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ABSTRACT

This dissertation addresses the need for a formal method to support the merging of
changes in independently developed versior  a prototype in ¢. computer-aided rapid pro-
totyping system. The goal is to provide the , _.otype developer with the ability to: combine
independently developed enhancements to a prototype, check for consistency, and automat-
ically update all derived versions of a prototype with changes made to the base version.

A useful semantics-based method is provided for change-merging that is guaranteed to
detect all conflicts. Prototype slicing is used to capture the affected parts of each variation
and the preserved part of the base in both variations. W .2 ~ombine the affected parts
with the preserved part using our model, which includes the fire* use of Brouwerian Algebras
to formalize the merging of hard real time constraints. Our Slicing Theorem guarantees that
this method produces a prototype that correctly exhibits the significant bebavior of each of
the input versions, provided the changes do not conflict. The method achieves correctness
by comparing the slice of the change-merged version with respect to each affected part
against the same slice of the appropriate changed version. If the slices are the same, the
change-merge is correct, otherwise a diagnostic message results. A preliminary conditional
method for change-merging while programs is also provided that is strictly more accurate
than previous methods.

This dissertation contributes to eomputer-a.ided software maintenance by providing a
model, algorithm and implementation for an automated change-merging tool for PSDL pro-
totypes. Preliminary testing shows that this tool will enhance the ability of the prototype

developer to deliver a prototype in less time by enabling more concurrency in the develop- |

ment effort.
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I. INTRODUCTION

During iterative development of software prototypes, different variations are generally
developed where each of the versions contains a portion of the desired capability. Because
these prototypes can be very large, tools that automatically determine the differences be-
tween these versions and produce a new version exhibiting significant behavior from each
are desirable. This dissertation defines a change-merging method that is semantics-based
and guarantees that if a conflict-free result is produced, it is semantically correct, and pro-
vides a working change-merging tool to be integrated into the Computer-Aided Prototyping
System (CAPS). Traditional syntax-based merging tools fall short of providing results guar-
anteed to be semantically correct, and earlier semantics-based change-merging or integration
methods concentrated on combining changes to simple imperative or while programs. We
explore a domain of enhanced data flow programs, written in PSDL, which are inherently
non-deterministic and parallel. Our change-merging method provides the first real change-

merging capability for this domain of programs.

Software change-merging is also applicable to software maintenance activities. As-
suming that a software system has been developed using the computer-aided prototyping
paradigm, or can be translated into the prototyping language, different versions of that soft-
ware can be automatically updated with changes made to the base version by applying our
method. The fielded version would be one variation and the updated base version would
be the other variation. If all of the changes made to the base version are compatible with
the fielded version, applying our method results in a new fielded version updated with the
changes made to the base version. If the changes are not compatible, this information is pro-
vided automatically by our method. Using this technology eliminates the need for software
designers to manually check if changes are compatible before performing updates. It also




allows fower designers to make changes to existing software systems, as well as prototypes
in development. In an industry with projected costs in the billions of dollars [Ref. 40], this
translates into significant savings to both the software developer and the customer.

Other uses of this technology are found in the areas of software reuse and reengineering.
In software reuse, complex reusable components can be retrieved from the software repository
that contain more furctivnality than is required for the application. The desired functionality
can be isolated using prototype slicing by taking the slice of the complex component with
respect to the output streams desired. The resultant slice will contain any part of the complex
component that affects the output stream. In reengineering, if a program written in some
high-level language can be translated into the prototyping language, PSDL, then changes
made to the prototype version of the base program can be automatically incorporated into
the prototype versions of the target programs, and the resultant prototype can then be used
to generate new production code for the reengineered program.

A. RAPID PROTOTYPING

Rapid prototyping is an approach to software development that was introduced to
overcome the following weaknesses of traditional approaches:

1. Fully developed software systems that do not satisfy the customer’s needs, or are
obsolete upon release.

2. No capability for accurately evaluating real-time requirements before the software
system has been built.

To overcome these weaknesses, computer-aided software development methods must be
developed which ensure accurate requirements engineering and emphasize efficient change
incorporation both during development and after fielding of the software system. Computer-
Aided Rapid Prototyping is one such methodology. Rapid prototyping overcomes these

weaknesses by increasing customer interaction during the requirements engineering phase

2




of development, providing executable specifications that can be evaluated for conformance
to real-time requirements, and producing a production software system in a fraction of the
time required using traditional methods. Rapid prototyping allows the user to get a bet-
ter understanding of requirements early in the conceptual design phase of development. It
involves the use of software tools to rapidly create concrete executable models of selected
aspects of a proposed system to allow the user to view the model and make comments early.
The prototype is rapidly reworked and redemonstrated to the user over several iterations
until the designer and the user have a precise view of what the system should do. This pro-
cess produces a validated set of requirements which become the basis for designing the final
product [Ref. 36]. The prototype can also be transformed into part of the final product. In
some prototyping methodologies, prototypes are developed, demonstrated and then thrown
away before the production system is developed. In prototyping methodologies like the one
used in CAPS, the prototype is an executable shell of the final system, containing a subset
of the system’s ultimate functionality. After the design of the prototype is approved by the
customer, the missing functionality is added and the system is delivered. In this approach
. to rapid prototyping, software systems can be delivered incrementally as parts of the sys-
tem become fully operational. Figure 1.1 shows the life-cycle model for this prototyping
methodology.

In this model, the customer provides a set of initial goals to the designer. The designer
takes those initial goals and formulates a set of requirements from which the first version of
the prototype is designed. This prototype is then demonstrated to the user, with the user
providing feedback to the designer. The designer takes the feedback, adjusts the requirements
to reflect the adjusted goals and makes whatever changes to the prototype necessary to
satisfy the requirements. It is then redemonstrated to the user for more feedback. This
iterative process continues until a validated set of requirements is accepted by the user. The
designer then takes the prototype and implements the remainder of the functionality needed
to produce the operational system. The result is an operational software system that satisfies
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Figure 1.1: Rapid Prototyping Life-Cycle Model. [Ref. 20]

the customer’s requirements and that is delivered in only a fraction of the time it would take
using traditional software development mcthods

Change-merging is an integral part of the rapid prototyping methodology. During the
Design Prototype System phase of prototype development, multiple variations of a large pro-
totype are likely to be developed. This can happen when different development teams are
working on different aspects of a system, or when different possible solutions to a problem
are explored in different ways. In the first example, it will certainly be necessary for the sepa-
rately developed pieces of the prototype to be combined into a single system before execution
for the customer. In the second example, the customer may desire a system containing some
or all of the aspects contained in each solution. In this case, these different prototypes must
be change-merged to capture the significant parts of each variation. Our change-merging
method will allow these combinations to be done automatically, ensuring that the resultant
prototype is semantically correct, with respect to all of the input variations. If the pieces are
not compatible with regard to the semantics of the prototype, then our method will identify
the parts of the prototype containing the conflicts. This technology encourages the designer




to explore different solutions to a problem, and to spread the development workload in a
large project without concern for the subsequent integration of these independent efforts.

B. PROTOTYPING SYSTEM DESCRIPTION LANGUAGE

Our method has been implemented for use in the CAPS development system. It is
designed to operate on programs written in the Prototyping System Description Language
(PSDL), associated with CAPS. PSDL is a high level specification and design language which
can be translated into executable code.

PSDL is a generalization and extension of a data flow language, with the addition
of control constraints and timing operations [Ref. 35]. A PSDL prototype consists of two
parts: a specification and an implementation. The specification of a prototype contains
the interface, and the implementation contains either a PSDL graph implementation, or a
programming language implementation. The PSDL graph implementation contains a set of
operators, a set of data streams through which the operators communicate with one another,
and a set of control and timing constraints which specify restrictions on the execution of the
operators or data streams. The programming language implementation is written in any
high-level programming language like Ada or C that is supported by the environment.

All operators in PSDL prototypes are state machines. Since PSDL is, by definition,
non-deterministic, the meaning of an operator in PSDL is a mathematical relation. PSDL
operators with only one state, or an empty set of state variables, and only one possible out-
come are functions. This meaning is defined by the operator’s possibility function discussed
| in a later section.

A data stream in a PSDL prototype is a communications link between operators. Each
data stream is either a data flow stream or a sampled stream. Data flow streams are FIFO
buffers of lengths at least one. When a new value is written to the stream, it is appended
to the buffer. Values are removed from a data flow stream only when they are read by the




consumer. Values on data flow streams can be read only once. Sampled streams are not
traditional data flow streams. They have buffers of size one. When a value is written to the

stream, it remains on the stream until a new value is written to the stream, at which time
the old value is overwritten. A value is not removed from the sampled stream when read.
Data streams can be written by more than one operator, and they can be read by more than
one operator. A complete listing of the PSDL grammar is contained in Appendix D.

C. OVERVIEW

1 the chapters that follow, we provide background information which we used to pro-
du sorking change-merging tool. Chapter II provides definitions of mathematical con-
structs used in later chapters. Chapter III provides information about related work, some of
which was accomplished by others before our effort was started, and some we have accom-
plished during the course of the research effort. Chapter IV provides a semantic model for
the PSDL computational model which we used to develop our algorithm, and it contains the
discussions about this dissertation’s primary contributions to the state of the art. Chapter
V contains the algorithms used to implement our tool, along with a discussion of their cor-
rectness and complexity. Chapter VI outlines the development of the change-merging tool
and Chapter VII provides our analysis of what we accomplished in this effort, and some
future research options in this area. There are five appendices: Appendix A contains formal
specifications for the constructs used in our model, Appendix B contains details about the
effect of PSDL control constraints on our model, Appendix C contains proofs considered too
lengthy to be included in the text of the dissertation, and Appendix D contains a listing of
the PSDL grammar, and Appendix E contains the program listings of our implementation.
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II. ALGEBRAIC FOUNDATION FOR MERGING

A. WHAT IS CHANGE-MERGING

Change-merging is a process that allows different changes to a software product to
be combined using computer-aided tools. The result of this change-merge must contain the
differences between the base version and each input version, and must be correct with respect
to the method used; syntactic or semantic. Syntactic change-merging is performed on the
source code of the the input versions with respect to the differences in the syntax of each
version. Semantic change-merging is performed on the functions computed by the software
product with respect to the behavior associated with each input version. Semantic change-
merging requires a solid mathematical foundation to provide some guarantee of correctness
and engender confidence in a working change-merging system. As has been pointed out in
much of the previous work on merging, there is a solid foundation for representing program
variations in algebra [Ref. 6, 28, 42]. This chapter introduces and explains the mathematical
concepts needed to understand the work presented in later chapters. Section B describes
the sets and partially ordered sets, and their relation to change-merging. Section C extends
the discussion to Lattices and describes how lattices are used in change-merging. Section D
builds up to Boolean and Brouwerian Algebras which are very useful in performing change-
merge operations.

B. SETS AND POSETS

A set is a collection of objects, called elements. Operations on sets include € (member-
ship test), U (union), N (intersection) and — (difference). A partially ordered set, or poset,
is defined as follows [Ref. 16):




Definition 1 Partially Ordered Sets

A nonempty set X is said to be a partially ordered set, or poset, provided that a relation
C is defined on X, satisfying the following:

1. £ is reflezive: z C z for all z € X;;
2. C is antisymmetric: z C y and y C z imply that z = y;
3. Cis transitive: zC y and y C z imply that z C 2.

Such a relation C is called a partial ordering of the set X.

Our method of change-merging is performed on variations of a PSDL program. Changes
to PSDL programs are not always extensions of a previously defined program. Different
variations can change a previous program in different ways. Since these different variations
are not always compatible extensions of earlier versions, the set of all program variations
does not form a completely ordered set. But since some program variations are compatible
extensions of other programs, the set of all program variations forms a partially ordered set,
with respect to an approximation relation, C.

Definition 2 Approximation Relation for PSDL Prototypes

If  and y are two PSDL prototypes, = approzimates y, wriiten z C y, if y ezhibits any
behavior that z ezhibits.

Proposition 1 The set of all possible PSDL prototypes is a poset.

Proof:

If z and y are PSDL prototypes, let C be the approximation relation defined in Defini-

tion 2.

By Definition 1, for the set of all possible PSDL prototypes to be a poset, it must satisfy
the three conditions, reflezivity, antisymmetry, and transitivity.




(a) Clearly z C z, as z certainly exhibits its own behavior.

(b) Let z C y and y C z. Then y exhibits any behavior that z exhibits, and z exhibits
any behavior that y exhibits. Thusz = y.

(c) Let z C y and y C 2. Then y exhibits any behavior that z exhibits and possibly
more, and z exhibits any behavior that y exhibits, so z exhibits any behavior that z exhibits.
Thus z C =.

Therefore by (a), (b) and (c), the set of all possible PSDL prototypes is a poset. O
C. LATTICES

A lattice ordered poset is a partially ordered set (L,C) such that for every pair of
elements, z,y € L, the supremum, sup(z,y), and the infimum, inf(z, y), exist [Ref. 34]. An
example of a lattice is shown in Figure 2.1.

An algebraic lattice is a nonempty set L together with two binary operations, meet (m
and join (U), which satisfy the following conditions for all z,y,z € L [Ref. 34]:

(1) Commutativity: zNy=yNzand zUy=yUz.
(2) Associativity: zN(yNz)=(zNy)NzandzU(yUz)=(zUy)Uz=
(3) Absorption: zN(zUy)=zand zU(zNy) = 2.

(4) Idempotence: zNz=zandzUz=1z.

In the context of merging pure program extensions, the meet (M) operation represents
the greatest common approximation of two programs, and the join (U) operations repre-
sents the least common extension. The greatest common approximation of two programs
represents the functionality common to both programs, and the least common extension
represents the union of both of their functionalities.
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Figure 2.1: An Example of a Lattice.

According to [Ref. 34], every lattice ordered set is an algebraic lattice if we define
zNy =inf(z,y) and z U y = sup(z,y).

A distributive lattice is an algebraic lattice for which at least one of the following
properties holds:
l.zN(yuz)=(zNy)u(znz).
2.zU(yNz)=(zUy)N(zU=2).
An algebraic lattice £ is complemented if for every z € L there is at least one element

y €L suchthat zUy =T and 2Ny = L. We say that y is the i complement of z.

D. BOOLEAN AND BROUWERIAN ALGEBRAS

A Boolean Algebra is a complemented, distributive lattice {[Ref. 34). Change-merging
over Boolean algebras is done very simply using set operations. A very rich and well under-
~ stood set of laws is available for the use of Boolean Algebras.

A Brouwerian Algebra is a distributive lattice with a pseudo-difference operation, —,
characterized by the property z — y € z <= z C y U z. This property states that the
pseudo-difference of two sets z and y is contained in the set z if and only if z is contained
in the supremum of y and 2. A formal definition of Brouwerian algebras follows [Ref. 39}:
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Definiticn 3 Brouwerian Algebras

A Brouwerian algebra is an algebra (L,U,N, —, T) that satisfies the following pmpcrt;es:
(s) (L,U,N) is a lattice with a greatest element, T.
(it) L is closed under ~.

(it) For all elements z,y,z € L, the formulas z — y C z and z C y U z are equivalent.

[Ref. 39] also provides the following properties of Brouwerian algebras:

Theorem 1 Let L be a Brouwerian algebra under U,N and —. Then:
(i) L has a zero element, L determined by the formula L =T — T.
(ii) L is a distributive lattice.

(i) IfzCy, thenz-2Cy—2,2—yCz—z,and T-yCT = z.
(ivyzCyez—y=1.

(v) zCyU(z—y).

(v) (zUy)s—y C z.

(vii) z — 2 C (zUy) - 2.

(viii) zU(z —y) =2+ [(zUz) - (2Uy)).
(iz) z = (zNy) = (2~ z) U (z - y).

(z) (zUy) = z=(z - 2)U(y - 2).

(zi) T—(T—-z)Cz.

(zi) T—(T=(T—-2))=T~=z.

(ziii)) T—L=Tand T-T=1.

(ziv) zU(T - 2)=T.

The proof of this theorem is contained in [Ref. 39)].

Brouwerian algebras are very useful in the study of sets in which the true difference

between two elements is not guaranteed to exist.
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E. SUMMARY

It turns out that every component of PSDL programs that can be change-merged can
be modeled using lattices or algebras. Many of the different parts of PSDL prototypes which
are merged separately do not fit nicely into Boolean algebras, with the exception of some
control constraints, so we introduced the concept of Brouwerian algebras. Throughout this
dissertation, the concepts discussed in this chapter are used to prove different parts of the
change-merging model contained in Chapters III and IV, and considered in the development
of the algorithm and implementation.
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I1I. RELATED WORK

This chapter reviews and assesses some of the work related to the change-merging
problem which has already been accomplished. Since change-merging is a relatively new
problem, there have been a number of research efforts aimed at defining the theoretical

foundations for the problem, but not much effort has been placed on implementing a solution
for real programs. Our research effort is the first to tackle a real-world problem and succeed
in providing a working solution. This effort would have been nearly impossible, however,

had it not been for the pioneering work reviewed in this chapter.
A. TEXT BASED MERGING

The earliest work on program merging relied on combining changes made to the text
files containing the source code for the program [Ref. 43, 45]. These early systems certainly
provided an advance to the then-current state of the art, but syntax-based merging did not
prove useful in the general case, as syntax-based merging proved insufficient to provide any
guarantee of semantic correctness [Ref. 6.

The first of the text-based merging systems was introduced as part of a software man-
agement toolkit called the Revision Control System or (RCS) [Ref. 45). This system was
developed as a way to maintain the update lustory of a file. The system saves the initial
version of the file when invoked for the first time and, in subsequent invocations, saves only
the changes made to the previous version. Merging is accomplished through the use of the
command RCSMERGE. RCSMERGE tries to combine the differences between two differ-
ent changes to the same base document based on the assumption that changes to disjoint
portions of the text are independent. Where it is able to combine the changes, it makes
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the change to the output file. When it is not able to combine the differences, it prints the
respective piece of each version as a conflict in the output file, so the author can resolvé it

manually.

These systems work well for most text files with small individual changes. For programs,
however, they do not provide even a guarantee of syntactic correctness, and in some cases

when the changes are significant, the tool is unable to match even the parts that did not
change.

B. MERGING OF PROGRAM EXTENSIONS

In [Ref. 6], Berzins presents the first definitive work on semantic-based program merging.
This work is limited to considering program extensions, and does not consider changes that
remove functionality from the base program. It recognizes that program extensions can be
ordered using an approzimation relation C. If p is a base program, and ¢ is an extension of
p. then p C q. That is to say that the functionality of q agrees with the functionality of p
everywhere p is defined, but ¢ may be defined where p is not.

With this ordering in mind, two programs p and ¢ can be merged by finding the least
common extension of p and ¢, written pLiq, where p and ¢ are base programs and pLiq is the
merged program. He also recognizes that the exact least common extension of two programs

is not computable in the general case, but a safe approximation is sufficient in practice.

Berzins considers four software domains: specifications, functions, programs and data
types. These domains are defined in Figure 3.1. All of these domains are represented using
lattices. The following sections describe the representation of these domains.
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Specification: Defines Acceptable Range of Behavior .
Function: Models Actual Behavior

Program: Algorithms Defining Partial Functions
Data Type: Set on which Programs Operate

Figure 3.1: Definitions of Relevant Domains

1. Functions, Specifications and Programs

Functions, specification and program domains can all be viewed as lattices with
respect to the approximation ordering C. Each lattice contains the elements of the domain
together with a top element, T, representing an overconstrained element, and a bottom
element, 1, representing an undefined element. The least common extension of two elements,
z and y can then be defined in terms of lattice operations as the least upper bound of z and
y, denoted z U y. If z and y are compatible, then z Uy # T, otherwise zUy = T.

2. Data Types

The lattice for a domain representing a conventional data type, Dy, can be defined
as a set D = DoU{L, T}, where L approximates everything and T is an extension of
everything. The definition of the extension relation for D is:

zCy<=(L=z)V(z=y)V(y=T)

The least upper bound of any two unequal elements in this domain is T, the overconstrained
element. This model applies to data types whose elements are either completely defined or
completely undefined. An example of a type that is not covered by this construction is a list
with a component selector implemented using lazy evaluation. Some components of such a
list may be well defined, while other components may be undefined (i.e. cause infinite loops
if they are accessed).
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The work presented in [Ref. 6] provides a fundamental basis for most of the current
work in semantics-based program integration and merging. It looks at programs in terms of
their semantic building blocks and provides a theory describing how merging occurs at the
building block level. This work shows that computing a useful approximation to an ideal
merge is both achievable and sufficient.

C. INTEGRATION OF CHANGES TO WHILE-PROGRAMS

In [Ref. 28], the first semantics-based algorithm for integrating two non-interfering
modifications of a base program is described. This integration algorithm produces a third
program which reflects both modifications, and uses program dependence graphs (PDGs) to
abstractly represent the programs. Using program slicing, it then determines which portions
of the two modifications are different from the base program. Based on this information,
the algorithm uses a conservative approximation to determine if the changes can interfere.
If they can not, the program slices are combined into one integrated PDG, which is then
transformed into a final version of the integrated program.

1. Program Dependence Graphs

A PDG for a program P, as described in [Ref. 28], is a directed graph, Gp, with
vertices representing statements in the program, and edges representing control and data
dependencies between the vertices. There are also two special types of vertices in the PDG
which are not program statements; an entry vertex and a final-use vertex for each output
variable. A complete list of the types of vertices is contained in [Ref. 28].

