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Abstract

This report chronicles an integrated research program conducted at éa'rhegie Mellon’s Computer
Science Department during the contract period 1987 to 1990. This research produced the iWarp
System, a homogeneous multiprocessor that provides both high-speed computation and
communication; a high-performance, fiberoptic interface board and a crossbar switch for high-
speed, heterogeneous computing; a parallel operating system as well as software for analyzing
and debugging its performance; and an environment for building parallel, distributed, vision-
processing programs.
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Preface

This report chronicles an integrated research program during the contract period
1987 to 1990 in the Computer Science Department, Carnegie Mellon University.
The major goals of this research were to:

» Develop heterogeneous architectures, tools, and prototype applications
that combine diverse cooperating subsystems.

» Couple work on architectures with development of software tools and
operating system facilities, thereby providing a full range of resources
necessary to facilitate the actual use of parallel processing.

« Respond to the needs of computationally demanding Al problems.

Based on these broad goals our research produced the following results in four
separate projects:
Homogeneous multiprocessors
o The Integrated Warp System (iWarp), developed jointly with a
commercial contractor

» Programming support tools, such as a user interface, an optimizing
compiler, and a debugger

 Program transformation and synthesis tools that automatically generate
parallel programs for Warp-like systolic array computers
A high-speed, heterogeneous network architecture
* A high-performance, fiberoptic interface board and a crossbar switch
board for heterogeneous computing

+ Communication protocols, node operating system support, and an appli-
cation interface to facilitate high-speed computing over a heterogeneous
network

Parallel operating systems

A “pure” Mach kernel on which UNIX funcnonahty can be implemented
as one or more user-level processes

« Refined kernel support for tightly and loosely coupled multiprocessors

« Emulations of two non-UNIX environments for execution within the Mach
framework

« Software for monitoring, analyzing, and debugging the kernel’s
performance
A new-generation Al-architecture

* An environment for building parallel, distributed vision-processing
programs.
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Homogeneous
multiprocessors

1.1

1.2

Introduction

Over the last nine years Carnegie Mellon has been engaged in a research program
to build complete systems to meet the demanding needs of application areas like
image processing, signal processing, and scientific computing. This research
addressed a broad range of issues from hardware design and implementation ‘o
software tools that include programming environments, compilers, and
debuggers.

The primary goal of the research effort reported here was to develop the
“integrated Warp” (iWarp) machine. The iWarp system evolved from our
experience with the “Warp machine,” a systolic array multiprocessor we had
designed and prototyped under the proceeding ARPA contract.

This report is organized in the following manner: The next section provides a brief
description of the Warp machine and a detailed discussion of the iWarp System.
Following sections describe program development tools, program generators, and
application development.

Warp

The Warp machine is a linear array of 10 cells and has a peak performance of 100
MFLOPS (million floating point operations per second). The initial design and
prototyping of this machine has been funded by an earlier contract, and two
prototypes became operational in 1985. The original design is described in
[Annaratone et al. 86]. Each cell is implemented on a large (19 inch square) wire-
wrap board, using standard off-the-shelf components. The Warp machine is
connected to a custom multiprocessor (three 68000-based, single-board, off-the-
shelf computers), which provides a connection to a general purpose host (a SUN
workstation running UNIX) as well as a large staging memory [Annaratone et al.
87a).

The Warp system provides a good platform for a variety of applications. To make
this system available to other researchers, we redesigned (in collaboration with

General Electric, our industrial partner) the Warp machine so that the system can
be reproduced efficiently. The design changes are described in [Annaratone et al.
87d]. Each cell has been implemented on a printed circuit board, and the use of

VLSI technology allowed larger local memories and other enhancements (like an
improved controller that provides better support for compiler generated code, see
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below). The overall machine and its evaluation is described in [Annaratone et al.
87b], which appeared in a special issue on supercomputers. An in-depth
evaluation of the Warp machine was published {Annaratone et al. 87b], which
summarizes the contents of earlier papers, [Annaratone et al. 86] [Annaratone et al.
87a] [Annaratone et al. 87d], and also includes an evaluation for a large number of
kernels and complete applications.

Although the Warp architecture is very attractive, it has some disadvantages that
limit its use in important application scenarios. The most important limitations are
its physical size (each cell takes up a 19-inch square board) and its fixed
arrangement in a linear array. Both limitations make it difficult to scale the system
to hundreds or thousands of processors. Overcoming these limitations was part of
the motivation for developing, in collaboration with Intel Corporation, the
integrated Warp system (iWarp) [Borkar et al. 88].

1.3 The iWarp system

The iWarp processor integrates both a high-speed computation and
communication capability in a single component. The processor is a powerful
computation engine that employs instruction-level parallelism to allow
simultaneous operation of multiple functional units. The feature that makes iWarp
unique, however, is its interprocessor communication capability. An iWarp
processor can simultaneously communicate with a number of other iWarp
processors at high speeds. More importantly, the iWarp processor has a highly
flexible communication mechanism that can support different programming
models, including the tightly coupled computing found in systolic arrays and the
message passing style of computation found in many existing distributed memory
machines. These communication capabilities allow the effective use of iWarp for a
wide range of applications.

The first silicon of the iWarp component was fabricated in December 1989. It
consists of approximately 650,000 transistors and measures about 1.4 cm (551 mil)
on a side. The target frequency of the iWarp component is 20 MHz with data being
transferred between processors at twice that frequency. The first system operated
at 10 MHz. During 1990 and 1991, Intel revised the implementation to meet the
design goal of 20 MHz, and Carnegie Mellon has now three systems operating at

this speed.

1.3.1 The iWarp component

The iWarp component consists of three autonomous subsystems: the computation
agent, the communication agent, and the memory agent.

The computation agent, which executes programs, can deliver 20 (or 10) MFLOPS for
single (or double) precision calculations plus 20 MIPS for integer /logic operations.
The computation agent includes three units that can be scheduled to operate in
parallel in one instruction:
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« Floating-point adder: Nonpipelined, 10 and 5 MFLOPS for 32- and 64-bit
additions (IEEE 754 standard), respectively

« Floating-point multiplier: Nonpipelined, full divide, remainder, and
square root support; 19 and 5 MFLOPS for 32- and 64-bit multiplications
(IEEE 754 standard).

« Integer/logical unit: Arithmetic, logical and bit operations with 20 MIPS
peak performance on 8/16/32-bit integer/ordinal data.

The design of the computation agent was derived from detailed studies with an
optimizing compiler (we retargeted the optimizing Warp compiler to iWarp)
[Cohn et al. 89]. The extensive compiler modelling was a key and necessary activity
for achieving the attractive iWarp architecture.

o The communication agent, which implements the iWarp's communication
system, can sustain an aggregate intercell communication bandwidth of
320 MBytes/s by using four input and four output busses. The internal
data storage and interconnect system is comprised of a shared,
multiported, 128-word register file plus special register file locations for
local memory and communication agent access.

 The memory agent, which provides a high-bandwidth interface to the local
memory, can transfer streams of data into or out of the communication
agent at a rate of 160 MBytes/sec. The memory system provides:

- Off-chip local memory for data and instructions with

* separate address and data busses (24-bit word address bus, 64-bit
databus)

¢ 20 million memory accesses/s peak performance
* 160 MBytes/s peak memory bandwidth
* Read, write, and read/modify/write support

- On-chip program store
® 256-word cache RAM
¢ 2K-word ROM (built-in functions)
® 32- and 96-bit instructions

1.3.2 Communication

We have identified two communication models used for distributed memory
parallel systems: message passing and systolic. iWarp supports both models [Borkar
et al. 90]. The two models differ primarily in the granularity of communication and
computation. In message-passing mode, as in computer networks, the unit of
processing is a complete message. That is, a message is accumulated in the source
cell memory and transmitted as a unit to the destination cell. At the destination
cell, the message is not available to be operated upon until the full message is in
the local memory. In contrast, the systolic mode allows a unit of communication
and processing to be as fine- grained as a single word.
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1.4.1

In both message passing and systolic communication models, there is a need to
multiplex multiple communication paths onto a physical bus. Efficient support of
communication paths requires dedicated hardware resources which in turn
imposes a practical limitation of providing a small number c{ paths. This resource
limitation raises the issue of resource management [Gross 89]. For some classes of
programs, the communication resources can be managed at compile time [Kung
88a), while others require the runtime system to make the resource allocation
decisions. Thus, the runtime system must (and does) include a message-passing
system that implements a simple, safe (reliable) message protocol.

The key iWarp communication abstraction is the pathway: a pathway is a direct
connection from a call (called the source cell) to another cell (called the destination
cell). Each segment of the pathway connects the communication agent of a cell to
its own computation agent or that of another cell. Using the pathway abstraction,
we can establish a “direct” connection between two cells in an array even if the two
cells are not physically connected. That is, the program sees a direct connection,
but the cells are not neighbors in the iWarp torus (they do not share any wires). This
feature allows us to configure an iWarp torus in a variety of ways (e.g., as a tree or
binary hypercube) without changing the physical connections (wires). This
capability is used effectively by a number of application programs.

Program development tools

During the design (Phase I) and implementation (Phase II) of the iWarp system, we
used two 10-cell Warp systems as a platform for program development and tuning
of the iWarp (micro and macro) architecture. To support the use of the Warp
machine for a large number of users in our local environment, we developed the
Warp Programming Environment (WPE) [Bruegge 88a]. WPE has four main
components [Bruegge et al. 87a} [Bruegge et al. 87]:

« the user interface (by which means the user specifies programs to run on
the Warp machine and their operands)

* an optimizing high-level language compiler for the Warp cells (to
generate code)

« a symbolic debugger for the Warp cells (to assist in program
development)

« aloader/program executive (to control exécution)

User interface

WPE allows transparent access to the Warp machine from any workstation
connected to our local area network. The user runs programs in the “Warp shell”
— a CommonLisp shell with Warp-specific extensions such as “run program on
Warp machine<name>". The integration of the Warp machine into the shell of each
user is a novel idea and simplified program development significantly [Bruegge
88a).
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The Warp Programming Environment was adopted by General Electric, our
industrial partner, has been distributed to all other Warp sites [Bruegge 88), and
has become the de-facto system to use the Warp machines.

