Sodium Cyanide Increases Cytosolic-Free Calcium: Evidence for Activation of the Reversed Mode of the Na+/Ca²⁺ Exchanger and Ca²⁺ Mobilization from Inositol Trisphosphate-Insensitive Pools

Juliann G. Kiang and Robert G. Smallridge

Walter Reed Army Institute of Research
Washington, DC 20307-5100

US Army Medical Research and Development Command
Pt. Detrick, Frederick, MD 21702-5012

Sodium Cyanide Increases Cytosolic-Free Calcium: Evidence for Activation of the Reversed Mode of the Na+/Ca²⁺ Exchanger and Ca²⁺ Mobilization from Inositol Trisphosphate-Insensitive Pools

Title and Subtitle

Sodium Cyanide Increases Cytosolic-Free Calcium: Evidence for Activation of the Reversed Mode of the Na+/Ca²⁺ Exchanger and Ca²⁺ Mobilization from Inositol Trisphosphate-Insensitive Pools

ABSTRACT

This study characterized the cytosolic free Ca²⁺ increase during the reverse mode of Na⁺/Ca²⁺ exchange and Ca²⁺ mobilization from inositol trisphosphate-sensitive pools. In the presence of 25 mM NaCl, 5 mM CaCl₂, and 10 mM Hepes, the increase in intracellular Ca²⁺ was measured by the fluorescent indicator Fluo-3/AM in human A20/LC cells. The secretion experiments were conducted at 37°C. The measurements were performed using a confocal microscope. The results indicated that Na⁺/Ca²⁺ exchange activated the reverse mode of the Na⁺/Ca²⁺ exchanger, leading to an increase in cytosolic Ca²⁺. The increase in cytosolic Ca²⁺ was blocked by the Na⁺/Ca²⁺ exchanger inhibitors, BAPTA and Mg²⁺. The reverse mode of the Na⁺/Ca²⁺ exchanger was activated by the increase in cytosolic Na⁺, which resulted in an increase in cytosolic Ca²⁺. The increase in cytosolic Ca²⁺ was also observed in the presence of extracellular Ca²⁺, indicating that the reverse mode of the Na⁺/Ca²⁺ exchanger was activated by the increase in extracellular Na⁺. The reverse mode of the Na⁺/Ca²⁺ exchanger was activated by the increase in cytosolic Na⁺, which resulted in an increase in cytosolic Ca²⁺. The reverse mode of the Na⁺/Ca²⁺ exchanger was activated by the increase in extracellular Na⁺, indicating that the reverse mode of the Na⁺/Ca²⁺ exchanger was activated by the increase in extracellular Na⁺.
Best Available Copy
Sodium Cyanide Increases Cytosolic Free Calcium: Evidence for Activation of the Reversed Mode of the Na⁺/Ca²⁺ Exchanger and Ca²⁺ Mobilization from Inositol Trisphosphate-Insensitive Pools

JULIANN G. KIANG AND ROBERT C. SMALLRIDGE

Department of Clinical Physiology; Division of Medicine, Walter Reed Army Institute of Research, Washington, DC 20307-5100

Received October 21, 1993; accepted February 25, 1994

Sodium Cyanide Increases Cytosolic Free Ca²⁺ Concentration ([Ca²⁺]) in NaCN-treated human A-431 cells. The resting [Ca²⁺] was 85 ± 8 nM (n = 141) in untreated cells at 37°C, determined with the fura-2 fluorescence probe. When cells were treated with NaCN, [Ca²⁺] increased in a time- and NaCN concentration-dependent manner. When cells were exposed to 10 mM NaCN for 10 min, [Ca²⁺] increased 278 ± 28% (n = 5) but returned to normal within 45 min after treatment. The [Ca²⁺] increase depended on the presence of external Ca²⁺, La²⁺, and Cd²⁺, but not verapamil or nifedipine, inhibited the NaCN-induced [Ca²⁺] increase. The NaCN-induced [Ca²⁺] increase also depended on external Na⁺ (K₁/₂ = 85 mM). The intracellular Na⁺ concentration, measured with the fluorescence probe SBFI, increased 267 ± 16% after NaCN treatment. The NaCN-induced [Ca²⁺] increase was modulated by treatment with ouabain or veratridine and was completely blocked by tetrodotoxin, amiloride (K₁/₂ = 5.4 μM), and dichlorobenzamil (K₁/₂ = 0.28 μM). These results suggest that NaCN activates the Na⁺/Ca²⁺ exchange system. TMB-8 and ryanodine both partially blocked the increase in [Ca²⁺], indicating that Ca²⁺ release from intracellular pools also occurred after the initial Ca²⁺ influx. NaCN decreased inositol trisphosphates production. U-73122, bradykinin, or monensin did not prevent the NaCN-induced increase in [Ca²⁺]. However, the magnitude of the [Ca²⁺] increase caused by NaCN was abolished in ionomycin-treated cells, indicating that intracellular Ca²⁺ release induced by NaCN is derived from an ionomycin-sensitive Ca²⁺ pool. The results suggest that NaCN initially increased Na⁺ influx, which activated the reverse mode of a Na⁺/Ca²⁺ exchanger, leading to an increase in Ca²⁺ influx. The Ca²⁺ influx induced a Ca²⁺ mobilization from only an ionomycin-sensitive intracellular Ca²⁺ pool containing ryanodine receptors. © 1994 Academic Press, Inc.

