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1. INTRODUCTION

Early experiments using ceramics confined by metals as armor candidates to protect against kinetic
energy projectiles determined the ballistic limit velocity for thin ceramic tiles backed by thin aluminum
plates (Wilkens, Kline, and Honodel 1969, 1971; Wilkens 1978). Subsequent experience with this
technique found that it was not suitable as a method for ranking the performance of different ceramics.
Like any ballistic limit test, it is specific to the conditions used and unsuitable for drawing more general
conclusions. More recent work (Bless, Rosenberg, and Yoon 1987; Rosenberg and Yeshurun 1988;
Woolsey, Mariano, and Kokidko 1989; Woolsey, Kokidko, and Mariano 1990; Woolsey 1992;*
Rosenberg and Tsaliah 1990; and Morris and Anderson 1991) has concentrated on the use of thick ceramic
tiles with effectively semi-infinite lateral and rear metal confinement. By comparing depth of (residual)
penetration into the metal backing with penetration into the metal alone, it is possible to rank the
performance of different ceramics and make more general conclusions, provided we avoid tile overmatch
and rod overmatch extremes (Woolsey, Kokidko, and Mariano 1990; Woolsey 1990). However, there is
still a considerable dependence on the response of the whole system as pointed out by
Hauver et al. (1992), who emphasize the importance of acoustic impedance throughout a target system in
suppressing or enhancing target damage. In practical applications, a metal cover plate and some sort of
binder between ceramic and metal are always included, which makes the total system response even more
complicated. In addition, impacts at 0° obliquity are unlikely, and a variety of threats is likely in practice.
This makes an interplay between computer simulations and experiments desirable as a means to hasten

the optimization of an armor system. This report is a small step in that direction.

2. OVERVIEW OF COMPUTER SIMULATIONS

The examples given in this report were generated using the Cray 2 computer located at the U.S. Army
Research Laboratory, Aberdeen Proving Ground, MD. An Eulerian code, HULL, public domain
version 122, was employed (Matuska et al. 1978; Matuska and Durret 1978).** In all cases, a
two-dimensional rotationally symmetric coordinate system was used with a uniform grid and 1-mm cell

size. Although the code has provisions for including work hardening in its yielding criteria, a perfectly

* This is more widely available than Woolsey, Kokidko, and Mariano (1990), discussing methodology and examples using
aluminum oxide.

*

* This code is widely available in many versions. The most recent public domain version is available from Orlando Technology
Incorporated (OTI) and other resources.




plastic model was used since insufficient experimental data was available to justify a more elaborate
model. The code also permits a variety of failure models to be used. Here a simple tensile failure stress
(Tp - failure strain (¢;) model was used. These two parameters are shown in the last two rows of Table 1
for the six materials used in this study. For lack of better information, the &; values for the four metals
were all set to 0.5, while the & values for the two ceramics were both set to 0.05. More information was
available for the yield stress (Y) of metals, so the second row in Table 1 gives values which are typical
for a 93% tungsten Wa (4Ni-3Fe) alloy, rolled homogeneous armor (RHA), an aluminum (Al) alloy, and
a 90% titanium (Ti) alloy. The Ti (Ti-6Al-4V) alloy has a yield strength near 1 GPa (Donachie 1988).
Here we wish to compare RHA and Ti as candidates for the role of metal confinement of ceramics. Since
their strengths are not very different, it was decided to use the same yield and failure criteria for both
metals in order to emphasize the effects of density in our computer simulations. A weaker, less dense Al
is also compared in the same role. The T values for the metals were taken to be about three times their
yield values. Both the T; and €; values are higher than those obtained from quasi-static tensile tests and

reflect an effort to simulate the effects of high strain rates and pressures.

Table 1. Key Material Properties Used in the Computer Simulation

WA RHA Ti Al SiC Al,04
Density p (g/cm®) 17.65 7.86 451 2.71 3.18 3.90
Compressive Yield 11.0 7.50 7.50 3.00 150.0 40.0
stress Y,
(dyne/cmzlo‘g)
Tensile failure stress 33.0 25.0 25.0 9.00 20.0 10.0
T (dyne/cm2 1 0'9)
Failure strain &; 0.5 0.5 0.5 0.5 0.05 0.05