1.4.2 Optimizing compiler

The optimizing compiler translates a simple, Pascal-like language (named W2)
into code for a single Warp cell [Gross and Lam 86). The optimizing single-node
compiler allows each node to be programmed in a Pascal-like language, which
includes conditional branches, do-loops, while-loops, and subroutine call/
return[Gross et al. 87]. Communication between adjacent nodes is specified
explicitly by send and receive statements. The communication facilities directly
mirror the hardware implementation of the system. The physical topology of the
(linear) array determines the possible communication interactions between nodes.
A node can receive data via two distinct channels from the left or via one channel
from the right neighbor node. Since one link from the left node shares the input
queue with the link from the right node (as depicted in Figure 1) at any point in

From left To right neighbor
neighbor — >
————» X Queue ] -
Fr(i right g To left or right neighbor
or 2

neighbor Y Queue | i—:

Register|—>
File [ * ‘]

Literal (from instruction word)

=

XIORIION
L v

Crossbar

-
h——H Register |—» + _|

PISSS TSI FEN

Memory|—>

Integer unit I
(address generator)

Figure 1

time, a node can receive either two items from the left or one item from the left and
one from the right. Although the hardware requires that this restriction be satisfied
on a per-micro-instruction basis, dealing with this constraint at that level proved
to be difficult in the compiler. Therefore, the compiler imposed the more restrictive
constraint that each source language function be allowed to use the shared link

Carnegie Mellon University Parallel Computing 1987-90




Page 8 Homogeneous multiprocessors

either 3 a link in the left-to-right or as a link in the right-to-left direction. That is,
di~ ction changes are only supported at the granularity of source-level procedures.
The “send" statements have corresponding functionality; each node can send data
via two channels to the right and via another channel to the left. There are no
provisions for communication between nodes that are not adjacent, and the
number of channels is fixed by the number of physical links in the system.

Warp is programmed in Pascal-like language, but the architecture of the nodes
imposed a number of constraints on what language features could be supported:
There is no “case” or “switch” statement, since there is no path from the program
counter to the data memory. For procedure calls, the turn address is stored in a
stack local to the controller. There is no heap, the memory is word-addressable,
support for byte operands is limited, and there is no support for double-precision
floating point arithmetic. These restrictions make it impossible to efficiently
implement widely accepted languages such a C, Pascal, or Fortran. Although this
limits the overall usefulness of the system, there are fortunately many applications,
mostly from the domain of image processing, for which these restrictions impose
no problems [Annaratone et al. 87b].

The optimizations implemented in the W2 compiler include not only those typical
of general-purpose processors, but also those tailored to pipelined architectures,
specifically local optimization and global flow analysis.

* The local optimizations implemented include common subexpression
elimination, constant folding, height reduction, dead code removal, and
idempotent operation removal. Height reduction of the dag is especially
important for heavily pipelined machines. A compiler for a conventional
processor favors long tree-like dags so that they can be evaluated with a
small number of registers. However, on Warp, a balanced tree is much
better since it allows the parallel evaluation of multiple branches of the
tree.

» The global flow analyzer collects detailed intra-block information for all
variables of the program [Gross and Steenkiste 90]. For regular accessing
patterns, the analysis is powerful enough to distinguish between
individual array elements and different iterations of a loop. This global
data dependency information is incorporated into the dag as arcs between
nodes in different basic blocks. There are two types of arcs. If the global
analyzer can deduce a strict dependency, we say that node n uses the
values of node m (for example, iteration i of a loop always uses the result
of iteration i - 1 of the loop). If a strict dependency cannot be established,
the global flow analyzer inserts sequencing arcs that enforce a
conservative order of evaluation. This information makes it possible for
the code scheduler to overlap the execution of different basic blocks which
is important for heavily pipelined processors like the Warp cells.

To exploit the high degree of pipelining and parallelism in the machine, extensive
global optimization is performed during code generation. We use two scheduling
algorithms: a scheduling technique specialized for innermost loops, called software
pipelining, and a new unified scheduling technique that applies both within and
across basic blocks [Lam 87].
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Software pipelining was proposed originally for scheduling hardware pipelines. In
the W2 compiler, we have extended the scope of applicability of this technique and
have shown that this code generation technique is very successful for a large class
of VLIW (Very Long Instruction Word) processors [Lam 88].

1.4.3 Debugger

The optimizing W2 compiler freed the programmers of the Warp machine from
writing assembly language code (which in this case was writing microcode, since
the assembly language operations corresponded closely to the micro-instructions
of the machine). However, as a consequence, users required more assistance when
debugging their programs. Furthermore, a parallel machine like Warp (with 10
cells) presents another level of complexity to the user. Our research addressed this
probler- and we implemented a debugger for the Warp machine [Bruegge and
Gross 88a}. One challenge for every debugger (or programming environment with
a debugger) is to ease the transition from debugging to real program execution.
Nothing is more annoying than havi~2 a program that works with the debugger
and does not work without the debugger. Previous research groups have often
been able to ignore this problem since the primary objective was to get a working
program. However, a machine like Warp is used for real-time applications, and a
program that “works” with the debugger may be too slow to be considered
working. This issue was elevated in importance as a result of our collaboration with
the compu ~r vision group at Carnegie Mellon, and we devised a software
architecture that provides a smooth transition from debugged program to
embedded application [Bruegge and Gross 88].

Although the primary programming language of the Warp machine is imperative,
we investigated other styles as well and concluded that Warp and Warp-like
machines provide a good basis for applicative programming languages like SISAL
[Gross and Sussman 87]. We implemented a SISAL compiler (which maps SISAL into
W?2) as part of a thesis project [Sussman 91).

15 Program generators

With the advent of a high-level optimizing compiler, users program in a high-level
language instead of writing micro code or machine instructions. But programming
a multiprocessor like Warp is difficult even with a single-cell compiler. To simplify
this task several parallel program generators based on top of the single-node compiler
were introduced. A parallel program generator maps a computation specified for
a single thread of control and for a single address space onto the parallel
system.The parallel program generator produces a high-level language program
for each node, and this program is subsequently compiled with the single-node
compiler. The key point is that the program is written without explicit
communication between nodes. The parallel program generator manages all the
nodes of the parallel system, i.e., the distribution of data and computations
handled by the parallel program generator. Typically, the parallel program
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generator imposes restrictions on the type of programs or computations that can
be mapped onto the parallel system. For example, the user may be asked to
provide hints that help in identifying the parallelism, like if it is better to partition
a matrix by rows or by columns. Or only programs from a specific application
domain, e.g., low-level image processing with local neighborhood operators, may
be accepted. (An example of a neighborhood operator is a two-dimensional
convolution: Each y; ; result depends only on the kernel and fixed-size window of
the input image.) Such restrictions or hints ease the task of the program generator.
To determine which operations can be done in parallel, the program generator can
use simple dependence analysis (or none at all in the case of neighborhood
operators). There can Le a single mapping strategy to map computations and data
onto the parallel system, or the mapping is provided as a hint by the user.
Therefore, limited analysis of the program is sufficient to determine when it is
necessary to move data from one node to another.

A parallel program generator is an example of a parallelizing compiler, but we
prefer the term “program generator” to emphasize that these program generators
cannot deal with arbitrary (uniprocessor) programs but require some form of hints
or directives. Nevertheless, compared to writing individual programs for each
node, they simplify programming of parallel system dramatically. The parallel
program generators developed for the Warp project are directed towards specific
application domains: computer vision and image processing (Apply) [Wallace et
al. 89] [Hamey et al. 87], scientific computing (AL) [Tseng 89][Tseng 90], and
perfectly nested loops as found in many linear- algebra computations [Ribas 90].
By concentrating on specific application domains, the input languag 2 for a parallel
program generator can include features that are specific to the application domain,
such as the notion of image boundaries in Apply. Or the parallel program
generator can produce high-quality code for a limited application domain, as it is
done by the compiler for nested loops. Common to all parallel program generators
is the question of how to map (partition) a program. Our research has demonstrated
the importance of developing adequate models for the behavior of the partitioned
programs. Such models allow the parallel program generator to select the most
appropriate mapping.

Parallel program generators do not render the single-node compilers unnecessary,
in the contrary, a good single-node compiler is a necessary condition for the
development of a parallel program generator. A translator that maps an
application directly into the (micro) instructions of a parallel system duplicates a
lot of the backend of a single-node compiler. And including a system-specific
backend in a parallel program generator complicates retargeting the program
generator to a different parallel platform. However, it is important that the single-
node compiler produces high-quality code. Otherwise, it is difficult or impossible
for the parallel program generator to develop a realistic cost model (to guide
mapping decisions). So it is not surprising that the parallel program generators
were developed after the single-node compiler was implemented.They become
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1.6

operational long after the last system had been delivered by GE, and their
development coincided with the design of the next generation of systolic systems
(the integrated Warp system), as discussed earlier.

Application development

The prototype Warp machines at Carnegie Mellon have been used in a diverse
range of applications, including robot vehicle control, signal processing, and
medical image processing, and as a tool for vision research. A small number of
algorithm partitioning methods have allowed efficient use of the Warp machine in
all of these areas. Large applications that use Warp as part of a system are
efficiently supported by Warp's flexible host [Annaratone et al. 87c] [Annaratone
et al. 87]. By implementing a broad range of applications on the Warp machine, we
demonstrated the feasibility of programmable, high-performance systolic array
computers. The programmability of Warp has substantially extended the
machine's application domain. The cost of programmability is limited to an
increase in the physical size of the machine; it does not incur a loss in performance,
given appropriate architectural support. This is shown by Warp, as it can be
programmed to execute many well-known systolic algorithms as fast as special-
purpose arrays using similar technology.