Using these components, 2a PDG can be constructed for any while-program [Ref. 33].
Figure 3.2 shows an example of a simple program and its associated PDG. By analyzing the
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parts of this graph that affect a certain variable, we are able to observe the effects of a change
to the program with respect to that variable. This is done using program slicing {Ref. 4ﬂ.

program
sum := 0;
x:=1;
whilex < 11 do
sum := sum + X;
x:=x+1;
od
end(x,sum)

«“@§ CONTROL
=== LOOP INDEPENDENT
-©—» DEF-ORDER

LOOP CONTROLLED

Figure 3.2: Example of a Program Dependence Graph [Ref. 28]

2. Program Slicing

The program slice of a graph G with respect to a vertex s is the subgraph of G
induced by all vertices that can reach s by way of control (—,) or flow (— ) dependence

edges, along with the edges that connect the vertices.
V(G/s) = {w € V(G) | w —. s}

To get the slice of a graph G with respect to one of the output variables, say z,
merely take the slice with respect to the vertex labeled FinalUse(z). The slice is con-
structed backward from the final-use vertex, and includes all control or flow edges which
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can costribute to the final value of z. Def-order edges are contained in the slice only if the
vertex which observes the dependency is also included in the slice. This construction can
be extended to a set of vertices S = {s,,3,,...,3;} by taking the union of the vertex and
edge sets of all of the individual program slices. Figure 3.3 shows an example of the slice
of the previous program taken with respect to the variable z at the final-use node and the
corresponding PDG.

program

x:=1;

while X < 11 do
Xx:=x+1;
od
end(x)

=@¥ CONTROL

ey~ L OOP INDEPENDENT
-+ DEF-ORDER

—» LOOP CONTROLLED

Figure 3.3: Example of a Slice of a Program Dependence Graph [Ref. 28]
3. Integration Algorithm
The integration algorithm presented in [Ref. 28] starts by creating program depen-
dence graphs for each program and, using program slicing, identifies the part of the base

program which is preserved in all three versions and the parts of the variations which are
different from the base. The common part of all three versions is called the preserved part,
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and the part of each variation that is different from the base is called the affected part of

X4

that variation.

These three slices are then combined into an integrated PDG. If the integrated
PDG is feasible! and the two variants do not interfere with each other, then the integration
is successful. One major problem identified in this work is that determining whether a PDG
is feasible is NP-Complete [Ref. 2§. The other criterion for determining success is more
tractable, that of determining interference. This is done by comparing the slices of each of
the three original versions against slices in the merged version. If the slice of the merged
version with respect to the affected parts of each modification is the same as the slice of that
modification with respect to its affected parts, and the slice of merged version with respect
to the preserved part is the same as the base version with respect to the preserved part, then
the versions do not interfere, and a successful integration is possible.

The work in [Ref. 28] is supported by three theorems; the slicing theorem, the
equivalence theorem and the integration theorem. The slicing theorem states that when
given the same input and starting state, a slice of a program that halts produces precisely
the same output as the program. The equivalence theorem states that if two programs have
equivalent PDGs, then the programs are themselves equivalent. The integration theorem
states that if M is the result of a successful integration, then M halts on any initial state
on which the three input versions halt, and M correctly preserves the meaning of each
modification to the base.

4. Meaning Functions

Meaning functions [Ref. 33] represent the semantic meaning of a program as map-
pings from states to states. These state changes are represented as sets of pairs including an
initial state and the corresponding final state(s). In [Ref. 10}, Berzins provides a theoretical

1A program dependence graph is feasible if it is a PDG for a program.[Ref. 2§
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foundation for merging simple, imperative programs using their meaning functions. This
theory uses the notion that program variations can be viewed as partial functions modeled

using a powerset lattice. Since a powerset lattice is equivalent to a Boolean algebra, normal
set operations, U, N and — can be used to reason about these program variations.

This theory shows that a change transformations from a base program f to a
variation g, A[f,g], can be applied to a second variation h, A[f,g](k) with precisely the
same results as if the change from f to h were applied to g, A[f, h])(g). This is very useful
in change-merging, as it demonstrates that independent updates to a common base version
g of a software product and subsequently change-merged without regard for the order in
which they were accomplished. As long as the changes made are compatible, the results in
terms of the meaning functions are the same. It does show, however, that the change-merged

program does not necessarily have to be similar to the input programs.

The meaning functions for the programs shown in Figure 3.4 are as follows:
m(B) = (z >0 — {((z,9),(z,1))} | z < 0= {((z, %), (z,-1))})
m(4) = (z >0 {((z,9): (=, 1)} |z < 0= {((z,9), (=,0))})
m(C) = (z >0 {((z,9):(2,2))} | z < 0= {((=,9).(z,-1))})

These three versions are merged using their meaning functions as follows [Ref. 10}:
m(M) = m(A[B]C) = m(A)[m(B)m(C)?
= (m(A) — m(B)) U (m(A) N m(B)) U (m(C) — m(B))

=(z>0-{((z,9), (=, 1))} - {((z,9), (=, 1))} |

z < 0= {((z,9), (=,00)} - {((=9), (z,-1))})
U(z > 0 = {((z,3), (=, 1)} N {((z,9), (z,2))} |

z < 0= {((z,9), (=,00)} N {((z,9), (z,-1))})
U(z > 0 = {((z,¥): (,2))} = {((=:9): (=, 1))} |

z <0 {((z,9), (z,~1))} = {((z,9), (=, -1))})

The notation A[B]C will be introduced in Section D.1
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=(2>0—{}|z50- {((z,y)(z,0))} : '
Uz>0= {((z,9):,(1,1))} |z <0 {})
Uz >0 {((z,9):(z,2)) Iz #1} |25 0= {})

=(z>0={((z,9),(z,2))} | 20> {((z,9),(z,0))})
= m(if z > 9 then y := z else y := 0) = m(M)

Base version B: ifz>0theny:=1lelsey:=~-11f
First change version A: ifz>0theny:=1lelsey:=0Af
Second change version C: ifz>0theny:=zelsey:=~1fi

Figure 3.4: A Program and Two Variations [Ref. 10]
5. Analysis

The work presented in this section shows that a method can be developed for
integrating real programs. The work contained in [Ref. 28, 29, 48] illustrates a method for
integrating programs in a simple imperative programming language that has been developed
and works. This demonstrates that a practical method is possible for imperative programs,
but falls short of providing 2 method which is useful to solve any real world problems. In
particular, the method fails to provide any sort of conflict location or resolution. If a conflict
is detected, then it is reported to the user, and the integration fails. It is up to the user to
determine the nature of the conflict and how it should be resolved. Our methods address
these problems as shown in the next section and in Chapter IV.

D. CHANGE-MERGING OF PSDL PROGRAMS

In [Ref. 20}, an initial attempt at developing a model for change-merging PSDL pro-
grams is presented. Although crude, this model provides us with an important part of the
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" specifieation change-merging model, aud insight into the current effort defined in subsequent
chapiars. : g

1. Change-Merge Operation

This change-merge operation is defined by the operation A[B]C, where A, Band C
are sets of pairs representing the functionality of three different versions of a PSDL program.
The operation A[B]C was initially introduced by Berzins in [Ref. 9] and is defined as:

A[BIC=(A- B)u(ANC)u(C - B)

where M, U and — represent the greatest common approzimation, lcast common eztension,

and semantic difference respectively, between two programs.

The set of all PSDL programs, together with a T and L, forms a lattice using the
relation approzimates [Ref. 20]. If A is an extension of B, then we say that B approximates
A, written B C A. The T element in the lattice is an extension of every PSDL program,
and the L element approximates all PSDL programs. For example consider the lattice in
Figure 3.5. In this example, O and P are extensions of A and A approximates both O and
P. P and @ are both extensions of B and B approximates both P and Q. P is a common
extension for both A and B. In fact, P is the least common extension of A and B.

s
-___-.~‘
I+
~

Figure 3.5: A Lattice of Program Extensions
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The least common extension of two PSDL programs, AL B, is the smallest possible
PSDL program P such that A C P and B C P, and represents the union of the functionalities
found in both A and B. In Figure 3.5, P is the least common extension of A and B. The
greatest common approximation of two PSDL programs, PN Q, is the largest possible PSDL
program B such that B C P and B C Q, and represents the common functionality found in
both P and Q. In Figure 3.5, B is the least common extension of P and Q. The semantic
difference between two programs, A — B, represents the functionality found in A, but not in
B. The semantic difference exists if the lattice is a Boolean algebra, and a pseudo-difference

can be defined if the lattice is a Brouwerian algebra.

It has been shown that the least common extension of two programs is not com-
putable in the general case [Ref. 6]. In [Ref. 20], we demonstrated that an approximation that
is computable is sufficient to provide a useful change-merge for most cases. The following
sections outline the model defined in [Ref. 20].

2. Interfaces

The interface of a PSDL operator P is the definition of the operator’s external
contacts. It defines Ip, the set of inputs expected by the operator, Op, the set of outputs
that can be expected, and in the case of generic templates, GNp, the set of generic param-
eters used to instantiate the prototype. Ip, Op, and GNp are all ordered sets (sequences).
The interface may also contain a set Stp, of internal state variables, a set Ep, of possible
exceptions, and a maximum execution time constraint that is met by the program. Stp and

Ep are sets.

a. Seguences

Sequences are = significant building block for many programming languages,
including PSDL. A sequence is a totally ordered collection. Since the order of the collection
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is significant, any change made to the sequence is an incompatible change and creates a
sequence which is neither an approximation nor an extension of the original sequence. A
correct mathematical repre:-ntation for a sequence would be a flat lattice, like the one in
Figure 3.6. This means that the only approximation for the sequence is the undefined
sequence, 1, and the only extension of the sequence is the unconstrained set, T, and the

greatest common approximation of any two sequences is the undefined element, 1.

/I
[3] [1,3]

Figure 3.6: A Flat Lattice Representation for a Sequence

(1) Input and Output. Input and Output interfaces are sequences of input
and output streams. The order of these sequences is significant because actual parameters
are associated with formal parameters based on the order in which they appear. In change-
merging I, Ip, and Ip,,. into Iy, any change between the interface sequence of the base
version and the two modified versions is significant, and must be preserved in the change-
merged version. The change-merged sequence of inputs, or outputs, is determined by the

following rules:

1. If both of the modified versions have the same interface sequence as the base,
then: Iy = Ipg,,..

2. If one of the two modified versions, say I4, is the same as the base, and Ip is
not, then: Iy = Ip.

3. If all three versions are different from each other, then: Iys = T.
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The first situation is the case in which no changes were made between the
inputs of the Base and the two modifications. In this case, the change-merged version should
have all of the same inputs, or outputs. The second situation is the case in which only one of
the modifications changed from the base. In this case, the change from the base is significant
and must be preserved in the change-merged version. The third situation is the case where
both of the modifications changed from the base. The result is a conflict because there
is no proper PSDL specification that is consistent with both modifications. The result of
a change-merge which produces a conflict for this situation would be an input declaration

which contains a T where the input stream declarations would be.

The type declarations of the streams also have to be merged. Because the
types are significant, any change to the type declaration must be preserved in the merged
version. Types are also change-merged using a flat lattice structure. Figure 3.7 contains an

example of a change-merge on Input Sets.

SBese = INPUT
z : integer,
y : real
OuUTPUT
w : integer,
z : string
Sa =INPUT Sp = INPUT
z : integer z : integer,
ouUTPUT y : real
w : tnteger, OUTPUT
t : integer, w : integer
z: string
Sy = INPUT
z : tnteger
OuUTPUT
T

Figure 3.7: Example of a Change-Merge on Input Sets [Ref. 20}




(2) Generic Parameters. The Generic interface is contained only in template
operators and PSDL type specifications. Template operators are operators in the Software
Base used to instantiate software components. Change-merging generic parameters is similar
to change-merging input and output parameters with the exception that, in addition to
value parameters, generic parameter sequences may also contain operator parameters and
type parameters. Changes to generic sequences follow the same rules as Input and Output

sequences. Figure 3.8 shows an example of a change-merge operation on generic parameters.

GNp.,,. = GENERIC

t1 : type,
t2 : type,
ol : operation|il,i2: t1,0l : t2],
vl : tnteger
GN, = GENERIC GNgp = GENERIC
t1 : type, t1 : type,
13 : type, 12 : type,
02 : operation]il : t1,0l : 3], ol : operation[il,i2:t1,0l : t2],
vl : integer vl : integer
GNy = GENERIC
tl : type,
t3 : type,
02 : operation|il : t1,01 : t3),
vl : tnteger

Figure 3.8: Example of a Change-Merge on Generic Parameters [Ref. 20]

b. Sets

Sets are modeled using a “Powerset Lattice” as shown in Figure 3.9, and thus
more freedom can be exercised in change-merging them. Change-merge operations do not

follow the same rules for sets as for sequences.
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Figure 3.9: A Powerset Lattice Representation for a Set Containing Three Elements

(1) States. State variables differ from input and output variables in that,
abstractly, they are tuples, containing a name, a type and an initial value. As the set
of state variables is unordered and invisible to the rest of the program, the state set can
be increased or decreased without affecting the parts of the program outside the modified
component. In change-merging state variable sets, the operations M, L, and — are equivalent
to the corresponding set operations, U, N and —~. The third part of the tuple, the initial
value, requires an additional check in the change-merging process. These initial values are
ordered using a flat lattice, because they are ordinary data values. The initial value of a
change-merged state variable follows the same change-merging rules as input and output
variables. If all three versions have different initial values for the same state variable, then
the change-merged version contains a T in the place where the initial value is assigned. If
only one of the modifications assigns a different initial value than the base version, then the

change-merged version contains the initial value of the one that was different.

(2) Exceptions. The exceptions interface is a list of identifiers which denote
exception values which may be returned by the operator. Consequently N, U, and — can be
interpreted as the corresponding set operations, U, N and —. Exceptions that appear in one
or both of the modified versions, and not in the base, appear in the change-merged program.
Exceptions that appear in the base and do not appear in at least one of the modifications

are not included in the change-merged program.
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(3) Maximum Execution Time. Maximum Execution Time (MET) is the
only timing constraint that appears in PSDL specifications. MET is the maximum CPU
time that an operator can use to perform its assigned task. Change-merging two MET
constraints, ¢; and t;, can be done as follows:

tl Utz = min(t,,tz)

Hnt = maz(ty, ;)

Hh—t = sf t3<¢t; then oo else
T =0
1l = 00

Proposition 2 The set of METs form a Brouwerian Algebra

Proof:

Let M be the set of all possible METs.

We must show that M, U, N is a distributive lattice, that M is closed under —, and
that
Va,b,c€ M,a-b<ce=a < (bUc).

1. (M,4,N) is a distributive lattice:

Clearly, a U b and a N b exist for any a,b € M, and the reflexive, antisymmetric, and

transitive properties hold, so (M, U, N) is a lattice.
M is distributive: Let a,b,c € M. We use a table to illustrate:

afN(bUc)[(and)u(anNc)
a<b<e b b
a<c<b c c
b<a<c a a
b<c<a a a
c<a<d a a
c<b<a a a

From the table it is easy to see that M is distributive.
2. M is closed under —:
Since a — b is always either a or co for any a and b, M is certainly closed under —.
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3. Foran a,b,c€E M,a—b<cea<(bUc):
Assume a — b < c. Then, a < b, since otherwise, a — b = 0o0. Since a < b, then a S‘c.
Thus,a < (bU ).
Now, assume ¢ < (bUc). Thena <banda<c,anda—b=4qa. Thusa - b<ec.
Therefore, M is a Brouwerian Algebra.

3. Functionality

The functionality of an operator specification is a description of the behavior of an
operator. It consists of a set of keywords, an informal description, and/or a formal descrip-
tion. Through the use -+ words, the operator can be distinguished from other operators
in the database during the retrieval process. Informal text descriptions are provided for use
by the engineer. Formal axiomatic descriptions are provided to support automatic retrieval.

The set of keywords can be change-merged using the appropriate set operations,
U, N, and —. The informal description is a sequence and must be changed-merged using
the same method described for input and output parameters. Formal descriptions can be

change-merged using the Boolean algebra structure of the logic in which they are expressed:

zUy = zVy
zNy = zAy
zZ—-y = zAy

4. Data Flow Graphs

In [Ref. 20}, a PSDL implementation graph for an operator A is viewed as a graph
D, = {O,L}, where O is a set of vertices that represent the component operators of A,
including the constant operator EXT representing external contacts, and where L is a set of
links (labelled edges) which represent the data streams entering and leaving the elements of
O. The labels for the links are the names of the data streams they represent.
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The change-merging operation on PSDL data flow graphs is defined in terms of a
bipartite graph B4 = {V, S, LI, LO}, where V is the set of operators in Dy, S is a set of
vertices which represent the data streams of operator A, LI is a set of edges from a stream
vertex to an operator vertex, representing input links, and LO is a set of edges from an
operator vertex to a stream vertex, representing output links.

Change-merging the data flow diagrams is done by change-merging the graphs
GBese; G4 and Gp by subsets V, S, LI and LO. The operations U, M, and — can be
interpreted as the corresponding operations U, N, and —. This change-merge is accomplished
using the following equation:

GM = [Ga = GBese] U [GANGB] U [Gp — Gpese)

This equation defines a structural or syntactic change-merging operation that does not nec-
essarily correspond to a semantic change-merging operation.

The greatest common approximation is obtained for the Base and the two mod-
ifications by taking the intersection on all components of the graph. Then these common
components are added to the disjoint components of each modification by subtracting out
the parts of the two modifications which are also in the base. This operation preserves the
parts of the program common to all the versions, while ensuring that significant changes
made by the two modifications are included in the change-merged graph.

This method of change-merging the implementation graph of a PSDL program
fails to adequately consider the semantic effects of the changed modifications, as does the
approximate method shown later in this chapter. Although these methods produce a change-
merge that is useful in some cases, they are not nearly as useful as the slicing method
described in Chapters IV and V.




S. Data Streams and Control Constraints

a. Data Streams

A set of data stream declarations DS, defines local data streams that are used
only within the implementation of a composite operator, A, and that are not defined in the
specification. The order in which the declarations appear is not significant. They have the
same structure as exception declarations, and can be change-merged using the same rules.
If a stream appears in DSp,,., then it appears in DSy if and only if it appears in both DS,
and DSp. If a stream does not appear in DSp,., then it appears in DSy, if and only if it
appears in at least one of the sets DS, and DSp. These rules are:

2€DSpee AN z€DS),ANz€EDSg => z€DSy

2€DSBese A ~(x€DS,Az€DSg) => —(z€ DSy)
~(z€DSpus) A (z€DSAVz€DSs) => z€DSu
~(z € DSposs) A ~(z € DSyVz € DSs) => —(z € DSi)

The type declarations of data streams are also significant, as with Input and
Output Streams, and changes to those declarations must be preserved in the merged version.
The type declarations can be merged using a flat lattice structure just as the Input and
Output streams are merged.

b. Control Constraints

Control constraints are a set of pre-conditions, which control the firing of par-
ticular components, and post-conditions, which filter the output provided by those compo-
nents. The contro] constraints appear in the change-merged operator according to the same
rules as the data stream definitions. Any control constraint that appears in all three input
versions in exactly the same way appears in the change-merged operator without change.
Any constraint which appears in one or both of the modifications, but not in the base,
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appears unchanged as long as the conditions of the constraint are the same. Changes in con-
ditions are handled differently depending on the type of constraint. Input and output gua;i:ds,
conditional exceptions, “TRIGGERED IF”, “OUTPUT IF”, “EXCEPTION IF", and timer

operations have logical predicates as conditions. Timer operations are not change-merged
as straightforwardly as other predicate constraints. Different operations exist for different
activities. Start, stop, and reset are the three timer operations used in PSDL. The timer
operations affect the state of the timer. The start and stop operations affect the run state of
the timer, and the reset operation affects the value state of the timer. The reset operation
is thus independent of the others, and can be merged independently. If a reset operation
appears in all three versions, or appears in at least one of the modifications, but not in the
base, then it appears in the changed merged version as well. The start and stop operations
must be change-merged using a flat lattice ordering relation, as with inputs and outputs.
The predicates that accompany the control constraints are change-merged according to the
usual rule, A[Base]B = (A — Base)U (AN B)U (B — Base), where the operations N, U, and
— are inierpreted as follows:

aUdb = aVd
alld = aAd
a—-b = aA-b

The constraints “PERIOD”, “FINISH WITHIN"”, “MAXIMUM RESPONSE
TIME", and “MINIMUM CALLING PERIOD” have integer values as conditions. These
values are ordered using a flat lattice and can be change-merged as follows. For “PERIOD”
constraints, if the value is the same in all three input versions, then it appears unchanged
in the merged version. If it is different from the base in one of the modifications and the
same as the base in the other modification, then the change must be preserved and the value
appearing in the modification where it is different appears in the merged version. If all three
versions have different values for the period, then a L or undefined value appears in the
merged version, indicating an unresolvable conflict. “FINISH WITHIN” and “MAXIMUM
RESPONSE TIME™ constraints are upper bounds and can be change-merged using the
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same method described for “MAXIMUM EXECUTION TIME". “MINIMUM CALLING
PERIOD” is a lower bound and two MCP constraints, t; and t;, can be change-merged
using the equations shown below:

thUut, = maz(ty,t;)

1Nt = min(l,t,)

Hhi—t = sf 321, then oo else t,
T =0
4 = 00

Proposition 8 The set of all MCPs form a Browwverian Algebra

Proof: See the proof of Proposition 2.

6. Analysis

The work presented in [Ref. 20] was a first look at providing a change-merging ca-
pability for PSDL prototypes. It explored some critical issues in the problem and provided
valuable information for work presented later in this dissertation. The work on change-
- merging specifications has proven to be very valuable and remains virtually unchanged in
the current model. Only the parts of the model concerning timing constraints have been
improved in the current model. The work on change-merging implementations was unsuc-
cessful in providing a useful method. The next sections provide a look at an improvement
over this method.

E. CHANGING PSDL PROTOTYPES

In [Ref. 21}, another attempt at formulating a model for representing PSDL implemen-
tations is explored. In this model, PSDL prototypes can be considered iterative versions
of a software system. If S is the intended final version of the software system, then each
successive iteration of the prototype can be viewed as an element of a sequence S; where

my o Si=S.




1. Prototypes as Graphs

Each prototype implementation Sj is modeled as a graph G; = (V,, Ej, C}), where:

e Vj is a set of vertices. Each vertex can be an atomic operator or a composite
operator modeled as another graph.

o E; is a set of data streams. Each edge is labelled with the associated variable
name. There can be more than one edge between two vertices. There can also
be edges from an operator to itself, representing state variable data streams.

o C; is a set of timing and control constraints imposed on the operators in version
i of the prototype.

