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ABSTRACT

A new finite element modeling is presented to

investigate the static and dynamic behavior of laminated

composite beams with partial delamination. In this study, a

newly developed rectangular be-- 'lement is used. The element

has lateral and axial displacen !nt. is degrees of freedom but

no rotation. For simplicity, lineoir s.•ape functions are used

for the beam element. As a result, the element has six degrees

of freedom, four of which are the axial displacements at the

corner points and two are the lateral displacements at the

ends. In addition, contact-impact conditions are applied to

the finite element modeling to avoid overlapping of the upper

and lower portions of a delaminated section. The numerical

study shows that depending on existence of an embedded

delamination crack and its size, the response is different for

a beam with a crack and subjected to a short impulse load.
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I. INTRODUCTION

Laminated composite structures provide improved mechanical

properties such as high strength, stiffness, toughness and

high temperature performance [Ref. 1]. However, these

structures have more complicated failure mechanisms and modes

compared to those of conventional metallic structures. One of

the common failure mode is inter-delamination.

The objectives of this study are to develop a finite

element model for an analysis of laminated composite beam

structures containing an inter-delamination crack and to find

a methodology to detect an embedded interlaminar delamination.

For delaminated beams, a short impulse load is applied to find

out whether the dynamic response varies significantly compared

to the dynamic response of structures without a crack.

In this study, a newly developed finite element model

[Ref. 2] is used for the simulation of beams containing an

inter-delamination crack. A rectangular element that has six

degrees of freedom is used. The element allows axial

displacements at its four corner points and lateral

displacements at its two ends. Using this element, static and

dynamic analyses of laminated composite beams containing a

local delamination crack are conducted. First of all, static

deflections as well as natural frequencies and mode shapes of

beams without delamination are calculated to check the



accuracy of the element. Laminated composite beams with a

partial delamination are studied using the contact-impact

conditions applied at the delaminated portion.
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II. FINITE ELEMENT FORMULATION

A. FINITE ELEMENT MODELING

A newly developed rectangular finite element, Figure 1, is

used to investigate the static and dynamic behavior of

laminated composite beams. The element has six degrees of

freedom and allows axial and lateral displacements but no

rotation. There are axial displacements at the four corner

points and lateral displacements at the two ends of the

element.

1
AVl V 2

t t
U1  U 2

b"

b b
U1  U 2

0 a x

Figure I Four Noded Rectangular Element with Six Degrees of Freedom.

In Figure 1 and the subsequent formulation, u represents
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the axial displacements at the corner points and v represents

the lateral displacements at the ends. The subscripts "1i" and

"22" refer to the left and right ends while the superscripts

"t" and "b" indicate the top and bottom sides of the element,

respectively.

The displacement model of the element is

= {u(x) Y- [N] {d} (I)

where [N] is the matrix of shape functions and (d) is a

vector of nodal displacements. The axial displacement is

assumed to vary linearly along both axial and lateral

directions. It can be written as

2
u (x,y) = 1AN (x) [A (y) uP+i2 (y) Ui t ]

i-1 2

The lateral displacement, which is assumed to be constant

through the thickness of the element, varies linearly along

the axial direction and can be written as

2
v(x) = FNj (x) v(i-1. (3)

= NI ( x) v, + N ( )v

Here, Ni and Hi are the linear interpolation or shape functions

in the axial and lateral directions. The beam element may use

a higher order shape function for the axial direction, i.e.

Ni, and the linear shape function for the lateral direction,

i.e. Hi. However, in this study, the linear shape function is

4



used for both Ni and Hi for simplicity. That is,

Nj(x) =1-ia
N (x) :x

H (4)

.,(y) =1-.yb
142 (Y) -Y

b

where a and b are the length and height of the beam element,

respectively.

For simplicity, notations N1, N2 , H, and H2 will be used

instead of Nl(x),N 2 (x),H1 (y) and H2 (y) in the following

derivation.

For two dimensional elasticity problems the strain vector

can be expressed as (Ref. 3]

ej x .a/ax 0
fYz=I 0 al/0O = [B]{d) (5)pla/y alax

where (d} is the vector of nodal displacements and [B] is the

matrix that relates strains to the nodal displacement vector.

Normal strains can be written as

aua~ A~ AM 8 N2
11X X-x-x ax 2U+ax ax 24(6)

Yay

and the shear strain is

5



a ua I Ia IaIII aI aI a.