The group of applications for the Warp machine include:

» General image processing: A large library of image processing
subroutines has been implemented. The Warp machine is being used for
vision research, as well as a tool in more applied domains. Medical image
processing, particularly the processing of nuclear magnetic resonance
(NMR) data, is also being developed as an applications area.

 Image processing for robot navigation: Algorithms and systems
implemented include road following, obstacle avoidance using stereo
vision, and obstacle avoidance using the Environmental Research
Institute of Michigan (ERIM) laser range scanner {Wallace et al. 89].

« Signal processing: Several different algorithms have been developed in
this area, including singular value decomposition (SVD) for adaptive
beamforming [Annaratone et al. 86a}.

o Scientific computing: Algorithms include successive over-relaxation
(SOR) for solution of systems of partial differential equations. We
.investigated methods for dense matrices [Tseng 89] as well as methods for
sparse matrices (direct methods [Tseng 88] as well as iterative methods
[Tseng 88a)).
« Neural networks: Several versions of backprop (a neural net learning

algorithm) have been implemented, and one version of backprop has been
used in the control of Carnegie Mellon's autonomous land vehicle.

In addition, Carnegie Mellon has been providing help to several DARPA contractors
in their applications of Warp, including Martin Marietta Corporation in
Autonomous Land Vehicles [Dunlay 88] and Hughes Aircraft Corporation image
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analysis.The area of signal processing (in the most general sense) provides a
natural application domain for Warp and Warp-like machines. Several groups
(both at Carnegie Mellon and elsewhere) have investigated this area, and a number
of publications by current and former members of our research group illustrate the
importance of this class of applications: [Baheti et al. 89], [OHallaron 91a],
[OHallaron and Fiduccia 91), [OHallaron 91}, [Baheti, OHallaron, and Itzkowitz
90]. One issue that is often overlooked when mapping a signal processing
application onto a parallel computer is that a real application consists of many
parts. Some parts may be easy to map, whereas others cause difficulties. Our
collaboration with real application users [Kung et al. 88] provided interesting
insights.We mapped a large application onto the Warp machine, and we noticed
that a straight forward approach (which maps each top-level “task” of a signai-
processing application onto a separate processor or cell) produces unsatisfactory
results. In practice, only a small number of cells can be used that way [Printz 91},
[Printz 92]. To use a larger number of cells, it is necessary to map each individual
task onto multiple cells, and this observation is a key factor in the design of our next
parallel program generator (which is being developed as part of a follow-on
contract).
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2 A high-speed, heterogeneous
network architecture

Parallel processing is widely accepted as the most promising way to reach the next
level of computer system performance. Currently, most parallel processing is done
on a single, large parallel machine that provides efficient support only for
homogeneous, fine-grained parallel applications. Although these machines have
proven to be effective for a large class of applications, they possess three inherent
limitations:

» There s a practical limit to how far the performance of these machines can

be scaled. When that limit is reached, it becomes desirable to exploit

coarse-grained, or task-level, parallelism by connecting together several
such machines as nodes in a multicomputer.

» Homogeneous systems are not always the best solution for heterogeneous
applications. Many applications process information at multiple,
qualitatively different levels. For example, a computer vision system may
require image processing on its raw input at the lowest level, and scene
recognition using a knowledge base at the highest level. Such application
requirements benefit from heterogeneity at both the hardware and
software levels.

 Using just large parallel machines is not always the most cost-effective
approach for achieving the required performance. Such machines are
typically built from custom-made processor boards, although they
sometimes use standard microprocessor components. These machines
cannot readily take advantage of rapid advances (short product life-
cycles) in commercially-available sequential processors.

A multicomputer architecture has the potential to alleviate the above limitations.
However, current local area networks (LANs) do not provide the high-bandwidth
and low-latency communication that is often required by applications.

The Nectar project addresses the limitations of heterogeneous, coarse-grained
parallelism on several fronts: the underlying hardware, communication protocols,
node operating system support, and an application interface to the communication
network. We have designed and built a prototype Nectar system. A four-node
system was operational in late 1988 and was later expanded to 26 nodes.

This report discusses the Nectar architecture and the prototype system. We also
present our experience in porting applications.
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2.1

2.1.1

The Nectar system architecture

The Nectar architecture (Figure 1) allows exploiting fine-grain parallelism within

HUB
A

CAB
CAB

Figure 1: Architecture of a three-HUB Nectar system

a task executing at a particular node and coarse-grain parallelism among tasks on
different nodes. In addition to supporting heterogeneous parallelism, the Nectar
system provides low-latency, high-bandwidth communication and is scalable:
Distributed heterogeneous machines suitable for specific tasks can be added or
replaced without affecting the high bandwidth and low latency between the nodes
or requiring modification of the communication software.

The Nectar network is built of fiber-optic lines and consists of one or more “HUBs”
that provide low-latency, message-passing communication among the nodes.
Hosts are connected to the network through powerful communication accelerator
boards, or “CABs” The following subsections describe the special features of the
Nectar HUB and CAB.

The Nectar HUB

The core of the Nectar HUB is a high-speed crossbar switch with a flexible datalink
protocol implemented in hardware. Crossbar switches substantially reduce the
amount of contention found ih broadcast-based networks (Ethernet, FDDI),
increase bandwidth as nodes are added, and make the system scalable. By
combining crossbar switches with fiber-optic lines we increased the network's
bandwidth and lowered its latency by at least one order of magnitude over
traditional LANs.

Parallel Computing 1987-90 Carnegie Mellon University




A high-speed, heterogeneous network architecture Page 23

21.2

In our prototype systems we used 16x16 crossbars. Moderately-sized, 8-bit- wide
32x32 crossbars can be built with off-the-shelf parts, and 128x128 crossbars are
feasible with custom VLSI chips. In a single-HUB Nectar system, the HUB's central
controller can establish a new connection through the switch every 70-nanosecond
cycle. Total latency for setting up a connection and transferring the first byte of a
packet through the HUB is ten cycles. In systems with multiple HUBs, connections
are made one HUB at a time. This serial connection scheme adds little latency to
interprocess communication due the low transfer latency of each individual HUB.

The operation of the HUB is controlled by the CABs through commands that are sent
over the fiber and interpreted by the HUB controller. HUBs are connected to nodes
or to other HUBs in a multi-HUB cystem through I/O ports. These ports contain
circuitry for optical-to-electrical and electrical-to-optical conversion, input and
output queues that connect to the incoming and outgoing fiber, and logic to extract
commands from the incoming data steam and insert responses into the outgoing
stream. Connections are established by linking the input queue of one I/0 port
through the crossbar switch with the output queue of another I/O port.
Multicasting is achieved by connecting an input queue to multiple output

registers.

Simple commands for the most frequently used HUB operations, such as opening
and closing connections, are implemented in hardware, while the CAB kernel
handles the more complicated datalink protocols such as multicasting. This
hardware implementation of low-level inter-HUB communication allows the
central HUB controiler to execute simple operations in one cycle. In addition, it
makes flow control efficient and facilitates building systems with hundreds of
nodes.

The Nectar CAB

The CAB is a powerful communication processor. It is plugged into the backplane
of each node and interfaces the node with the Nectar network by handling the
transmission and reception of data via the network's optical fiber lines
[Menzilcioglu and Schlick 91].

The CAB's high-spee processing capability allows it to keep up with the fibers'
transmission rate of 100 megabits/s in each direction and ensures the Nectar
system'’s high performance. This capability is provided by a high-performance
CPU (built with the latest RISC chips) and fast local memory. Its CPU distinguishes
the CAB from other I/O controllers and makes it compatible in speed with custom
microsequencers. The CPU also provides flexibility to experiment with different
protocols.

Furthermore, high-speed communication is supported by various devices in the
CAB, such as a hardware DMA controller, the removal of checksum computation,
and special timers that allow time-outs to be set by software. The DMA controller
meets local processing needs and, in addition, manages simultaneously the
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2.2

2.2.1

transfer of data between incoming and outgoing fibers and between the VME and
the CAB memory. This approach leaves the CAB's CPU free to process protocols and
applications.

Nectar's software architecture

Inefficiency in networking implementations is largely due to excessive overhead
caused by

e Application interfaces that require context switching and data copying
between a user process and the node' s operating system

« Higher-level protocols that the node must process to ensure reliable
communication among applications

» Network interfaces that burden the node with interrupt handling and
header processing for each packet

The Nectar software architecture requires substantially less communication
overhead on the nodes and as a result, provides low latency and increased
bandwidth. We achieved this efficiency Ly restructuring the way applications
communicate: We mapped the high-level CAB/network interface into the
application’s address space, thereby allowing user processes to read and write
messages directly into “mailboxes,” special buffers in the CAB's memory. Since
applications have direct access to the network and data d»es not have to be copied,
the excessive cost of system calls between applications and the node's operating
system is avoided.

We also designed the CAB to process higher-level protocols that control the
transmission and reception of data over the network [Cooper et al. 90]. This
scheme relieves the host of having to handle packet interrupts, process packet
headers, retransmit packets, fragment large messages, and calculate checksums.
Interrupts are required only for those high-level events the application is interested
in (e.g. delivery of complete messages), but not for such low-level event - as the
arrival of control packets or timer expiration.

The networking software we developed for our prototype system consists of the
CAB kernel and special communication protocols. Both are described below,
followed by a description of “Nectarine,” a programming interface to Nectar’s
hardware and low-level software.