Cyanide has been shown to affect calcium homeostasis. Cyanide causes an increase in intracellular Ca²⁺ concentration ([Ca²⁺]) in PC12 cells (Johnson et al., 1987; Maduh et al., 1990), rabbit carotid body chemoreceptors (Biscoe and Duchen, 1989; Sato et al., 1991), rat ventricular myocytes (Eisner et al., 1989), rat osteoclasts (Teti et al., 1989), and Leishmania donovani promastigotes (Philosoph and Zilberstein, 1989). In PC12 cells the increase is believed to be activated by voltage-gated Ca²⁺ channels (Johnson et al., 1987). In rabbit carotid body chemoreceptors it is due to inhibition of Na⁺/Ca²⁺ exchange (Biscoe and Duchen, 1989; Sato et al., 1991). In Leishmania donovani promastigotes, it results from a Ca²⁺ mobilization from intracellular Ca²⁺ pools (Philosoph and Zilberstein, 1989).

It is believed that an abrupt increase in [Ca²⁺], is associated with cell death (Farber, 1981; Orrenius et al., 1989; Trump et al., 1989) mediated by activation of Ca²⁺-dependent proteases (Geeraerts et al., 1991). However, Snyder et al. (1993) reported that the cyanide killing of hepatocytes correlated closely with changes in the mitochondrial membrane potential. On the contrary, Sakaida et al. (1992) concluded that cyanide kills cultured hepatocytes because of an alteration in the interaction between the cytoskeleton and the plasma membrane.

The relationship between cyanide and human epithelial cells has not previously been described. Because cyanide is readily absorbed from all routes, including the skin, and death can occur within minutes or hours depending on the route of exposure (Rumack and Peterson, 1980), human skin epidermoid A-431 cells were used to examine the effects of cyanide on [Ca²⁺], to investigate the mechanisms underlying the increase in [Ca²⁺], that occurred following cyanide exposure and to study the relationship between the increase in [Ca²⁺], and cell viability after cyanide exposure. The pathways involved in Ca²⁺ homeostasis in these cells have been thoroughly characterized and are not different from other types of cells (Galloway et al., 1990; Lin et al., 1992). In this study we found that cyanide increased [Ca²⁺], and decreased inositol trisphosphates (InsP₃). The [Ca²⁺] increase was because of a Na⁺ influx that activated the re-
versed mode of the Na⁺/Ca²⁺ exchanger, thereby leading to an increased Ca²⁺ entry. The Ca²⁺ influx induced, in turn, a Ca²⁺-stimulated mobilization of Ca²⁺ from intracellular Ca²⁺ pools through ryanodine receptor channels that we found were sensitive to ionomycin but not to bradykinin or monensin. This mechanism underlying the [Ca²⁺], increase caused by NaCN was different from those mechanisms found in other types of cells (Biscoe and Duchen, 1989; Johnson et al., 1987; Philosoph and Zilberstein, 1989; Sato et al., 1991), but was similar to the heat shock-induced increase in [Ca²⁺], (Kiang et al., 1992).

MATERIALS AND METHODS

Cell culture. Human epidermoid carcinoma A-431 cells (American Type Culture Collection, Rockville, MD) were grown on glass coverslips (9 × 35 mm, Clay Adams, Lincoln Park, NJ) incubated at 37°C in a 5% CO₂ atmosphere. The tissue culture medium was Dulbecco's modified eagle medium supplemented with 0.3% glutamine, 4.5 g/liter glucose, 25 mM Heps, 10⁻⁵ g/liter bovine serum, 50 µg/ml penicillin, and 50 U/ml streptomycin (GIBCO/BRL, Gaithersburg, MD). Cells were fed every 3–4 days (Giard et al., 1973). Cells from passages 28–50 were used for experiments.