2. Changes to Graphs

The prototype designer repeatedly demonstrates versions of the prototype to users,
and designs the next version based on user comments. The change from the graph repre-
senting the ith version of the prototype to the graph representing the (i + 1)st version can

be described in terms of graph operations by the following equations:

¢ Sit1 = (Vis1) Bi1, Ci1) = Si+ AS;
o AS; = (VA;,VR;, EA;, ER;,CA;, CR;) where:

o Vi1 — Vi = VA;: The set of vertices to be added to S;.

oo Vi — Vi,1 = VR;: The set of vertices to be removed from S;.
o Ei,, - E; = EA;: The set of edges to be added to S;.

oo E; — Ej,; = ER;: The set of edges to be removed from Sj.

o0 Cj,, ~ C; = CA;: The set of timing and control constraints to be added to
S;.

o¢ Cj — Ciyy = CRy: The set of timing and control constraints to be removed
from S;.




Si+1 = Si+ AS; is defined in terms of the individual components of S, as follows:

£

Vi =VWUVA -VR

Eiyy, = EfUEA; - ER;
Ci41 =CiUCA; - CR;

The following figures show an example of a change made to a composite operator in
PSDL. Figure 3.10 contains a graph representation for a composite operator Opl consisting
of 4 vertices and 6 data streams. Figure 3.11 shows a change to be applied to Opl to produce
Op2. Figure 3.12 shows a graph representation of Op2, the result of applying the change to

Opl.

Opl = {VlthCl}

i = {A,B,C,D}

E, = {(X1:EXT - A),(X2:A— B),(X3:A—C),(X4:B— D),
(X5:C = D),(X6: D— EXT)}

Ci = {maz_exzec_time(B,100ms)}

Figure 3.10: Example of a wmposite operator in PSDL




ALOpl
VA4
VR,
EA4
ER,
CA4
CRy

{VRA,VAA EAA ER4,CA4,CR,)
{E}

{C}

{(X3:A— E),(X7: E— D)}
{(X3:A—C),(X5:C — D)}
{latency(X7, E, D,50ms)}

{}

Figure 3.11: Example of a change made to a composite operator in PSDL

Op2

Ca

{V39 &, Cz}
{A,B, D, E}

{(X1: EXT — A),(X2: A— B),(X3: A— E),(X4: B— D),

Operator Op2 = Op1 + A,0pl

(X7:E — D),(X6: D — EXT)}
{maz_ezec_time(B,100ms), latency(X7, E, D, 50ms)}

Figure 3.12: Example of the changed operator
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F. AN APPROXIMATE METHOD FOR CHANGE-MERGING
PSDL PROTOTYPES . *

1. Method

In [Ref. 21, 23, 25], an approximate method for change-merging PSDL prototypes
is explored. This method is useful in providing a rough approximation to the ideal change-
merge, but was abandoned in favor of the more useful (and provably correct) slicing method
[Ref. 23, 24]. It is included to record the effort expended in this endeavor.

Recall the merging function introduced in [Ref. 9}, and reintroduced in section D:
M=A[B|C=(A-B)U(ANC)uU(C-B).

If the semantic function of a program is represented as a set of pairs, then two compatible
modifications of a semantic function can be merged using this equation.

In this equation, the union, intersection and difference operations are defined as
normal operations on sets. The difference operation, (A — B) for example, yields the part
of the function present in the modification, but not in the base version. The intersection
operation yields the part of the function preserved from the base version in both modifi-
cations. This model preserves all changes made to the base version, whether extensions or
retractions. In this model, two changes conflict if the construction produces a relation that
is not a single valued function.

In this section, we outline an approximate method for merging prototypes using
the change model described in the previous section and the above definition. This method is
approximate, in the sense that the change merging construction is applied to the structure
of a PSDL program rather than to the mathematical function it computes. This method
is simple, corresponds to common programmer practice, and produces semantically correct
results most of the time.
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The approximate method can be understood as follows. All PSDL implementations
are graphs, whose structure roughly models their functionality. We have represented these
graphs using sets. Different variations of a prototype are the results of different changes
being applied to a common base version. We can merge the two new versions A and C by
applying the change that produced A from B to version C, or by applying the change that
produced C from B to version A. The result is the same in either case. Earlier, we expressed
the (i + 1)st iteration of a software prototype as Sj,; = S; + AS;. Let us consider an ith
version which has been changed in two different ways, via A4 and Ap. The results of these
two changes are denoted as S, and Sp, respectively. Now let us consider a case where the

(i + 1)st iteration is the result of merging these two changes:
Siy1 = SalSi)SB = (54— Si) ! (S4 N Sp) U (S — Si)

The components of Siy;; Vi41, Eiy1 and Ciyy can be computed similarly:
Vin = ValilVe = (Va—W)U(VanVa)U (Ve - V)

EAlEi)Ep = (Ea—E))U(EaNEp)U(Ep - E;)

ksl

-+

b
n

Cis1 = CalCiCs = (Ca—Ci))U(CaNCp)U(Cp-Cy)

To demonstrate the concept of the merging operation, we provide the following
example: The base prototype is as in Figure 3.13. Change A is outlined in Figure 3.14, with
the result shown in Figure 3.15. Change B is outlined in Figures 3.16 and 3.17. The merging
operation is performed in Figure 3.18 and the result is shown in Figure 3.19.

The merge operation outlined in Figure .3.18 involves determining the real effect of
changes made to the base, und any conflict that may arise due to similar changes between the
two variations. This is a simple example illustrating the merging of two changed prototypes
which do not conflict with one another. In some cases, two changes to a prototype can
conflict with one another, and the result of their merging can be an inconsistent program.

In such cases, the engineer must resolve the conflict off-line.
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Figure 3.13: Fish Farm Control System, Fishies
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AAFishic.s = VAA, VRA, EAA, ERA, CAA, CRA

VA, = {Monitor_Bacteria_Level, Control Water_Flow_2, Display_Status.2}
VR, = {Control Water_Flow, Display_Status}
EA, = {(Bacteria_Status: Monitor_Bacteria_Level — Control_Water_Flow.2),

(Bacteria : Monitor_Bacteriapevel — Display_Status_2)
(O2status : Monitor_O2 evel — Control Water_Flow.2),

(N H3_Status : Monitor_NH3_Level — Control Water_Flow.2),
(H20 Status : Monitor . H20.Level — Control Water_Flow2),
(02 : Monitor . O2_Level — Display_Status2),

(NH3 : Monitor_NH3_Level — Display_Status_2),

(H20 : Monitor_H20 Level — Display_Status2),
(Activate_Inlet : Control Water_Flow 2 — Adjust_Inlet),
(Activate.Drain : Control Water_Flow2 — Adjust_Drain),
(Inlet_Setting : Adjust_Inlet — Display_Status2),
(Drain_Setting : Adjust_Drain — Display_Status.2),

(Feeding : Control_Feeder — Display_Status 2)}

ER, = {(O2_Status: Monitor.O2_Level — Control Water_Flow),

(N H3_Status : Monitor N H3_Level — Control Water_Flow),
(H20_ Status : Monitor .H20_Level — Control _Water_Flow),
(02 : Monitor.O2_Level — Display_Status),

(NH3 : Monitor_NH3_Level —+ Display_Status),

(H20 : Monitor_H20_Level — Display_Status),
(Activate_Inlet : Control_Water_Flow — Adjust._Inlet),
(Activate_Drain : Control Water_Flow — Adjust_Drain),
(Inlet_Setting : Adjust_Inlet — Display_Status),
(Drain_Setting : Adjust_Drain — Display_Status),

(Feeding : Control_Feeder — Display_Status)}

CA, = {maz_ezectime(Monitor_Bacteria_Level,100ms),
maz_ezec_time(Display_Status_2,100ms),
maz_ezec.time(Control Water_Flow.2,200ms),
period(Control_Water_Flow2,2000ms)}

CR, = {maz_ezectime(Display_Status,100ms),
maz_exec.time(Control Water_Flow,200ms),
period(Control_W ater_Flow, 2000ms)}

Figure 3.14: Example of change AA applied to Fishies
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Figure 3.15: Fishiesy

ApFishies = {VRp,VAp,EAp,ERp,CAp,CRp}

VAp = {}

VRg = {Get_Feeding Time}

EAp = .

ERp = {(Feed_Schedule: EXT — Get_Feeding_Time),
(Feed_Schedule : Get.Feeding. Time — EXT)}

CAs = {}

CRp = {}

Figure 3.16: Example of change AB applied to Fishies
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Figure 3.17: Fishiesp

Fishiesys = Fishies[Fishies|Fishiesg =

(Fishies, — Fishies)|J(Fishies,N Fishiesg){J(Fishiesp — Fishies)
VFishiesse = VFishies o [VFishics)VFishiesp =

(VFishicos — VFishics) U(VFishics , N Viishicsp ) U(VFishicsy — VFishies)
EFishicsre = EFishics o[ EFishies) EFishiesy =

(EFishiesa = EFishies) U(EFishies o N EFishiesp) U(EFishicss — EFiehics)
CFishiesse = CFishiess[CFishies|CFishicsy =

(CFishiess — CFishies) U(CFishies, N CFishicsp ) U(CFishiecsy — CFishies)

Figure 3.18: Performing the Change-Merge Operation
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Figure 3.19: Fishiesyy
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Thcemambcdponiblemﬂicuths; can arise during the merging operation.
Conflicts arise when different changes applied to the prototype affect the same portion of

the prototype in different ways. Some examples of conflicts are as follows:

1. One change adds an output edge to a vertex A, while another change removes
vertex A from the prototype. In this case, automatic resolution of the conflict is not yet
possible, so the system would have to announce that a conflict has occurred and give the
designer the opportunity to resolve it. In the case of such a conflict the construction produces
a graph that is not well formed, in the sense that it has edges whose endpoints do not belong
to the vertex set of the graph and are distinct from the artificial node EXT that serves as
an endpoint for external flows.

2. The two changes assign different timing constraint values to the same operator,
i.e., (maz_ezec time, F,50ms) and (maz_ezec time, F,40ms). In this case, the conflict can
be handled automatically, since any operator that executes in under 40ms must also execute
in under 50ms. In situations where different maximum execution times have been assigned,
the minimum value can always be chosen. This is also true of two different values for latency,
maximum response time, and finish within timing constraints. The minimum calling period
timing constraint would have to be merged using the maximum of the different values.
Different period values for the same operator in different changes result in a conflict that
would have to be resolved by the designer. Different control constraints for the same part of
the prototype in different changes can also result in a conflict. Some of these conflicts can
be resolved automatically.

2. Analysis

The approximate method described above provides a method of change-merging
PSDL implementations that is closer to the semantically correct version than the first at-

tempt, but impossible to prove correct. The next two chapters detail a slicing method for




change-merging which is easily proven correct. Chapter IV details a semantic model of PSDL,

a method of slicing PSDL programs, and a change-merge model which utilizes these slices to
create a merged version which preserves the significant changes in each of the two modified
versions. Chapter V details the algorithm developed to implement this slicing method for
change-merging. This new slicing method has been implemented and integrated into the
CAPS development system.

G. CONDITIONAL MERGING OF WHILE-PROGRAMS

One of the main weaknesses of traditional approaches to data flow analysis and slicing is
insensitivity to the conditions under which data flows actually take effect. This problem has
prevented conflict-free merging of software changes that affect the same output variable, even
in cases where the changes affect disjoint portions of the input space. One way to improve on
this is to augment the dependency graphs with flow guards, so that disjoint partial flows can
be distinguished, and successfully merged. A software merge technique based on conditional
slices captures a finer-grain picture of the threads in a program than merging based on

unconditional slices, and hence can produce more accurate program merges.

1. Conditional Flow Dependencies

There is a flow dependency between two statements in a while-program if a value
assigned by the first statement can be read by the second statement. Determining flow
dependencies exactly is undecidable in the general case [Ref. 13]. Conventional data flow
analysis calculates a weak approximation to the exact fiow dependencies by assuming that
all paths in the control flow graph of a program are feasible. This method ignores the
possibility of infeasible paths and non-terminating loops because of its assumption that all
control predicates are satisfiable along all possible paths through the control flow graph.
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Conventional flow analysis is guaranteed to find all flow dependencies, but it may report
some dependencies that are not really there. ’

In [Ref. 13], Berzins introduces conditional flow dependencies to provide more ac-
curate computable approximations to exact data flow dependencies. A conditional flow
dependency is a conventional flow dependency augmented with a predicate describing the
conditions under which the data flow can take place. The predicates associated with the
data flows enable us to recognize disjoint flows and hence provide a more discriminating

model of the data flow dependencies in a program.

a. Flow Guards

The predicates associated with each conditional flow dependency are called
flow guards. The exact flow guard associated with a flow dependency carried by a variable
v from a program statement sl to another program statement s2 is true in a program state
S if and only if all of the following conditions hold:

1. Statement sl assigns a value to variable v when executed in state S.
2. Program execution will subsequently reach the statement s2.
3. Statement s2 will read the value assigned by statement sl to variable v.

An approximate flow guard must be true whenever the exact flow guard is
true, and can be true in some cases where the exact flow guard is false. The set of all
approximate flow guards forms a lattice with respect to the ordering defined by the logical
implication relation. The weakest approximate flow guard is true for all states, and the
strongest approximate flow guard is the exact flow guard. Conventional data flow analysis
is equivalent to using the weakest approximate flow guards.

Checking whether exact flow guards are disjoint is undecidable in the general
case, as demonstrated by the program shown in Figure 3.20. Statements are identified by the
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line numbers shown on the left margin. The flow guard for the flow of z from statement 1 to
statement 4 is disjoint from the flow guard for the flow of y from statement 2 to statement 4
if and only if the program fragment P shown on line 3 terminates, which is an undecidable
question. Since program merging algorithms based on conditional low dependencies need to
check whether flow guards are disjoint, we seek representations for which d:: jointness checks
are decidable.

1 z:=1

2 y:i=2

3 P

4 z2:=z+y

Figure 3.20: Undecidability of Disjointness for Guard Conditions

We can get approximate flow guards with decidable disjointness relations by
using a logic with restricted expressive power to represent the flow guards. One way to do
this is to use propositional guard predicates.

Propositional guard predicates are constructed from the Boolean constants true
and false, Boolean condition variables associated with the control predicates, the Boolean
connectives &, |, and ~, and the modal operators of the form (P), where P is the condition
variable associated with the control predicate of a while loop in the program.

Propositional guard predicates are interpreted as follows. Condition variables
represent the value produced by the most recent evaluation of the associated control predi-
cate. The connectives &, |, and ~ represent the “and”, “or” and “not” operators of standard

propositional logic.
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| cm———

P = (Vs) “begin” (V) “is” S “end” (V=)
Sm=V:=E

|S;S

| 4f* E “then” S “else” S “fi"

| “while” E “do” S “od”

Figure 3.21: While Program Grammar

b. Conditional Dependency Graphs

Conditional flow dependencies are represented by a conditional program de-
pendency graph. A conditional program dependency graph consists of a set of vertices and
a set of edges. The set of vertices contains a vertex for each assignment statement, an
initial_state vertex, and a final vertex for each output variable. The set of edges repre-
sent conditional flow dependencies and control dependencies. Control dependency edges are
needed to provide a flow path between two sequential parts of a program which do not share
any variables. Control dependency edges are identical to flow dependency edges that do not
carry a variable.

We illustrate the construction of a conditional flow graph in terms of a simple
imperative programming language that provides assignments to scalar variables, sequencing,
conditionals, and while loops. This language of while-programs does not have any explicit
input or output statements, and is defined by the grammar shown in Figure 3.21.

The nonterminals P, S, E, and V represent while-programs, statements, ex-
pressions, and variables, respectively. The Kleene star (*) denotes zero or more instances of

the preceding symbol.

The input variables of a while-program are listed before the “begin”, and the
output variables are listed after the “end”. All other program variables are listed between
the keywords “begin” and “is”. The meaning of a program is characterized by the final values
of its output variables. The meaning of a program statement is characterized by its effect
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on the program state. The program state consists of the values bound to all of the program
variables. The meaning of an expression is characterized by the value of the expression in

the current program state. The evaluation of an expression cannot affect the program state.

An attribute grammar is provided in [Ref. 13] for constructing the conditional
flow graph for a while-program. The nodes of the flow graph correspond to the assignment
statements in the program, along with an extra initial vertex and a final vertex for each
output variable. Each node is associated with an ezecution guard. The execution guard is a
predicate that represents the set of program states in which the statement can be executed.
Each edge of the flow graph is associated with a variable name and a flow guard. The
variable name identifies the data carried by the edge. The flow guard is a predicate that
represents the set of program states in which the value of the variable flows along the edge.
The flow guard is the conjunction of the conditions that the source node is executed, that
the destination node is executed, and that all loops on the control path from the source
node to the destination node terminate. Since each node can define the value of at most one
variable, there can be at most one edge between any pair of nodes in the flow graph. An

example of a Conditional Flow Graph is shown in Figure 3.22.

Base(x)

begin
y=0:
P ifx>0
then
Q whilex>0do
y=y+x:
x=x-1;
od
else
while x< 0 do
y=y-x:
x=x+1;
od
endif;
end(y);

Figure 3.22: An Example of a Conditional Dependency Graph
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2. Conditional Slices

A slice of a program isolates that portion of the code which affects the program
behavior with respect to some program statement. A conditional slice must differentiate
between portions of the code that affect the meaning of that program statement, but under
different conditions. We define a conditional slice of a while-program, with respect to a

program statement and a flow guard, on the program’s conditional dependence graph, G.

For program statement, S and flow guard, P, the slice of G with respect to S and
P, G/{S, P} is a subgraph of G and contains all vertices v; € G, such that there is a path
from v; to S along control dependence edges or flow dependence edges not labeled with the
flow guard ~ P. The edges in the slice are all of the edges that connect the vertices in the

slice. An example of a conditional slice is shown in Figure 3.23.

begin
y=0;
P ifx>0
then
Q while x > 0 do
Y=Y +X;
x=x-1;
od
end if;
end(y):

Figure 3.23: Slice Base/{Final(y), P}
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A conditional slice of a program is itself a program, as it contains all of the orig-
inal program code which affects the values computed at the final vertex when the inpﬁt is
restricted .o only those inputs which satisfy the given conditions.

3. Conditional Program Merging

Other approaches to merging while-programs use pieces of each of the input versions
to perform the merge[Ref. 28, 48]. One of these program pieces is the part of the two modified
versions which is the same. This part is known as the preserved part. The remainder of the
merged program comes from that part of each of the modified versions which is different
from the base. These parts are called the affected parts of each modification. Construction
of these program pieces is done using program slicing.

The preserved part is constructed by comparing slices of each of the modified
versions with respect to subsets of the program statements. The largest subset of program
statements that has the same slice in all three versions defines the preserved part. The
affected part of each of the modified versions is constructed by comparing the slice of the
modification with respect to each of its vertices against the same slice of the base version.
If the slices are different in the modification and the base, then that slice is in the affected

part.

One of the problems inherent in this method of program merging is its inability to
distinguish between different changes to the same slice which cannot interfere. Conditional
slicing alleviates this problem by allowing the different computation paths which can never
be executed for the same input to be considered separately.

Using conditional slicing, we calculate the affected part of a modified version by
comparing slices of the modified version with respect to the program statements and the set
of all possible tmtﬂ values of the conditional guard predicates at that statement. In this
way, two different paths to the same statement which cannot be taken on a single input are
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not contained in the same slice, thus changes to one path do not necessarily affect the slice

containing the other path.

The merged program is then constructed in the same way as the unconditional
method, by taking the graph union of the preserved part and the affected parts of both

modifications.

Consider the example outlined in Figures 3.24 through 3.29. In this example, the
base version is the same as that shown in Figure 3.22 and contains a conditional expression
that partitions the input space into positive and negative integers. If the input value of z
is negative, then one set of statements is executed and if it is positive, then another set of
statements is executed. In Figure 3.24, you see a change made to the then branch of the
conditional expression. In Figure 3.25, you see a change to the else branch of the conditional.
Since both of these branches affect the same output variable, y, the traditional approach to
merging would report a conflict and the merge would fail. This should not be the case,

however, since these two changes can never interfere.

A(x)

begin
y=0
P ifx>0
then
Q while x>0 do
y=y*x
x=x-1;

Figure 3.24: Version A
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B(x)

begin
y:=0;
ifx>0
then
while x> 0 do
y=y+X;
x=x-1;
od
else
while x< 0 do
y=y/x
X=x+l;
od
end if;
end(y);

Figure 3.25: Version B

Figure 3.26: Preserved Part of all Three Versions
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Figure 3.27: Affected Part of Version A

Figure 3.28: Affected Part of Version B
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Figure 3.29: Merged Version




IV. SEMANTIC MODEL

In this chapter we describe our model for the behavior of prototypes, present our slicing
method for change-merging prototypes, and present an invariance theorem that guarantees

our method is correct.

A. PROTOTYPING SYSTEM DESCRIPTION LANGUAGE

The Prototyping System Description Language (PSDL) is an enhanced data flow lan-
guage that can be used to specify and implement prototypes of real-time embedded software.
PSDL programs are inherently non-deterministic and can be executed in parallel [Ref. 32].
This section describes a semantic execution model for PSDL programs.

1. Overview of PSDL Semantics

Our change-merging method is based on the behavior of the input programs and not
on their syntax. In this section we define a behavior model for PSDL that we can use to prove
our invariance theorem. The semantics of PSDL have been modeled using algebraic high-level
Petri nets [Ref. 32). We chose a different model which is more applicable to our problem. We
chose to model the behavior of a prototype by observing the data flow history over its data
streams. A prototype’s behavior is represented by set= of possible histories over the streams
we call trace.tuples. These trace_tuples are composed of sequences of data_tuples called
traces. Each trace_tuple contains precisely one trace per stream. Since PSDL prototypes are
non-deterministic, one trace.tuple does not necessarily reflect the set of possible histories
associated with a prototype, thus we must consider the behavior of a prototype to be the

set of all possible trace_tuples over its data streams. Since PSDL prototypes are intended
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to prototype embedded real-time systems, which may never be turned off, this behavior is
likely to be of infinite length. We use trace_tuples as the base unit for our inductive proo'f of
the invariance theorem in Section B.2 of this chapter. The following subsections describe the
model starting with traces and building up to the behavior of a prototype, and the possibility

functions we use to construct the behaviors.

2. Traces

The history of a PSDL computation can be described by the histories of all the
data streams, called traces. A trace on a data stream z, denoted 7,, is the sequence of all
data tuples on the stream. Each data tuple contains a data element z;, the name o; of the
operator responsible for writing z; to the stream, the time tw; that z; was written to the
stream, and the time ¢r; at which o; read its input streams to start the computation that
produced z;. A data tuple represents the assertion that the value z; was produced by an
execution of o; that started at time tr; and finished at time tw;.