The yield and failure criteria for the two ceramics are the most uncertain values in Table 1, especially
in the case of silicon carbide (SiC). The compressive strength of 99.5% pure alumina (Al,0,) is
2,618 MPa (26.x10° dyne/cm?), while its tensile strength is one-tenth of this value, according to ASM
Intemational’s Engineered Materials Handbook (1991). For SiC, only the compressive strength,
4,600 MPa, is known (AMS Intemational 1991), since SiC is not yet as well established an engineered

material as alumina. These values follow the trend of the hardness numbers reported for these materials
as well McColm 1990). We expect compressive strengths of ceramics to increase with pressure. For

2




silicon carbide, Anderson et al. (1992) report an increase of almost 50% for the compressive strength of
SiC as the confining pressure is increased from atmospheric to 200 MPa, using a Split-Hopkinson Pressure
Bar (SHPB) technique. Ballistic experiments on confined ceramics should also show a change in ceramic
strength but in a time- and space-dependent manner. Here we can only use an average value. Our choices
of 40.x10° dyne/cm2 for the compressive yield strength of alumina and 150x10° dyne/cm2 for silicon
carbide are higher than the handbook compressive strengths and were ultimately guided by a desire to
make the simulation agree with the small amount of experimental ballistic data which is currently
available. Our choices for the ceramic failure criteria were made in the same spirit. We have chosen T
for alumina to be about 25% of the compressive yield strength, Y, in spite of the fact that the handbook
tensile strength is only 10% of the compressive strength. For SiC, we have chosen T; to be closer to 10%
of the corresponding Y. The failure strains, €;, were both chosen to be one-tenth the values chosen for
the metals. To simulate failure, the code inserts air into cells where the Ty and & values have been
exceeded. With our current choices, weak but ductile metals like Al will not fail under the same impact
conditions which crack stronger but more brittle ceramics, namely, for compressions up to 10 GPa and

tensions up to 2 GPa. For all of the materials considered, a Mie-Griineisen equation of state was used.

Finally, there is the question of artificial viscosity (Zukas et al. 1982). Since shock widths are often
smaller than the grid being used, artificial "ringing" will arise from numerical instability. Neumann and
Richtmeyer added a term proportional to the derivative of the velocity to the pressure to smooth this
ringing. For shock waves in air this damping artifice is required, since real viscosity is usually omitted
in code simulations of wave structure. For solids under the conditions we are considering, artificial
viscosity it is considerably less important than for gases like air. However, experience with the code
shows that it has an effect not only on the clarity of wave simulations but also (1o a lesser extent) on the
final depth of penetration (DOP). Here we have chosen 0.15 for the linear coefficient of artificial viscosity
and O for the quadratic coefficient. Not using any artificial viscosity leads to unphysical target distortions
at late times. Using higher values like 0.5 tends to obscure the wave structure which controls important
damage phenomena in ceramic metal targets. Anderson et al. (1992), have reported a similar need to

include linear artificial viscosity in their HEMP code simulations.

Many of these choices of material properties and code parameters may seem to be rather arbitrary.
Indeed, there is much room for improvement in all aspects of code calculations. Here we are attempting
to simulate a variety of experimental penetration phenomena using the simplest models possible.

Reasonable agreement with available experimental data might then encourage us to simulate experiments




not yet done. We will also use some of the time-resolved information which is generated by code
simulations to conjecture about possible explanations of some of the phenomena. Unfortunately, this
information cannot be compared to experiment at the moment, since the amount of time-resolved

experimental information which is currently available is quite limited.

3. NUMERICAL SIMULATIONS OF L/D=10 WA RODS IMPACTING TARGETS AT 1,500 m/s

Since cylindrical coordinates were used, there was no need for a plane strain approximation. The
93% WA rod (Teledyne X21) had a hemispherical nose and length to diameter (L/D) ratio
L/D=7.77 ¢cm/.777 cm=10. The semi-eo targets were all 20 cm in diameter and 20 c¢m thick. Ceramic tile
inserts were all 15 ¢m in diameter and 2.54 cm thick. When cover plates were used, they were 15 cm
in diameter and 1.0 cm thick. Al impacts were at 0° obliquity at the center of the target face.
Simulations were also carried out for 10-cm-thick targets, which is closer to the value used in the
experiments. In most cases, there were only minor differences in the DOP. In a few cases, there were
qualitative differences in the appearance of the simulated residual rod, and these will be noted. Since the
penetration depth was greater than 10 cm in some of the simulations, especially those involving Al or
L/D=20 rods, it was decided to adopt 20 c¢m as a standard semi-infinite target thickness to avoid rear face

bulges or perforations and to facilitate comparisons between simulations.