The element stiffness matrix can be obtained by minimizing

the total strain energy which contains both bending and the

transverse shear energy. This minimization yields the

following element stiffness matrix

(k 01 = [k e + [ksl (8)

where the subscripts "B" and "S" indicates bending and the

transverse shear respectively.

The bending and transverse shear stiffness natrices are

given as

ab

[ka' =f f (B;E(B; &ydx (9)
, 00

ab

[k]" =fffB) "G(B) tdyd (10)
00

where E and G are the elastic and shear modulii of the beam

and the vectors (B.) and (B.) are derived below.

The strain-displacement relationship for the normal strain

in the axial direction is

6



b
Ui

111

U2 r
V2 ,

and the relationship for the shear strain is

%ti
Ult

Y4Y,= IBs' u, (12)
4P
42t

Equations (11) and (12) yield

2 8N ON2

(BS) ai 81.1 N2r 81V2 812 813
-- a -T N o -N -E -o

The bending stiffness matrix can be obtained by carrying

out the integration in Eq. (9) which will result in

Eb Eb0 _b 0
3a 6a 3a 6a

Eb Eb 0 -Eb _ 0
6a 3a 6a 3a
0 0 00 0 0

[kB'] = 0(14)

3a 6a 3a 6a

Eb Eb 0 Ab Eb 0
6a 3a 6a 3a
0 0 0 0 0 0

7



For Eq. (10) the reduced integration technique is used

along the x-axis to prevent shear locking which occurs when

the ratio of beam length to beam thickness is large. This

integration yields the transverse shear stiffness matrix of

the form

Ga Ga G Ga Ga G
4b 4b 2 4b 4b 2

Ga Ga G Ga Ga G
4b 4b 2 4b 4b 2
G G Gb G G Gb
2 2 a 2 2 a

[k] Ga Ga G Ga Ga G (15)

4b b- 2 b -ib -2

Ga Ga G Ga Ga G
4b4b 2 4b 4b 2
G G Gb G G Gb
22 a 22 a

The element stiffness matrix, which is obtained by adding

the bending and transverse stiffness matrices, can be

expressed in the following form

a÷+2a3 -a1 +a3 a4 a2 -2a 3 -a1 -a3 -a4

-al+a3 al+2a3 -a 4 -a-a 3 a-a 3 a4

[k] J = a a2  4 2 (16)

a1 -2a 3 -a,-a 3 a 4 al+2a 3 -al+a3 -a4

-a1 -a 3 a, -2a 3 -a4 -a1 +a3 a,+a 3 a4

-a 4  a4  -a2  -a 4  a4  a2

where

Ga Gb Rb G

a b 2 - a = 6 a 4 2 (17)

,, • 8



The mass matrix can be derived consistently in a similar

way. In this study a diagonal (lumped) mass matrix was used

since it takes less computing time. The mass matrix is

0 0 0 000
4

[m '] = pa ()

0 0 0 0 0 (
4

0 0 0 0 04
000001

where p is the mass density, a and b are the length and height

of the element. The element is assumed to have a unit depth.

B. LAMINATUD COMPOSITZ BEAMS

In the most generalized form Hooke's law can be written as

i,j,k,1=1,2,3 (19)

using tensor notations [Ref. 4]. Here Cijkl represents the

elastic stiffness. Using the symmetry of stress and strain

tensors, i.e. olj=ajj and eij=ejj, and using a shorthand notation

we can write the normal stresses and strains as

a1=al1 1

9



C £2CY22Y"2-- 22 2-- 22

Y3"" CY33 3 :--3- 33

while the shear stresses and strains are written as

a" 4 --- 2 3 =0"3 2  E4-- E 23= E 32

(Y5 -- 0" 3 1=_" 1 3  E! 5= r 31= F 13

aY6 -- C 1 2 =a 2 1  E 6=-E 12=- 21

For general orthotropic materials Hooke's law can be written,

in the inverted form, as

S11 S12 -l3 0 0 0
S 1 22 S23  0 0 0 1r 2 o2

E3S S23 0 0 0 3 (20)
C4 44 S0 0 4

5 'S5 5  0 56

where [S.] is the compliance matrix, which is the inverse of

the matrix [C.]. For the state of plain stress, Eq. (20) is

reduced to

Je S1.1 S1 01

r2f'= -12220 ~2j (21),6  0 0 ,

Stress-strain relation can be obtained by inverting the

relation given in Eq. (21)

11
,j{J (22)



where the reduced stiffness terms are

U- I_•2

i2-v 1 v2  (23)

1-V Vv2 1-v1V2
Q66,=G6

In this study, the width of the beam is neglected, i.e. it is

assumed to have a unit width. Therefore, only the elastic

modulus along the beam axis is considered. Two different

laminae with four and eight layers are used for calculations,

i.e. [0/90]. and [0/90/0/90]. where the subscript "s"

represents symmetry with respect to the middle axis of the

beam.