Measurements of cytosolic free Na⁺ and Ca²⁺. Confluent monolayers of cells were loaded with 5 µM SBFI-AM plus 0.2% pluronic F-127 (to make cells more permeable to the probe) for 2 hr at 37°C before measurements of cytosolic free Na⁺ ([Na⁺],) or with 5 µM fura-2AM plus 0.2% pluronic F-127 for 60 min for measurements of cytosolic free Ca²⁺ ([Ca²⁺],). Pluronic F-127 at 0.2% does not affect the relationship between fluorescence ratio and actual [Ca²⁺], because the [Ca²⁺], of cells was similar after being incubated in the dye buffer with or without pluronic F-127 (data not shown). Cells were then washed with Na⁺ Hanks' solution twice before fluorescence measurements. The fluorescence signal was measured with a PFI DeltaScan spectrophotometer (Photon Technology International, Inc., South Brunswick, NJ). The rate of leakage of fura-2 from the cells and the method to determine [Ca²⁺], have been published previously (Grynkiewicz et al., 1985; Gunter et al., 1988; Kang, 1991; Kiang et al., 1992; Kiang and McClain, 1993).

To determine [Na⁺], the fluorescence signal was measured with emission at 510 nm and excitation at 340 and 385 nm (slit width 4 nm). Autofluorescence from cells not loaded with dye was in the range of 3.5–8.5 × 10⁶ photons/sec and was subtracted from the SBFI signal (after subtraction, bound form: 1.2–1.4 × 10⁸ photons/sec: free form: 1.5–2.0 × 10⁸ photons/sec). SBFI leaked out of A-431 cells at a rate of 0.11 ± 0.07%/min (n = 7). Cells were washed thoroughly in Hanks' solution within 10 sec before they were transferred to a cuvette to measure [Na⁺]. Because the apparent affinity of SBFI for Na⁺ is reported to be sensitive to pH (Kawashishi et al., 1991), the fluorescence signal at different pHs was determined using a method described by Haroutunian et al. (1989). Calibrated Na⁺, solutions used to determine [Na⁺], were prepared from appropriate mixtures of high Na⁺ and high K⁺ solutions. The high Na⁺ solution was identical to regular Hanks' solution, and the high K⁺ solution differed by having Na⁺ completely replaced by K⁺.

Ca²⁺ efflux. To measure Ca²⁺ efflux, cells were incubated in a solution containing 45Ca²⁺ (final concentration 1 µCi/ml, 0.3 mCi/mmol) at 37°C for 1 hr. The total 45Ca²⁺ radioactivity incorporated into cells was counted before and after 10 min of NaCN treatment.

Inositol trisphosphate measurements. Cells were grown on 6-well tissue culture plates (2 × 10⁶ cells/well) and incubated with [³²P]myoinositol (2 µCi/ml, 0.22 nmol/ml) in growth medium for 24 hr. The cells were washed with Na⁺ Hanks' solution twice before the NaCN treatment. The reaction was stopped by the addition of 3 ml of ice-cold 4.5% HClO₄. Na⁺ Hanks' solution (2:1, v/v) to each well. The plate was chilled for 30 min and cells were removed by scraping. The supernatants were prepared for isolation of the [³²P]inositol metabolites by adjusting the pH to 8.0 with a solution of 0.5 M KOH, 9.0 mM Na₂BO₃, and 1.9 mM EDTA. The samples were stored at -20°C overnight. After thawing, the KClO₄ salts precipitated and were removed by centrifugation at 2500 rpm for 10 min. One hundred microliters of the supernatant was used to determine the total radioactivity in the sample. The remainder was applied to 1 ml of suspended Dowex AG 1-×8 resin in the formate form (100–200 mesh). The [³²P]inositol phosphates were eluted according to the method of Berridge and Irvine (1989).

Solutions. Hanks' solution contained: 145 mM NaCl, 4.6 mM KCl, 1.3 mM MgCl₂, 1.6 mM CaCl₂, and 10 mM Heps (pH 7.40 at 24°C). In Na⁺-free Hanks' solution, N-methyl(+)glucamine (NMG) was used to substitute for equimolar concentrations of Na⁺. Ca²⁺-free Hanks' solution was prepared by adding 10 mM EGTA to nominally Ca²⁺-free Hanks' solution.

Statistical analysis. All data are expressed as the means ± SEM. Analysis of variance, Student's t test, Studentized range test, and Bonferroni's inequality were used for comparison of groups (Sokal and Rohlf, 1969). Curve fitting was determined using the Inplot program (GraphPad, San Diego, CA).

Chemicals. Fura-2AM, SBFI-AM, nigericin, ionomycin, and 8-(diethylamino)octyl-3,4,5-trimethoxybenzoate (TMB-8) were purchased from Molecular Probes, Inc. (Eugene, OR). Other chemicals used in this study were: L-glutamine, bovine serum albumin, N-methyl(+)glucamine, verapamil hydrochloride, LaCl₃, CdCl₂, ouabain, veratridine, tetrodotoxin, ryanodine, ruthenium red, monensin, caffeine (Sigma Chemical Co., St. Louis, MO), nifedipine (Calbiochem, Torrance, CA), 5-(N,N-hexamethylene) amiloride (Research Biochemicals Inc., Natick, MA), and Ca²⁺²⁺ (ICN, Irvine, CA). 1-[6-[17β-3-methoxyestr-1,3,5(10)-trien-17-ylaminol]hexyl]-2,5-dione (U-73122) was generously provided by The Upjohn Co. (Kalamazoo, MI). Dichlorobenzamil was provided by Dr. Peter K. S. Siegel (Merck & Co, Inc., West Point, PA).