Figure 1 shows the rod about to impact a semi--- RHA target at 1,500 m/s, while Figure 2 shows the
resultant penetration at 200 ps when the rod has ceased to move. Figure 3 shows the resultant penetration
for a target 10 cm thick. The final DOP is indistinguishable from that in Figure 2, while the qualitative
appearances of targets and rods are quite similar. Figure 4 (target 20 cm thick) shows the positions and
speeds of the rod nose and tail as a function of time. The velocity of the rod nose drops to one-third of
its striking value in the first few microseconds and then declines more gradually without showing anything
which could reasonably be called a steady state. The final length of the rod is 1.5 ¢m, compared to its
original length of 7.77 cm, and the total DOP is 7.2 cm, compared to an experimental value of 7.3 cm.
An identical impact on a semi-eo Ti target gave a calculated residual rod length of 1.8 cm and a final DOP

of 7.9 cm, compared to an experimental value of 8.0 cm (see Table 2).

Figure 5 shows the same rod about to impact an AD99.5 alumina tile in a semi-o metal surround (in
this case, RHA) at 1,500 m/s. Figure 6 gives the result 50 ps after impact, showing a conical piece of

broken ceramic being ejected from the impacted face. Figure 7 shows conditions 200 ps after impact




Table 2. L/D=10 WA Rods Striking at 1,500 m/s

Exper.
Target P P I € e q2
(cm) | (cm) (cm)
Semi-infinite Targets
RHA oo 7.3 7.2 1.5 1.0 1.0 1.0
Ti eo 8.0 7.9 1.8 1.6 0.9 14
Al eo — 15.2 2.3 1.4 0.5 0.7
Ceramic Inserts
2.54-cm Al,0; in RHA e 6.4 6.2 14 14 1.1 1.5
2.54-cm Aly04 in Ti oo — 6.9 1.7 1.9 1.0 1.9
2.54-cm Aly04 in Al oo — 12.0 2.3 1.6 0.6 1.0
2.54-cm SiC in RHA oo 5.6 5.6 1.5 1.8 1.3 2.3
2.54-cm SiC in Ti oo — 5.8 1.6 2.5 1.2 3.0
Covered Inserts

2.54-cm SiC in Al e — 9.0 1.8 2.2 0.8 1.8
1-cm RHA on 2.54-cm A1,0; in RHA o — 6.4 1.5 1.4 1.1 1.5
I-cm Ti on 2.54-cm Aly05 in Ti e — 7.0 1.7 1.9 1.0 1.9
I-cm Al on 2.54-cm Al,05 in Al e — 12.3 21 1.6 0.6 1.0
1-cm RHA on 2.54-cm SiC in RHA o — 5.3 1.7 1.9 1.3 2.5
1-cm Al on 2.54-cm SiC in Al e ~— 7.7 1.3 2.7 0.9 24
1-cm Al on 2.54-cm SiC in RHA ee — 59 1.5 1.9 1.2 2.3

Note: Penetration depths P, residual rod lengths /, and ballistic efficiencies e, e, and ¢* for L/D=10 WA rods striking at
1,500 m/s. Four experimental values of P are given for comparison.

when forward motion has ceased. Incipient tile damage can be seen halfway out from the tile center.
Figure 8 gives the speeds and positions not only of the rod nose and tail but also of an axial point
originally at the interface between the ceramic and the metal backing. This point begins to move a few
microseconds after impact when the compression wave reaches the interface. After 60 ps, all the ceramic
has been pushed aside and it rides the rod nose until both stop together. The fact that there is finally no
distance between these points in Figure 8 indicates that there is no ceramic trapped between the rod nose
and the metal backing, in agreement with experiment. Figure 8 also shows that initially, the rod nose is
rapidly decelerated in the hard ceramic. However, when the rod nose emerges from the back of the tile

into the RHA, it picks up speed temporarily, then slows to a halt. The calculated total DOP is 6.2 cm




while the experimental value is 6.4 cm. Figure 9 can be compared with Figure 6 and shows how the

stronger SiC tile delays the progress of the rod more than the weaker Al,O5. The final DOP for the case
of Figure 9 was 5.6 cm, in agreement with experiment (Woolsey and Kokidko 1992). Again, there is no
ceramic left between the remnant rod and the metal backing. In Figure 10, the confinement has been
changed to Ti but the result resembles Figure 9. The lower density of Ti compared to RHA seems to
allow a flatter top to the ceramic which is being pushed aside in front of the rod. Figure 11 is similar to
Figure 8 although it is for SiC confined by Ti instead of A12'O3 confined by RHA. The stronger SiC
decelerates the rod even more in the first 20 ps. Finally, there is no ceramic left between rod and backing.
This was true of all the simulations carried out for ceramic/metal targets without covers struck by L/D=10
Wa rods at 1,500 m/s.