There are several methods used in modeling laminated

composite beams. In this study, two different techniques are

used. The first technique discretizes respective layers in the

finite element analysis. As a result, the total number of

elements is proportional to the number of layers in a

laminated beam. Of course, static condensation can be

performed to reduce the number of total degrees of freedom by

eliminating internal layers degrees of freedom. This modeling

technique is computationally expensive but it can describe a

general shape of deformation through the beam thickness. The

second technique uses one beam element through the beam

thickness regardless of the number of layers. This technique

11



is computationally efficient but it assumes a linear

deformation through the beam thickness. The development of

this technique is described in the following paragraphs.

Vi V2

h k
U1  "2

Eoil

k 12

meaure fro th boto ofteba seFgr ) h

I I

Figure 2:• Laminated Beam Element

Let Uk and Vk represent the axial and lateral displacements

of the kth layer and let h be the beam thickness while hk and

hk÷.i represent heights of the top and bottom sides of the layer

measured from the bottom of the beam (see Figure 2). The

relationship between the layer displacements and the global

beam displacements can be written as

12



u , -cu1 U÷bC 2ul

Uk = C3 Lb+C4 Ut
Vk.l= Vl

u b= ciu•÷c2 u (24)

Uk' 2 = c3ub4+ C4 U.
Vk. 2 = V2

where the constants, c's, are

hbk
hk

h2 K 25)
h-hk.,

Ch

This relationship can be expressed in the matrix form as

.b ci c 2 0 0 0 0
,.0 0 0 0 •2uko 1 C04!

k,2 0 0 0 O c4

U'k,2 0 0 0 C3 4o •i
k.2 0 0 0 0 0 1,V2

or

{k-= [7T (d) (27)

where (dk) and (d) are displacement vectors of the kth layer

and the beam, and (T] is the transformation matrix. Now,

stiffness and mass matrices of a laminated beam element can be

expressed as

13



(2s)
[(jM4 [TJT[mk] IT]

Here, [kk] and (ek] are the stiffness and mass matrices of the

kth layer, respectively. Using this technique, a single beam

element can include all the layers of a laminated beam.

C. DYNAMIC ANALYSIS

In dynamic analyses, displacements, velocities,

accelerations, stresses and strains need to be calculated at

each time interval since they all vary with time. This

requires a time integration scheme. In this study, a form of

central difference method is used in the dynamic analysis of

undamped systems.

The general equation of motion at time t can be written as

[M] {filt+ [K] {u)e={F) (29)

The central difference method can be applied in three steps.

A) Compute (M] and (K]

B) Initial calculations

1. {o--0=N]"1 (fF)o- [K]{u)o)

2.o()t() t41(At)
- (30)

3. (u),=fu ) z)o••)at(,1t)

14



C) For each time step

2. 1t)t (AUttL1jt)
2 -2 1

3. (u}t+, = (U) ]4A ({+}A (]u)

This method is conditionally stable when the time step

size at is less than or equal to the critical step size [Ref.

5,6]

~~At (32)

where (q,)2 is the largest eigenvalue of the matrix equation

(19) with no forcing function. When At>Atr it results in an

unstable numerical solution.

D. CONTACT- IMPACT PRODLNMS

In the case of partially delaminated beams, as shown in

Figure 3, the upper and lower portions of the delaminated

section may overlap each other if there is no constraint

applied on the portion during the finite element calculations.

This fact applies to both static and dynamic problems. To

avoid this overlap the contact-impact conditions are applied.

1s



$y,vga
gap

ji -U

//

delazuinated
section

Figure 3: Simply Supported Beam with a Delaminated Section.

The contact-impact algorithm developed in [Ref. 7] is

applied to the present beam element as explained in the

following paragraphs.