RESULTS

Since compartmentalization of fura-2 and SBFI had not been previously determined in A-431 cells, we identified the subcellular location of these probes after sequential treatment with 20 µM digitonin, 100 µM digitonin, and 0.2% Triton X-100, with open cellular compartments corresponding to cytosol, nonmitochondrial organelles, and mitochondria, respectively (Gores et al., 1989; Kawashishi et al., 1991; Nieminen et al., 1990). Table 1 shows that

<table>
<thead>
<tr>
<th>TABLE 1</th>
<th>Fura-2 and SBFI Release by Digitonin or Triton X-100</th>
</tr>
</thead>
<tbody>
<tr>
<td>Treatment</td>
<td>Fura-2</td>
</tr>
<tr>
<td>Digitonin</td>
<td>20 µM</td>
</tr>
<tr>
<td></td>
<td>100 µM</td>
</tr>
<tr>
<td>Triton X-100</td>
<td>0.2%</td>
</tr>
</tbody>
</table>

Note. Cells were loaded with the fluorescence probe and the results were calculated as the percentage of fluorescence remaining after exposure to the detergents (n = 3).
NaCN-Induced Increase in [Ca2+]

The resting [Ca2+], in adherent cells at 37°C in a normal Na+ Hanks’ solution was 85 ± 8 nM (n = 141). In the absence of external Ca2+, the resting [Ca2+] decreased to 59 ± 7 nM (n = 7; p < 0.05). These data indicate that there is a considerable contribution of external Ca2+ to the resting [Ca2+], (Kiang, 1991; Kiang et al., 1992). Cells exposed to NaCN exhibited an increase in [Ca2+], that was time- and cyanide concentration-dependent (Figs. 1A and 1B). Trypan blue dye exclusion and replating efficiency were used to measure the viability of NaCN-treated cells. Adherent cells treated with 10 mM NaCN for 10 min maintained their ability to exclude trypan blue over a period of 60 min. The replating efficiency of these cells 1 day after NaCN treatment was not different from untreated cells (control, 91 ± 2%; NaCN, 92 ± 2%, n = 6 for both groups, p > 0.05).

We observed that [Ca2+], returned to the baseline 45 min after cells were exposed to NaCN (10 mM, 10 min) (Fig. 1C). These cells remained viable after NaCN was removed (data not shown). All of the remaining mechanistic studies employed a 10-min exposure of the cells to 10 mM NaCN because this treatment regimen was both nonlethal and produced a sizeable increase in [Ca2+], of approximately 250%. Each experiment was performed with its own controls because the resting [Ca2+], was different in different experiments.

Effect of Polyvalent Ions on the NaCN-Induced Increase in [Ca2+]

In an effort to determine the source of the NaCN-induced increase in [Ca2+], a series of experiments were performed in the absence of extracellular Ca2+. As Fig. 2 depicts, removal of extracellular Ca2+ prevented the NaCN response. When Ca2+ was added to the buffer, an increase in [Ca2+], by NaCN was observed, suggesting that this response is due primarily to Ca2+ influx. The influx of Ca2+ into other kinds of cells can be blocked by Cd2+ or La3+ (inorganic Ca2+ channel blockers) in the external medium (Hagiwara, 1983; Trosper and Philipson, 1983). In A-431 cells both Cd2+ and La3+ inhibited the increase in [Ca2+], in a concentration-dependent manner (Fig. 3), with La3+ being more effective than Cd2+. The K\textsubscript{i/2} for La3+ and Cd2+ were 0.2 and 28 μM, respectively, similar to the values determined in synaptosomes (Nachshen, 1984) and cardiac sarcolemmal vesicles (Trosper and Philipson, 1983).

Agents such as verapamil and nifedipine that are known to interfere with L-type voltage-gated Ca2+ channels (Hagiwara, 1983) were also tested. Neither agent up to 1 mM inhibited the NaCN response (Table 2). These results ruled out the possibility that Ca2+ influx occurred through L-type voltage-gated channels.

Ca2+ efflux was probably not affected by NaCN because Ca2+ retention in cells treated with 10 mM NaCN for 10 min was not statistically different from that in untreated cells (control: 8.3 ± 0.5 nmol/mg protein; NaCN: 7.5 ± 0.4 nmol/mg protein, n = 3, p > 0.05, Student’s t test). This
Indicates that the increase in $[\text{Ca}^{2+}]_i$ was probably not due to an impairment of Ca^{2+} efflux.