Figure 12 is a late time, 650 ps, of the simulation shown in Figure 9. Although the details of this
simulation are limited by the 1-mm cell size, the trend is clearly toward tile destruction, in agreement with
what is found after an experiment. Any damaged ceramic which remains in the metal confinement after
a test is off the shotline. Figures 13 and 14 show the same SiC tile subject to the same threat but without
confinement at 200 ps and 650 ps. In Figure 13, the rear fracture cone is larger than the front cone. The
remnant rod is visible at the top of Figure 13. In Figure 14, the original tile has almost completely
disintegrated. Figure 15 shows the same rod about to strike an RHA plate of the same size as the ceramic
tiles used. Figures 16 and 17 can be compared with Figures 13 and 14. The failure criteria used in the
simulations seem to produce results which approximate the qualitative differences expected between the

behavior of ductile metals and brittle ceramics subjected to ballistic impact.

In Table 2, we see the total DOP, P, and residual rod lengths, /, found for each simulation. We have
also calculated the space and mass efficiencies, defined in the next paragraph, in order to compare the
performance of the various targets against this particular threat. The last six cases in the table include
1-cm-thick metal covers. In a few of these, there seemed to be some ceramic left between the remnant

rod and the metal backing.

In view of these simulation results, we should modify the traditional formulas for ballistic efficiencies.
For the cases in Table 2, we have included the thickness of the ceramic cap in the total DOP, P, so the
space efficiency becomes e, = P(RHA=)/P for each case. Likewise, the mass efficiency becomes
¢, = PP(RHA=)/Z; [pT];, where the summation in the denominator consists of three parts here. The first

part is the density of the cover material times the cover thickness of 1 cm. The second part is the density




of the ceramic times the thickness of ceramic penetrated, namely, 2.54 cm minus the cap thickness.
Finally, we add the density of the metal backing times R, the residual penetration into the backing. When
there is a ceramic cap, R is measured from the original tile/backing interface position (here 3.54) to the
top of the cap. This definition reduces to the usual definition when the cap thickness is zero and tends

to be on the conservative side for the cases we are dealing with.

The last column in Table 2 gives the quality factor for each case, namely, a combination of mass and
space efficiencies q2 = ¢, e¢,. Here semi-e Ti has a higher q2 than RHA, while the semi-eo Al 42 is lower.
Very high q2 values were calculated for the semi-eo ceramic blocks. Such cases are curiosities, since
ceramics are too brittle to be used alone in practical multihit armors, even if such large blocks could be

manufactured at a reasonable cost. Consequently, they have been omitted here.

The next six cases in Table 2 are for ceramic tiles in metal surrounds without metal covers. There
alumina in Al has no better q2 value than RHA, since its higher mass efficiency is offset by its lower
space efficiency. Except for one other case involving Al, the remaining simulations have space
efficiencies as good as or better than RHA and q2 values ranging from 1.5 to 3.0. We recall that the case
of SiC in RHA has been established experimentally as well as computationally.

Since practical armors require cover plates, we can move on to the last six cases. Once again, the
alumina surrounded by Al has no better q2 value than RHA for the same reason as before. It is interesting
to note that adding 1-cm covers on Al,O,, using the same metal as the backing, gives no improvement
over the corresponding cases without covers. At least the practical requirement of covers does not hurt,
since the q2 values are unchanged. However, when we add covers to SiC, using the same metal as the
backing, we see q2 value improvements compared to the corresponding cases without covers. Only the

use of Al back and front gives e, values less than 1.0 in this group.

These simultations are idealized in many respects. For example, one shortcoming is the inability to
model thin layers of epoxy or other materials which are commonly used at ceramic/metal interfaces. We
expect to overcome a good part of this limitation in the future by using domain decomposition, a
technique which uses small cell sizes only in those parts of a computational grid where they are required.
This could be a significant improvement over the rather restricted subgridding techniques which are

currently available.




4. SIMULATIONS INVOLVING RODS OF VARIOUS L/D RATIOS AND STRIKING SPEEDS

While Table 2 offers food for thought, we must remember that even for WA rods striking the center
of a symmetrical target at 0° obliquity, there are variations which could look less promising. For example,
suppose the same rods strike the same targets at higher or lower speeds. Or suppose the L/D ratio is
smaller or larger. In this section, we will examine some simulations involving the same rod striking at

a lower speed as well as some cases of shorter and longer rods striking at different speeds.