Let the letters i and J represent the facing nodal points

in the upper and lower portions of a delaminated section, and

let vi and v, represent the vertical displacements of these

points. The procedure to apply the contact-impact condition is

explained below.

A) Initially, the central difference method is used to

calculate displacements, velocities and accelerations until

any two points contact each other (v,-v,>O).

B) When the two nodes penetrate each other, i.e. v -v O, the

16



release-to-contact condition is applied. And the corrected

values of the velocity, acceleration and elastic force are

calculated using the following formula;

M 1V I +M 2 112

MI+M2

(33)

M1+M2

- M'+M2

C) When they are released from each other, i.e. v.-v,>O, the

contact-to-release condition is applied and the corrected

values of velocity and acceleration are computed using the

following formula;

2_). (34)

where the value of a is 1 for the upper prtion and 2 for the

lower portion of the delaminated section. Here the subscript

(+) is used for the updated values while the subscript (-1)

indicates the values taken at the end of the previous time

step and (-) indicates the values taken at the end of the last

iteration of the present time step.

For static problems, the contact condition is applied

simply by setting the vertical displacement of the upper

portion equal to the vertical displacement of the lower

portion where they overlap each other.

17



III. RESULTS AND DISCUSSION

A. VERIFICATION EXANPLES

The present finite element model and the computer code are

verified by analyzing three problems and comparing the results

with exact solutions. The verification examples are static

deflections of both isotropic and laminated composite beams

and the free vibration of beams. Two different boundary

conditions are applied. One of them is a simply supported beam

and the other is a cantilever beam. When loading is required,

a) P

b) P

Figure 4: a) Simply Supported Beam with Center Load b) Cantilever Beam with End

Load.

18



the force is applied at the center of the simply supported

beam and at the end of the c-ntilever beam as seen in Figure

4.

Material properties of the beams are as follows; elastic

modulus E=1,000,000 Pa., shear modulus G=450,000 Pa., density

p=10 g/cm3 , length of the beam L=60 m., height h=0.5 m. and

applied force P=1 N.

First a free vibration analysis is performed, for both

simply supported and cantilever beams. The analytical

expression for the natural frequencies is as follows

0 l 4 (35)

where y is the mass per unit length of the beam and kil are

defined values for some beam types.

The results of first three natural frequencies are

presented in Tables 1 and 2. As seen from the results, the

finite element solution agrees with the exact solution very

well. The mode shapes corresponding to first four natural

frequencies are also plotted in Figures 5 and 6. These are

expected mode shapes of the simply supported and the

cantilever beams [Ref. 8].

19



TABLE 1 : NATURAL FREQUENCIES OF SIMPLY SUPPORTED BEAM

j ixact 2••xt•ion~ j 0.00395 0.0158 0.0356

J 0.00395 0.0158 0.0356

TABLE 2 : NATURAL FREQUENCIES OF CANTILEVER BEAM

0.00141 0.00883 0.0247

... 0.0 0141 0.00883 0.0247

Then static defl 'ctions of beams are computed. The

analytical solutions for isotropic beams are [Ref. 9]

-Px L0x
V-- -PX (3L 2 -4x 2 ) (36)

48E1 36

V= c2(3L-x) 
(37)

where Eq. (36) is for a simply supported beam and Eq. (37) is

for a cantilever beam. here "I" refers to the moment of

inertia and L is the length of the beam. The results of both

exact solution and finite element solution are plotted in

Figure 7.

20



mode l mode 2

0.2 - - -- - -- -- 0.2

0-------------- 0.------

-0.2.------------------0.2 ---------------

0 10 20 30 40 0 10 20 30 40

mode 3 mode 4

* I I I I

0.2- ----------------- 0.2----------------------

0--------------------------- 0----------------- -----

-0.2 ----------- - "-- -0.2-

0 10 20 30 40 0 10 20 30 40

Figure 5 Mode Shapes of the Simply Supported Beam
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mode l mode 2

0.4 ---- 0.4 - - -

* , I I

0.2 . . . . 0.2 -------- ---

0 -- - - -- -- - 0 -- - - - - - - ---

-0.4 -0.4. -,---_------- -0.4- --

0 10 20 30 40 0 10 20 30 40

mode 3 mode 4

0.4--------------------------- ---- 0.4-- . , .
* = , I =

0 * I I0- I

-0.2-------- *--- -0.2------------
-0.------------------------0.-- ---------------

-0.4 .. . .... ............ -0.4 .. ... .. .. .