Effect of Extracellular Na$^+$ on the NaCN-Induced Increase in $[\text{Ca}^{2+}]_i$ and $[\text{Na}^+]_i$

Because La^{3+} can, in addition to its action as a Ca^{2+} channel blocker, also inhibit $\text{Na}^+/\text{Ca}^{2+}$ exchange (Kaczorowski et al., 1984; Troper and Philipson, 1983), it remained to be determined whether the La^{3+} effect might also indicate a role for $\text{Na}^+/\text{Ca}^{2+}$ exchange in the NaCN-induced increase in $[\text{Ca}^{2+}]_i$. A-431 cells have been shown to possess a $\text{Na}^+/\text{Ca}^{2+}$ exchanger (Kiang et al., 1992). If this exchanger is activated when cells are exposed to NaCN, then we might observe changes in intracellular Na^+ concentration ($[\text{Na}^+]_i$) after NaCN treatment. We determined that NaCN does alter $[\text{Na}^+]_i$. After treating cells with NaCN (10 mM, 10 min), the intracellular Na^+ concentration ($[\text{Na}^+]_i$) was 16 ± 1 mM ($n = 4$), which differed from levels measured in control cells (6.2 ± 1.5 mM, $n = 9$). The removal of extracellular Na^+ inhibited the NaCN-induced increase in $[\text{Na}^+]_i$, which suggests that the increase in $[\text{Na}^+]_i$ is because of Na^+ entry.

![Graph](image)

FIG. 3. Inhibition by La^{3+} and Cd^{2+} of the NaCN-induced increase in $[\text{Ca}^{2+}]_i$. Cells were treated with NaCN (10 mM, 10 min) in the presence of various concentrations of La^{3+} (○) or Cd^{2+} (□) ($n = 3$), and two sigmoid-curved fits are presented. The calculated $K_{1/2}$ for La^{3+} and Cd^{2+} are 0.2 and 28 µM, respectively.

In order to understand more of the role of Na^+ we performed a series of experiments to modify Na^+ gradients across the plasma membrane by changing extracellular Na^+ or $[\text{Na}^+]_i$, and measuring their effect on the NaCN-induced $[\text{Ca}^{2+}]_i$ increase. We increased $[\text{Na}^+]_i$, by incubating cells in Na$^+$-Hanks' solution containing 1 mm ouabain (a Na$^+/K^+$-ATPase blocker) for 30 min at 37°C. The $[\text{Na}^+]_i$, in these cells increased to 26 ± 4 mM ($n = 3$). The $[\text{Ca}^{2+}]_i$ was stable but higher than that in cells not exposed to ouabain (control: 58 ± 9 mM, ouabain: 111 ± 17 mM, $n = 3$, $p < 0.05$), which served to confirm the presence of a $\text{Na}^+/\text{Ca}^{2+}$ exchanger in these cells. NaCN increased $[\text{Ca}^{2+}]_i$, and $[\text{Na}^+]_i$, in ouabain-treated cells by 241 ± 56% ($n = 3$) and 238 ± 10% ($n = 3$), respectively. These increases were less ($p < 0.05$) than those observed in cells not treated with ouabain, where $[\text{Ca}^{2+}]_i$ and $[\text{Na}^+]_i$ increased by 367 ± 15 and 267 ± 16% ($n = 3$), respectively.

The removal of external Na^+ inhibited the $[\text{Ca}^{2+}]_i$ increase. The NaCN-induced increase in $[\text{Ca}^{2+}]_i$, was induced by buffer concentrations of Na^+ greater than 30 mM and was maximal in the presence of greater than 110 mM external Na^+ (Fig. 4). The $K_{1/2}$ for extracellular Na^+ was 85 mM.

The contribution of Na^+ from 10 mM NaCN was included when calculating the final concentration of external Na^+ in these experiments, but the quantity of Na^+ derived from the 10 mM NaCN did not affect the cyanide-induced increase in $[\text{Ca}^{2+}]_i$. This is because all studies (unless indicated otherwise) were conducted in Hanks' solution containing 145 mM Na^+, a concentration above the 110 mM that stimulated a maximal increase in $[\text{Ca}^{2+}]_i$. The results of these experiments clearly show that the NaCN-induced increases in $[\text{Ca}^{2+}]_i$ depend on $[\text{Na}^+]_i$.