Table 3 shows the same sort of information as Table 2, but for L/D=10 WA rods striking at 1,000 m/s.
Under these conditions, ceramics in metals without covers all defeated such a slow rod. Figures 20 and 21
illustrate this point for alumina in RHA. These figures may be compared with Figures 7 and 8. Here we
are interested in checking how well the last three more practical targets in Table 3 performed against this
threat. In these cases 100, the metal backing was penetrated by having unperforated ceramic pushed into
it with the rod greatly overmatched and stopped in the ceramic. This is illustrated in Figure 22. The ¢,
value for the target in Figure 22 is lower than for the target in Figure 23 (without cover) because the
density of the metal cover is greater than the density of the SiC tile. The reverse is true of an

Al surround, so this appears better than Ti for this particular threat.

Table 3. L/D=10 WA Rods Striking at 1,000 m/s

Target P l e, e 7
(cm) (cm)

RHA o 34 2.3 1.0 1.0 1.0
Ti oo 4.0 2.6 1.5 0.8 1.2
Al e 11.0 4.0 0.9 0.3 0.3
1-cm RHA on 2.54-cm SiC in RHA o 39 1.6 1.7 0.9 1.5
1-cm Ti on 2.54-cm SiC in Ti oo 4.0 1.4 2.3 0.8 1.8
1-cm Al on 2.54-cm SiC in Al e 4.3 14 25 0.8 2.0

Note: Penetration depths P,, residual rod lengths I, and ballistic efficiencies e,,, €,, and q2 for L/D=10 WA rods
striking at 1,000 m/s. No comparisons with experiment were avaiiable.




Tables 4 and 5 show some simulations involving an 1/D=3.2 WA rod striking similar targets at
1,500 and 1,000 m/s. Penetration into semi-e> RHA at 1,500 m/s was 7.5 c¢m compared to an experimental
value of 7.2 cm. At 1,000 m/s it was 4.3 cm, compared to an experimental value of 4.0 cm. Again, our
main interest here is checking the performance of a shorter rod against SiC tiles in Ti. As we can see

from these tables, the total penetration is slightly greater with a cover than without at both impact speeds.

| Figures 24-29 show this short rod impacting an SiC tile in Ti at 1,500 m/s with and without a Ti

cover. The q2 values in Table 4 are reasonably good, while those in Table 5 are better, even with a cover.

Table 4. L/D=3.2 WA Rods Striking at 1,500 m/s

exper.
Target P P ! e, e q2
(cm) (cm) (cm)
RHA o 7.2 7.5 1.4 1.0 1.0 1.0
2.54-cm SiC in Ti oo — 7.2 1.5 2.3 1.0 2.3
1-cm Ti on 2.54 cm SiC in Ti e — 7.5 1.9 2.0 1.0 2.0

Note: Penetration depths P, residual rod lengths /, and ballistic efficiencies e,,, ¢, and ¢ for L/D=3.2 WA rods striking

at 1,500 m/s. One experimental value of P is given for comparison.

Table 5. L/D=3.2 WA Rods Striking at 1,000 m/s

exper.
Target P P l €m e q2

(cm) (cm) (cm)
RHA oo 4.0 43 2.5 1.0 1.0 1.0
2.54-cm SiC in Ti oo — 34 1.2 44 1.3 5.7
1-cm Ti on 2.54 cm SiC in Ti e — 4.0 0.6 4.7 1.1 52

Note: Penetration depths P, residual rod lengths [, and ballistic efficiencies e, e, and 42 for L/D=3.2 WA rods striking at
1,000 m/s. One experimental value of P is given for comparison.

Figure 30 shows an L/D=20 WA rod about to impact at 1,612 m/s on a target of a somewhat different

design than we have seen so far. It consists of 4.0-cm-thick alumina tile surrounded by RHA, including

a 1.27-cm-thick RHA cover inset 1.27 cm from the origin on the axis. Figure 31 shows the final position




of the rod in the backing, while Figure 32 shows the final DOP to be 10.8 cm measured from the origin.

The residual penetration into the backing is 4.3 cm, compared to an experimental value of 4.15 cm. This
is our check point for the simulation in Tables 6 and 7. Our reference simulation in Table 6 is
semi--- RHA shown in Figure 34. The depth of 9.4 cm compares with 9.7 cm found experimentally. The
second target in Table 6 is illustrated by Figures 35-37, while the third target appears in Figures 38—40.
No ceramic caps appeared in any of these simulations. The q2 value of 2.6 is comparable to the value 2.0
for the same target against the L/D=3.2 rod in Table 4. In Figure 36, we see that the code allows failed

material to "heal" unphysically at a later time.