0 10 20 30 40 0 10 20 30 40

Figure 6: Mode Shapes of the Cantilever Beam

22



a)

0.5-"- EXACT so lution
E ~o~FEM solution

E

-0.5r

0 10 20 30 40 50 60
Length, m.

b)

ECI

106

0 10 20 30 40 50 60
Length, m.

Figure 7 : Static Deflections of Isotropic Beams; a) Simply Supported Beam,
b)Cantilever Beam

23



Finally a static analysis of a laminated composite beam

with simple supports is performed. The analytical expression

for the deflection of a simply supported beam, which is

subject to three point bending, as shown in Figure 8, is as

follows [Ref. 10]

pL2X 1 (38)

and the equivalent bending stiffness is defined as

N

1 1 
(39)

here E.b is the effective bending modulus of the beam, Ek is

the modulus of the kth layer relative to the beam axis, Ik is

the moment of inertia of the kth layer relative to the

midplane, and N is the number of layers in the laminate. The

vertical displacements obtained from the exact solution and

the finite element solution are plotted together, for four and

eight layered beams and for two different ratios of elastic

modulii, in Figures 9 and 10.

24



AV P

L

L /2
P12 P12

Figure 8 : Laminated Beam with Three Point Bending (Simply Supported).

In the static problems, as seen from the figure the

exact solutions and the finite element solutions agree very

well. From these verification examples, it can be shown that

the beam element provides accurate results compared to exact

solutions.

25



a)

"-"EXACT solution
E FEM solution

V!-0.005

SL

.0.01-

-0.015

0 5 10 15 20 25 30 35 40 45 50

x104  b)

UKEXACT solutbon

E "'"FEM soluiton

-3
0 5 10 15 20 25 30 35 40 45 50

length, m.

Figure 9: Static Deflections of the Laminated Composite Beam with 4 Layers

a)for EdIvo=2O, b) for EW]E,6--l00
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a)

*-EXACT solution

-0o.o0 - FEM Solutn
S-0.01-

1-0.015

-0.02 I I I , ,
0 5 10 15 -20 25 30 35 40 45 50

Iengh, M.

x104  b)
Iw r - i -I I I

*"- EXACT soluton
• E.-1 FEM solution

3.2

1-3-
"4I I I II I I ,

-41
0 5 10 15 20 25 30 35 40 45 50

wlng, m.

Figure 10: Static Defections of the Laminated Composite Beam with 8 Layers
a) for E./E.A-20, b) for EiE,=100
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D. NUMERICAL RESULTS

Dynamic analyses are performed for a simply supported

composite beam with four layers, i.e. [0/90]., and with

different crack sizes using contact-impact conditions.

Calculations without contact-impact conditions are also made

and compared to the case computed with contact-impact

conditions. An impulsive load of a very short duration is

applied at the center of the upper portion of a delaminated

section and the displacement response of the beam is recorded

for a period of time.

First displacements at the mid-points of upper and lower

portions of a large crack are calculated and plotted in Figure

11 without using contact-impact conditions, where crack length

is one third of the beam length. As seen from the figure,

these two points overlap each other which is not admissible.

Then for the same crack size, contact-impact conditions are

applied and displacements of the beam is calculated and

plotted. Figure 12 shows the displacements of the beam just

before contact while the displacements at the time of contact

is shown in Figure 13. The displacements just after contact is

shown in Figure 14. Also the responses of the mid-points and

quarter-points are plotted in Figures 15 and 16, respectively,

where quarter-points represent the points which are located in

the middle between the crack tip and the crack midpoint for

28



both upper and lower portions. Later, the crack size is

reduced to one thirtieth of the beam length and the

displacements of mid-points and quarter-points are plotted in

Figures 17 and 18, respectively. As seen in these results, the

upper and lower portions never penetrate each other. This

indicates that the application of contact-impact conditions

works well in simulating delaminated beams. Finally, the

response of a beam without a crack is computed and plotted in

Figure 19 for comparison purpose. Responses of all these cases

are different each other. They may give an idea how an

embedded crack affects the behavior of beams.
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IV. CONCLUSIONS AND RECOMMENDATIONS

The beam element used in this study is useful to model a

crack w4 ' contact-impact conditions. Application of contact-

impact +iditions constrains the vertical displacements at the

crack in a way that the points on lower and upper portions of

the crack hit each other without penetration.