Effect of Amiloride and Dichlorobenzamil on the NaCN-Induced Increase in $[\text{Ca}^{2+}]_i$

The role of $\text{Na}^+/\text{Ca}^{2+}$ exchange in the NaCN-induced increase in $[\text{Ca}^{2+}]_i$, can be tested by incubating cells with drugs that inhibit the exchanger. Amiloride and dichlorobenzamil, both of which have been shown to inhibit the

![Table](image)

TABLE 2

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Concentration</th>
<th>Control</th>
<th>NaCN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vehicle</td>
<td>82 ± 9</td>
<td>250 ± 22*</td>
<td></td>
</tr>
<tr>
<td>Verapamil</td>
<td>1 mM</td>
<td>91 ± 19</td>
<td>266 ± 83*</td>
</tr>
<tr>
<td>Nifedipine</td>
<td>1 mM</td>
<td>99 ± 18</td>
<td>350 ± 60*</td>
</tr>
<tr>
<td>U-73122</td>
<td>5 µM</td>
<td>115 ± 18</td>
<td>246 ± 56*</td>
</tr>
</tbody>
</table>

*Note. Cells were treated with 10 mM NaCN for 10 min ($n = 3$). *$p < 0.05$ vs control.
pools can be stimulated by Ca2+ in certain types of cells. Effect on sensitive Na+ channels contributes to the NaCN effect [Inhibitor). Data indicate that the Na+ influx through tetrodotoxin-induced increase in [Ca2+]\textsubscript{i}. Absence of veratridine (336 lower than that observed after treatment with NaCN in the mM (n = 4). Subsequent NaCN treatment elicited an increase in [Ca2+]\textsubscript{i} only 56 ± 14% (n = 3, p < 0.05), suggesting that ryanodine receptor channels are involved. These results indicate that the NaCN-induced increase in [Ca2+]\textsubscript{i} results from both Ca2+ influx and Ca2+ released from intracellular Ca2+ pools that have ryanodine receptors.

Effect of NaCN on Intracellular Ca2+ Pools

This laboratory (Kiang et al., 1992) previously reported that A-431 cells have an intracellular Ca2+ pool that is sensitive to InsP\textsubscript{3}, and can be depleted by bradykinin (Wheeler et al., 1990). We, therefore, performed experiments to determine whether InsP\textsubscript{3} is involved in the increase in [Ca2+]\textsubscript{i} in cells treated with NaCN. NaCN itself caused a decrease in InsP\textsubscript{3} that depended on both the duration of cyanide treatment and its concentration (Figs. 6A and 6B). Moreover, U-73122, which inhibits InsP\textsubscript{3} production (Kiang and McClain, 1993; Smallridge et al., 1992; Smith et al., 1990), failed to block the increase in [Ca2+]\textsubscript{i}, caused by NaCN when used at concentrations up to 5 \(\mu\text{M}\) (Table 2). These results suggest that Ca2+ released from intracellular pools caused by NaCN was not derived from the InsP\textsubscript{3}-sensitive pool.

Effect of TMB-8 and Ryanodine on the NaCN-Induced Increase in [Ca2+]\textsubscript{i}

It is known that the release of Ca2+ from intracellular pools can be stimulated by Ca2+ in certain types of cells (Kiang et al., 1992; Kiang and McClain, 1993; Randriamampita et al., 1991). If Ca2+ influx induces Ca2+ release from intracellular pools, an incubation with Ca2+ mobilization blockers should attenuate the total increase in [Ca2+]\textsubscript{i}, caused by NaCN. NaCN (10 mM, 10 min) increased [Ca2+]\textsubscript{i}, by only 69 ± 11 and 146 ± 48% (n = 3, p < 0.05), respectively, in cells treated with TMB-8 (100 \(\mu\text{M}\)) or ryanodine (100 \(\mu\text{M}\)). Because ryanodine receptor channels are known to be stimulated by Ca2+ and inhibited by ruthenium red (see review, Tsien, 1990), we tested the effect of treating A-431 cells with ruthenium red (10 \(\mu\text{g/ml}\)) for 10 min prior to treatment with NaCN. NaCN increased [Ca2+]\textsubscript{i}, only 56 ± 14% (n = 3, p < 0.05), suggesting that ryanodine receptor channels are involved. These results indicate that the NaCN-induced increase in [Ca2+]\textsubscript{i} results from both Ca2+ influx and Ca2+ released from intracellular Ca2+ pools that have ryanodine receptors.

FIG. 4. Dependence of NaCN-induced increase in [Ca2+]\textsubscript{i} on external [Na+]. Cells were exposed to NaCN (10 mM, 10 min) in Hanks’ solution containing different [Na+] (n = 3–5). *p < 0.05 vs data found with [Na+] = 10 mM.