The CAB kernel

The CAB kernel provides support for simple, time-critical operations, such as
memory management and timers, while the node’s operating system handles the
more complex operations, such as file I/O. This communication software is built
around lightweight processes, which are similar to Mach threads and permit
executing multiple activities concurrently, in time-shared fashion. The little state
associated with lightweight processes reduces the cost of context switching. This
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2.2.3

approach transforms what would be a bare “protocol engine” into a flexible,
customizable environment for implementing protocols and selected
communication-intensive applications, such as load balancing.

Nectar's communication software

The three major communication software components that make use of the CAB
kernel are: the datalink protocol and a transport layer, both on the CAB, and the
CAB/node interface software.

The datalink protocol uses HUB commands for data-packet transfers between CABs,
manages HUB connections, and recovers from framing errors and lost HUB
commands. Frequently used, simple operations (such as sending a packet to a node
in the same HUB cluster) are implemented in hardware as a single HUB command,
while more complicated and less common operations (e.g. multicasting or error
recovery) are implemented in software.

The transport layer regulates the transfer of messages between the CABs' mailboxes.
This task involves breaking messages into packets, reassembling them, controlling
the message flow, and retransmitting lost and damaged packets. This layer
supports three Nectar-specific protocols (a datagram protocol, a reliable message
protocol, and a request-response protocol) and the standard Internet protocols (IP,
TCP, and UDP).

Datalink and transport protocols cooperate closely, passing packets by reference
and thus eliminating data copying.

The efficiency of the CAB/node interface derives from the shared-memory approach
its software uses. Since the CAB's memory is mapped into the address space of the
node process, messages are built and consumed “in place.” In other words, node
processes invoke services by placing commands directly into CAB's mailbox, and
messages are received by polling the CAB's memory. This scheme eliminates
copying messages between node and CAB and involving the node's operating
system.

A Nectar programming interface

To give the programmer easy access to the Nectar hardware and its low-level
software, we developed a programming interface that we called “Nectarine”
[Steenkiste 91]. This environment offers features similar to those of communication
interfaces available on other distributed-memory machines (such as hypercubes)
and, in addition, can accommodate heterogeneous nodes, operating systems, and
memories as well as attached devices.

This interface is implemented as a library and represents an application as a series
of “tasks” — processes that can execute on any CAB or node and communicate by

' transferring messages between user-specified buffers. Based on this simple

abstraction, the programmer can create tasks, manage buffers, and send or receive
messages. In contrast to traditional interfaces, such as sockets, Nectarine allows
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building messages directly in the mailbox buffers of the CAB's memory, and, by
using direct memory access whenever possible, minimizes the number of copy
operations.

System evaluation

We measured latency and throughput in a prototype Nectar system that consisted
of two HUBs (with 16x16 crossbars) and 26 hosts (Sun4 workstations).

Latency
The following table shows roundtrip latency in microseconds for UDP and Nectar-

specific protocols.

Prbtocol host-to-host | CAB-to-CAB
datagram 325 179
reliable message 414 241
request-response 438 287
UDP 842 536

Table 1: Roundtrip latency

Host-to-host roundtrip latency for a single-word message using the UDP protocol
was about one fourth that in traditional, Ethernet-based networks. About 40% of
the time taken to send a message between two host processes using the Nectar-
specific datagram protocol is spent in the CAB/node interface, mainly because each
read or write over the VME bus takes about 1 millisecond.

Throughput

Figure 2 shows the throughput rates for two CAB threads using the on-CAB
implementation of TCP/IP and the Nectar-specific reliable message protocol
(RMP). For small packets of up to 256 bytes, the per-packet overhead is made up
completely of the time required in TCP/IP processing, and throughput doubles
when the packet size doubles. For packets larger than 256 bytes, the transmission
time becomes significant and throughput increases more slowly. The TCP/IP
protocol's lesser performance compared to RMP is mostly due to the cost of
checksums implemented in software. RMP doesn't have this cost since it relies on
the CRC provided by the CAB hardware. Without software checksums, TCP is
almost as fast as RMP.

Based on the same protocols, the curves in Figure 3 show the throughput rates
between two host processes. These curves have the same shape as the CAB-to- CAB
throughput curves but flatten earlier due to the slow VME bus, whose bandwidth
(about 30 Mbit/s) limits the throughput of both protocols. Maximum TCP/IP
bandwidth is approximately 24 Mbit/s, a considerable itnprovement over the
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Figure 2: CAB-to-CAB throughput
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Figure 3: Host-to-host throughput

maximum host-to-host throughput of 6.4 Mbit/s when the Sun4 CPU handles
TCP/IP processing and the CAB acts simply as network interface. In fact, the
performance with the CAB functioning as a simple network interface is worse than
the 7.2 Mbit/s throughput achieved with on-board host/Ethernet interfaces that
bypass the VME bus.
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2.5

Distributed event monitoring

Program and performance debugging as well as load balancing require keeping
track of various runtime-system activities — a difficult task in a dynamic and
distributed computer network. Rather than providing a multiplicity of separate
tools, we created BEE, a basis that facilitates building tools for monitoring,
debugging, and evaluating events in heterogeneous, distributed systems, such as
Nectar [Bruegge 90][Bruegge and Steenkiste 91]. A test version of this environment
was operational in March 1990.

Our monitoring system views an executing, distributed program as a generator of
different events that can be used to characterize the network's behavior. While
event-based systems are simple, handling and storing events increases the
application's execution time. BEE reduces the overhead of runtime monitoring by
allowing users to take the interpretation of events out of the application program
and run it on another node. To provide an overview of the activities in the entire
system, as required for dynamic load balancing, our event interpreter can tap into
client applications executing on different nodes. A client process can also be
monitored by several event interpreters tapping into the same event stream to
provide different views of the client's behavior. Another feature of the BEE
environment is that it allows users to filter out unneeded events, thereby reducing
the number of events to be processed and, as a result, the overhead.

Applications on Nectar

We demonstrated our system's effectiveness and versatility by implementing
several large and complex applications on the Nectar prototype [Kung et al. 91].
Three applications with widely different domains and programming models are
briefly discussed below: a high-performance switch-level circuit simulator
(COsSMOs), a geometric modeling package (NOODLES), and a simulation of air
pollution in Los Angeles. We also ported successfully a parallel, solid modeling
program (Mistral-3), distributed algorithms providing exact solutions to several
traveling-salesman problems, an image-processing application (see Chapter 4),
and a chemical flowsheeting simulation.

Porting the COSMOS application to the Nectar prototype was relatively easy since
the main data structure (the circuit) was already partitioned and a sequential
implementation existed on the workstations that constitute the system's nodes.
The COSMOS circuit was parallelized by distributing it over the Nectar nodes. It
benefits from the low overhead, low latency communication on Nectar. Total
execution time of the COSMOS simulator was considerably shortened due to the
CAB's effectiveness in overlapping computation with communication.

The NOODLES application is a geometric modeling package that was developed at
the Engineering Design and Research NSF Center at Carnegie Mellon. Geometric
models are represented by complex data structures, which, in the Nectar

implementation, had to be replicated on all nodes and are kept consistent through
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an application-specific consistency algorithm. Parallelizing NOODLES facilitates
working with larger models interactively. Since computation in NOODLES is very
data dependent, dynamic load balancing was used to achieve good node
utilization. Running the load balancer on the CAB allowed load balancing at very
fine granularity.

In the simulation of air pollution in Los Angeles, pollutant particles are tracked as
they are carried by the moving air. This application combines very finely grained
tasks (i.e., tracking the particles) with coarse-grained ones (i.e., calculating the
wind-velocity vectors based on measured input data). Distributing the wind-
velocity vectors requires considerable bandwidth and benefits from the
availability of hardware-based multicasting. As in the NOODLES application,
dynamic load balancing increased the performance speed.

In spite of the complexity of these applications, it took relatively little effort to
implement them on the Nectar system, mainly because the network's nodes are
general-purpose computers: The parallelized applications can use the host's
software and available application code, and users can work in a familiar
environment. Since Nectar's bandwidth and latency characteristics are similar to
those of state-of-the-art custom-made multicomputers, the required heavy
communication among Nectar nodes does not create a bottleneck. The circuit and
the air-pollution simulations in particular demonstrated the effectiveness of the
Nectar system for parallelizing large, heterogeneous applications over a network
and providing a relatively easy means for speeding performance.
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3 Parallel operating systems

3.1 The Mach approach

We began developing the Mach operating system in late 1984 with the goal to
provide support for the newly emerging general-purpose, tightly and loosely
coupled multiprocessor architectures and compatibility with UNIX BSD 4.3 and
other operating-system environments. Our overall plan was to restructure UNIX
BSD 4.3 code to take advantage of some UNIX capabilities, replace others with our
own facilities (such as scheduling and memory management), and, eventually,
separate the operating system’s control of basic hardware resources from unique
UNIX characteristics.

The resulting operating system [Rashid et al. 89][Rashid et al. 89] consists of a
kernel that provides a set of key facilities and allows layering and running
simultaneously various existing environments in “native mode.” The advantage of
this scheme is that machine-dependent software for different hardware bases
needs to be written only once. Furthermore, separating from the kernel those
functions that provide binary compatibility with existing operating system
environments makes the system modular. The advantage of modularity is that it
simplifies maintenance and increases security.

Status of the Mach operating system at the beginning of this reporting period

Mach was fully compatible with UNIX BSD 4.3 and provided the following key
features:

« Simplified, user-level construction and management of concurrent
programs. This feature is provided by Mach’s separation of the traditional
“process” into a task and one or more threads, which run within the task.
Each Mach task represents a system resource, foremost its address space.
A thread is a Mach control unit and consists of a program counter and a
set of data registers. Threads share the capabilities of the task in which
they operate.