Example 1 Trace on g stregm z

Te = [[307 0p, tro, t'”o]s [31, oy,1ry, twl]’ seey [zia oy, try, twi], '"]

Since PSDL was designed for writing prototypes of real-time embedded software
systems that may never be turned off once started, traces can be finite or countably infinite.
The initial data tuple on a data stream is [zo = L,0p = L,twy — 0,tro — 0], where
A1 represents an undefined value, unless the stream is declared as a state variable with an
initial value, in which case the initial data tuple would be [zo — v,0y = DECL_OP, two —
0,tro — 0]. DECL_OP is the operator in which the state declaration appears, and v is the
initial value assigned in that declaration. For example, if the state stream is declared in an

~ operator p by the declaration statement STATE z INITIALLY 3, then the initial data

tuple on the stream would be [3,7,0,0]. Since every trace contains an initial data tuple,

we see that all traces are non-empty and that the minimum length of a trace is one. In a
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data flow stream, when a data element is removed from the stream and there is not another
element on the stream, the value and the operator name elements are replaced by L.

The write times tw; for a given stream form a monotonically increasing sequence
of numbers that represent the amount of time elapsed between when the prototype began
execution and when the value was available on the stream. The read times trj for a given
stream form a monotonically increasing sequence of numbers; the ith element in the sequence
represents the amount of time elapsed between when the prototype began execution and when

the operator o; read its input streams at the start of the computation responsible for z;.

If an operator fails to terminate on any firing, then the trace on any of its output
streams contains only the values which were written to the stream before the firing in which
the operator failed to terminate. If the failure to terminate occurs during the first firing and
no other operator can write to the stream, the trace contains only the data tuple representing

the initial value.

A trace, 7, can also be represented by a stream function from a write time to a
triple containing the value, the id of the operator which wrote the value and the read time:
V : TIME — TYPE(z) x OP_ID x TIME, where TY PE(z) denotes the set of all
possible values that can be written to the stream z, OP;D is the set of all possible operators
that can write to the stream, and TIMFE is a non-negative real number. We chose time to
be a continuous value since prototypes can be executed in parallel, and ‘ve caanot guarantee

that different processors will execute a precisely the same speeds.

Example 2 Stream Function Representation for a Trace

A trace for a stream z is:

Te = [[-La 4,0, 0]) [31’ 0, 21 3]’ [z‘upa 6, 7]]




The stream function representation for this trace would be:

[39 7) B [21, 0, 2]

{[0,3) — [4,4,0]
Vv, =
[7,&) - [32:}”6]

In order to use these different representations interchangeably, we need to show
that they are equivalent. Consider the function, @, shown in Figure 4.1. & is a bijection
that maps a sequence of data tuples into a step function, ¥, which is continuous only from
the right.

¥(t) = ‘}ng , Vit

Limits from the left are not preserved at the boundaries between the data tuples, however.

Theorem 2 ® is well-defined and a bijection when resiricted to right continuous step func-
tions with countable range sets.

Proof: See Appendix C.

&(r,) = V., where ¥,(t) = [zn, 0n, trn]
where [z, 0n, twp,try) € 7, n € R & twy <t & (n = length(T;) or twnyy > t)

®-1(¥,) = 7, where [z;, 0, twj, trj] € 7, iff

( wl(t“’i) = [zho’ trl] & tuy= minl(ws(t) = [ziooa tri]) )

Figure 4.1: ® : Traces — Function Representations

The meaning of an operator is characterized by a relation between the traces on
the input streams and the traces on the output streams. If a data stream receives input from
more than one producer, then we must have a method for merging multiple traces into one
to determine the behavior of the entire system. The merge function, defined in Appendix
A, Section 3, provides this method for two traces, A and B. It can easily be generalized to
any finite number of traces.
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A stream behavior for a stream z, B,, is the set of all possible traces for z. Since a
PSDL computation can be non-deterministic, the history of a computation is repmented by
the set of all possible traces for a given PSDL stream. Since the complete stream behavior
for a data stream in a PSDL prototype may not be visible from outside the prototype, it
is necessary for us to consider both visible and generated stream behaviors for a stream. A
visible stream behavior 1or a stream z is a set of traces written to z by an external producer.
Each trace in the visible stream behavior of z is a subsequence of some trace in the complete
stream behavior for z. The part of the stream behavior which is not produced externally,
we call the generated stream behavior. The traces in the generated stream behavior for z
are also subsequences of traces in the complete stream behavior for z. For example, consider
either of the prototypes in Figure 4.2. Each trace in the stream behavior of z, is a sequence
which contains as subsequences the traces on the hidden and visible parts of . Thus the
visible behavior and the generated behavior are both projections of the complete stream
behavior.

A truncated trace for a stream z, 7; | k, is a finite prefix of 7, for which length(7. |
k = min(length(r;),k) A truncated stream behavior for a stream z, 8, | k is the set of all

possible truncated traces, 7. | k.
3. Trace Tuples and Prototype Behaviors

A trace tuple is a tuple containing a trace for each stream in a prototype. A trace
tuple can be projected downward to any subset of the streams in a prototype, say X, by
including in the projected trace tuple only those traces on the streams in X. A trace tuple,
T, projected downward to a subset X of the streams of the prototype is represented as Ty.




HB - Hidden Behavior
GB -Given Behavior
SB -Stream Behavior

Figure 4.2: Example of prototypes with generated stream behaviors.
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Az example of a trace tuple over the set of data streams in a prototype E(P) is
(Tazs Togs «+s Tun)s Zi € E(P). A visible trace tuple is a tuple of visible traces for each stream
in the prototype. A truncated trace tuple is a trace tuple containing only truncated traces:

(Te;s ...,r,j) | k= (7 | k), wens (Tay | k))

A trace tuple can also be viewed as a vector-valued stream function by extending
the function @ to trace tuples according to the rule:

D((Tegs <oes o)) () = (B(72)(2), -y B(m)(2)) = ¥(2)

W(t) is a vector containing one data tuple from each trace in the trace tuple, the value
present on each stream at time ¢. Using $, we can also view a trace tuple as a sequence of
vectors, where each vector contains the data tuple present on each stream at a write time ¢
for one of the streams in the tuple.

Example 8 Ezample of a Trace Tuple on two streams.

For a set of streams X = {z,y} with 7, = [[1, 1,0,0]}, [2;, 0,2, 3], [22, p, 6, 7]} and
r, =[[1,1,0,0], [sn, 0,3, 5), [v3, 0, 7, 9]], the resulting trace tuple is:

([[‘Li -L1 0’ o]t [zl’ 0, 2’ 3]$ [32s y 2 6' 7]], [[-La -I-’ 0’ o]a [!h 10y 3v 5]’ [yb 0, 71 9}])

and the corresponding function representation is:

[0’ 3) - ([’L) 4, 0]: [-Lv -L: 0])
[3? 5) - ([21, 0, 2]’ [-L’ -L! 0])
[5$ 7) — (['tlv 0, 2]’ [yn 0, 3])
[71 9) - ([-"z,P: 6]7 [yl 10y 3])
[9,00) — ([33, P 6]’ [va, 0, 7)

Since PSDL is non-deterministic, there may be many possible trace tuples for a
prototype P. We call the set of all possible trace tuples for the data streams in P, the
prototype behavior of P, and we represent it as B.
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A prototype behavior can also be projected downward to any subset of the streams
in a prototype, say X, by including in the projected data flow history only the possi’ble
projected trace tuples over X. A projected data flow history over a set of streams X is
represented as Bx. An input prototype behavior for a prototype P is the set of all possible

visible trace tuples over the streams in P.

Example 4 Ezample of a projected prototype behavior on a set containing two streams.

Consider the following set X = {z,y}, where the stream behavior for z is a single
trace, [[1,L,0,0], [z1,0,2,3],[22,p,6,7]] and the stream behavior for y contains two dif-
ferent traces, {{[1,1,0,0], [y, 9,3,5}, [¥2,0,7,9]],([L,L1,0,0}, [1,0,4,6), (y2,0,6,8)]}. Then
the resulting prototype behavior, By is:

{([[-L’ 4,0, 0]: [31, 0,2, 3]’ [32,1’, 6, 7]]s [[-L’ 4,0, 0]’ [yla 9,3, 5]v [.'hs 0,7, 9]])’

([[-L, -L$ oa o]a [zl’ o, 2) 3]$ [zz‘)p’ 61 7]]1 [[-La -L) 01 0], [yl, o, 41 6]’ [llz, 0, 6, 8]])}

The function representation corresponding to By is:

{ 03) — (1,1,0][L,L,0))
[3,5) — ([r1,0,2],[1,L,0])
[51 7) — ([31, 0, 2]7 [yh 0, 3])
[7v 9) — ([32, P 6], [yh 0, 3])
[9’ m) — ([32’ P 6]: [y21 0, 7])’
[0,3) — ([1,1,0}[L,L1,0))
[3,5) — ({[r1,0,2],[L,L,0])
[5’ 6) I ([zh 0, 2]’ [ylv o, 4])
[6’ 8) _— ([32’ Py G]a [yh 0, 4])
[8a w) I ([321 P 6]’ [yz, 0, 6]) }

A truncated prototype behavior, B | k is the set of all possible truncated trace tuples, up to
length k.

To prove our slice behavior invariance theorem, we also need to extend truncated

trace tuples of length k to length k + 1 by adding one data tuple onto selected traces in
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the trace tuple. We define an incremental trace tuple to be a vector of sequences of data
tuples over a set of streams, where the length of each sequence is either zero or one, and the
write times for all of the data tuples are the same. An incremental trace tuple represents the
output caused by one firing of a set of zero or more operators writing to different streams of
the prototype. We need a function @ for appending sets of possible incremental trace tuples
on to the end of a truncated trace tuple. The @ function is defined in Appendix A. This
function takes as operands, a truncated trace tuple over the streams in a prototype and a
set of possible incremental trace tuples over the streams in the prototype, and it produces
the set of all possible trace tuples resulting from adding each of the incremental trace tuples
onto the end of the corresponding sequence in the original trace tuple, for each data stream.
Figure 4.3 shows a summary of the constructs defined in the semantic model of PSDL.

time = {zeR|z20}

data_tuple{t : type} = tuple{z :t,0: opid,tr,tw: time}
trace = sequence{data_tuple}
stream_behavior = set{trace}

trace_tuple = tuple{stream,: trace}
incremental_trace_tuple = vector{t:trace} : length(t) <1
prototype_behavior = set{tracetuple}

Figure 4.3: Summary of Model Constructs

4. Possibility Functions

Each operator in a PSDL prototype has an input history and an output history.
The input history of an operator o is defined as the prototype’s behavior projected over the
input streams of o, Bj(,), and the output history of o is the set of all possible trace tuples
written by o to its output streams.

In a PSDL prototype, when an operator fires, it reads one data value from each of

its input streams and writes at most one output value to each of its output streams. The data
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values written and the streams they are written to are determined by the semantic meaning
of the PSDL operator and the associated control constraints. Since PSDL operators are
non-deterministic, their meanings are possibility functions. For every possible input, there

is a set of possible outputs.

To define the possibility function for an operator o, we look at a trace tuple pro-
jection of the behavior o € By(,) as a sequence of input vectors to o. For every finite prefix
of o applied to o, the result is a set of possible incremental trace tuples over the output
streams of o. This is the possibility function for o, F, : By) — Bo(). F, takes as input
a projected trace tuple over the input streams of o and a read time, and produces a set of
possible behavior projections over the output streams of o. The read time is the time at
which the last read operation was performed by o on its input streams, and defines which
values were read by o to perform this computation.

Example 5 Possibility function for an operator p which implements the function:

3
Ye = Zk

F, = {({3},9), ({3, —4},16), ({3, —4,9},81), ..., ({3, -4,9, ..., zs}, 74?), ...}
Example 6 Possibility function for an operator q which implements the state machine:

k
Y = Zz’i
ixl

k-1
f! = {({3}! 3)v ({3’ "4}7 -l)a ({39 -4, 9}’ 8)9 eney ({3: -4, 9$ seey zk}, (Z 3") + zk\ }

.
s=1 /

In example 5 you will notice that the y value of each pair is dependent only on the
most current value written to the input stream z. In example 6 the y value of each pair is
dependent not only on the most current value written to the input stream z, but also on the
previous value of y.




The effects of all PSDL control copnstraints can be expressed as transformations
on the possibility function of a bare primitive operator. The effect of each type of control
constraint on a possibility function is defined explicitly in Appendix B. In the rest of this
chapter, we assume that the possibility function for each operator includes the effects of any

associated control constraints.

To analyze the effects of various approaches to change merging, we assume that
the possibility function for a network of PSDL operators can be derived from the possibility

functions for the individual operators in the network. This can be done as follows.

We consider a prototype P to be a network of operators connected by the data
streams of P, with behavior B. B is the behavior of the entire prototype. Each operator
contributes to this behavior by reading from its input streams and writing to its output
streams. The values written are determined by the possibility function of the operator. We
can derive the possibility function for the prototype P from the possibility functions of the
individual operators using the following construction:

Fr= U [ U (@ U (U At fi (E(p),f,(r,(.,,tr))))))]
TeB |SeP(V(P)) \0€S \p(T,0)<tr \tr<t

This construction produces a set of incremental_trace_tuples over all of the streams
in P. The possibility function for each individual operator ¥, is at the heart of this con-
struction. It produces a set of incremental trace_tuples over its output streams. This incre-
mental_trace_tuple is extended to cover all of the streams in the prototype by the function
fill. The function A is then used to isolate each incremental trace_tuple attributable to a
particular read time ¢r and these are combined over all possible read times up to the current
time ¢. These incremental trace_tuples are then combined using the function p to pick out
the latest possible write time or read time depending on whether the operator contains a
feedback loop. Each of these sets of incremental trace_tuples for individual operators are
then combined with sets produced by other operators in the subset S using the function .
This is done for every possible subset S in the powerset of the vertices of P. Finally, these
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sets of incremental trace_tuples are combined for every possible trace.tuple in the behavior

Bof P.

A

Tu construct the truncated behavior of P of size k, we have to not only produce
the set of incremental trace_tuples, we have to append them to the set of truncated trace
tuples of size k — 1. That can be done as follows:

U [Tea (@ ( U (U At fill (E(P),f,(:r,(,,,tr))))))”

Bl|k= [

TeB|(k-1) LSeP(V(P)) 0€S \p(T'0)<tr \tr<t

This construction is identical to the previous construction up to the point where the combina-
tion over subsets occurs. At this point, we must append the set of incremental_trace_tuples
produced by the @ function for each subset of the operators to the trace.tuple T in the
truncated behavior B | (k — 1). This guarantees us that we have considered every possible
combination of operators firing at precisely the same time. The result of this construction
is then a set of possible trace tuples truncated at length k. This construction assumes that

the truncated B of size k — 1 is known. Precisc definitions for the functions @, A, p and fill
can be found in Appendix A.

In our work, we assume that execution of the prototype is “fair”, in the sense
that, any operator which terminates in isolation will terminzte when executed as part of
a prototype. Failure of an operator to terminate is represented by a possibility function
that gives the same set of possible output sequences for all possible extensions of an input

sequence that fails to terminate.
B. SLICING OF PSDL PROTOTYPES

As we saw in Chapter III, Section C.2, a portion of a program’s behavior can be
captured by a slice of the program with respect to a single point in the program. We
have developed a similar method that is also valid for isolating a portion of the behavior of

a prototype. This section describes our method for taking slices of PSDL prototypes. One
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of the differences between slicing for PSDL prototypes and slicing for while programs is that

PSDL programs are inherently concurrent and non-deterministic. While programs represent
individual deterministic sequential processes. This represents a major contribution of this

work.
1. Prototype Dependence Graphs

Since PSDL implementations are graphs, we do not need a deep transformation to
translate our prototypes into graphs as is the case for while programs. The only information
we need to add to the current PSDL implementation graph are dependencies resulting from
timer interactions, and an external vertex. The external vertex is added to allow slices of
prototypes with vertices that have no outputs to include those vertices. The following defines
our Prototype Dependence Graph (PDG):

Definition 4 PSDL Prototype Dependence Graph:

A Prototype Dependence Graph (PDG) for a prototype P is o fully ezpanded !
PSDL implementation graph Gp. In the PDG, Gp = (V, E,C), the set of vertices has been
augmented with an external vertez, EXT, and the set of edges, E, has been augmented with
a timer dependency edge from o; to o5, for each pair of vertices o;, o5 € V such that the
control constraints of o; contain timer operations which affect the state of a timer read by
the control constraints of o5.

Values on a timer dependency edge can be modeled precisely in the same way as
values on a data stream. A data_tuple on a timer dependency edge can be viewed as a tuple
containing the following for each of the tuple components:

v: A pair (c,t) containing the operation ¢ € (Start, Stop, Reset) that last changed
the state of the timer and the value ¢ of the timer at the time of the state change.
op: The id of the operator which last changed the state of the timer.
tw: The time of the last state change.
tr: The time that op read its input streams before the firing
that produced the state change in v.

1A fully expanded PSDL implementation graph is one in which every vertex represents an atomic operator.
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For example, consider the data_tuple [(start,25),p,36,34] on the timer stream
Timerl. In this example, the v element of the data tuple is the pair (start,25), thesop
element is p, the write_time is 36, and the read_time is 34. This means that the operator p
read its streams at time 34, started the timer Timerl at time 36, and the current value of
the timer when the state change was executed was 25. This view of timer dependency edges

allows us to treat them the same as any other edge in the graph.

Top level prototypes do not contain inputs or outputs, so there will always be
vertices which do not write to a stream. Since we construct our slices from sets of streams
and not from vertices, as in slicing of while programs, these vertices could never be included
in a slice. The external vertex is added to provide a way to capture these vertices during
slicing. During construction of the PDG for a prototype, an artificial edge is added to the
graph from any vertex which does not write to an output stream to the external vertex
EXT. These edges are then considered in the construction of the slices of the prototype,
thus allowing those terminal vertices an opportunity to be included. Only one external
vertex is needed for this graph, because each artificial edge added is given a unique name,
and considered separately in the construction of the slice.

2. Slicing Theorem

A slice of a PSDL prototype is defined in terms of the prototype’s dependence
graph. It contains the portion of the prototype which affects the history of a set of streams.
This is useful in isolating changes made to a base version of a prototype in a modification.
If the slices of two versions with respect to the same set of streams are different, then there

are significant changes that have been made to one version and not the other.

Informally, a slice is an upstream closure of a set of edges in the graph that includes
all the source nodes for the edges in the slice. A formal definition of a slice follows:
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Definition 5 Slice of a PSDL Prototype:

A slice Sp(X) of a PSDL prototype P with respect to a set of data streams X is
the subgraph (V, E,C) of the PDG Gp where:

(1) V is the smallest set that contains all vertices o; € Gp that satisfy at least one
of the following conditions:

a) oj writes to one of the data streams in X.
b) o; precedes oj in Gp, and oj € V.

(2) E is the smallest set that contains all of the edges zy € Gp which satisfy at
least one of the following conditions:

a)zyx € X.
b) zy is directed to some oj € V.

(8) C is the smallest set that contains all of the timing and control constraints
associated with each operator in V and each data stream in E.

Example 7 Figure {.{ shows a prototype for a fish farm control system called Fishies.
Figures 4.5, 4.6 and 4.7 display different slices of Fishies.

Theorem 3 Slicing Theorem for PSDL Prototypes:

Let Sp(X) be the slice of a prototype P with respect to a set of streams X. Then
Sp(X) and P have the same behavior on any subset of the streams in Sp(X).

The proof of this theorem is contained in Appendix C, Section 2. The significance
of this theorem is that a slice captures a fragment of the semantic behavior of a prototype,
and the behavior captured by that slice remains the same even if that slice is made a part of
a different prototype, provided that it is also a slice with respect to that new prototype. This
property is the basis for constructing a change merging operation that can provide semantic
guarantees of correctness.
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Figure 4.4: Fish Farm Control System, Fishies;

Figure 4.5: Skisien, , (02, NH3, H20)
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Figure 4.7: Srishies, , (Drain_Setting, Inlet_Setiing)
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C. A SLICING METHOD FOR CHANGE-MERGING PSDL
PROTOTYPES . *

Our change-merging method for PSDL prototypes, illustrated in Figures 4.12 through
4.15 on the prototype versions originally introduced in Chapter III and shown again in
Figures 4.4, 4.8 and 4.9 uses prototype slicing to determine automatically which parts of the
prototype have been affected by a change and which parts have been preserved.

=

Drain Vaive Position

Figure 4.8: Fishies;

If the slice of a changed version of a prototype with respect to a stream present in
both the base version and the modified version is different than the same slice of the base
version, then the behavior on that slice is likely to be different. Therefore that change is
significant, and must be preserved in the merged version. For example, consider the slice
of Fishies;; with respect to the stream Activate_Drain, illustrated in Figure 4.10, and the

3




Figure 4.9: Fishies;,
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same slice of Fishies, 3, illustrated in Figure 4.11. It is easy to see a portion of the effect of
the change which produced Fishies, ; from Fishies, ;. If we were to take the same slice of
Fishies; 5, we would discover that it is identical to the slice of the base version of Fishies.
This illustrates that this part of the Fishies prototype is not affected by the change which
produced Fishies;;. Since this change is significant, it must be reflected in the merged

version.

g

Activate_Drain

Figure 4.10: Srishies1.1(Activate_Drain)

Slices are important because they capture all of the parts of a program that can affect
the behavior visible in a set of data streams. If two different programs have the same slice for
a set of streams, they also have the same behavior over that set of streams. The preserved
part of a prototype is then the largest set of streams that have the same single stream slice
in all three versions, and the affected streams of each modification are those that have a
different single stream slice in the modified version than in the base version. Performing
a change-merge using Fishies;, as the base version, and Fishies;; and Fishies;; as the
modified versions, we get the preserved part as shown in Figure 4.12 and affected parts as
shown in Figures 4.13 and 4.14.

(4]
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Activate_Drain

Figure 4.11: SFishics, ; (Activate_Drain)

Figure 4.12: Preserved Parts of Fishies;; in Both Modifications
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Figure 4.13: Affected Part of Fishies, 2

Figure 4.14: Affected Part of Fishies;,
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In constructing the preserved part, we consider each stream individually, taking the
slice of each version with respect to that stream. If the slices are the same, then that slice
is added to the preserved part. After all streams have been (. cked, the preserved part is

complete.