Table 6. L/D=20 WA Rods Striking at 1,500 m/s

exper.
Target P P 1 € e 42

(cm) (cm) (cm)
RHA oo 9.7 9.4 1.6 1.0 1.0 1.0
2.54-cm SiC in Ti e —_ 7.7 1.7 2.3 1.2 2.8
1-cm Ti on 2.54-cm SiC in Ti e — 7.8 2.0 2.2 1.2 2.6

Note: Penetration depths P, residual rod lengths /, and ballistic efficiencies e,,, e,, and q2 for L/D=20 WA rods striking at
1,500 m/s. One experimental value of P is given for comparison.

Table 7 is similar to Table 6 except for the speed of 1,000 m/s. It is interesting to note that the
penetration in semi-e« RHA in Table 7 is the same as for the L/D=10 rod in Table 3 at this speed, since
they had the same mass, namely, 65 g. The L/D=3.2 rod in Table 4 had a mass of 213 g and penetrated
more deeply at this impact speed. Once again, we see that the 2.54-cm ceramic tile in a metal surround
overmatches a slow rod, as shown by the q2 value for the second target and Figure 41. Figure 42 shows
how the addition of a Ti cover plate allows the same penetration into the ceramic tile, but adds penetration

of the cover plate and so lowers the efficiency.

Table 7. L/D=20 WA Rods Striking at 1,000 m/s

Target P [ €m €s 7

(cm) (cm)
RHA e 34 2.6 1.0 1.0 1.0
2.54-cm SiC in Ti 2.8 1.4 6.3 1.2 7.5
1-cm Ti on 2.54-cm SiC in Ti 3.8 0.2 3.1 0.9 2.8

Note: Penetration depths P, residual rod lengths /, and ballistic efficiencies e,,, e,, and q2 for L/D=20 WA rods striking at
1,000 m/s. No comparisons with experiment were available.
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5. SIMULATIONS OF WAVE MOTION IN IMPACT PROBLEMS

In this section, we will use some of the tools which are available in the HULL code to explore the

possible influence of wave phenomena on the ballistic performance of targets employing ceramics.

Figures 4345 show pressure contours of 10 dyne/cm2 (10 MPa or 100 times atmospheric pressure).
These contours are just one part of the wave system which propagates in front of the L/D=10 WA rod
which has struck at 1,500 m/s three different targets: RHA, Ti, and SiC. Since the bulk sound velocity
of RHA and Ti are about the same, there are only minor differences between Figures 43 and 44. In
Figure 45, the wave has clearly progressed farther into the target since the bulk sound speed of SiC is
more than 50% higher than that of RHA or Ti. Such small amplitude waves are of no importance to our
problem, since the stresses they produce are much lower than the yield or failure stresses in Table 1. Of
more interest is the large amplitude wave which follows the elastic precursor. The speed of this wave
depends on its strength. For ceramics, the experiments carried out by Gust and coworkers are helpful

(Gust, Holt, and Royce, 1973; Gust and Royce 1971), since they show this dependence.

Figures 4649 show both the elastic precursor and the stronger wave which follows. These are
pressure histograms along the shotline in front of the rod. The subtitle above the right half of these
figures shows the actual location to be 0.05 c¢m off the axis. This is the center of the first column of cells
in the simulation grid. In Figure 46, the pressure a few millimeters in front of the rod nose peaks near
5x10'° dyne/cm?, 5 GPa, or 500 times the amplitudes shown in Figures 43-45. The front of the wave
in Figure 51 (10 ps) after impact corresponds closely to the front of the wave in Figure 44 at the same
time, showing how relatively unimportant the elastic precursor is. According to Figure 47, the precursor
has already developed a small negative or tensile component about 3 cm behind the leading edge. In
Figure 48 (20 ps after impact), the wave system has progressed, but little else has changed. In Figure 49,
the front of the wave system is the superposition of one part still approaching the rear surface and another

part reflected from the rear surface.