Computational time depends on the number of degrees of

freedom. The technique, which models the laminated composite

beam using a single beam element, reduces the degrees of

freedom to save time during calculations.

When an impulsive load of a short duration is applied, the

beam responds in different ways depending on whether there is

a crack inside it and what the crack size is. Examining these

results gives an idea about existence of an embedded crack as

well its size and location.

For further studies, delaminated sections may be refined

to see the minimum crack size that can be detected using this

procedure. Also, the Fast Fourier Transform can be applied to

measure the frequency response of a delaminated beam.

Comparing the natural frequencies may give an idea about the

crack size. In this study, a crack is assumed to be along the

middle axis of the beam and the load is applied at the center

of the beam. Locations of cracks and loads may be changed and

the responses can be calculated for different cases.
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Some experiments are being performed to see the response

of beams under impulsive loading. The results obtained from

the procedure described in this study may be compared with

those experimental results for verification.

40



LIST OF RiUFzRzNCES

1. Vinson, J.R. and Sierakowski, R.L., The Behavior of
Structures Composed of ComDosite Materials, Martinus Nijhoff
Publishers, 1986.

2. Kwon, Y.W., Salinas, D. and Neibert, M.J., Journal of
Thermal Stresses, to appear.

3. Rao, S. S., The Finite Element Method in Enaineerina, 2d
ed., Pergamon Press, Inc., 1989.

4. Chawla K.K., Comosite Materials, Springer-Verlag New
York, Inc., 1987.

5. Bickford, W.B., A First Course in the Finite Element,
Richard D. Irvin, Inc., 1990.

6. Bathe, K. J., Finite Element Procedures in Engineering
A, Prentice-Hall, Inc., 1982.

7. Hughes, T.J.R., Taylor, R.L,, Sackman J.L., Curnier A. and
Kanoknukulchai W. "A Finite Element Method For a Class of
Contact-Impact Problems*, Comouter Methods in Anolied
Mechanics and Engineerina, pp. 249-276, 1976.

8. James, M.L., Smith, G.M., Wolford, J.C., Whaley, P.W.,
Vibration of Mechanical and Structural Systems, with
Microcomputer ADmlications, Harper & Row, Publishers, Inc.,
1989.

9. Logan, D.L., Mechanics of Materials, Harper Collins
Publishers Inc., 1991.

10. Whitney, J.M., Structural Analysis of Laminated
Anisotropic Plates, Technomic Publishing Company, Inc., 1987.

41



INITIAL DISTRIBUTION LIST

No. Copies
1. Defense Technical Information Center 2

Cameron Station
Alexandria, VA 22304-6145

2. Library, Code 52 2
Naval Postrgaduate School
Monterey, CA 93943-5101

3. Professor Y.W. Kwon, Code ME/Kw 2
Department of Mechanical Engineering
Naval Postgraduate School
Monterey, CA 93943-5000

4. Naval Engineering Curricular Office, Code 34 1
Naval Postgraduate School
Monterey, CA 93943-5000

5. Weapons Engineering Curricular Office, Code 33 1
Naval Postgraduate School
Monterey, CA 93943-5000

6. Department Chairman, Code ME/Kk 1
Department of Mechanical Engineering
Naval Postgraduate School
Monterey, CA 93943-5000

7. Kara Kuvvetleri Komutanligi 1
Personel Egitim Daire Baskanligi
Bakanliklar
Ankara Turkey

8. Tara Harp Okulu 1
Bakanliklar
Ankara, Turkey

9. Haluk Aygunes 1
Carsi Mah. Helvaci Cad. Hamam Sok. No:2
Kandira
Kocaeli, Turkey

10. Istanbul Teknik Universitesi 1
Universite Kutuphanesi, Beyazit
Istanbul Turkey

42



11. Ortadogu Teknik Universitesi
Universite Kutuphanesi
Ankara, Turkey

12. Mr. David Bonnani
Naval Surface Warfare Center, Carderock Div.
Code 1720.2
Bethesda, MD 20084-5000

13. Dr. Phillip B. Abraham
Office of Naval Research
Mechanics Division, Code332
800 North Quincy Street
Arlington, VA 22217-5000

14. Mr. Erik A. Rasmussen
Naval Surface Warfare Center, Carderock Div.
Code 1720.4
Bethesda, MD 20084-5000

43