The affected parts are constructed by comparing the slices of each stream in the modified
version against the same slice of the base version. The stream is included in the affected

part if the slices are different.

The merged version is formed by taking the union of the preserved part of all three
versions and the affected parts of the two modified versions. If the slice of the merged version
with respect to the streams affected by each modification is the same as the corresponding
slice of the modified version, then semantic correctness of the merged version with respect
to the modifications is established. The result of change-merging Fishies, ;, Fishies, , and
Fishies, ; is shown in Figure 4.15.

Our slicing method has the advantage of a clear semantic criterion for correctness, and
the disadvantage of reporting conflicts whenever two changes can affect the same stream,
regardless of whether there exists a computation history in which the two changes actually
interact or conflict with each other.
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Figure 4.15: The Change-Merged Version of the Fishies Prototype.
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V. CHANGE-MERGE ALGORITHM

From the change-merging models for both the spe-ification, shown in Chapter III, and
the implementation, shown in Chapter IV, we developed a change-merging algorithm. This
change-merging algorithm takes advantage of the fact that the specification and implemen-
tation can be change-merged separately to create a correctly change-merged program. This
chapter outlines the change-merging algorithm in detail and provides a piece by piece analy-
sis of the algorithm for correctness, complexity and coverage. This algorithm was written to
accept a base version and two modifications as input. It is easily extended to change-merge
the result of n modifications to a base version by applying the algorithm iteratively using
the result of the most recent application as one input and the next modification as the other.
The result of a successful iterative application on n versions is a merged version containing

the significant behaviors of each of the inputs.

The algorithm change_merge accepts three expanded versions of a PSDL program as
input. It then extracts all of the PSDL components from each version of the program.
The atomic components are held in storage to be included in the change-merged version
of the program if needed, and the composite component of each program is divided into a
specification part and an implementation part.

Each of these parts are change-merged separately and the results are recombined to cre-
ate the change-merged composite component. From the implementation part of the change-
merged composite component, the algorithm can deduce which of the atomic components
need to be included in the change-merged program. The change-merged program is then re-
turned. If a conflict is detected during the change-merging process, the CONFLICT variable
is set to true, and a flag is placed into the change-merged program at the location of the
conflict to aid the designer in locating and resolving it. Figure 5.1 shows the change-merge

algorithm.
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Algorithm change merge(BASE, A, B : in psdl.program; CONFLICT : out boolean)
return psdl_program
begin
1. Extract the psdl_components from each of the input psdLprograms.
2. Change-merge the specification parts for the three input composite components.
a. Change-merge the state declarations.
b. Change-merge the exception declarations.
c. Change-merge the maximum execution times.
d. Change-merge the formal and informal descriptions.
3. Change-merge the implementation parts for the three input composite components.
a. Create the prototype dependency graphs for each version.
b. Create the affected parts of each modified version.
c. Create the preserved part of the base in all three versions.
d. Change-merge the graphs.
e. Change-merge the stream declarations.
f. Change-merge the timer declarations.
g Change-merge the control constraints.
(1) Change-merge the trigger constraints.
(2) Change-merge the execution guard constraints.
(3) Change-merge the periods.
(4) Change-merge the finish_withins.
(5) Change-merge the minimum calling periods.
(6) Change-merge the maximum response times.
(7) Change-merge the output guard constraints.
(8) Change-merge the exception trigger constraints.
(9) Change-merge the timer operations.
4. Create the change-merged program.
a. Combine the change-merged specification and implementation.
b. From the resulting implementation, determine which of the atomic components

from each of the input versions is to be included in the change-merged program.

5. Return the change-merged program.
end Change_Merge;

Figure 5.1: Algorithm change_merge.
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A. EXTRACTING THE COMPONENTS

Extracting the components from each of the input PSDL programs is done using a
map fetch operation. The algorithm loops through each of the input programs and retrieves
the set of components each one contains. The atomic components are placed in a holding
program so they can be retrieved later if needed for the merged program, and the composite
component is extracted for change-merging. The algorithm fragment used to extract the

components is shown in Figure 5.2.

a. For every component in the Base Version loop
(1) Fetch the component;
(2) If the component is atomic then bind to holding program for base version;
(3)  else extract the component; end if; end loop;

b. For every component in the A Version loop
(1) Fetch the component;
(2) If the component is atomic then bind to holding program for base version;
(3)  else extract the component; end if; end loop;

c. For every component in the B Version loop
(1) Fetch the component;
(2) If the component is atomic then bind to holding program for base version;
(3) else extract the component; end if; end loop;

Figure 5.2: Algorithm Fragment for Extracting the Component.

The extraction part of the algorithm requires a loop through the components of each
version to perform the fetch. The correctness of this algorithm fragment can be shown using
simple induction. Since the operations inside the loop are constant and the loop is executed
only once for each component of each program, the worst-case complexity of this part of the
algorithm is O(n), where n is the number of components in the program. This algorithm
fragment can be used for all fully expanded PSDL programs, since they contain only one

composite component.
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B. CHANGE-MERGING THE SPECIFICATIONS

Change-merging the specification of the top level component requires five operations.
The five operations are responsible for change-merging the components of the specification:
the state declarations, the maximum execution times, the exception sets, and the informal

and formal descriptions.
1. Change-Merging the State Declarations

Change-merging the state declarations is done with the procedure merge_states.
Since the state declarations are a set, normal set operations may be used to merge the state
declarations themselves, but the initial values of the state variables conform to a flat lattice
structure and any change must be preserved. The algorithm merge_states is shown in Figure
5.3.

To show correctness of merge_states, we must show that it correctly implements
the equation (A4 — Base)U(AN B)U(B— Base). Two internal loops construct this equation.
The first loop captures any state variable declaration which appears in A, but not in BASE;
the (A — Base) part of the equation, and then captures any state variable declaration which
appears in both of the modified versions; the (A N B) part of the equation. The second
loop captures any state variable declaration which appears in B, but not in BASE; the
(B — Base) part. Since both loops add state variable declarations to the same set M ERGE,
the union part of the equation is satisfied.

The execution of merge_states requires a membership test and add operation for
every state declared, and these are both linear time operations with the current linked-list
implementation of sets. Thus the entire algorithm requires O(s?) time, where s is the number
of states declared. This can be improved to O(slogs) if balanced trees are used for the sets.




Algorithm merge_states(.i £RGE: in out type_declaration;
BASE, A, B: in type_declaration;
MERGE_INIT: in out init_map;
A_INIT,B_INIT: in init.map)
begin
for every state variable, s, declared in A
if s is not in BASE, and s is not in B then
add s to MERGE; add initial value to MERGE_INIT;
end if;
if s is in B then
add to MERGE;
if the initial values are the same ir A L.VIT and B.INIT then
add initial value to MERGE_INIT;
else add conflict_expression to MERGE_INIT;
end if;
end if;
end loop;
for every state variable, s, declared in B
if s is not in BASE and s is not in A then
add to MERGE; add initial value to MERGE_INIT;
end if;
end loop;
end merge_states;

Figure 5.3: Algorithm merge_states.




3. Change-Merging the Maximum Execution Times

Change-merging the maximum execution time constraints is done with the function
merge.met, shown in Figure 5.4. Maximum execution times follow a2 Brouwerian Algebra
structure as shown by Proposition 2 in Chapter III, Section D.2, and must be merged ac-
cording to those rules.

Algorithm mergemet(BASE, A, B : millisec) return millisec
ADIFF BASE,B.DIFF_BASE,A_INT_B: millisec;
begin

if A < B then
AINT_B := B;
else AINT B := A;
end if;
if BASE < A then
ADIFF_BASE := 1;
else A DIFF_BASE := A;
end if;
if BASE < B then
B_DIFF_BASE := 1;
else B.DIFF_BASE := B;
end if;
if ADIFF_ BASE < AIINT_B then
if ADIFF_ BASE < B.DIFF_BASE then
return A DIFF_BASE;
else return B_.DIFF_BASE;
end if;
else if AINT B < B DIFF_BASE then
return A_INT_B;
else return B_.DIFF_BASE;
end if;
end if;
end merge_met;

Figure 5.4: Algorithm merge_met.

The algorithm for change-merging maximum execution times must also satisfy the
change-merging equation (A — Base) U(AN B)U (B~ Base). It uses a series of conditional
expressions to calculate the values of A DIFF_BASE, B.DIFF_BASE, and AINT_B,
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which represent the (A ~ Base), (B — Base) and AN B parts of the equation shown above.
It then combines them according to the rules outlined in Chapter III, Section D.2. This
adherence to the mathematical model guarantees the correctness of the algoritum. Since
this algorithm contains no loops, it requires constant time to execute, so the worst- ~ase time

complexity of mergemet is O(1).
3. Change-Merging the Exception Declarations and Keywords

Change-merging the exception declarations and the keyword sets is done using
the merge.id_sets function shown in Figure 5.5. This algorithm calculates the equation
(A — Base) U (AN B) U (B — Base) in precisely the same way as merge_states calculates
the merge of the state declarations without the initial values.

Algorithm merge_id sets(BASE, A, B : id_set) return id_set
begin
Calculate A — BASE.
Calculate B - BASE.
Calculate AN B.
Return (A - BASE)J(ANB) (B — BASE).

end merge_id_sets;

Figure 5.5: Algorithm merge_id_sets.

The correctness and complexity analyses of merge_id_sets are identical to those of
merge_states, so merging id_sets requires worst case O(z?) time for exception declarations
and O(k?) time for keywords. '

4. Change-Merging the Descriptions

Change-merging both the informal and the formal descriptions is accomplished
using the function mergetfer* shown in Figure 5.6. merge_text implements a flat lattice
change-merge, and any change :rom the base version in one modification must be identical to




W‘ﬁh&mcamhm&e&d. This function has a constant

Algorithm mergetext(BASE, A, B : text) return tezt
begin
if BASE= A
then return B
else if BASE=B
then return A
elseif A=B
then return A
else return (“Conflict in text. Must be change-merged manually!”)
end if;
end if;
end if;
end merge.text;

Figure 5.6: Algorithm merge_text.

5. Analysis of Specification Change-Merge

Correctness of the specification change-merge part of the algorithm is guaranteed
by the correctness of the individual algorithms which make up the specification change-
merge. The worst-case time complexity of the specification part of the algorithm is obtained
by adding the complexities of the individual parts as follows:

O(s%) + O(z?) + O(F*) + O(1) + O(1) + O(1) = O(s? + z* + k?)

where s is the number of state declarations, z is the number of exception declarations, and
k is the number of keywords.

This algorithm is capable of performing change-merge operations on all PSDL
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C. CHANGE-MERGING THE IMPLEMENTATIONS

K4

Change-merging the implementation parts is also accomplished by change-merging the
individual parts of the implementation separately. It requires five main operations; change-
merging the graphs, change-merging the stream declarations, change-merging the timer dec-
larations, change-merging the control constraints, and change-merging the informal descrip-

tions.
1. Change-Merging the Graphs

To change-merge the PSDL implementation graphs, we must first convert them to
prototype dependency graphs that accurately reflect all of the timer dependencies between
operators in the prototype as well as the data dependencies. We do this with the build PDG
function shown in Figure 5.7. Next we must construct the preserved and affected parts of
the three input graphs according to the slicing rules defined in Chapter IV. The algorithms
for these constructions are contained in Figures 5.9 and 5.8, respectively. Finally, we must
combine these three parts into a change-merged prototype dependency graph using a graph-
union operation, shown in Figure §.12. |

In building the prototype dependency greph, build_PDG adds an external vertex,
EXT, to the prototype implementation graph, then for every vertex with no outputs, it
creates an edge from that vertex to EXT. This is necessary to ensure that these terminal
vertices are included in the slices, since slices are constructed based on edges not vertices.
Then for every timer declaration in the prototype implementation, build_PDG creates an
edge from every vertex which affects the state of that timer to every vertex which reads its
value.

The algorithm build PDG contains two loops. The first loop iterates through the
vertices in the graph, and determines if the vertex has any outputs. For every vertex with
no outputs, the algorithm then adds an edge to the graph from that vertex to the artificial
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Algoeithm duild PDG(P : pedl.component) return prototype.dependency. graph
G : prototype_dependency graph; :
O : vevtes;
source,dest : id_set;
begin
G := graph(P);
add external vertex, EXT;
for every terminal vertex, O, add an edge from O to EXT;
for every timer declaration in the implementation of P loop
initialize source and dest to empty.
add every vertex which affects the state of the timer to source;
add every vertex which reads the timer to dest;
add an edge to G from every vertex in source to every vertex in dest;
end loop;
return G;
end build_PDG;

Figure 5.7: Algorithm build_PDG.

vertex EXT. The correctness of thus loop can be established by showing that at the end of
the loop, there are no vertices in the graph without output edges, except EXT. Since the
loop cycles through all vertices in the graph and adds an output edge to the graph from any
vertex which does not have one to EXT, this proof is trivial.

The secon’ loop iterates through the set of timer declarations, and builds two
sets for each timer, source and dest. It then adds an edge to the graph from every vertex
in source to every edge in dest. The source set contains all of the vertices using timer
operations that affect the state of the timer. The dest set contains all of the vertices that
read the value of the timer.

To show correctness of this loop, we must show that at the end of each iteration
through the loop, the graph contains all timer dependency edges associated with the timer
declarations thus far encountered, and at the end of the loop, the graph contains all timer
dependency edges associated with the timer declarations in the implementation. We do this
by the following induction proof:
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Proof:

Basis: Since source and dest are initialized at the beginning of each iteration
through the loop, they are empty before the first iteration, thus the graph contains no timer
dependency edges before the first iteration.

Induction Hypothesis: At the end of the kth iteration, all timer dependency
edges associated with the first k timer declarations are included in the graph.

Induction Step: At the beginning of the k + 1st iteration of the loop, the source
and dest sets are reinitialized to empty. The vertices that affect the state of the k + 1st
timer are added to source, and the vertices that read the value of the k 4+ 1st timer are
added to dest. Now, for every vertex in source, the algorithm adds an edge to every vertex
in dest. Thus at the end of the k + 1st iteration, the graph contains all timer dependency
edges associated with the first k timer declarations, by the induction hypothesis, plus it now
contains all timer dependency edges associated with the k+ 1st timer declaration. Thus, we
can conclude that for any number n of timer declarations, at the end of the nth iteration
of the loop, the graph contains all timer dependency edges associated with the first n timer
declarations. O

The complexity of this algorithm is determined by the sum of the complexities
of the two loops. Since the first loop iterates through all vertices in the graph, performing
worst-case linear operations on each iteration, its worst case time complexity is ©(n?), where
n is the number of vertices in the graph, excluding EXT. The second loop contains three
inner loops that iterate through the vertex set of the graph. The first two of these inner
loops contain worst-case linear operations. The third inner loop contains another inner loop
that could also possibly iterate through all vertices in the graph, making its worst case
time complexity O(n?). Thus, the worst case time complexity of the second outer loop is
O(in?), where t is the number of timer declarations contained in the implementation and

n is the number of vertices in the graph. The algorithm then contains two loops, one with




complexity O(n?), and one with complexity O(tn?), therefore, the worst case time complexity

of build PDG is O(tn?).

The next step in change-merging the graphs is finding out the parts of the mod-
ified versions which are different from the base. This is accomplished using the algorithm
af fected part, shown in Figure 5.8. This algorithm returns the set of edges in the modified
version for which the slice of the modified version is different than the slice of the base ver-
sion. First, each edge in the modified version is checked to see if it is the base version. If it
is not, then it is added to the affected part. Next, the algorithm checks to see if the edge
recieves input from different sources in the modified version than in the base version. If the
sources are different, then the edge is added to the affected part. Finally, the algorithm adds
any edge to the affected part which receives input via an edge already in the affected part.

It is sufficient to include in the affected part of modified version, only those edges
which are different in the modified and base versions of the graph, and the edges which follow
them. Any edge which precedes an affected edge will produce the same slice in both versions
since slices are constructed backward from the edge. The correctness of af fected_part is
established by showing that, every in edge in Slice produces a slice which is different in both
G and B. We prove this by an induction over the while loop.

Proof:

Basis: At the beginning of the first iteration of the loop, Slice gets one edge from
E which is either in G and not in B, or is written to by a different set of vertices in G and
B. This edge will certainly produce a different slice in the two graphs, so Slice contains only
edges which produce different slices in G and B.

Induction Hypothesis: After the first k iterations of the loop, every edge in
Slice produces a different slice in G than in B.
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Algorithm af fected_part(G, B : prototype_dependency.graph)
return edge_set
Slice,C, D, E : edge_set;

z,y : edge;
begin
C := edges(B);
D := edges(G);
E := dif ference(D,C);
for every edge z in D loop

if sources(z) in G are different from the
sour-~~s(z) in B then
add z to E;
end if;
end loop;
while E not empty loop
select and remove an edge z from E;
add z to Slice;
for each edge y € D loop
if z.destination € sources(y,G) then
add y to E;
remove y from D;
end if;
end loop;
end loop;
return Slice;
end af fected part;

Figure 5.8: Algorithm affected part




Induction Step: During the kth iteration of the loop, every edge in G which
follows the kth edge added to Slice in the data flow of G is added to E. At the'begintﬁng
of the k + 1st iteration of the loop, one of the edges in E is removed from E and added

to Slice. Since we know that any edge which follows an affected edge in the data flow will
certainly produce a different slice in G and B, we know that this edge will as well. Thus by
the induction hypothesis, all of the elements in Slice before this iteration produced different
slices in G and B, and the current iteration adds an edge which produces a different slice
in G and B, therefore after the k + 1st iteration of the loop, every edge in Slice produces a
different slice in G and B. Since E is a finite set, and no edge already in Slice can be added
back into E, the loop will terminate. O

The complexity of af fected part is determined by the complexity of the loops
inside. The first for loop iterates over all of the edges in the input graph, G, and adds any
edge to E which is different in G and B or recieves input from different sources in G and
B. The worst-case time complexity of this loop is O(e * n), where e is the number of edges
in G and n is the number of vertices in G. The second while loop iterates over all of the
edges in E, which we know to contain at most the edges of G, and any edge which follows
this edge in G is added to E. This makes the worst-case time complexity of this loop, O(e?).
Therefore the worst-case time complexity of af fected part is O(e?), where e is the number
of edges in G.

The next step in change-merging the graphs is constructing the part of the base
version that is preserved in both of the modifications. This is done using the algorithm
preserved.part shown in Figure 5.9. This algorithm loops over all of the edges in Base and
checks to see if they are in the affected parts of either modification, or have been removed
in one of the modifications. If the edge is not in either affected part and it is in both
modifications, then the slice it produces is the same in all three versions and it is added to
the preserved part.
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Algorithm preserved_part(BASE, A,APA,B,APB: prototype.depcndency.graph)
return edge_set
PP : edge_set := empty_set;
e : edge;
begin
for every edge E in edges(BASE) loop
if not e € APAU APB and e € edges(A) N edges(B)
then add e to PP;
endif;
end loop
return PP;

end preserved_part;

Figure 5.9: Algorithm prcserved_pdrt

Only those edges which appear in all three versions and are not part of either
affected part are added to the preserved part. The correctness of this algorithm is established
by showing that after each iteration of the for loop, PP only contains edges which will
produce the same slice in all three versions. We offer the following proof:

Proof:

Basis: Before the first iteration of the loop, PP is empty. Since the slice with
respect an empty edge is an empty graph, this slice is certainly the same in all three versions.

Induction Hypothesis: After the first k iterations of the loop, every edge in PP
produces the same slice in all three versions of the graph.

Induction Step: During the k + 1st iteration of the loop, if the edge e is in the
edge sets of all three versions, and it is not contained in an affected part, then it was not
affected nor removed by either version, thus it is preserved in all three versions. Since after
the kth iteration of the loop, all of the edges in PP produced slices which were the same
in all three versions, and the k 4 1st iteration adds another which produces the same slice
in all three versions, after k+ 1 iterations, every edge in PP produces the same slice in all
three versions. Therefore the correctness of preserved part is established. O
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The complexity of preserved.part is determined by the complexity of the for loop.
Since all of the operations inside of the loop are at worst O(e) operations, and the lc;op

iterates once for every edge in the base version of the graph, the worst-cast time complexity
of preserved part is O(e?), where ¢ is the number of edges in BASE.

Once the preserved part of the base and the affected parts of both modified versions
have been calculated, the slices produced by these sets can be change-merged into a single
graph. The slices are constructed using the algorithm create_slice shown in Figure 5.10.
This algorithm takes a graph and an edge as input and constructs the slice backward from
the edge, according to the definition for a slice given in Chapter IV, Section B.2.

Algorithm create_slice(G : prototype_dependency.graph; E : edge)
return prototype.dependency.graph
S : prototype_dependency.graph;
V : vertez_set;
w : vertez;
begin
ifein G
then add e to S;
else return empty_graph;
end if;
for every vertex w in G loop
if w writesto e
then add w to V;
end if;
end loop;
while V not empty loop;
select and remove vertex w from V;
add w to S;
add parents of w to V if not in S;
add edges between parents and w to S;
end loop;
return S;
end create_slice;

Figure 5.10: Algorithm create_slice
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The correctness of create_slice is established by showing that the algorithm pro-
duces a correct slice of G with respect to E, according to our definition of a slice givei; in
Chapter IV.

Proof:

If e is not an edge in G, then create_slice returns an empty graph, which is the
correct slice of G with respect to e. If e is an edge in G, then e is added to the slice, and any
vertex which writes to e is added to the set of vertices V.Then the algorithm iterates over a
while loop as long as V is not empty. The correctness of the while loop is established by
showing that at the end of every iteration of the loop, the slice S contains only the vertices
and edges which affect the edge e, and after the last iteration of the loop, S contains all of
the vertices and edges in G which affect the edge .

Basis: Before the first iteration of the loop, the only edge in S is e, and certainly
every edge in S affects e.

Induction Hypothesis: After the kth iteration of the loop, all of the edges and
vertices in S affect the values written to e.