Figure 50 is similar to Figure 44 except that a 1-cm-thick SiC tile has been inserted in the Ti block.
A comparison with Figures 44 and 45 shows that the position of the wave front in Figure 50 is
intermediate between the positions in Figures 44 and 45 since some time has been spent moving at a
higher speed in SiC and some time has been spent moving at a lower speed in Ti. We also see that

reflection and refraction have occurred at the interface, following the usual laws of small-amplitude
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acoustics. The same event shown in Figure 50 is shown again in Figure 51 in the form of a histogram
along the axis. Although the wave has been split into transmitted and reflected components by the
interface, the pressure on both sides of the interface is still positive, at least along the shotline. Figure 51
may be compared to Figures 47 and 48, where there are no interfaces and thus no reflections. However,
a few centimeters off the shotline as shown in Figure 52, strong tensile waves have been generated,
especially on the ceramic side of the interface. If we were able to represent the interface more
realistically, including a 0.1-cm-thick layer of epoxy as used in experiments, we might see some incipient

separation at this time.

Figure 53 shows the same event as Figures 50-52 from still another viewpoint. Here we see pressure
histograms for two horizontal lines just below and just above the ceramic/metal interface. In the right half
of the figure on the metal side, the pressure is positive on the axis and radially outward until about 2 cm
when it tums negative. In the left half of the figure on the ceramic side, the pressure at the axis is
positive (about 6x101° dyncs/cmz) and larger than on the metal side, in agreement with Figure 51 which
shows only pressure at the axis. Just off the axis we see in Figure 53 that the superposition of incoming
and reflected waves has resulted in a strong tensile wave. However, farther from the axis the net pressure
is still positive at this time. Figure 54 shows the same scene 10 ps later (20 ps after impact) while the
rod nose is still approaching the interface. The vertical scales of Figures 53 and 54 are different.
However, it is clear that on the metal side, the pressure is about the same at the axis, although it turns
negative closer to the axis than before. On the ceramic side, the scene is similar to before, although the

net tensile wave near the axis is stronger than it was earlier.
6. SUMMARY

In this report, we have illustrated the use of the wavecode HULL to simulate various ceramic-in-metal
targets impacted centrally at 0° obliquity at two different speeds by WA rods of three different L/D ratios.
In a limited number of cases we were able to compare our simulations with experiments and found
reasonable agreement. This encouraged us to extrapolate our simulations into unexplored territory,

including some cases with ceramic caps.

One might argue that such caps could make the rod more effective by providing harder noses to
penetrate deeper into the metal. On the other hand, there might be enough rod energy wasted in forming
these caps that it would favor the target. Backman et al. (1992) have reported various observations of caps
formed during penetration and have even proposed a tentative theory.

12




We have also given some illustrations of how time- and space-dependent wave patterns might
influence the outcome of ballistic simulations and perhaps experiments. This is an area in which computer
simulations might prove helpful to experimentation, so our future plans include further work along these

lines.

7. RECOMMENDATIONS

Even within the context of 0° impacts on centers of symmetry, our simulations are not complete. We
hope to expand the present work to include other thicknesses as well as other ceramics, and multiple tiles
as well as single tiles. Future plans also include simulations of off-center impacts and a variety of

obliquities, using depleted uranium and steel rods as well as WA rods.

Of necessity, the present report has treated the ceramic/metal bond as perfect. In practice, adhesives
are often used without regard to impedance matching. We would advocate an experimental study using
various techniques to maintain an impedance match which is fairly close and should not be worsened by
an adhesive. Various metallizing processes could be used. Hot-press bonding as well as graded powder
bonding or diffusion bonding should also be investigated. Some targets should be sectioned to see

whether the notion of a ceramic cap is real.
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Figure 11. L/D=10 WA rod at 1,500 m/s against 2.54-cm AD99.5 in « Ti: speed and position

of rod nose and tail and tile back vs. time.
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Figure 12, L/D=10 WA rod at 1,500 m/s against 2.54-cm SiC in . RHA at 650 ps.
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Figure 13. L/D=10 WA rod at 1,500 m/s against 2.54-cm_SiC at 200 ps.

L/D=10 HEMI WA V=1500 VS 2.34 SiC
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Figure 14. L/D=10 WA rod at 1,500 m/s against 2.54-cm SiC at 650 ps.
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Figure 15. L/D=10 WA rod at 1,500 m/s against 2.54-cm RHA at 0 ps.
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Figure 16. L/D=10 WA rod at 1,500 m/s against 2.54-cm RHA at 200 ps.
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Figure 17. L/D=10 WA rod at 1,500 m/s against 2.54-cm RHA at 650 ps.
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L/D=10 WA rod at 1,500 m/s against 2.54-cm SiC in = Ti covered by 1-cm Ti at 0 time.
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Figure 19. L/D=10 WA rod at 1,500 m/s against 2.54-cm SiC in e Ti covered by i-cm Ti at 50 ps.
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L/D=10 WA rod at 1,000 m/s against 2.54-cm AD99.5 in -« RHA: speed and position