FIG. 5. Inhibition of the NaCN-induced [Ca2+]\textsubscript{i} by amiloride (○) and dichlorobenzamil (●). Cells were exposed to NaCN (10 mM, 10 min) in Na+ Hanks’ solution containing different concentrations of either inhibitor. Cells were then washed thoroughly before [Ca2+] measurements. Two sigmoidal-fitted curves are presented. The calculated \(K_{1/2}\) for amiloride and dichlorobenzamil are 5.4 and 0.28 \(\mu\text{M}\), respectively.
In A-431 cells, bradykinin (10 μM), monensin (200 μM), and ionomycin (1 μM) can deplete their respective intracellular Ca\(^{2+}\) pools (J. G. Kiang, unpublished data). The bradykinin-induced Ca\(^{2+}\) mobilization is mediated by InsP\(_3\). To determine which non-InsP\(_3\) sensitive pools responded to NaCN, cells were pretreated with bradykinin, monensin, and ionomycin. Table 3 shows the changes in [Ca\(^{2+}\)]\(_i\), observed in cells treated with ionomycin, monensin, or bradykinin in the presence of 1.6 mM external Ca\(^{2+}\) prior to NaCN exposure. When NaCN was applied to cells treated with 1 μM ionomycin, a concentration that depleted the ionomycin-sensitive intracellular Ca\(^{2+}\) pool, the magnitude of the [Ca\(^{2+}\)]\(_i\) increase was no greater than that which was attributable to Ca\(^{2+}\) influx alone (Table 3 and Fig. 7A). At 10 μM ionomycin, a concentration that saturated cells with Ca\(^{2+}\), NaCN did not produce further changes in [Ca\(^{2+}\)]\(_i\), (Fig. 7B). Both monensin and bradykinin at concentrations that depleted their respective Ca\(^{2+}\) pools did not have an effect on the NaCN-induced [Ca\(^{2+}\)]\(_i\), increase (Figs. 7C and 7D, Table 3), indicating that InsP\(_3\)- and monensin-sensitive pools are not involved.

It is generally assumed that cellular mitochondria normally contain stores of Ca\(^{2+}\) that can be released as free Ca\(^{2+}\) after mitochondrial depolarization. Kawanishi et al. (1991) reported that mitochondrial Ca\(^{2+}\) uptake or release did not contribute to Ca\(^{2+}\) homeostasis in hepatocytes treated with carbonyl cyanide m-chlorophenylhydrazone (CCCP, 100 μM). CCCP increased the resting [Ca\(^{2+}\)]\(_i\), in A-431 cells from 171 ± 11 nM (n = 3) to 408 ± 53 nM (n = 3, p < 0.05). Treatment of these cells with 10 mM NaCN for 10 min still increased [Ca\(^{2+}\)]\(_i\), by 334 ± 72% (n = 3, p < 0.05), suggesting that the NaCN-induced increase in [Ca\(^{2+}\)]\(_i\), is not associated with a release of Ca\(^{2+}\) from mitochondria.

DISCUSSION

This study shows that NaCN induced a gradual increase in [Ca\(^{2+}\)]\(_i\) in A-431 cells. The phenomenon is similar to the effect found in rat PC12 cells (Johnson et al., 1987; Maduh et al., 1990), rabbit carotid body chemoreceptors (Biscoe and Duchen, 1989), rat ventricular myocytes (Eisner et al., 1989), and rat osteoclasts (Teti et al., 1989). In A-431 cells the gradual increase is primarily due to an increase in [Na\(^{+}\)], followed by a Ca\(^{2+}\) influx, because removal of extracellular Na\(^{+}\) or Ca\(^{2+}\) prevented the cyanide-induced increase in [Ca\(^{2+}\)],. A reduction in Ca\(^{2+}\) influx and a consequent accumulation of intracellular Ca\(^{2+}\) was not the cause of the elevated [Ca\(^{2+}\)], because 45Ca\(^{2+}\) influx showed a slight but not statistically significant decrease in cells treated with NaCN. It is not known whether such a small decrease in Ca\(^{2+}\) efflux could contribute to the entire increase in [Ca\(^{2+}\)], caused by cyanide. However, it seems unlikely because a reduction of Ca\(^{2+}\) efflux was the cause, the cyanide-induced increase in [Ca\(^{2+}\)], should be observed even in the absence of external Ca\(^{2+}\). Such was not the case here. Meanwhile, this may exclude the possibility that Ca\(^{2+}\)-ATPase is affected by the cyanide-induced reduction of ATP levels in the cells (measured as a 32% reduction after a 10-min exposure (Kiang et al., 1991)). The fact that La\(^{3+}\) and Cd\(^{2+}\) (Ca\(^{2+}\) influx blockers) both blocked the cyanide-induced increase in [Ca\(^{2+}\)], reinforces the view that cyanide stimulates Ca\(^{2+}\) influx.