Induction Step: During the k + 1st iteration of the loop, a vertex w is removed
from V and added to S. Since only those vertices which write to an edge in S are in V, and
only edges which affect the values written to e are in S by the Induction Hypothesis, we are
guaranteed that w is a correct addition to S. So after the k + 1st iteration of the loop, S
contains only edges and vertices which affect values written to e.

Since V contains at most the number of vertices in G, and one vertex is removed on
every iteration of the loop, we are assured that the loop will terminate. Since during every
iteration, any edge which provided input to a vertex in S is added to S and every iteration
adds any vertex which writes to an edge in S, we are assured that after the last iteration of
the loop, all of the vertices and edges which affect the values written to e will be in the slice.
o




The time complexity of createslice is determined by the two inner loops. The
for loop iterates over the vertices of the graph one time. This makes the worst:case time
complexity of this loop, O(n), where n is the number of vertices in the graph. The while
loop iterates over a set of vertices, however through all of the iterations of the loop at most
each edge is visited once, making the worst-case time complexity of this loop O(e), where
e is the number of edges in the base version of the graph. Therefore, the worst-case time

complexity of createslice is O(n + e).

Once the slices are constructed, they are merged using the function graph_merge,
shown in Figure 5.11. This is a very simple graph merging algorithm which uses successive
calls to graph_union, shown in Figure 5.12 to combine the preserved part of the base with
the affected parts of both modifications into a change-merged prototype dependency graph.

Algorithm graph.merge(G1, G2, G3 : prototype_dependency.graph)
~ return prototype_dependency_graph
G : prototype_dependency_graph := empty_psdl_grapk;
begin
G := graph_union(G1, G2);
G := graph_union(G, G3);
return G;
end graph_merge;

Figure 5.11: Algorithm graph.merge

The graph_union algorithm is used to combine two graphs into one. It accepts two
prototype dependency graphs as input and adds the edges and vertices of one to the other.

The algorithm graph_union makes use of two successive union operations, and
union operations are very well defined. Therefore, the correctness of graph_union is easily
established.

The complexity of graph.union is determined solely by the complexities of the

set union operations, which are linear in the worst case. Therefore, the worst case time

97




Algorithm graph_union(G1, G2 : prototype_dependency_graph)
return prototype_dependency_graph
G : prototype_dependency_graph := empty_psdl_graph;
begin
G.vertices := vertices(G1) U vertices(G2);
G.edges := edges(G1) U edges(G2);
return G;
end graph_union;

Figure 5.12: Algorithm graph_union

complexity uf graph_union is the sum of the complexities of the two union operations, or
O(e + n), where e is the number of edges in the largest of G1 and G2, and n is the number
of vertices in the largest of G1 and G2.

The correctness and complexity of graph_.merge depend solely on the correctness
and complexity of graph.union, which have previously been established. Thus, graph_merge
is a correct algorithm with worst-case time complexity of O(e + n), where e and n are the
number of edges and vertices in the largest input graph.

Once the graphs have been change-merged, the remainder of the implementation
parts must be change-merged. The stream declarations and the timer declarations are
change-merged using the functions merge_streams and merge_timers, shown in Figures
5.13 and 5.14, respectively. Then the control constraints are change-merged using functions
appropriate to their map type. These algorithms are shown in Figures 5.15 through 5.26.

2. Change-Merging the Stream and Timer Declarations

The stream and timer declaration parts are modeled as sets, so change-merging
them is done using common set operations. In merge_streams, the two for loops construct
the three pieces of the change-merging equation for sets, (A— Base), (ANB), and (B— Base).
The correctness and complexity of merge_streams are identical to those of merge_states. In
merge_timers, the three pieces of the change-merging equation are constructed separately
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and combined to provide the result. The correctness and complexity of this algorithm is
identical to that of merge.id.sets. : !

Algorithm merge_streams(BASE, A, B : type_declaration) return type_declaration
MERGE : type_declaration;
begin
MERGE := empty_type.declaration;
for every stream s in A loop
if s is not in BASE and s is not in B then
add s to MERGE;
end if;
if sisin B then
add to MERGE;
end if;
end loop;
for every stream s in B loop
if s is not in BASE and s is not in A then
add to MERGE;
end if;
end loop;
return MERGE;
end merge_streams;

Figure 5.13: Algorithm merge_streams

Algorithm merge_timers(BASE, A, B : id_set) return id_set
begin
Calculate A — BASE.
Calculate B — BASE.
Calculate AN B.
Return (A - BASE)\(ANB)U(B — BASE).
end merce_timers;

Figure 5.14: Algorithm merge_timers

3. Change-Merging the Control Constraints

Change-Merging the Control Constraints is accomplished by a series of algorithms
that implement the models defined in Chapter III, Section D. Their correctness is established
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by their conformance to the mathematical models. Each one of these algorithms has worst-
case time complexity of O(n), except merge_trigger_maps and merge_timer_op_maps, where
n is the number of vertices in the largest input prototype. merge_trigger_maps has worst-
case time complexity of O(ns?), where n is the number of vertices in the largest input
prototype and s is the largest number of streams read by an operator in the prototype.
merge.timer ops has worst-case time complexity of O(nt?), where n is the number of vertices
in the largest input prototype and ¢ is the largest number of timer operations in the prototype.
Since these algorithms all execute independently, the worst-case time complexity for the
entire control constraints section is O(ns?+ nt?).

Algorithm merge trigger .maps(VERTS : id_set; BASE, A, B : trigger_map)
return trigger_map
MERGE : trigger_map;
opid : psdl_id;
base_trig,a_trig, b_trig, mergetrig : trigger:
begin
for every op_id in VERT'S loop
retrieve base_trig from BASE;
retrieve a_trig from A;
retrieve b_trig from B;
merge.irig := merge._triggers(base_trig,atrig, b_trig);
bind merge_trig to op_id in MERGE;
end loop;
return MERGE;
end merge_trigger maps;

Figure 5.15: Algorithm merge_trigger_maps

There is also an informal description of the implementation part that must be
change-merged. The implementation descriptions are change-merged using the mergetezt
function shown in Figure 5.6.
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Ry e W.(BASE A, B: trigger) return trigger -
'MERGE : trigger;
streams : id,el;

if BASE = A then
if BASE = B then
MERGE.tt := BASE.tt
MERGE .streams := merge.id_sets( BASE.streams, A.streams, B.streams);
return MERGE;
else return B;
end if;
else if BASE = B then
return A;
else if A= B then
return A;
return conflict;
end if;
end if;
end if;
end merge_triggers;

Figure 5.16: Algorithm merge_triggers

Algorithm merge.ezec.guard. maps(VERTS : id_set; BASE, A, B : exec_guard_map)
return ezec.guard_map
MERGE : exec.guard_map;
opid : psdl.id;
base_eg,a_cg,b.eg,merge_eg : expression:
begin
for every op.id in VERT'S loop
retrieve base_eg from BASE;
retrieve a_eg from A;
retrieve b_eg from B;
merge.eg ;= merge.ezpressions(base.cg, a_eg, b_eg);
bind merge_eg to opid in M ERGE;
end loop;
return M ERGE;
end merge_ezec_guard_maps;

Figure 5.17: Algorithm merge_ezec_guard maps
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Algorithm merge_ezpressions(BASE, A, B : expression) return ezpression;
begin
if equal(BASE, A) then
if equal(BASE, B) then return BASE else return B; end if;
else if equal(BASE, B) then return A;
else if equal(A, B) then return A;
return conflict;
end if;
end if;
end if;
end merge_ezpressions;

Figure 5.18: Algorithm merge_ezpressions

Algorithm merge_output_guard_maps(VERTS : id_set; BASE, A, B : out_guard_map) re-
turn out_guard_map
MERGE : out_guard_map;
opid : psdlid;
base_og, a-o0g,b_og, merge_og : expression:
begin
for every op_id in VERT'S loop
retrieve base.og from BASE;
retrieve a_og from A;
retrieve b_og from B;
merge.og := merge_ezpressions(base_og, a_og, b.og);
bind merge.og to op.id in MERGE;
end loop;
return MERGE;
end merge_output_guard_maps;

Figure 5.19: Algorithm merge_output_guard.maps
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Algorithm merge_excep_trigger maps(VERTS : id_set; BASE, A, B : exceptrigger .map)
return ezcep.irigger.map
MERGE : excep_trigger_map;
op.id : psdl.id;
base_et,a_et, boet,merge_et : expression:
begin
for every op.id in VERT'S loop
retrieve base_et from BASE;
retrieve a_et from A;
retrieve b.et from B;
merge.et := merge_ezpressions(base.et, a.et, bet);
bind merge_et to opid in MERGE;
end loop;
return MERGE;
end merge_ezcep_trigger_maps;

Figure 5.20: Algorithm merge_ezcep_triggeromaps

Algorithm merge_timer.op.maps(VERTS : id_set; BASE,A,B : timer_op.map) return
timer._op_map
MERGE : excep_trigger.map;
opid : psdl_id;
base_set,a_set, b.set, merge_set : expression:
begin
for every opid in VERT'S loop
retrieve base_set from BASE;
retrieve a_set from A;
retrieve bset from B;
merge.set := merge_timer.op.set(base_set,a_set, b_set);
bind merge_set to op_id in MERGE;
end loop;
return MERGE,
end merge_timer_op.maps;

Figure 5.21: Algorithm merge_timer_op.maps
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Algorithm merge_timer_op_sets(BASE, A, B : timer_op_set) return timer_op_set
MERGE : timer_op_set;
t.op : timer_op;
begin
for every t_op in BASE loop
if member(t_op, A) then
if member(t.op, B) then
add(t.op, MERGE);
end if;
end if;
for every t_op in A loop
if notmember(t_op, M ERGE) then
if member(t.op, B) then
add(t.op, MERGE);
end if;
end if;
for every t_op in B loop
if notmember(t.op, MERGE) then
if member(t.op, A) then
add(top, MERGE);
end if;
end if;
end loop;
return MERGE;
end merge_timer_op_sets;

Figure 5.22: Algorithm merge_timer_op_sets
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Algorithm merge_period(VERTS : id_set; BASE, A, B : timing_map) return timing_map
MERGE : timing_map;
op.id : padl_id;
base.val, a.val, b.val, merge_val : millisec := 0;
begin
for every opid in VERT'S loop
retrieve base_val from BASE;
retrieve a_val from A;
retrieve b.val from B;
merge_val := merge_timing_data(base.val, a.val, b_val);
bind merge.val to op_id in MERGE;
end loop;
return MERGE;
end merge_period;

Figure 5.23: Algorithm merge_period

Algorithm merge.fw.or mrt(VERTS : id_set; BASE, A, B : timing_map)
return timing_map
MERGE : timing_map;
opsd : psdl.id,
base.val, a_val, b_val, merge_val : millisec := 0:
begin
for every op_id in VERT'S loop
retrieve base_val from BASE;
retrieve a.val from A;
retrieve b_val from B;
merge.val := merge.met(base_val, a val, b_val);
bind merge_val to op.id in M ERGE;
end loop;
return MERGE;
end merge.fw._or mrt;

Figure 5.24: Algorithm merge_fw_or_mrt
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Algorithm merge_min_call_per(VERTS : id_set, BASE, A, B : timing_map)
return timing.map
MERGE : timing_.map;
op.d : psdl.id,
base_val,a.val, b.val, merge_val : millisec := 0:
begin
for every op_id in VERTS loop
retrieve base_val from BASE;
retrieve a.val from A;
retrieve b.val from B;
merge.val := merge_mcp(base_val,a_val, b_val);
bind merge.val to op.id in MERGE;
end loop;
return MERGE,;
end merge.min_call_per;

Figure 5.25: Algorithm merge_min_call per

4. Analysis of Implementation Change-Merge

Change-merging the implementation of the top level component requires four main
operations; change-merging the graphs, change-merging the stream declarations, change-
merging the timer declarations, and change-merging the control constraints.

Change-merging the graphs requires that each graph be converted to a PDG using
build_PDG which requires O(tn?) time, where n is the number of vertices in the graph and
t is the number of timers declared in the implementation.

After the prototype dependency graphs are constructed, the affected parts of each
modification are constructed using af fected_part which has worst-case time complexity
O(e?), where e is the number of edges. Then the preserved part is constructed, and it

bas worst-case time complexity O(e?).
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Algorithm merge.mcp(BASE, A, B : millisec) return millisec
ADIFF BASE,B.DIFF_BASE,A_INT_B : millisec;
begin

if A2 B then
A_INT_B := B;
else AINT.B := A;
end if;
if BASE > A then
ADIFF_BASE :=T;
else ADIFF_BASE := A;
end if;
if BASE > B then
B_DIFF_BASE :=T;
else B DIFF_BASE := B;
end if;
if ADIFF_BASE > A INT_B then
if ADIFF_BASE > B_.DIFF_BASE then
return AL DIFF_BASE;
else return B DIFF_BASE;
end if;
else if AINT B > B_.DIFF_BASE then
return A INT_B;
else return B_DIFF_BASE;
end if;
end if;
end merge,.cp;

Figure 5.26: Algorithm merge.mcp.
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After all three of the pieces required for change-merging the graphs have been built,
then they must be change-merged using graph.merge, which contains two successive calls
to graph_union, which we already know requires worst-case O(n + ¢) time. Therefore, the
worst-case time complexity of change-merging three graphs is:

O(tn?) + O(e?) + O(e?) + O(e?) + O(n + ¢) = O(tn? + €?)
The edges in the graph almost always outnumber the vertices, so we call this O(e?).

The correctness of the Implementation Change-Merge is established by the cor-
rectness of the individual parts. The complexity of the Implementation Change-Merge is
dominated by the complexity of the change-merging of the graphs, so the worst-case time
complexity of the Implementation Change-Merge is O(e?).

D. CREATING THE CHANGE-MERGED PROGRAM

The last algorithm used in this change-merging tool is build_prototype, shown in Figure
5.27. This algorithm takes the change-merged graph and removes the artificial timer edges
and external vertex. It then sets the change-merged graph in the change-merged prototype.

Algorithm build prototype(P : in out psdl_component; G : prototype_dependency._graph)
A : psdl_graph;
begin
assign G to A;
remove external vertex;
remove timer dependency edges;
set_graph(A, P);
end butld_prototype;

Figure 5.27: Algorithm build_prototype

The timer dependency edges are removed by iterating through the edges of the graph
and removing the appropriate edges. This requires iteration over the edges of the change-
merged graph, making the worst-case time complexity of this algorithm O(e).

*
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E. ANALYSIS OF THE CHANGE-MERGING ALGORITHM

The correctness of the algorithm change_merge is established by the correctness of
the individual parts. Since these individual algorithms are executed independently of one
another, there are no dependencies between them, other than those already discussed. The
complexity of this algorithm is calculated by adding the complexities of the individual parts.
It is easy to see that the complexity is dominated by change-merging the graphs in the
implementation part, which requires O(e?) time, where e is the number of edges in the

largest graph. Therefore, the worst-case time complexity of the entire algorithm is O(e?).
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VI. CAPS MERGE TOOL

In this chapter we describe an implementation for a change-merging tool resulting from
this effort. The tool has been almost fully implemented and can easily be integrated into the
CAPS Prototyping Environment. It is invoked through the Manager’s Interface and provides
a substantially beneficial tool for effective management of large software prototypes. Section
A of this chapter describes the requirements for the tool. Section B provides the instructions
for using the tool. Section C describes the testing performed on the tool.

A. REQUIREMENTS

The requirements for this tool are divided into three parts; interface, functionality and
conflict reporting. Each of these parts are discussed separately in the subsections that follow:

1. Interface Requirements

a.- Interface must be consistent with other CAPS interfaces: CAPs uses a menu-
driven interface at the top level and windows with selection lists and pushbuttons at lower
levels. To be consistent, a pushbutton type interface was required for the change-merge tool
as well.

b. User must be able to choose any prototype currently in the working directory:
The interface should provide a list of the prototypes currently in the user’s working directory,
and the capability for the user to select one of these prototypes.

c. User must be able to select different versions and assign them to the different
merge parameters by pushbutton: After the prototype has been selected, the interface should
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provide a list of the current versions of the prototype. The user should then be able to select
each version by clicking with the mouse, and assign the selected version to one of the me"rge

parameters, base, version_a or version_b, by pushing an assign button.

d. User should be satisfied that the selection made has been assigned to the correct
parameter: The interface should provide visual reinforcement that the selection made has
been assigned to the correct parameter by showing the selected version in a window labeled
with the parameter name.

e. User should be able to initiate the merge tool by pushing a button: The interface
should provide a button labeled “merge” which, when pushed, will call the merge tool for
the parameters given.

f. User should be notified when merge is complete: The interface should provide
a pop-up window that alerts the user that the merge is complete. The result of the merge
should be printed in a window labeled “result”.

g User should be notified if a conflict occurs: The interface should provide a pop-up
window that alerts the user that a conflict has occurred during the merge.

h. User should be able to commit the result to the design database directly from the
merge interface: A pushbutton should be provided that allows the manager using the tool
to commit the result of the merge to the database, even if conflicts have occurred.

2. Functionality Requirements

a. Tool must be able to retrieve the three versions of the prototype when provided
only the paths to their locations: The interface will provide the full directory names for each
of the input versions as input to the tool. The tool must be able to combine all of the PSDL
source files in each of the version directories into one single file and call the PSDL parser to
convert the text version of the prototype into an ADT representation of the prototype.
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b. Tool must call the PSDL ezpander to provide fully ezpanded PSDL programs
as input to the change-merge procedure: The PSDL expander is a tool which takes a multi-
leveled prototype and converts it into a flat prototype with only one composite component.

c. Tool must change-merge the three versions of the prototype according to the
models provided by this dissertation: The change-merge tool must be able to retrieve the
composite component of each version, and perform the change-merge operation using these
three components as input. It then must provide a new composite component for the merged
prototype. The atomic components will then be added to the merged prototype according
to which version supplied those components to the merged implementation graph.

d. Tool must split the final version of the prototype into separate files for eack of
the component implementations and specifications: The tool must be able to take the merged
prototype and output it into separate files in the result directory. Each file should contain
either the specification part or implementation part of one component. If the component
is the composite component, then the name of the file will be “prototype.name.imp.psdl”
or “prototype_.name.spec.psdl”, depending on whether it contains the implementation or
specification part of the component, and where “prototype_name” is the name of the com-
posite component. If the component is an atomic component, then the name of the file
will be “prototype.name.component_namel.imp.psdl” if it contains an implementation or
“prototype.name.component. name.spec.psdl” if it contains a specification, where “compo-

nent_name” is the name of the atomic component.
3. Conflict Reporting Requirements

a. Tool must report to the user where in the merged component a conflict has
occurred: In each piece of the change-merged program where a conflict has occurred, the
tool must place a flag indicating to the designer where the conflict occurred. This will
prevent the user from having to search for the conflict in order to resolve it.
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) b M MM at leasi o partially change-merged program in the case of
ot m The tool will provide the most change-merged program possible whenevér a
conflict has occurred. Conflicts in one part of the program should not affect other parts of
the program which are not dependent on the part with the conflict.

B. USING CAPS MERGE TOOL

To invoke the CAPS merge tool, select the merge prototypes option from the manager’s
interface. The CAPS merge tool window will be displayed as shown in Figure 6.1. The list
of currently available prototypes will be displayed in the prototypes box at the lower left of
the window.

Figure 6.1: CAPS Prototype Merge Tool Interface
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1. Selecting Prototypes and Versions

£

To select a prototype, click the left mouse button over the name of the prototype
to be selected. Clicking twice on the same prototype will deselect the prototype. After
selecting a prototype name, a list containing all of the versions of the selected prototype will
appear in the versions box at the lower right of the merge tool window, as shown in Figure
6.2. To select a version, click the left mouse button on top of one of the versions. Again,

double clicking on the same version will deselect the version.
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Figure 6.2: CAPS Prototype Merge Tool Interface with List of Versions

2. Performing the Merge Operation

To perform a merge, three versions must be selected and assigned to the merge
parameter boxes. To assign parameters, first select the version, then click the left mouse
button on the “assign” button next to the parameter to be assigned. Figure 6.3 shows the

window after all three parameters have been assigned. Changing a parameter assignment is
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done by selecting the correct version and clicking on the “assign” button again. Every push
of the “assign” button reassigns the parameter to the selected version. To clear all of the

parameter assignments, use the clear button located on the right center of the window.
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Figure 6.3: Assignment of Parameters

When all of the parameters have been assigned, the “merge” button located on the
right side of the window must be pushed. This will invoke the change-merge tool. When the
change-merge tool has completed its execution, one or two windows will appear on the screen.
The “merge complete” window, shown in Figure 6.4, will always appear after execution of the
tool. If a conflict was detected during the change-merge, the “conflict notification” window,
as shown in Figure 6.5, will also appear. The manager can either choose to keep the result

and manually resolve the conflicts or abandon the result and start again.

Figure 6.4: Merge Complete
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Figure 6.5: Notification of Conflict

3. Commit Merge

Once the merge has been completed, the manager has to specifically commit the
result to the design database. To commit the merged result, the manager clicks the left
mouse button on the “commit merge” button on the right side of the CAPS Merge Tool
window. A new version number will be assigned to result and it will be added to design
database as a permanent part of the prototypes configuration.

At this point, the manager can choose to perform another merge operation or exit
the tool. If another merge is desired repeat the process described above as many times as
desired. To exit the CAPS Merge Tool, click the left mouse button on the “exit” button at
the bottom of the window, and control will be returned to the CAPS Manager Interface.

C. TESTING

We tested the change-merging tool by applying it to a series of sample prototype projects
each testing a different part of the tool. These projects included real prototypes which
were developed by students in the CAPS Research Team as well as examples constructed
specifically for this test. The largest of these prototypes is the Command and Control System
described in [Ref. 38]. The implementation for this prototype contains 27 vertices and 35

edges with a full range of control constraints. Four modified versions of this prototype were
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prototype ware created, and the change-merge tool was applied to different combinations of
the four, each testing a different part of the tool. ’

Timing tests were conducted to provide a realistic assessment of the speed with which
the tool would operate. During the test it was determined that the time required to process
each of the input files (combining the multiple files into one, parsing the input files, and
expanding the prototype to a flat graph) took a significant amount of the time for the
system to run. In the case of the Commard and Control prototype, the system took on
average six seconds to process each file and 25 seconds to change-merge them. In the case
of the smaller prototypes, the times were significantly less.

