T ()

G + ain = T
.......... (72)
g + @z = T )
The term I'; for each mode i is given by:
L (73)
r=- -‘?;
n n
where L, -1'2‘,I mp, and M, = 3, me?
- Jj=
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The symbol @,; denotes the unforced amplitude of the j** mass oscillating
inthe i modé

The right-hand sides of Equation 72 are the same at all levels of the
building for any given mode. The factor I'; may therefore be viewed as a
multiplier on the ground motions Ug(t). Consequently. when ground mo-
tions are substituted into the transformation equations, I; also becomes
the multiplier on the relative amplitudes a;, a,.... a,. The factor I'; is the
multiplier that tranforms the relative values of modal displnccmcnts into
absolute values.

Physically, the multiplier T; indicates the increase or decrease of the
ground motion that occurs when the various modes of the time functions
z; are summed, each of which may be positive or negative at any given in-
stant. T is called the modal participation factor, and is directly analo-
gous to the integral forms developed in the Rayleigh method, right-hand
side of Equation 52.

The absolute values of displacement, velocity, and acceleration for

each mass can now be expressed in terms of the spectral values of Sp, Sy,
and S, for each mode shape i.

Ui max = T 9;iSp;

icﬁ max = ;95 Sy; 74)
Ui max = T 9jiSaj

The values of u;, 4;, and 4; for the various modes can be combined

either by SRSS or‘:y cQcC td‘ obtain the final combined values. If SRSS
is used, the combined values are given by:

w, = \JZ (r‘.%.,.sp.)z

Jjmax J
j=1

o (75)
= ‘\[ (l‘,. P Svj)2

n
Wimax = le (ri Bji SAJ')2

=

The force f; acting at any level j is simply the acceleration at that level
times the mass at that level:

fj = Mfhimaz (76)
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Sasces f) over the total height of the strecture:

an

[ ]
“W=X4
J=1

f The overturning moment on a lumped-mass system can be found simi-
larly. The force f; acting at any level has already been found and defined
by Equation 59. {'heovenmin;momentuoabommebauofthemuc-
ture caused by the forces f; is the sum of all these forces f; times their
height y; above the base:

(78)

]
My= 3. 1y,
i=1

° Equations 77 and 78 yield the design values for base shear and over-
turning moment for a lumped-mass system subjected to earthquake load-
ing. From this point onward, the remainder of the analysis is one of
ordinary statics. The force at any level y in the structure is given by Equa-
tion 76. The shear at any level y is then simply the static sum of forces
above that level. The moment at any level y is the static sum of moments
due to the forces above that level.
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Appendix A
Matrix Solution for a Three-Mass
MDOF System

The general equation of motion for a lumped-mass system is given by
Equation 66 in the main text. When there is no forcing function, the equa-
tion becomes:

ki 1,i%-1t (’"g“’p - fjt,) a +k; 104 = 0 (A-1)

In alternate form,
U SINL S ("i—l.i + "i.u-l) a+k ;1= —o’mg, (A-2)

When applied to a lumped-mass structure such as that shown in Figure A-1,
the set of equations becomes:

0~ (kyy + kya; + k8, = -o’m,a,

ki) — (kyy + by ay + kygay = —Pmaay
kygy — Uy + k) a3 + by, = ~@Pmyay

e o © o o ¢ o o 0o o o o (A-3)
LR e 0= -wzmnan

In matrix notation, the set of equations is given as:

K- o’Mla=0 (A-4)

where K is the stiffness matrix, M is the mass matrix, and a is the ampli-
tude matrix.

The nontrivial solution for Equation A-4 (i.c., for a # 0) requires that
the determinant of the coefficient matrix must be zero:

Appendix A Mairix Solution for a Three-Mass MDOF System
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Figure A-1. General lumped-mass building

K-o’M=0 (A-5)

Equation A-S defines an eigenproblem. The solution of the determinant
yields a polynomial equation of the n' degree in ®2. The n roots of @?
are called the eigenvalues of the problem. A different set of values for the
amplitudes a,, a,,...a; will occur for each eigenvalue.

As an example, the solution will be applied to the three-mass structure
solved earlier in Chapter 4 of the main text and shown again in Figure A-2.