« Extensible and secure interprocess communication (IPC), the kind of I/O
channel between threads that exists in a multiprocessor with a message-
passing bus or between workstations on a network

o Architecture-independent virtual-memory management, which provides
flexible facilities for sharing memory between tasks and manipulating
large, sparse address spaces.

« Tight integration of Mach'’s IPC and virtual-memory management. This
scheme allows virtual-memory remapping with copy-on-write and copy-
on-reference message passing to avoid unnecessary data copying.
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3.2

3.2.1

We demonstrated the practical applicability of these facilities by porting Mach to
the four-processor VAX11/784, the IBM RT PC, the Sun3 workstation, and the 16-

processor Encore Multimax, all machines whose processors have uniform access to
the system’s shared memory. In January 1987, we released the first official version
of the Mach operating system (Mach 0) to sites outside Carnegie Mellon.

Research effort 1987-1990

Our main effort under this contract consisted in separating Mach'’s control of basic
hardware resources from UNIX functionality and moving all UNIX code into one or
more user-level processes to be implemented on the resulting “pure Mach kernel,”
which is totally free of BSD-derived code and can be distributed without license
restrictions. In addition to refining the kernel’s functionality, particularly its
support for tightly and loosely coupled multiprocessors, we

* Further integrated Mach IPC and virtual-memory management to allow
external, user-level management of memory. In this scheme, the system’s
memory is represented as an extensible, single-construct, virtual-memory
object that can be created and managed by applications acting as external
pagers. A primary application is the “network memory server” for no-
remote-memory-access (NORMA) multiprocessor architectures [ Young 89],
[Forin et al. 89a}, [Forin et al. 89)

« Improved user control of multiprocessor allocation and scheduling, such
as “gang” scheduling [Black 90a]

» Improved memory management for nonuniform memory-access (NUMA)
[Black et al. 89a].

We demonstrated the effectiveness of these features by developing various
operating-system emulations on top of Mach: An “in-kernel” UNIX 4.3 BSD
emulation; a single-server and a multiserver “out-of-kernel” UNIX 4.3 BSD
emulation; and two non-UNIX emulations (DOS and Macintosh). All emulations will
be discussed in the following sections.

The commercial distribution of the Mach operating system was carried out by a
subcontractor, MTXINU, as described in section 3.2, page 39.

Furthermore, we developed software for monitoring the Mach kernel and
employed it to improve Mach'’s scheduler (see section 3.3, page 39).

In-kernel UNIX emulation

In our first UNIX emulation, we layered UNIX BSD 4.3 functionality above the kernel
primitives, but packaged both as a monolithic unit running in privileged state. This
emulation, distributed as Mach 2.5, was the first step toward developing a kernel
interface for other operating-system environments.
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3.2.2

Compared to traditional UNIX implementations, Mach 2.5 on a Sun 3/60
workstation executed simple compilation benchmarks nearly 40% faster than
SunOS 4.0, Sun Microsystems’ own UNIX version. UNIX fork and exec operations
were nearly two times faster with this Mach version than with the SunOS.

Out-of-kernel UNIX emulations

Our next goal was to separate Mach'’s layers further, so that only a “pure kernel”
or “microkernel” runs in privileged mode, while the other components of the
environment execute as one or more client/server processes on top of it [Golub et
al. 90]. Instead of being handled directly by an in-kernel operating system, system
call traps issued by application programs are redirected through the Mach
microkernel to user-level servers or modules emulating the operation system. By
insulating the software from the hardware, the kernel becomes a type of universal
socket into which more than one operating-system environment can be plugged.

The technology that provides binary compatibility with various operating-system
environments and enables out-of-kernel “non-native” implementations is Mach'’s
emulation library. It is transparently loaded into the addmss space of the
application program — to optimize data transfer — and contains routines
equivalent to the UNIX system-call handler. These library routines intercept the
program’s system calls, transform them into remote procedure calls, and forward
them through the kernel’s communication and memory facilities to the
appropriate server or servers. The emulation library functions both as translator
for system service requests and as cache for the results returned from these
requests.

A single-server UNIX emulation

Emulating an operating system as a single-server application program has the
following advantages:

« The server has a similar structure as the UNIX in-kernel implementation
and is alone responsible for providing all OS environment semantics. It
has global knowledge of all information required for the implementation
and allows extremely fast context switching between threads.

* The server is completely pageable and, by sharing data structures and
stack space, it can make more efficient use of memory than a multiple-
server implementation.

* It was easy to transform our in-kernel emulation into a single-server
program, which preserves both existing code and semantics.

While ours was not the first single-server implementation, the others are based on
a different relationship between the system kernel and the supported OS
environment. IBM’s CP/67, for example, uses a virtual-machine approach; in
AT&T’s MERT system the kernel is layered on a simple message engine; and
CHORUS loads into the kernel emulation-assist code specific to the emulated
operating-system environment.
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Our approach, on the other hand, is to provide all UNIX facilities through a client/
server program running on top of a kernel that contains no UNIX-specific
functionality. The UNIX server provides all system services and resources
commonly associated with a BSD 4.3 environment, while the kernel handles IPC,
scheduling, and virtual-memory services. Other functions of a traditional UNIX
system, such as support for higher-level, application-specific resource abstractions
(files and sockets), are handled by Mach'’s transparent system-call-emulation

library.

The server program is contained in a single, multithreaded Mach task and typically
invoked by a Mach message for each system call issued by the application process.
Mach IPC is the primary communication tool between the UNIX server and a UNIX
application, but shared memory may also be employed. Both the UNIX server and
the emulation library can chose the communication interface they prefer: Message
passing is more natural for network communication while, in a uniprocessor or
tightly coupled multiprocessor, large amounts of data are more efficiently
transferred using the virtual-shared-memory scheme. In shared-memory
communication, the UNIX server can act as memory-object manager, or “external
inode pager,” for £.3BSD files mapped into the application’s address space.

Performance

We ported the pure Mach kernel (version 3.0) with the single-server UNIX to
uniprocessor and multiprocessor VAX systems, DECstations 3100 and 5000, the Sun
SPARCstation, and i386-PC clones.

To evaluate the microkernel’s performance we ran the Andrew Benchmark as
modified by Ousterhout. The table below shows the results on a Sun 3/60 (with 8

Operating | Directory | File | Recursive . .
system creation | copy | filestats Find | Compile | Elapsed
Mach 2.5 4 20 13 26 336 399
3.0 plus 1 20 24 34 332 411
UNIX server

Table 3-1 : Modified Andrew Benchmark times in seconds

Mbytes of memory and a Priam 300 Mbyte disk drive) in comparison to the
performance achieved with the Mach 2.5 Release.

A multiserver UNIX emuiation

Implementing an operating-system environment as multiple, small-grained server
tasks provides the advantage of greater portability, flexibility, and security
compared to a single-server emulation: Servers can easily be added, removed, and
individually secured and verified. In addition, this approach simplifies
developing, upgrading, debugging, and maintaining the system.
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The prototype multiserver UNIX emulation we developed is only a step toward our
greater goal of providing a common, object-oriented framework that allows
implementing a wide range of existing operating system environments on a single
host and executing them concurrently.

In designing our prototype, we were guided by the following principles:
« Developing many independent, modular servers to maximize flexibility

and extensibility

« Identifying common functions that different services and emulations
require—such as authentication—and implementing them separately

» Concentrating on the details of the interface that is emulated in the
emulation library and keeping the services as generic as possible to
maximize the reusability of entire components

* Specifying system interfaces and implement low-level components by
using object-oriented techniques, in order to maximize adaptability and
low-level reusability

¢ Including client-side processing in the emulation library to increase
system performance.

System architecture
Our prototype system is organized as three independent software layers:

» The Mach microkernel providing the basic facilities for the execution of
the various system components

» A collection of independent servers specializing in particular functions
* An emulation library similar to that used in the single-server system.

To maximize portability and reusability, we standardized the basic supporting
facilities and interfaces between the various system components and made them
(to different degrees) independent of the target environment.

Each server executes in a separate Mach task and uses a combination of IPC and
shared memory to communicate with the library and, in some cases, with other
servers. There are “application servers” and “system servers.” The former are
considered high-level servers, since they interact directly with the applications.
They provide basic functions of an operating system and include:

» One or more file servers
¢ A terminal (TTY) server
* A task server (process manager)

A local IPC server supporting basic communication, such as UNIX pipes,
between applications

¢ One or more network servers that provide access to the network by
implementing various protocol families
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3.1.1

A device server that controls user access to the physical devices managed
by the kernel.

System servers are indirectly invoked by the application and support its operation
by performing authentication, name-space management, diagnostics, etc.

To simplify handling and combining the individual servers, we developed an
object-oriented programming facility, called “MachObjects.” This facility is
integrated with Mach’s network communication and transparently extends
traditional kernel-based functions to user-level servers.

In early 1990 our prototype system provided a basic level of functionality. It
supported a command interpreter (Bourne shell or C shell) and many simple UNIX
commands, suchas 1s, cp, rm, 1ln, and vi, including commands required for
compiling small C programs, such as make, cc, and 1d.

Other environments running on Mach

The two other operating systems we implemented as emulations executing within
the Mach framework are the single-user MS-DOS [Malan et al 91] and the Apple
Macintosh environments. Our approach was to provide all functionality required
by DOS and Macintosh applications through the emulation library.

The emulation library has three functions: It serves as interface to the original code
of the emulated operating systems; it gives applications access to the hardware;
and it provides external services.

Significant portions of the native operating system are allowed to run in “native
mode,” since few requests involve operations that require the Mach kernel’s
intervention. For example, to access I/O devices the native DOS filesystem code
invokes low-level BIOS functions and similarly, once the Macintosh system’s
display has been appropriately mapped, graphics primitives writing to the display
can execute directly from the Mac ROMs. Since the system-call invocation
mechanisms in the DOS and Macintosh systems differ from those in Mach and UNIX
on the same hardware, the Mach kernel treats invocations from the emulated
systems as exceptior- and redirects them to the emulation library. In its role as
interface, the emulation library in turn directs these system calls to the native
operating system, which provides the services.