Since the current implementation is not as efficient as an optimal one outlined by the
algorithms in Chapter V, we can expect a significant speedup for the optimal implementation.
In each test of the change-merge tool, the results were exactly as expected. The tool produced
conflicts whenever expected and correct results when they were possible.
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VIIl. CONCLUSION

A. WHAT WE HAVE ACCOMPLISHED AND WHY IT IS IM-
PORTANT

The purpose of this research was to provide a computer-aided method for combining
and integrating the contributions of different people working on the same prototype. It is
commonly known that one of the most time consuming and problematic parts of developing
large software systems is combining independently developed pieces of the system and en-
suring they do not conflict. We developed a computer-aided method for merging changes to
a prototype which will always produce a correct result or report a potential conflict. Using
this method provides a prototype development manager with the ability to assign different
development tasks for the same prototype to different members of the development team
and be assured that the pieces can be integrated together after their completion in a safe
manner. This method will either produce a change-merged prototype that is correct with
respect to the different updates or it will notify the manager that a conflict has occurred.

We found a solution to an analog of this problem in previous work done on integrating
different versions of while programs at the University of Wisconsin [Ref. 28, 42, 29]. The
main difference between their method and ours is that while programs are very different
from data flow programs. Data flow programs are inherently parallel and non-deterministic,
and the class of enhanced data flow programs used in PSDL also include hard real-time
constraints.

We proved our method correct by observing that slices of prototypes which isolate a
portion of the prototype’s behavior will always behave the same in any prototype where
they are well defined slices. Using the Slicing Theorem in Chapter IV, we were able to show
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that e Jong as the slice of the merged version of the prototype with respect to the affected
parts of each modification was the same as the same slice of the modification, the chan&es
introduced by that modification were preserved by the method.

To prove this theorem, we had to develop a computational model of the PSDL language.
Chapter IV provides a detailed development of the model of the language from defining
the behavior on a single stream in the prototype to constructing the behavior of the entire
prototype from the behaviors of the individual operators in the prototype. This construction
is possible because we showed in the Independent Operator Lemma in Appendix B that the
poesibility function for an operator is not determined by the context in which it is placed.
As long as the operator is given the same input, it will behave in precisely the same way in
any prototype

From the model, we developed an algorithm which can perform the change-merge in
O(e? time and O(n?) space, and an implementation which provides a working change-
merge tool to be used in the Computer-Aided Prototyping System. The algorithm and tool
demonstrates the feasibility of our method for problems of practical size.

During the course of this research, we also proposed an improved method for slicing
and merging while programs which provides a strictly more accurate method than previously
defined methods. No proof of this method is provided however. That will be left to future

work.

B. WHAT STILL NEEDS TO BE DONE

We couldn’t possibly solve all of the world’s problems in the short amount of time pro-
vided, 80 there are still many out there to be tackled. Some of the problems that we intend
to continue working on are providing a method for change-merging different versions of an
abstract data type written in PSDL. Our method will currently handle the operator imple-
mentations for ADTs, but fails to provide a method for integrating the data representations.
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Another area which needs consideration is the area of merging programs in high level
programming languages, like Ada. In prototyping large systems, it is very important to auto-
mate as m: 1y of the development tasks as possible to minimize the drain on resources caused
by monotonically decreasing budgets. One of the first tasks to be finished is completing the

formalization of the conditional program merging we proposed in Chapter I11.

Another area that warrants further study is in further improving the conflict detection
methods used in change-merging. Automatic conflict resolution tools would provide project
managers with an even greater degree of confidence in the change-merging tools.
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APPENDIX A

FORMAL DEFINITIONS

This appendix contains formal definitions of the types, properties, and functions used
in our behavioral model of PSDL.

1. TYPE DEFINITIONS

a. data_tuple{t: type} =

tuple{value : t,operator : op.id, write_time : real, read_time : real}

b. trace{t: type} = sequence{data_tuple{t}}
c. stream_behavior{t : type} = set{trace{t}}
d. trace_tuple{P : prototype} = tuple{trace{type(s} :: s € E(P)}}

e. prototype_behavior{P : prototype} = set{trace_tuple{P}}

f. incremental_trace_tuple{t : writetime} =
tuple{data_tuple{type{(s} SUCH THAT s € E(P)}
:: data_tuple.writetime = t}

2. INVARIANT DEFINITIONS

We assume that the implementation of an operating system where a PSDL prototype

is being executed will guarantee mutual exclusion when two operators executing in paralle]

wish to write to the same stream at the same time. Because we assume this control on write

access for data streams, we can guarantee the following invariant is true for all data streams

in a PSDL implementation.
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a. monotonic.time(t : trace)
ALL (i, 5: nat SUCH THAT 1 £ ¢ < j < length(¢t)
i tfi).writetime < t[j].writetime
-- The write times in a trace are monotonically increasing.
Since an operator writing to a data stream had to read from its input streams before
it completes execution, we can guarantee that any data tuple in a trace will satisfy the

following invariant:

b. firing_invariant(t : trace)
ALL (¢: nat SUCH THAT 1 < i < length(t)
i (t[f).read time < t[i).writetime) | (t[f).readtime = t[i].writetime = 0))
- The write time in any data tuple is strictly greater than the read time
— in that data tuple, unless it is the initial data tuple.

If an operator receives input from a feedback loop, then the vertex associated with that
operator is on a cycle in the PSDL implementation graph. It is necessary to know that
an operator is on a cycle because this information affects the possibility function of that
operator.

c. on_acycle(o : op.id)
-- o provides output to a feedback loop which in turn provides input to o.

3. FUNCTION DEFINITIONS AND PROPERTIES

a. Merging Traces

In PSDL, it is possible for more than one operator to write into the same stream.
If this is the case, each of these operators independently writes a sequence of data tuples
to that stream. These sequences merge to form a single trace for the stream. The function
merye specified below shows that this combination of sequences is well-defined. Propositions
4 through 8 state properties about the function merge which are needed for our discussion
of possibility functions in chapter IV.
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merge(il, 12 : trace SUCH THAT ALL (i, j: nat :: t1fi].writetime # t2[j].writetime)
REPLY (13 : trace) ' ‘ s

WHERE monotonic_time(t3) & firing invariant(t3) &
length(t3) = length(¢1) + length(¢2) — 1 & ¢1{0] = ¢2[0] = t3[0]

-- Every trace contains an initial data_tuple with index zero.

ALL (s: nat SUCH THAT 1 < ¢ < length(t3)
:: SOME(j: nat:: (83[i] = t1[j] & 1 < j < length(t1))
| (£3[é] = t2[j] & 1 < j < length(t2)))),

ALL (i: nat SUCH THAT 1 < i < length(t1)
:: SOME(j: nat:: #3[j] = t1i] & 1 < j < length(t3))),

ALL (i: nat SUCH THAT 1 < i < length(t2)
:: SOME(j: nat:: t3[j] = t2[i] & 1 < j < length(¢3)))

Proposition 4 merge is well-defined

merge is a total, single-valued function over the specified domain.

Proof
Let t1 and t2 be traces on a stream SUCH THAT
Vi, j € R, tl[i).writetime # t2[j].writetime.
Suppose t3 = merge(t1,t2) and t4 = merge(t1,12) SUCH THAT 3 # t4.

Since t3 and ¢4 are both valid results of merge(t1,¢2), we conclude that they both
satisfy monotonictime and length(t3) = length(t4) = length(t1) + length(t2) — 1.

Since 3 # t4, 3i € R | { < length(t3) SUCH THAT
t3[i].value # t4[i).value or t3[i]).operator # t4[i].operator or
t3[i].writetime # t4[i].writetime or t3[i).readtime # t4[i).readtime or

But, by the definition of merge, every element in both t3 and ¢4 are elements

of either t1 or ¢2, which have no common write.times, and since both t3 and t4 satisfy
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monotonic.time, there is only one way to combine the elements of t1 and ¢2 into a single
trace that satisfies monotonictime. Thus t3 = t4, and we have a contradiction.- mcrgé is
well-defined. O

Proposition § merge satisfies monotonic.time

If monotonic_time(t1) and monotonictime(t2) then monotonic_time(merge(tl, 2)).

Proof

We assume that {1 and ¢2 have no common write times, and that monotonic_time
is satisfied for both 1 and t2. Let {3 = merge(t1,12). We show t3 satisfies monotonictime

by induction.
Basis: length(t3) =1

Since every trace has a data_tuple with index zero, then 3 is the trace with only
an initial data_tuple, and monotonic.time is satisfied.

Induction Step: Assume that t3 | k satisfies monotonic_time. Since t1 and 2
satisfy monotonic_time, and they do not contain data_tuples with the same write times, we
know that no matter which of 1 and #2 the k + 1st element of ¢3 comes from, its write
time will be greater than tw;. So, we can conclude that the k + 1 element of ¢3, when
added will have write_time greater than t3[k]. Since t3 | k satisfies monotonic_time, and
t3{k + 1).writetime > t3[k].write_time, we conclude that monotonic_time(3) is satisfied.
0
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If firing_snvariant is satisfied for both t1 and t2 then firing_invariant is satisfied
Jor merge(tl, 12).

Proof

We assume that t1 and ¢2 have no common write times, and that firing_invariant
is satisfied for both ¢1 and #2. Let t3 = merge(t1,t2). We show firing_invariant(t3) by
induction.

Basis: length(t3) =1

-e every trace has a data tuple with index zero, then 3 is the trace with

only an initial data tuple, and twy = tro = 0 by the definition of initial data tuples. So
firing_invariant(t3) is satisfied.

Induction Step: Assume that t3 | k satisfies firing_invariant. Since t1 and ¢2
satisfy firing_invariant and each element of ¢3 is also an element of ¢1 or 12, we know that
no matter which of t1 and ¢2 the k + 1st element of £3 comes from, twiyy > trey;. We can
conclude therefore that firing_invariant(t3) is satisfied. O

Proposition 7 merge is commutative.

merge(t1,¢2) = merge(t2,11)

Eroof

We assume thlt t1 and ¢2 have no common write_times. We further assume that
since t1 and {2 are traces, they both satisfy the trace invariants monotonic_time and fir-

ing_snvariant.

We show that the merge function applied to t1 and 2 satisfies these conditions and
the length of the result is exactly the same regardless of the order of the parameters.
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Let t3 = merge(t1,12).
Then length(t3) = length(merge(t1,t2)) = length(t1) + length(t2) — 1.
But, since + is commutative, then

length(tl) + length(t2) — 1 = length(t2) + length(t1) — 1 = length(merge(t2,t1)).

We know by Proposition 5 that monotonic_time is satisfied for both merge(t1,¢2)
and merge(t2,t1). We know by Proposition 6 that firing_invariant is satisfied for both

merge(tl,t2) and merge(t2,t1). Therefore merge is commutative. O

Proposition 8 merge is associative.

Ift1, t2 and 3 each satisfy monotonic_time and firing_invariant, and they have
no common times, then merge(tl, merge(t2,13)) = merge(merge(t1,12),13).

Proof

We assume that t1, ¢2 and ¢3 have no common write_times. We further assume
that since £1, {2 and t3 are traces, they all satisfy the conditions monotonictime and
firing_dnvariant.

Let t4 = merge(tl, merge(t2,13)).

Then length(t4) = length(merge(tl, merge(t2,13))) =
length(tl) + length(merge(12,t3)) — 1 =
length(tl) 4+ (length(t2) + length(t3) ~1) — 1=
length(tl) + length(t2) + length(t3) -1 -1 =
(length(t1) + length(t2) — 1) + length(t3) — 1 =
length(merge(t1,12)) + length(t3) — 1 =
length(merge(merge(t1,12),3)).

So the lengths of merge(tl, merge(t2,t3)) and merge(merge(tl,12),13) are the
same. We know by Proposition 5 that monotonic_time is satisfied for both merge(t2,¢3) and
merge(tl,t2). Thus using the same logic, we can conclude that monotonic_time is satisfied
for merge(tl, merge(t2,t3)) and for merge(merge(tl,2),t3). We know by Proposition 6
that firing.invariant is satisfied for both merge(t2,t3) and merge(t1,t2). Thus using the
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m*” cm m that firing. inveriant is satisfied for merge(tl, merge(t2, t3))
and for merge(merge(t], 2),13). Therefore merge is associative. O :

b. Other Functions

This section contains definitions for other functions used to construct the possibility
functions for prototypes.

1) e

The “@" function extends trace_tuples by appending incremental_trace_tuples
to them. It takes as input a trace.tuple T and an incremental trace_tuple_set S. The output
of the function is a set of trace_tuples where the prefix of each element in the set is T, and
the remainder of each element is an element of S.

“@>(T: trace_tuple, S: incremental trace_tuple_set)
REPLY (D: trace_tuple_set)
ALL (tt: trace_tuple SUCH THAT tt € D
:: SOME(d: incremental_trace_tuple SUCH THAT d € §
:: tt = append(T, )))

(2) A

The A function is used to select incremental trace_tuples which have a partic-

A(t: time, S1: incremental trace_tuple_set)
REPLY S2: incremental_trace_tuple_set
ALL (D: incremental_trace._tuple SUCH THAT D € 52
:: ALL(d: data_tuple SUCH THAT de€ D
:: dwritetime=1))
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3) »

.-

The p function provides the earliest possible time that an operator can read
its input streams based on its output history. If the operator is on a cycle in the graph,
then it must complete every firing to include writing its output streams before it can read
its input streams. If it is not on a cycle, then it does not have to wait for a previous firing
to be complete before it can read its input streams again.

p(T: trace_tuple, o: op_id) REPLY ¢: time
SOME(s: stream_set SUCH THAT s C O(o)
:: ALL(7: trace SUCH THAT 7€ T,
:: WHEN on_a cycle(o) t > r[length(r) — 1].writetime
:: OTHERWISE t > r[length(r) — 1}.readtime

(4) fill

The fill function takes as input an incremental_trace_tuple_set from the output
streams of an operator and for each incremental_trace_tuple in the set, it creates an empty

data_tuple for all other streams in the prototype.
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APPENDIX B

EFFECTS OF CONTROL CONSTRAINTS ON
POSSIBILITY FUNCTIONS

This appendix defines the effect of each form of constraint contained in the PSDL
grammar on the possibility function of an operator. The possibility function for an operator
o is a function of the form, F,(I,,rt), where I, is the input history of the operator o, and rt
is the last possible time that o could have read its streams for the current firing. The output
of the possibility function is a set of possible incremental_trace_tuples written to the output
streams of o by the current firing of 0. Examples of possibility functions can be found in
Chapter IV, Section A.3, Examples 5 and 6.

The main result in this appendix is Lemma 1, the Independent Operator Lemma,
which states that the possibility function of an operator is not dependent on the context in
which it is placed.

Lemma 1 Independent Operator Lemma

Given the same input history and an unlimited number of processors, an operator has
the same possibility function regardless of whether it is contained in a larger prototype, as
long as the larger prototype does not introduce input to the operator from a feedback loop.

Proof:

This proof is a structural induction over all of the different control constraints in the
PSDL grammar. First, let us look at the possibility function for an operator o, F,. This
possibility function produces a set of possible incremental trace tuples for every finite prefix
of input vectors written to the operator’s input streams.
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Each of the following sections discusses how each of the control constraints available in
PSDL affects the possibility function for o.

1. Triggers & Input Guards

The “Triggered” control constraint defines the conditions which trigger the execution
of o. The two options, “by all” and “by some” identify any input streams listed after them
as data flow streams or sampled streams respectively, and any time a value is written to one
of thoee streams, it can only be removed from the stream by a firing of the operator o for
data flow streams, and a producer operator for sampled streams. Another option which may
appear in a triggering constraint is an input guard. These appear as boolean expressions
that, if satisfied, allow the operator o to fire.

a. by all”

The “by all stream_set” trigger appearing in a control constraint limits the execution
of the operator o to fire only when there is a new value on each of the streams in stream_set.
The effect of this on F, is that it limits the read times for which o can produce a set of
non-empty incremental trace.tuples. Since the cutput of F, is determined only by the input
history of o, which we have assumed to be the same in any context, this only serves to limit
the possible output histories. These output histories are the same regardless of whether o is
contained in a larger prototype or functions independently.

b. “by some”

A similar argument can be made for the “by some stream set” trigger. The input
sequences processed by o are limited to only those sequences of vectors in which at least one
of the streams listed in stream_set contains a new value. The effect of this limitation is the

same as in the previous section.
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c. Input Guards

Input guards in the triggering condition of an operator, o, define which input values
can trigger the execution of 0. Their effect is to limit the read times at which the operator
can fire. Since that effect only serves to limit the execution of o, it is the same whether or
not the operator is contained in a larger prototype or not.

2. Period

Operators with a period constraint are declared with a time ¢. After an initial delay of as
much as ¢ time, the operator is given a window of ¢ amount of time in which to fire. As long
as the operator fires early enough to complete its execution before the end of the period, a
set of possible outputs will be written to its output streams. This set of outputs is produced
non-deterministically because of the flexibility the operator has in starting its execution.
This non-deterministic start time will change the time that the operator reads its input
streams, thereby changing the possible outcome. Since, we are assuming that the number of
processors is unlimited, we conclude that no matter whether the operator is contained in a
larger prototype or not, all choices for read times are possible, thus the possibility function
for the operator will be the same in either case.

3. Finish Within, Minimum Calling Period & Maximum Response
Time

Operators with a finish within, minimum calling period or mazimum response time
constraint are declared with a time, ¢{. The minimum calling period constraint serves to
limit the possible read times of the operator, and the finish within and maximum response
time constraints limit the possible write times of the operator, however these constraints
are not dependent on the context in which the operator is placed as long as the number of
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processors is not limited. Therefore, the possibility function for the operator is the same

whether it is contained in a larger prototype or not.

4. Constraint Options

Constraint options include output guards, ezceptions and timer operations. Output
guards can affect the possibility function of an operator, but these are part of the definition
of the operator. Thus, the effect of these output guards on the possibility function for the
operator is the same regardless of whether the operator is contained in a larger prototype.
Exception triggers contained in the implementation of an operator can affect outputs on
streams of type exception, and their triggering is affected only by the inputs provided to
the operator, so the exception outputs resulting from possible inputs to the operator would
be the same regardless of whether the operator is contained in a larger prototype. Timer
operations affect the outputs on timer dependency edges only. These timer operations affect
the state of a timer if some predicate evaluated on the inputs to the operator is satisfied.
Since the inputs to the operator are the same when the operator is contained in a larger
prototype, the resultant timer state change operations will be the same if the operator is
contained in a larger prototype.

Since the control constraints and the output history of an operator can only depend on
the input received from the data streams and timer dependency edges, and we know these
to be the same, putting the operator in the context of a larger prototype can not affect its
possibility function. D

It is important to note that Lemma 1 applies equally to operators which are components
of larger operators, or operators which implement some operation in an abstract data type.
From our perspective, there is no difference.
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APPENDIX C

PROOFS OF THEOREMS

1. ®: Traces — FunctionRepresentations IS WELL-DEFINED
AND A BIJECTION

THEOREM 2:

Proof

1. Show & is single-valued and a total function. Let r be a trace on a stream, and let
¥, and ¥; be two functional representations for r SUCH THAT V¥, # ¥,.

Since W, # ¥,, 3 a time ¢ € [0,00) SUCH THAT ¥, (t) # ¥a(t).
But, then by the definition of §~! 3n < min(length($-'(¥,)), length(®-(¥,)))
SUCH THAT
®-1(¥;)[n).value # $~1(¥;)[n].value or
®-1(¥,)[n].operator # &~?(¥;)[n).operator or
-1 (¥,)[n]).writetime # ®~1(¥;)[n).writetime or
®-1(V¥,)[n).read time # ®~1(¥;)[n].read time.
Thus, $1(¥,;) # &~}(¥;), but we know that ~}(¥,) = #~)(¥;) = r, and
we have a contradiction.
Therefore, ® is well defined.

2. Show & is onto. Let

M= [0,‘1) — [.L,.L,O]
ftita) — [z1,01,tr9]

[tm tﬁl) — lzus Ony trn]
be a mapping in V.
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Then by definition of @,
M = ®({[L,L1,0,0], 21,01, try, tw), - - -, [2n, On, tra, twp), - - 1))
Or 1,1 = O0.
Therefore, ¢ is onto.
3. Show r # s => ®(r) # &(s)
Let r and s be two traces on a stream, where r # s.

Then 3n < maz(length(r), length(s)) SUCH THAT
r[n].value # s[n].value or r[n].operator # s[n}.operator or
r(n).writetime # s[n).write_time or r[n).read_time # sn).read_time.

I r[n].writetime # s[n].writetime

then 3t < min(r[n].write_time, s[n].writetime) SUCH THAT
o(r)(2) # ¥(s)(2).

K (r[n].read.tsme # sfn}.read time or rin).value # sin).value)
and rn).writetime = s[n).writetime

then 3t = rin].writetime = s[n).write.time SUCH THAT
B(r)(t) # B(s)(t).

Therefore, ®(r) # ®(s), and ® is one-to-one.
By 1,2 & 3, ® is a Bijection. O

2. SLICING THEOREM FOR PSDL PROTOTYPES

THEOKEM 3: Slicing Theorem

Let Sp(X) be the slice of a prototype P with respect to a set of streams X. Then

Sp(X) and P have the same prototype behavior on any subset of the streams in Sp(X).
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Let Sp(X) be an arbitrary slice of a prototype P. We show that at any point during
the execution of Sp(X), both P and Sp(X) have the same truncated prototype behavior
over the data streams in Sp(X). From this, we conclude that the prototype behavior over

any subset of the data streams in Sp(X) is the same in both the slice and the prototype.

Using @, we view each of the trace tuples in Bg(s,(x)) | k as a sequence of vectors, each
vector containing a data tuple from each data stream in E(Sp(X)) and do an induction over

the length of the longest sequence.

Induction Hypothesis:

If the length of the longest sequence of vectors in Bg(s,(x)) is no more than &, then

Bg(s,(x)) is the same in both P and Sp(X).
Basis: (Sequence of length one)

The semantics of PSDL determine an initial data tuple for each stream. The read
time and write time of this initial data tuple are both 0. If the stream is declared as a
state variable, then the initial data tuple contains a data value specified by the STATE
declaration, and otherwise it contains the undefined data value L. The operator field of the
data tuple contains either the id of the operator containing the state variable declaration
for the stream, if one is declared, or L. Since the state variable declarations are the same in
both P and Sp(X), the B over all of the streams in Sp(X) is the same in both, when the

length of the longest sequence of vectors is one.