W48k == m‘.mm Zk= 111,000 LBAN

oo’ | 1-200w" | 122000 Meom]‘? &= 111,000 LBAN
WT=438k m,= 1,128 SLUGS Z K = 200,000 LBAN

tw220ml | 1ca0om’ | 1=cooN' 1220 1T K = 149,000 LBAN
WT400K m - 1,268 SLUGS I k= 186,000 LBAN

.
ta808iN' | 1o050m' | 1050w’ | 1-sos Jie K = 37,000 LBAN
2 !4 2« II 2¢

Figure A-2. Three-mass buliding
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The stiffness matrix K is given by
-186,000 +149,000 + O (A-6)
K= | 149,000 -260,000 +111,000
0 +111,000 -111,000
The mass matrix M is given by
-1,268 0 0 (A-7
M= 0 -1,126 O
0 0 -893
The coefficient matrix is found from these matrices:
196,000+ 126807  +149,000 0 (A-8)
K-l 149,000 -260,000+1,1260>  +111,000
0 +11,000 111,000+ 8930°

The determinant is expanded by minors to find:
(@3 - 502(w?) 2 + 53,090(0?) — 481,130=0
The roots of the cubic equation are found by trial and error:
©, = 13.16 rad/sec ; ®, = $11.61 rad/sec ; 0, = £18.91 rad/sec

For the first mode, ® = 3.16 rad/sec and the matrix becomes:

-173,350 +149,000 0 9 (A-9)

[K - o?Mla = | 149,000 -248,770 +111,000 | |2 [=0
0 +111,000 ~102,090 | (g,

The set of equations is solved simultaneously to find:

a = +0.791 a = +0.920 ay = +1.000

The solution is repeated for the second and third eigenvalues to find
the second and third mode shapes. The solutions are summarized below:

o = 3.16 rad/sec o, = 11.61 rad/sec ©, = 18.91 rad/sec

a = +0.791 as= -0.805 a = +1.045
ay = +0.920 a,= -0.083 a= -1.874
a, = +1.000 n3=-+l.000 a, = +1.000

These solutions are, of course, identical with those obtained for this
problem in the example given in Chapter 4 of the main text.
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Appendix B
Notation

El(x)
b

fy=ci
J; = mii
fi=ku
1
k
X

KE

Agpendix 8 Notasion

Peak ground acceleration

Constants in Chapter 2 (see Table 1 for values)
Constants of integration in Chapter 3 (Equation 56)
Maximum pseudoacceleration w?D’ of the SDOF mass
Damping constant

Peak ground displacement

Maximum relative displacement between ground and
mass of an SDOF system having a natural frequency f at
whatever point in time it occurs

Modulus of elasticity

Flexural stiffness

Frequency of oscillation

Damping force

Inertial force

Restoring force

Moment of inertia

Stiffness; also, spring constant

Kinetic energy

B1




Ly/m*

L

MDE
OBE
p(Y)
p(t)

Py

Po
P(1)
PE
PGA
PGD

PGV

Dimensionless multiplier applied to ground acceleration
Mass

Mass per unit length

Moment on the cross section

Maximum design earthquake

Operational basis earthquake

Externally applied dynamic force

Harmonic force

Cross-function coefficient in which i and j are any two
shape functions

Maximum magnitude of the forcing function

Time-dependent force of magnitude - m - iy(r)

Stored potential energy

Peak ground acceleration

Peak ground displacement

Peak ground velocity

Reference level

Absolute acceleration response spectrum
Spectral pseudoacceleration
Spectral maximum displacement
Spectral maximum pseudovelocity
Time

Undamped period of vibration
Damped period of vibration

T undamped

Harmonic displacement
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Appendix 8 Notation

ust)

itt)

..'.'"Cb'cb‘<<

(1)

Earthquake ground motion

Maximum displacement

Initial displacement

?ilpheewtthatp,wouldprodueeifnpplieduasuﬁc
orce

Total displacement of mass relative to its at-rest position

Initial velocity

Total a?celemion

Peak ground velocity

Shear on the cross section

Maximum pseudovelocity @D’ of the SDOF mass
Constant equal to ¢/2mo

Fraction of critical damping

Modal participation factor for mode i

Rotation of the cross section about the neutral axis

Lagging phase angle between motion of ground and
motion of mass

Time function

Maximum displacement at reference level r
Displacement fanction

Shape function

Natwral circular frequency

Undamped angular frequency of vibration
Damped circular frequency




®p Damped angular frequency of vibration
& Forcing frequency
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