In addition to invoking the code of the emulated operating systems, the emulation
library creates virtual access to hardware devices, such as displays, disks, and
keyboards. Providing multiuser support is necessary since many applications for
single-user systems expect direct access to some devices without having to invoke
a system service.

Finally, the emulation library provides most system services by translating
requests for services from shared resources, such as UNIX file-system disks, into
requests to the specific servers managing them and to the hardware devices
managed by the Mach kernel.
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3.2

3.3

Both emulation systems are loaded from the UNIX file system (which is
transparently available to the applications running on them) and execute, as Mach
3.0 operating-system servers, in parallel with a stable UNIX BSD 4.3 server.

Almost all applications supported by the native DOS and Macintosh operating
systems can be implemented without change on the respective emulation system.
By enhancing Mach’s RPC with “continuations,” first-class objects for managing
the state of a computation, we were able to show that an appl:ations’ performance
under the emulation is comparable to that on the native system [Draves 91].

The DOS emulation on Intel’s 80386 or 80486 virtual-memory processor supports
business applications, such as Lotus 1-2-3, WordPerfect, and Windows 3.0, as well
as games, such as Wing Commander and Space Quest IV. The MacMach system on
the Macintosh II, IIx, Ics, Ilci, lIfx, and SE/30 architectures emulates Apple’s
Macintosh System 7.0 and allows running Multifinder, X11r4 Windows, business
applications (such as MacDraw 2.0, Excel, Powerpoint), and several games. Both
emulations support most display types, such as EGA and VGA, as well as various
sound boards.

Mach distribution

Carnegie Mellon subcontracted MTXINU to coordinate and supervise the
distribution of Mach 2.5. MTXINU's effort involved evaluating Carnegie Mellon’s
Mach kernel and its BSD-compatible software on four platforms — the IBM RT PC,
DEC VAX, the Sun3 families, and the i386 platform. MTXINU then integrated the
kernel with BSD code, verified the operation of the integrated software, and
shipped it to various test sites.

In addition, MTXINU negotiated and integrated licensing terms and conditions,
compiled an annotated bibliography of publications on the included software
packages, and wrote a 12-volume Mach2.5/4.3BSD manual as well as installation
instructions for the Release-1 Distribution.

Support for parallel and distributed
programm.ing

To assist programmers in quickly and efficiently evaluating performance trade-offs
between different Mach kernel versions, we developed monitoring software and
integrated it with the architecture-independent programming and instrumenta-
tion environment (PIE) we had developed under a previous contract [Lehr et al. 89}].

The PIE system provides a toolset for instrumenting parallel and concurrent
systems at the hardware, operating system, and application levels. These tools and
PIE's own graphic display facility allow programmers to observe, debug, and
analyze the behavior and performance of their system versions to identify, for
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example, the hardware approach that most effectively utilizes the available
resources (CPUs, buses, caches and memories) or the software scheme that
produces the best scheduling or virtual-memory management performance.

Mach kernel monitor (MKM)

In contrast to other monitoring schemes that trace all measurable processes and
thus merely gather statisti. -, our approach permits users to selectively monitor
specific computations — each independently or several simultaneously [Lehr et
al. 89a]. (The term “computation” is meant to be more general than “program” or
“process” and to include system and application software.) We provide this
capability by modeling the kernel monitor on Mach’s task and thread abstractions.
Furthermore, our monitor has low overhead and a high bandwidth.

The kernel monitor comprises:

« A list of the particular threads to be monitored

* Predefined sensors, embedded within the kernel code, for detecting
specific events, such as instances of context switching

* A data structure that provides for each process a pointer to a separate
buffer and specifies:

+ The particular event to be monitored

« Creation/termination of monitored threads

«- The processor on which a particular thread is running
« A time stamp

For monitoring Mach’s scheduler activities, MKM operates in the following man-
ner: When a thread switches, a software sensor detects which, if any, monitor is
tracking it and writes the event to that particular monitor’s protected buffer. This
storage area is organized as a relational database: Events are ordered chronologi-
cally and according to the threads and processors they are associated with.

Monitoring context switching

We implemented the kernel monitor and used our PIE environment to observe and
analyze the context-switching activity of Mach kernel versions with different
scheduling algorithms. Based on these analyses we were able to determine how
each scheme affects computation performance and modify the scheduler
accordingly.

First, we studied the effects of several uniprocessor scheduling algorithms on
sequential applications.The MicroVAxIl, on which we executed the applications,
was booted in single-user mode to reduce the number of threads competing for the
machine’s processor. We observed that the first scheduling algorithm, designed to
switch threads every 100 ms, produced “context-switch flutter,” indicating that
threads switch frequently to themselves. To avoid this problem and reduce the
number of context switches, we modified the scheduler to increase dynamically
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the time slices it allocates to individual threads. Since this change did not provide
satisfactory performance either, we further improved the scheduler by introducing
a thread-priority-evaluation policy.

Next, we observed two matrix-multiplier computations executing in parallel on a
16-processor, shared-bus machine. The Mach operating-system version employed
our simple, nondiscriminating scheduler that assigns equal time slices to
competing threads. The PIE environment's special “cpu-view” provided insight
into how the computations utilized the available processors during their execution
and revealed ways to optimize the scheduler [Black 90].

Controlling monitor perturbation

While providing important information about an executing computation, the
kernel monitor competes for hardware and software resources and thus perturbs
the very phenomena it seeks to observe [Lehr 90]. Regular delays are caused by the
sensors as they check whether a monitor is tracking a thread. However, this
perturbation creates less overhead than the sensor’s intermittent information
retrieval or storage in the kernel buffers, both procedures requiring a system call.

Since monitoring delays cannot be completely eliminated, we must compensate for
them, above all for the perturbation caused by event-information retrieval and
storage. We developed a compensation algorithm for monitored computations
running on a uniprocessor. This scheme adjusts each event’s time stamp according
to the number of preceding events that were detected (subtracting from the time
stamp the sum of all previous sensor firing times plus the time consumed by
monitor threads). This algorithm brings the monitored computation’s execution
time within 1% of the estimated time the computation would take if it were
unmonitored. With this accuracy, our software monitoring technique is a practical
alternative to hardware-based instrumenting, which would be nonportable and
relatively expensive.

Camegie Mellon Universi Parallel Computing 1987-90
B ty P g

|



Page 42 Parallel operating systems

3.4 Bibliography
[Barrera 91]

Barrera, Joseph S. A fast Mach network IPC implementation. Proceedings of the Second
USENIX Mach Symposium. USENIX, November, 1991.

[Bershad 91]

Bershad, B.N., and M.J. Zekauskas. Midway: Shared-memory parallel programming with
entry consistency for distributed memory multiprocessors. Technical Report CMU-CS-91-170,
School of Computer Science, Carnegie Mellon University, September, 1991.

[Bershad 91a]

Bershad, B. N. Mutual exclusion for uniprocessors. Technical Report CMU-CS-91-116,
School of Computer Science, Carnegie Mellon University, April, 1991.

[Bershad 91b]

Bershad, B.N. Practical considerations for lock-free concurrent objects. Technical Report
CMU-CS-91-183, School of Computer Science, Carnegie Mellon University, September,
1991.

[Black 90]

Black, David L. Scheduling and resource-management techniques for multiprocessors. PhD
thesis, Computer Science Department, Carnegie Mellon University, July, 1990. Also available
as technical report CMU-CS-90-152.

[Black 90a]

Black, D.L. Scheduling support for concurrency and parallelism in the Mach operating system.
IEEE Computer. 23(5):35-43, May, 1990. Also available as technical report CMU-CS-90-125.

[Black and Sleator 89]
Black, D.L., and D.D. Sleator. Competitive algorithms for replication and migration problems.
Technical Report CMU-CS-89-201, School of Computer Science, Carnegie Mellon University,
November, 1989.

[Black et al. 89]
Black, D.L., R.F. Rashid, D.B. Golub, C.R. Hill, and R.V. Baron. Translation lookaside buffer
consistency: a software approach. Proceedings of the Third International Conference on Archi-
tectural Support for Programming Languages and Operating Systems (ASPLOS III). ACM,
April, 1989. Also available as technical report CMU-CS-88-201.

[Black et al. 88]
Black, D.L., D.B. Golub, K. Hauth, A. Tevanian, and R. Sanzi. The Mach Exception Handling
Facility. Proceedings of the ACM SIGPLAN and SIGOPS Workshop on Parallel and Distrib-
uted Debugging. ACM, May, 1988. Also available as technical report CMU-CS-88-129.

Parallel Computing 1987-90 Carnegie Mellon University




Parallel operating systems Page 43

[Black et al. 89a]

Black, D., A. Gupta, and W.D. Weber. Competitive management of distributed shared memory.
Proceedings of Spring COMPCON '89. IEEE Computer Society, February, 1989.

[Car :nd Black 90]

swell, D. and D. Black. Implementing a Mach debugger for multithreaded applications.
Proceedings of the Winter 1990 USENIX Technical Conference and Exhibition. USENIX, Jan-
uary, 1990. Also available as technical report CMU-CS-89-154.
[Cate 90]

Cate, V. Two levels of filesystem hierarchy on one disk. Technical Report CMU-CS-90-129,
School of Computer Science, Carnegie Mellon University, May, 1990.

[Cooper and Draves 88]

Cooper, E.C. and R.P. Draves. C Threads. Technical Report CMU-CS-88-154, Computer Sci-
ence Department, Carnegie Mellon University, June, 1988.