of rod nose and tail and tile back vs. time.
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Figure 22. L/D=10 WA rod at 1,000 m/s against 2.54-cm SiC in < Ti covered by 1-cm Ti at 200 ps.
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Figure 23. L/D=10 WA rod at 1.000 m/s against 2.54-cm SiC in = Ti at 200 ps.
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Figure 24. L/D=3.2 WA rod at 1,500 m/s against 2.54-cm SiC in e Ti at O ps.
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Figure 25. L/D=3.2 WA rod at 1,500 m/s against 2.54-cm SiC in = Ti at 200 s.
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Figure 26. L/D=3.2 WA rod at 1,500 m/s against 2.54-cm SiC in = Ti: speed and position
of rod nose and tail and tile back vs. time.
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Figure 27. L/D=3.2 WA rod at 1,500 m/s against 2.54-cm SiC in e Ti covered by 1-cm Ti at O ps.
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Figure 29. L/D=3.2 WA rod at 1,500 m/s against 2.54-cm SiC in o Ti covered by 1-cm Ti:

speed and position of rod nose and tail and tile back vs. time.
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Figure 30. L/D=20 WA rod at 1,612 m/s against 4.00-cm AD99.5 in == RHA covered
by 1.27-cm RHA at 0 ps.
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Figure 31. L/D=20 WA rod at 1,612 m/s against 4.00-cm AD99.5 in - RHA covered
by 1.27-cm RHA at 200 ps.
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Figure 32. L/D=20 WA rod at 1,612 m/s against 4.00-cm AD99.5 in e« RHA covered
by 1.27-cm RHA: speed and position of rod nose and tail and tile back vs.

time.
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Figure 33. L/D=20 WA rod at 1,500 m/s against - RHA at O'ps.
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Figure 34. L/D=20 WA rod at 1,500 m/s against == RHA at 200 ps.
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Figure 35. L/D=20 WA rod at 1,500 m/s against 2.54-cm SiC in o Ti at 0 ps.
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Figure 37. L/D=20 WA rod at 1,500 m/s against 2.54-cm SiC in e Ti: speed and position
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Figure 40. L/D=20 WA rod at 1,500 m/s against 2.54-cm SiC in = Ti covered by 1-cm Ti:
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Figure 46. L/D=10 WA rod at 1,500 m/s against « Ti at 6 ps: pressure vertical histogram
on the shotline.
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Figure 47. L/D=10 WA rod at 1,500 m/s against e Ti at 10 ps: pressure vertical histogram
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Figure 48. L/D=10 WA rod at 1,500 m/s against « Ti at 20 ps: pressure vertical histogram
on the shotline.
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Figure 49. L/D=10 WA rod at 1,500 m/s against e Ti at 50 ps: pressure vertical histogram
on_the shotline.
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Figure 50. L/D=10 WA rod at 1,500 m/s against 2.54-cm SiC in e Ti at 10 ps:

108-dyncs/cm pressure contours.

63




Pressure Vertical Histogram

Density
Vertingl Crese Sestion ot Rediw 5.00x10 om (I = 1)
21.0
I | i
nwhsc| | m|sic
18.0 Cont u;cvuu. Ay 4 1 1y 10~
ag Min 5 1.02x10*
400 Mox = 1.30x0"
8.00
15.0 24
1.61x1p
AX = 1D1%107
Min = g
120 Max j= 1

FLHO

o
o

Axial Distance ecm
'3
(=]

hﬁ
I

r
0.0 —
-3.0
-6.0 .
-8.0
15.0 12.0 9.0 6.0 3.0 0.0 3.0 5.0 90 120 15.0
Radius cm /em® (x10") 3 SEP 92
Time Cycie 141 roblem 1.0010

10.000 us y
L/D=10 HEMI WA V=1500 VS 2.54 SIC IN TI INF

Figure 51. L/D=10 WA rod at 1,500 m/s against 2.54-cm SiC in e Ti at 10 ps: pressure vertical
histogram on the shotline.
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Figure 52. L/D=10 WA rod at 1,500 m/s against 2.54-cm SiC in e Ti at 10 ps: pressure vertical
histogram 3 cm from the shotline.
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Figure 53. L/D=10 WA rod at 1,500 m/s against 2.54-cm SiC in o Ti at 10 ps: pressure horizontal
histograms at y=2.45 cm and y=2.65 cm just below and above the tile back.
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