Five observations suggest that the [Ca\(^{2+}\)]\(_i\), increase is mediated by Na\(^{+}\)/Ca\(^{2+}\) exchange systems. First, the cyanide-

TABLE 3

Effect of Ionomycin, Monensin, and Bradykinin on the NaCN-Induced Increase in [Ca\(^{2+}\)]

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Concentration</th>
<th>Increase in [Ca(^{2+})] (nM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NaCN alone</td>
<td></td>
<td>258 ± 67</td>
</tr>
<tr>
<td>Ionomycin</td>
<td>1 μM</td>
<td>133 ± 34*</td>
</tr>
<tr>
<td></td>
<td>10 μM</td>
<td>0</td>
</tr>
<tr>
<td>Monensin</td>
<td>200 μM</td>
<td>248 ± 69</td>
</tr>
<tr>
<td>Bradykinin</td>
<td>10 μM</td>
<td>402 ± 100</td>
</tr>
</tbody>
</table>

*Note: Cells were treated with NaCN (10 mM, 10 min) in the presence of ionomycin, monensin, or bradykinin (n = 3). *p < 0.05 vs control cells. Student t test.*

![FIG. 6. Inhibition of inositol trisphosphate (InsP\(_3\)) production by NaCN. (A) InsP\(_3\) production after exposing cells to 10 mM NaCN for various periods of time. (B) InsP\(_3\) production after exposing cells to different concentrations of NaCN for 10 min (n = 3). *p < 0.05 vs 100%.](image-url)
induced increase in [Ca$^{2+}$]$_i$ was inhibited by La$^{3+}$ and Cd$^{2+}$. Although La$^{3+}$ and Cd$^{2+}$ are effective inorganic Ca$^{2+}$ channel blockers, they are known inhibitors of the Na$^+$/Ca$^{2+}$ exchanger (Hagiwara, 1983; Trosper and Philipson, 1983). Second-messenger-operated Ca$^{2+}$ channels are not affected by cyanide based on our results that cyanide decreased InsP$_3$. Second, cyanide caused an increase in [Na$^+$], of 263 ± 16%. This increase in [Na$^+$], was different from observations with hepatocytes. Kawanishi et al. (1991) reported that treatment with 2.5 mM KCN plus 0.5 mM iodoacetic acid increased [Na$^+$], rapidly without changing [Ca$^{2+}$]. We found significant increases in both of these ions in A-431 cells treated with 2.5 mM NaCN ([Ca$^{2+}$], increased 70 ± 5% and [Na$^+$], increased 67 ± 4%). The differences between our data and theirs may be because of the different cells used and/or their combination of cyanide with iodoacetic acid. Third, the NaCN-induced increase in [Ca$^{2+}$], depended on external [Na$^+$]. Fourth, changing the Na$^+$ gradient across the cell membrane by pretreatment with ouabain or veratridine, or removal of external Na$^+$, changed the cyanide-induced [Ca$^{2+}$], increase, suggesting that the Na$^+$ entry is necessary. A role for extracellular Na$^+$ is indicated by several of our observations. Cyanide increased [Na$^+$], only in the presence of extracellular Na$^+$. Moreover, pretreatment with tetrodotoxin completely inhibited the cyanide effect, indicating that Na$^+$ entry through tetrodotoxin-sensitive Na$^+$ channels plays a critical role. Schemes by which a cyanide-induced reduction of ATP decreased Na$^+$/K$^+$ ATPase activity leading to accumulation of intracellular Na$^+$ (Stallcup, 1986) do not reflect our findings. Fifth, amiloride and dichlorobenzamil, which block the Na$^+$/Ca$^{2+}$ exchanger and Na$^+$ channels, completely blocked the cyanide effect.

It appears that the cyanide-induced influx of Ca$^{2+}$ triggered mobilization of Ca$^{2+}$ from intracellular Ca$^{2+}$ pools because the Ca$^{2+}$ mobilization blocker, TMB-8, diminished the cyanide response. This finding was supported by the data obtained from cells treated with ryanodine (an InsP$_3$-insensitive inhibitor of Ca$^{2+}$-induced Ca$^{2+}$ mobilization) or
our data seem to suggest that cyanide stimulates Na' entry

FIG. 8. Proposed mechanism of cyanide-induced [Ca2+]i increase. Cyanide (CN-) activates tetrodotoxin (TTX)-sensitive Na' channels to increase [Na+]i (step 1), which activates the reversed mode of the Na'/Ca2+ exchanger (step 2), thereby increasing [Ca2+]i (step 3). The increase in [Ca2+]i subsequently mobilizes Ca2+ into the cytoplasm from ionomycin-sensitive Ca2+ pools through ryanodine receptor channels (step 4). RyanR, ryanodine receptor; +, stimulated activities; −, inhibited activities.

ACKNOWLEDGMENTS

The authors thank Dr. D. E. McClain for his editorial effort and for drawing the cyanide mechanism schematic. Dr. M. L. Koening for the Ca2+ efflux measurement. SPC Lisa Drouin for running inositol triphosphate assays, and SGT Maureen Burns for technical support. This work was supported by the Department of the Army (In-House Laboratory Independent Research Fund Effort Control Number 0027).

REFERENCES

Galloway, R. J., Fein, H. G., and Smallridge, R. C. (1990). The sodium ionophore, monensin, raises cytosolic free calcium from both intracellu-