[Draves 91}
Draves, R.P, B. Bershad, R.F. Rashid, and R. W. Dean. Continuations: Unifying thread man-
agement and communication in operating systems. Technical Report CMU-CS-91-115, School
of Computer Science, Carnegie Mellon University, March, 1991.

[Draves 91a]
Draves, R.P. Page replacement and reference bit emulation in Mach. Proceedings of the Second
USENIX Mach Symposium. USENIX, November, 1991.

[Forin 91]
Forin, A., D. Golub, and B.N. Bershad. An I/O system for Mach 3.0. Technical Report CMU-
CS-91-191, School of Computer Science, Carnegie Mellon University, October, 1991.

[Forin 89]
Forui, A. Debugging of Heterogeneous Parallel Systems. Proceedings of the ACM SIGPLAN
and SIGOPS Workshop on Parallel and Distributed Debugging, pages 130-140. ACM, Janu-
ary, 19%29.

[Forin et al. 89]

Forin, A., R. Rashid, and J. Barrera. A Distributed Memory Server. Proceedings of the Winter
USENIX Technical Conference and Exhibition. USENIX, 1989.

(Forin et al. 89a]
Forin, A., J. Barrera, M. Young, and R. Rashid. Design, implementation, and performance eval-
uation of a distributed shared-memory server for Mach. Proceedings of the Winter USENIX
Technical Conference and Exhibition, pages 229-244. USENIX, February, 1989. Also avail-
able as technical report CMU-CS-88-165.

Carnegie Mellon University Parallel Computing 1987-90




Page 44 Parallel operating systems

[Forin et al. 89b]

Forin, A., J. Barrera, and R. Sanzi. The shared memory server. Proceedings of the Winter
USENIX Technical Conference and Exhibition. USENIX, January, 1989.

[Golub et al. 90]

Golub, D., R. Dean, A. Forin, and R. Rashid. UNIX as an application program. Proceedings of
the Summer USENIX Technical Conference and Exhibition. USENIX, June, 1990.

[Gupta et al. 87]

Gupta, A., C.L. Forgy, D. Kalp, A. Newell, and M. Tambe. Results of parallel implementation
of OPSS5 on the Encore multiprocessor. Technical Report CMU-CS-87-146, Computer Science
Department, Carnegie Mellon University, August, 1987.

[Lehr 90]
Lehr, T. Compensating for perturbation by software performance monitors in asynchronous
computations. PhD thesis, Department of Electrical and Computer Engineering, April, 1990.

[Lehr et al. 89]
Lehr, T., Z. Segall, D. Vrsalovic, E. Caplan, A.L. Chung, and C.E. Fineman. Visualizing per-
formance debugging. Technical Report CMU-CS-89-140, School of Computer Science, Car-
negie Mellon University, April, 1989.

[Lehr et al. 89a]}
Lehr, T., D. Black, Z. Segall, and D. Vrsalovic. MKM: Mach kernel monitor description, exam-
ples, and measurements. Technical Report CMU-CS-89-131, School of Computer Science,
Carnegie Mellon University, March, 1989. ’

[Malan et al 91]

Malan, G., R. Rashid, D. Golub, and R. Baron. DOS as a Mach 3.0 application. Proceedings of
the Second USENIX Mach Symposium. USENIX, November, 1991.

[Printz 90]
Printz, H. and D. Servan-Schreiber. Foundations of a computational theory of catecholamine
effects. Technical Report CMU-CS-90-105, School of Computer Science, Carnegie Mellon
University, May, 1990.

[Rashid 87]
Rashid, R.F. Mach: Layered protocols vs. distributed systems: A position paper. /[EEE. January
1987.

[Rashid 87a]
Rashid, R.F. Mach: A new foundation for multiprocessor systems development. Proceedings
of COMPCON '87. IEEE, February, 1987.

Parallel Computing 1987-90 Carnegie Mellon University




Parallel operating systems Page 45

[Rashid 88)

Rashid, R. From RIG to Accent to Mach: the evolution of a network operating system. The
Ecology of Computation. In Huberman, B.A., North-Holland, 1988.

[Rashid et al 88]

Rashid, R., A. Tevanian, M. Young, D. Golub, R. Baron, D. Black, W.J. Bolosky, and J. Chew.
Machine-independent virtual memory management for paged uniprocessor and multiprocessor
architectures. IEEE Transactions on Computers. 37(8):896 - 908, 1988. Also in Proceedings
of the Second International Conference on Architectural Support for Programming Languages
and Operating Systems, ACM, October 1987; and available as technical report CMU-CSD-87-
140.

[Rashid et al. 89]

Rashid, R., D. Julin, D. Orr, R. Sanzi, R. Baron, A. Forin, D. Golub, and M. Jones. Mach: a
system software kernel. Proceedings of COMPCON '89. IEEE Computer Society, February,
1989.

[Rashid 89]
Rashid, R. A catalyst for open systems. Datamation. 35(10):32-33, 1989.

[Reilly 89]
Reilly, Matthew H. Implementation and evaluation of a hardware/software performan ce mon-

itor for parallel programs. PhD thesis, Department of Electrical and Computer Engineering,
May, 1989.

[Sansom 88]
Sansom, R.D. Building a Secure Distributed Computer System. Technical Report CMU-CS-88-
141, Computer Science Department, Carnegie Mellon University, May, 1988.

[Subramanian 91]

Subramanian, I. Managing discardable pages with an external pager. Proceedings of the Second
USENIX Mach Symposium. USENIX, November, 1991.

[Tevanian 87]
Tevanian, A. Architecture-independent virtual memory management for parallel and distrib-
uted environments: the Mach approach. PhD thesis, December, 1987. Available as technical
report CMU-CS-88-106.

[Tevanian and Rashid 87]
Tevanian Jr., A. and R.F. Rashid. Mach: A basis for future UNIX development. Technical
Report CMU-CS-87-139, Computer Science Department, Carnegie Mellon University, June,
1987.

Carnegie Mellon University Parallel Computing 1987-90




Page 46 Parallel operating systems

[Tevanian et al. 87]

Tevanian Jr., A., R. Rashid, M.W. Young, D.B. Golub, M.R. Thompson, W. Bolosky, and R.
Sanzi. A UNIX interface for shared memory and memory mapped files under Mach. Proceed-
ings of the Summer USENIX Technical Conference and Exhibition. USENIX, June, 1987.

[Tevanian et al. 87a]
Tevanian Jr., A., R.F. Rashid, D.B. Golub, D.L. Black, E. Cooper, and M.W. Young. Mach
threads and the UNIX Kernel: the battle for control. Proceedings of the Summer USENIX Tech-
nical Conference and Exhibition. USENIX, June, 1987.

[Tokuda 90]
Tokuda, H., T. Nakajima, and P. Rao. Realtime Mach: Towards a predictable realtime system.
Proceedings of the 1990 USENIX Mach Workshop. USENIX, October, 1990.

[Tokuda 91}
Tokuda, H., and T. Nakajima. Evaluation of realtime synchronization in realtime Mach. Pro-
ceedings of the Second USENIX Mach Symposium. USENIX, November, 1991.

[Vrsalovic et al. 88]
Vrsalovic, D., Z. Segall, D. Siewiorek, R. Gregoretti, E. Caplan, C. Fineman, S. Kravitz, T.
Lehr, and M. Russinovich. Performance efficient parallel programming in MPC. Technical
Report CMU-CS-88-167, Computer Science Department, Carnegie Mellon University, July,
1988.

[Vrsalovic et al. 88a]
Vrsalovic, D., D. Siewiorek, Z. Segall, and E. Gehringer. Performance prediction and calibra-

tion for a class of multiprocessor systems. IEEE Transactions on Computers. 37(11):1353 -
1366, 1988.

[Vrsalovic et al. 89]
Vrsalovic, D., Z. Segall, D. Siewiorek, F. Gregoretti, E. Caplan, C. Fineman, S. Kravitz, T.
Lehr, and M. Russinovich. MPC - Multiprocessor C language for consistent abstract shared
data type paradigms. Proceedings of the Twenty-Second Annual Hawaii International Confer-
ence on System Sciences. IEEE Computer Society, 1989.

[Young 89]
Young, M.W. Exporting a User Interface to Memory Management from a Communication-Ori-
ented Operating System. PhD thesis, School of Computer Science, Carnegie Mellon Univer-
sity, November, 1989. Available as Technical Report CMU-CS-89-202.

[Young et al. 87]
Young, M., A. Tevanian, R. Rashid, D. Golub, J. Eppinger, J. Chew, W. Bolosky, D. Black, and
R. Baron. The duality of memory and communication in the implementation of a multiproces-

sor operating system. Proceedings of the 11th Symposium on Operating System Principles.
ACM, November, 1987. Also available as technical report CMU-CS-87-155.

Parallel Computing 1987-90 Carnegie Mellon University




4 A new-generation Al applica-
tion

Many large applications — aerial photo interpretation, autonomous vehicle
control, factory automation — require computer vision, which is computationally
extremely demanding. To assure that such applications perform at appropriate
speeds, the parallelism of the vision-processing tasks must be exploited at all
stages.

The main stages in vision processing are:

» Low-level processing of the image (or pixel-level computation) for noise
reduction, image enhancement, edge detection, pixel characterization
(e.g., color), determining areas that contain pixels with similar
characteristics

» Low- to intermediate-level processing to group pixels into primitive
features (such as line segments, curves) and regions

* Intermediate-level processing of features, which includes

» Computing geometric properties of primitive and complex features,
such as a line’s length, the curvature at each pixel on a curve, a
region’s area

« Determining spatial relationships, which involves analyzing

whether features are adjacent, parallel, perpendicular, or symmetric
to or contained in other features

- Aggregating (bottom-up) primitive features into more complex ones,
for example, grouping lines into sets of parallels and pairs of parallel
lines into squares, rectangles, or parallelograms

+ Merging adjacent regions into larger regions

« The highest processing level, called image understanding, consists of two
major operations on objects within an image:
« Matching (top-down) certain object features against a model stored
in a database while imposing (in geometric searches) global
constraints on the matched features. This operation is also referred to
as “object recognition.”
« Determining an object’s location and orientation, also known as
“position estimation.”
Low-level processing is computationally very demanding due to the large number
of pixel data. However, since this data is uniformly distributed in the image space,
the operations required for processing this data are very regular and can easily be
parallelized. Under a preceding DARPA contract, we demonstrated that low-level
processing can be substantially speeded by mapping the required operations to the
Warp machine, an array multiprocessor developed at Carnegie Mellon.
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4.1

Our effort under this contract focused on parallelizing feature processing
(including geometric search), the most time-consuming of all vision processing
procedures. Feature data, while much smailer in number than pixels, is not
uniformly distributed in the image space, and numerous operations are required
to determine the geometric properties of and relationships among features. For
example, to determine the binary relationship of n features requires evaluating
O(n?) feature pairs. Since a significant amount of feature processing is involved in
high-level object recognition, parallelizing feature processing also speeds image
understanding.

Initial work with simple feature data

We began by designing algorithms for grouping primitive features into more
complex ones, such as simple polygons with parallel and orthogonal lines. This
effort involved exploring structures for efficiently representing the feature data
and speeding the geometric search on it. We also investigated extending the Apply
language to handle intermediate-level operations. This language, which we had
developed under a previous contract, had proven effective for parallelizing low-
level operations in an architecture-independent manner.

We determined that primitive features are best represented by grid structures and
that Hough spaces most suitably describe the binary relationships among this data.
However, the Apply language could not be modified to parallelize global,
intermediate-level operations, such as image warping, histograms, and Hough
transforms. We therefore designed a new language that we called “Map.” In
addition to hiding from the user the details of implementing feature-grouping
operations on parallel computer architectures, this language provides facilities for

» Mapping operations over other data structures as well as images

* Describing a data structure’s region that is required in executing an
operation

» Specifying storage requirements

* Producing intermediate results on different processors and combining
these results later

While the Map language lacks certain capabilities and the algorithms we wrote in
it were never implemented, its design was used for developing the “Adapt”
language, a project under another contract.

Our search algorithms for recognizing simple feature data used only two
geometric properties (orientation and length of line) as constraints for successively
eliminating unlikely matches. Since they are highly specialized, these algorithms
were easily mapped in parallel onto a systolic array. A simulated implementation
with varying sizes of datasets distributed over a 72-processor Warp array indicated
a 100- to 250-fold speedup over a sequential version executing on a VAX 8650.
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4.2

4.3

Processing complex features

Next we investigated data structures for efficiently representing two-dimensional,
“spatial,” objects with such geometric properties as area, perimeter, centroid,
moments, and minimum bounding rectangle. Since objects are usually not
uniformly distributed in the image space, we also analyzed access methods,
relationship descriptions, and timing data, as well as various data partitioning and
task allocation methods for manipulating them.

. Our study revealed that feature sets are best represented in a hierarchical structure

that is compact and regular, suitable for partitioning and reintegrating, provides
fast spatial indexing, and preserves locality. The “quadtree” and its extension, the
“octree,” fulfills these requirements and is widely used in computer vision, spatial
databases, and related areas. However, little work had been done to justify the
claim that algorithms based on these structures are suited for parallel and
distributed implementations. Our research revealed that quadtree/octree nodes
are indeed easily distributed over multiprocessors and integrated without
significant communication overhead [Chien and Kanade 89}, [Chien 89].

However, data/task partitioning and allocation procedures for grouping and
recognizing complex features are usually irregular. They are difficult to parallelize
and require the facilities of general-purpose processors. In 1987 neither tightly
coupled multiprocessors nor loosely coupled multicomputers were capable

of effectively handling dynamic data/task migration schemes: Tightly coupled
parallel systems didn’t provide the appropriate communication mechanisms, and
loosely coupled multiprocessors were limited by the Ethernet’s lov. handwidth
and high latency. However, Carnegie Mellon was developing the fiberoptic-based
Nectar network system (described in Chapter 1) that promised to address the
above-mentioned communication problems. This prospect encouraged us to
develop intermediate-level vision processing algorithms for implementation on
the new Nectar system.

As we began porting our new algorithms to the Nectar architecture, we realized a
need for mechanisms and primitives that would make parallel vision
programming easier. This insight led us to design the “Paradigm” environment.

An environment for parallel,
distributed vision processing

The Paradigm environment (Figure 4-1) maps operations to the underlying
architecture so that concurrency at both the task and subtask levels is maximized.
The application programmer simply needs to concentrate on designing data/task
partitioning strategies, while Paradigm handles transparently the complexities of
communication and data/task allocation and scheduling.
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Figure 4-1: The Paradigm environment

The user’s task-partitioning scheme is executed by Paradigm’s central “controller”
whose task-queue server allocates the partitioned tasks/subtasks to the
distributed “workers” (one on each node) for execution. Each worker has its own
communication server that uses the message-passing model.

The main purpose of data/task partitioning is to improve load balancing and
thereby speed execution. Load balancing is achieved by distributing subtasks to all
processors so that they are kept equally busy. However, if tasks are partitioned
without considering their spatial relationships, the complexity of other operations,
such as integrating partial results and establishing adjacency among nodes, will
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increase. Trying to avoid the overhead of future integration by simply combining
spatially adjacent data items will cause further load imbalance when one group of
adjacent subsets requires long processing times and the other extremely short ones.

We solved this dilemma by developing a muitiple-task-queue mechanism, a
variation of the single task queue. With multiple task queues the locality of spatial
data can be preserved and interprocessor communication minimized. The task
queues are based in the controller, and each worker is assigned one queue. Tasks
and subtasks with spatially adjacent data are placed in the same task queue. Each
worker fetches a task for execution from its assigned task queue, and only when its
own queue is empty can the worker fetch tasks from other queues. This scheme
maintains spatial adjacency while smoothing out variations in processing time.

A spatial database implementation

To test the effectiveness of our parallel processing environment we built a spatial
database and implemented it on the Nectar system.Taking a set of spatial entities
(polygons) as input, this subsystem can answer queries about their geometric
properties, such as area, convex hulls, and overlapping regions. In addition, it can
perform spatial operations, for example, checking for containment and adjacency.
Some of the queries are simple, others time consuming, some relate to a single data
item, others involve the entire data set. We also designed an algorithm that
efficiently indexes the input polygons by representing them in quadtree structures.
This quadtree-generating scheme is a preprocessing phase for all subsequent
spatial operations.

When we implemented our spatial database the Nectar system consisted of only
two nodes. These resources were too limited to allow analyzing the performance
of the Paradigm environment. However, we were able to observe Paradigm’s
ability to handle several tasks (queries) concurrently and to dynamically partition,
schedule, and allocate tasks and subtasks.

Processing 3-D object representations

Our next goal was to demonstrate Paradigm’s ability to parallelize existing
algorithms and map them to the Nectar architecture. We selected algorithms that
rebuild the three-dimensional (3-D) structure of objects or environiaents from their
two-dimensional (2-D) images.

Most 3-D representation and processing schemes require considerable amounts of
memory and computation. The technique we adopted, referred to as volume
intersection, facilitates describing the 3-D structure of an object from three or more
different noncoplanar views (silhouettes). This approach provides tremendous
savings in storage requirements since only the silhouettes of each object need to be
stored in the model database. Storage is further reduced by using quadtrees for the
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silhouettes and an octree for the 3-D structure of the object. An additional benefit
of this technique is the low processing time required for rebuilding the object’s 3-
D structure.

To provide information about the object’s surface, we combined this volume-
intersection algorithm with a multilevel boundary search. This procedure extracts
and encodes information describing the interfaces beiween the object and its
surrounding space.

We implemented these sequential algorithms in parallel by mapping Paradigm'’s
controller and its three workers to the then available Nectar prototype that
connected three nodes. As input images we used three orthogonal views of an
aircraft, from which our parallel algorithms generated a quadtree for each view
and a volume/surface octree as follows:

The image-processing task is divided into the following subtasks: data conversion,
volume inter. _:tion, surface detection, and graphic display. Through data
partitioning (input and output partitioning) each subtask is further divided into
smaller subtasks. Thus, a quadtree from each view/image is generated by
partitioning the “input” image into nXn sub-images (where n stands for the
number of workers). Each sub-image is represented as a subquadtree. The
resulting sub-quadtrees are then broadcast to the workers for the octree
generation.

An octree of the object is generated by partitioning into subquadtrees each of the
three “output” quadtrees representing a view of the object. Three corresponding
subquadtrees are then “intersected” to generate nXnXn suboctrees that can be
merged into an octree for a 3-D representation of the object. (This output-
partitioning strategy is also employed by the graphic display task.)

Paradigm and the underlying Nectar architecture provide support for efficiently
broadcasting the data to all processing nodes. No communication among workers
is required for generating subquadtrees and suboctrees. However, throughout the
multilevel boundary-search process workers need to exchange information. That
this data exchange is carried out in real time is ensured by Nectar’s high-
bandwidth and low-latency communication channel and by Paradigm’s
comununication servers.

Each worker creates at each node a partial view of the object. The controller
combines these partial views into a complete, three-dimensional image of the
object that can be observed in a graphic display.

This implementation demonstrated that the Paradigm environment is capable of
parallelizing existing vision algorithms. Since all operations are simply seen as
tasks, this environment handles any image-processing level <qually well. In
addition, Paradigm allows users to execute particular tasks on specific machines.
For example, low-level image processing and limited types of feature processing
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can be implemented on a homogeneous multiprocessor, such as iWarp, while the
fiber-optic Nectar network is best used for more general tasks in intermediate-level
feature processing and high-level image understanding.
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