Induction Step: (Bg(s,(x)) is a sequence of length k + 1)

Equation 1 shows us that Bg(s, (x)) | (k+1) is completely determined by Bg(syx)) | k.
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By, | (k+1) =

U [Te U (@( U (UA(t,fill(E(P),.?-‘,(Tz(,),tr))))))]

TeBgsp(x)lk SEP(V(Sp(X))) \o€S \p(T.0)<tr \tr<t
(1)

Since Bg(s,(x)) | k is the same in the slice and the entire prototype by the induction

bypothesis, Bgsy(x)) | (k + 1) must also be the same in the slice and the entire prototype.

Consider the main subexpression of the right hand side of Equation 1:

Te

(2>} (’(Tg«' (”L<J‘A (¢, fin (E(P),f,(T,(,,,tr))))))

SeP(V(sp(X))) (063

This construction defines a set of trace tuples of length k + 1 in terms of a trace tuple 7
of length k and a set of incremental trace tuples of length one that is derived from T and
the properties of the slice. This set of trace tuples is a subset of Bg(s,(x)) | (¥ +1). The
@ operation is a function, so, providing the trace tuple, T', and the set of incremental trace
tuples are the same in both P and Sp(X), the resultant subset of Bg(s,(x)) | (k+ 1) is the
same in both P and Sp(X).

The set of trace tuples, Bg(s,(x)) | k is the projected B of P over the streams in Sp(X), so
any trace tuple, T € Bg(s,(x)) | k is certainly the same in both P and Sp(X), as Sp(X) is
a subgraph of P.

The set of possible incremental trace tuples, D, used in the above construction is constructed

using the following equation:

D=

U (U A (¢ fil (E(P),f,(T,(,),tr))))))

SseP(V(sp(X))) (055 (P(Tﬂ)«' fr<t

D is constructed by looking at every possible subset of the operators in Sp(X), building the
set of possible incremental trace tuples for the output streams of that subset and finding the
union over all subsets. Since the powerset of the the set of operators in Sp(X), P(V(Sp(X))),
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is the same in both P and Sp(X), then the union over all of the subsets is the same in both
P and Sp(X) provided that the incremental trace tuples produced for each subset are the

same in both.

Pick an arbitrary S’ € P(V(Sp(X))). We want to construct the set of possible incremental
trace tuples over the output streams of the operators in S’. To do this, we must look at
each operator, and construct the set of possible incremental trace tuples over their output
streams. Then, we take each of those and combine them using the @ function. Since an
incremental trace tuple is simply a trace tuple of length one, the function @ can be overloaded
to accomplish this task as well. The operator @ is a commutative function, so as long as the
incremental trace tuples produced by each operator are the same in both P and Sp(X), their
combination using @ is the same in both P and Sp(X). Accordingly, we pick an arbitrary
operator, v. Constructing the set of possible incremental trace tuples for o is accomplished
using the following:

(U Af(t, fill (E(P),f,(r,(.,,tr))))

ATo)<tr \tr<t

By Lemma 1, we know that the set of incremental trace tuples produced by o is the same in
both P and Sp(X). Now since we already knew that T is the same in both P and Sp(X),
and we know that @ is a function, we conclude that the resultant set of trace tuples is the
same in both P and Sp(X), for each T € Bg(s,(x)) | k. Further, we conclude that the union
over all possible trace tuples in Bg(s,(x)) | ¥ is the same in both P and Sp(X). Therefore,
Bg(sp(x)) | (k + 1) is the same in both P and Sp(X).

Since any finite prototype behavior over the set of streams in the slice is the same in both
P and Sp(X), we conclude that any finite behavior over a subset of the streams in the slice
is the same in both P and Sp(X).

Now, we want to show that any countably infinite prototype behavior is the same in

both P and Sp(X). Assume not. If any countably infinite prototype behavior is not
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the same in both, then there must be a finite prefix which is not the same in both P and
Sp(X). However, according to our induction above, all finite subsequences of Bg(s,( x))’are
the same in both, thus we have a contradiction. Therefore, any countably infinite prototype

behavior over a subset of the streams in Sp(X) is the same in both P and Sp(X). O

The construction shown in Equation 1 defines the behavior of a prototype in PSDL. Since
PSDL is non-deterministic and can be executed in parallel, it is necessary for us to consider
all possible execution circumstances. What the construction really does is lengthen the
prototypes behavior one incremental trace_tuple at a time. This incremental_trace_tuple
added to the end of the behavior at some time ¢ is the output of every operator in the
prototype that is writing to its output streams at precisely time t. This can be every
operator in the prototype or only one operator in the prototype.
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APPENDIX D

PSDL Grammar

The following is the grammar listing for the Prototyping System Description Language
(PSDL) as of 14 November 1991. This version corresponds to the implementation of our
merging tool. Optional items are enclosed in [ square brackets ]. Items which may appear zero
or more times appear in { braces }. Terminal symbols appear in BOLDFACE. Groupings

appear in ( parentheses ).

ks ke ok ek gk ok ok ok ol ok kR ek ok ook ok ok Rk ke e sk e sk s ko ok ok

padl

= {component}

component
= data_type
| operator

data_type
= type id typespec type.impl

type.spec
= specification [generic type.decl] [type.decl]

{operator id operator.spec}
[functionality] end

operator
= operator id operator_spec operator.impl

operator.spec
= specification {interface} [functionality] end

interface
= attribute [reqmts_trace]
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attribute
= generic type.decl
| input type_decl
| output type.decl
| states type_decl initially initial expression. list
| exceptions id list
| maximum execution time time

typedecl
= id list : type_.name {, id_list : type.name}

type.name
=id
|id [ typedec! ]

id list
=id {, id}
reqmts_trace
= required by id.list
functionality
= [keywords] [informal desc] [formal desc]

keywords
= keywords id list

informal_desc
= description { text }

formal desc
= axioms { text }

type.impl
= implementation ada id end
| implementation typename {operator id operator.impl} end

operatorimp.
= implementation ada id end
| implementation psdLimpl end

psdLimpl
= dataflow_diagram [streams] [timers] [control constraints] [informal_desc]

data flow_diagram
= graph {vertex} {edge}
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= vertex op.id [: time]
- time is the maximum execution time

edge
= edge id [: time] op.id — op.id
- time is the latency

op.id
= id [( [id dist] | [idlist] )]

streams
= data stream type.decl

timers
= timer idlist

control_constraints
= control constraints constraint {constraint}

constraint
= operator op.id
[triggered [trigger] [if expression] [reqmts.trace]]
[period time [reqmts trace]]
[finish within time [reqmts.trace]]
[minimum calling period time [reqmts trace]]
{constraint_options}

constraint_options
= output idlist if expression [reqmts_trace]
| exception id [if expression] [reqmts. trace]
| timer_op id [if expression] [reqmts_trace]
trigger
= by all id list
| by some id list
timer.op
= reset timer
| start timer
| stop timer
initial_expression_list
= initial_expression , initial expression
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initial_expression
= true
| false
| integer_literal
| real literal
| string.literal
lid
| type.name . id [( initialexpression_list )]
| ( initial expression )
| initial_expression binary_op initial.expression
| unary_op initial_expression
binary_op
= and
| or
| xor
I
le

R

H

»
»

unary_op
=not | abs |- | +

time
= integer_literal unit

unit
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= true
| false
| integer_literal
| time | real literal
i
| type.name . id [( expression_list )]
| ( expression )
| initial_expression binary_op initial_expression
| unary_op initial_expression
id
= letter {alpha_numeric)
real literal
= integer.literal . integer_ literal
integer literal
= digit {digit}
string literal
=" {char) "

char
= any printable character except }

|A..z

alpba_numberic
= letter
| digit

= {char}
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APPENDIX E

Ada Implementation Code

On the following pages are contained the implementation code for the current version
of the Change-Merge Tool. This tool used the PSDL Abstract Data Type developed n Ada
by other members of the CAPS Research Team, as well as the PSDL Expander developed
and implemented by Dr. Berzins. The code for these systems are not included in this
dissertation.

The code contained in this appendix is broken up into different files. Each section of
this appendix will contain a different file. All code was implemented in Ada and compiled
using the Sun Ada Compiler Version 1.0.
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1.

merge_main_pkg

COMPONENT NAME
USAGE

: PACKAGE MERGE_MAIN_PKG ( merge_main_pkg s.a )
: Used to perform all of the housekeeping and interface

between the CAPS interface and the change-merge system
developed by Dave Dampier.

-- INPUT/OUTPUT :

== AUTHOR : Jim Brockett

== DATE OF CREATION : 28 NOVEMBER 1993

== LANGUAGE USED : Ada

-- COMPILER USED : Sun Ada 1.0

-- PURPOSE : Provides three functions used by the Merge Interface;
- merge, find_Base, and commit_merge.

== FILES USED :

-- NOTES : This is the module to which the TAE interface code for
- the CAPS merge tool connects. Calls are made from the
- merge interface to this package. It is TBD whether or
-- not the actual merge software is integrated into this
- package or put separately elsewhere. Either way will
-- vork. The purpose of this packaage is integration

- specification.

== MODIFICATIONS

- DATE : 19 APRIL 1994

- AUTHOR : Dave Dampier

-- PURPOSE : Completed Integration with Change_Merge_Pkg.

AFFECTED MODULES

: A1l
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with unix_prcs; use unix_prcs;

vith unix_dirs; use unix_dirs;

with text_io; use text_io;

with a_strings; use a_strings;

vith psdl_program_pkg; use psdl_program_pkg;
with psdl_io; use psdl_io;

vith expander_pkg; use expander_pkg;

vith change_merge_pkg; use change_merge_pkg;

package merge_main is

procedure merge (BASE_VERSION,
VERSION_A,
VERSION_B : in a_string;
RESULT : in out a_string;
CONFLICT : in out boolean);

procedure find_Base (VERSION_A,
VERSION_B : in a_string;
BASE_VERSION : in out a_string;
ERROR : in out boolean);

procedure commit_merge (BASE_VERSION,
VERSION_A,

VERSION_B : in a_string;
RESULT : in out a_string);

end merge_main;
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‘wish systen; use system;

package body merge_main is
prototype_path_error: exception;

procedure system_call(command : in string) is
procedure systea_C(command :address);
pragma INTERFACE(C, systea _C);
pragna INTERFACE_NAME(systeam_C, "_systea");
temp : constant STRING := commandXASCII.NUL;
error: integer;

begin

system_C(TEMP’ADDRESS) ;
end system_call;
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~- Local function to extract the name of the prototype from the
~=- version string. Raises PROTOTYPE_PATH_ERROR if an a_string without
== the substring "/.caps/" is received as P.

- s > A R D D TS - D S G G T P W G Y R WP G G G W W

function name_of_prototype(P : a_string) return a_string is .,

pname : string(1..P.lem); -- to hold prototype name.
index1 : integer := P.len; -~ to iterate through P.
index2 : integer := 1;

slash_not_found : booclean := true;

begin
for i in 1..P.len loop
pname(i) := ascii.nul;
end loop;
for i in 1..2 loop
vhile slash_not_found loop
index1 := indaxi - 1;
if index1 < 1
then raise prototype_path_error;
end if;
if P.s(indexi) = ?’/?
then
slash_not_found := false;
end if;
end loop;
slash_not_found := true;
end loop;
indexi := indexi + 1;
vhile slash_not_found loop
if P.s(index1) = ’/?
then
slash_not_found := false;
elee
pname(index2) := P.s(index1);
indexi := indexi + {1;
index2 := index2 + 1;
end if;
end loop;
return truncate(to_a(pname),index2);
end name_of_prototype;
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== Procedure merge reads in three prototypes and change-merges them, -
== returning a file name holding the resuitant prototype from the
=~ change-merge.

procedure merge (BASE_VERSION,

VERSION_A,
VERSION_B : in a_string;
RESULT : in out a_string;

CUNFLICT : in out boolean) is

PROTOTYPE_NAME : a_string;
FILE_STRING : a_string;

BASEFILE : file_type; == Used to hold expanded file.
AFILE : file_type; - " " "

BFILE : file_type; - " " "
MERGEFILE : file_type; - " " "

BASE : psdl_program; == Used to hold base program.

QPA : psdl_program; -~ Used to hold first modification.
OPB : psdl_progranm; -= Used to hold second modification.
MERGE : psdl_progran; ~- Used to hold merged program.
TEMP : status_code;

begin

-~ reads in Base prototype and puts in ADT.

put_line("change-merging prototypes");

put_line("reading base version");

PROTOTYPE_NAME := name_of_prototype(BASE_VERSION);

systen_call("merge.script -p "&BASE_VERSION.s&" "&

PROTOTYPE_NAME.s&"> “&"/tmp/temp_base_file.psdl");

~- builds single file input!

open(BASEFILE, in_file, "/tmp/temp_base_file.psdl");

assign (BASE, empty_psdl_progranm);

get (BASEFILE,BASE) ;

close(BASEFILE) ;

systea_call("ra /tmp/temp_base_file.psdl");

expand (BASE) ;
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== reads in first modified version of prototype and puts in ADT.
put_line("reading 1st modified version"); ‘ .
system_call("merge.script -p "&VERSION_A.sg" "&
PROTOTYPE_NAME.sg"> “&"/tmp/temp_a_file.psdl");
-- builds single file input!
open(AFILE, in_file, "/tmp/temp_a_file.psdl");
assign(OPA,empty_psdl_program) ;
get (AFILE,OPA);
close(AFILE);
system_call("rm /tmp/temp_a_file.psdl");
expand (OPA) ;
== reads in second modified version of prototype and puts in ADT.
put_line("reading 2nd modified version");
system_call ("merge.script -p "&VERSION_B.s&" "&
PROTOTYPE_NAME.sg"> “&"/tmp/temp_b_file.psdl");
== builds single file input!
open(BFILE, in_file, "/tmp/temp_b_file.psdl");
assign(OPB, empty_psdl_progranm) ;
get (BFILE,OPB);
close(BFILE);
system_call("ra /tmp/temp_b_file.psdl");
expand (OPB) ;
-=- puts result of performing the merge into the directory result.
change_merge(BASE, OPA, OPB, MERGE, CONFLICT);
temp := mkdir(result.s);
split (result,PROTOTYPE_NAME,MERGE) ;

exception
when use_srror =>
put_line(standard_error,
"error: can’t create output file. permission denied.");
vhan syntax_error =>
put_line(standard_error,
" parsing aborted due to syntax error.");
vhen semantic_error =>
put_line(standard_error,
" semantic errcr, parsing aborted.");
vhen expander_pkg.no_root =>
put_line(standard_error,
“ semantic error - no top level operator, expansion aborted.");
put_line(standard_error,
* check for recursive use of the prototype name in an expansion.");
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vhen expander_pkg.multiple_roots =>
put_line(standard_error,
* semantic error - more than one top level operator,
expansion aborted.");
put_line(standard_error,
* check for operators that are not used or");
put_line(standard_error,
* add an extra top-level operator that decomposes");
put_line(standard_error,
" jinto the current set of top-level components");
put_line(standard_error,
v jif your design has several top-level components.");
--when undefined_component =>
-- put_line(standard_error,
== " gemantic error - an operator without a PSDL definition has
~-  been used.");
vhen prototype_path_error =>
put_line("from merge_main_pkg.merge");
put_line(standard_error,
* path to merge inputs provided by top-level interface was
incorrect.");
vhen constraint_error =>
put_line(standard_error,
® constraint_error - merger not working properly.");
vhen numeric_error =>
put_line(standard_error,
" pumeric_error - merger not working properly.");
vhen program_error =>
put_line(standard_error,
" program_error - merger not working properly.");
vhen storage_error =>
put_line(standard_error,
" storage_error - merger not working properly.");
when tasking_error =>
put_line(standard_error,
* tasking_error - merger not working properly.");
vhen others =>
put_line(standard_error,
* unexpected exception - merger not working properly.");

end merge;
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procedure find_Base (VERSION_A,

VERSION_B : in a_string;
BASE_VERSION : in out a_string;
ERROR : in out boolean) is

begin
text_io.put_line("this procedure is not yet implemented");
BASE_VERSION := to_a("You must select a base version manually'");
ERROR := true;
end find_Base;

procedure commit_merge (BASE_VERSION,

VERSION_A,
VERSION_B : in a_string;
RESULT : in out a_string) is

in_result : a_string := copy(RESULT);
temp_string : a_string;
temp : status_code;

function version_num(x : a_string) return a_string is

vhum : a_string;
index : integer := x.len;

begin
vhile x.s(index) /= ’/’ loop
index := index - 1;
end loop;
voum := to_a(x.s(index+1i..x.len));
return vaum;
end version_num;

begin
temp_string := (in_result & to_a("-") & version_num(VERSION_A)
& to_a("_") & version_num(BASE_VERSION)
& to_a("_") & version_num(VERSION_B));
temp := mkdir(temp_string.s);
system_call("mv " & in_result.s & “/#.psdl " & temp_string.s);
temp := radir(in_result.s);
RESULT := copy(temp_string);
end commit_merge;
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end merge_main;

2. change_merge_pkg

== COMPONENT NAME
==~ USAGE
-~ INPUT/OUTPUT

== AUTHOR

== DATE OF CREATION
== LANGUAGE USED

-- COMPILER USED
== PURPOSE

-- FILES USED

-- NOTES

: PACKAGE CHANGE_MERGE_PKG ( change_merge_pkg_s.a )

: BASE, A, B: in psdl_program

MERGE: in out psdl_program
CONFLICT: out boolean

: Dave Dampier

19 April 1994

: Ada
: Sun Ada 1.0
: Contains the procedure which performs the change-merge

operation on PSDL programs.

: psdl_type_s.a, psdl_ct_s.a, psdl_prog._s.a,

psdl_graph_s.a, prototype_dependency_graph_pkg_s.a,
proto_spec_merge_pkg._s.a, proto_impl_merge_pkg_s.a,

exp_s.a.

with a_strings; use a_strings;

with psdl_component_pkg; use psdl_component_pkg;

with psdl_concrete_type_pkg; use psdl_concrete_type_pkg;

with psdl_program_pkg; use psdl_program_pkg;

vith psdl_graph_pkg; use psdl_graph_pkg;

vith prototype_dependency._graph_pkg; use prototype_dependency_graph_pkg;
with proto_spec_merge_pkg; use proto_spec_merge_pkg;

with proto_impl_merge_pkg; use proto_impl_merge_pkg;

with text_io; use text_io;

with expression_pkg: use expression_pkg;

package change_merge_pkg is
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-- This function performs the change_merge operation on PSDL prototypes. ~-

== Given three prototypes, BASE, A and B, the function creates --
-~ prototype dependency graphs for the three prototypes, and using --
-- prototype slicing, it identifies the preserved part of the base -~

-- in all three versions, and the parts of the changed versions which --
~- are different from the base. It then combines the three pieces into --
~- a merged graph. If the graph correctly represents the semantic merge --
of the three versions, and there are no conflicts, then the merged -
-- prototype is reconstructed from the merged graph. In the case of a --
-- conflict, the exception "merge_conflict" is raised. -

procedure change_merge(BASE, A, B: in psdl_program;
MERGE: in out psdl_program;
CONFLICT: out boolean);

procedure build_prototype(P: in out psdl_component;
G: in prototype_dependency_graph);

end change_merge_pkg;
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package body change_merge_pkg is

-- This function performs the change_merge operation on PSDL prototypes.
== Given three prototypes, BASE, A and B, the function creates

== prototype dependency graphs for the three prototypes, and using

-~ prototype slicing, it identifies the preserved part of the base

== in all three versions, and the parts of the changed versions which

== are different from the base. It then combines the three pieces into a
-- mnerged graph. If the graph correctly represents the semantic merge

-= of the three versions, and there are no conflicts, then the merged

-- prototype is reconstructed from the merged graph.

procedure change_merge(BASE, A, B: in psdl_program;
MERGE: in out psdl_program;
CONFLICT: out boolean) is

BASEHCLD, AHOLD, BHOLD: psal_program := empty_psdl_program;
BASETYPE, ATYPE, BTYPE: psdl_program := empty_psdl_progranm;
ATOMIC_COMP: atomic_operator;

BASECOMP, ACOMP, BCOMP, MERGECOMP: composite_operator;

GBASE, GA, GB, GM, PP, APA, APB: prototype_dependency_graph;
BASESTREAMS, ASTREAMS, BSTREAMS, MERGESTREAMS: type_declaration;
MERGESTATES: type_declaration;

MERGEINIT: init_map := empty_init_map;

MERGEEXCEPTIONS, MERGEKEYWORDS: id_set;

MERGEMET: millisec := 0;

MERGE_INF_DESC, MERGE_AX: text;

BASETRIG, ATRIG, BTRIG, MERGETRIG: trigger_map := empty_trigger_map;
BASEEG, AEG, BEG, MERGEEG: exec_guard_map := empty_exec_guard_map;
BASEOG, AOG, BOG, MERGEOG: out_guard_map := empty_out_guard_map;
BASEET, AET, BET, MERGEET: excep_trigger_map := empty_excep_trigger_map;
BASETO, ATO, BTO, MERGETO: timer op_map := empty_timer_op_map;
BASEPER, APER, BPER, MERGEPER: timing map := empty_timing_map;
BASEFW, AFW, BFW, MERGEFW: timing map := empty_timing_map;
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BASEMCP, AMCP, BMCP, MERGEMCP: timing map := empty_timing_map;

BASEMRT, AMRT, BMRT, MERGEMRT: timing map := empty_timing map; o
BASEDESC, ADESC, BDESC, MERGEDESC: text;

MERGEID: psdl_id;

BASETIMERS, ATIMERS, BTIMERS, MERGETIMERS, V: id_set;

tempexpression: expression;

tempoutid: output_id;

tempexid: excep_id;

conflict_free_a, conflict_free_b: boolean := true;

begin

conflict := false;

This section of code is used to extract the psdl components from each
of the three programs. It assigns the parent composite operator to its
own component variable, and it assigns the atomic operators to holding
components, so they can be retrieved later.

BASE

for id:psdl_id,c:psdl_component in psdl_program_map_pkg.scan(BASE) loop
if component_category(c) = psdl_type
then
bind(id, c,BASETYPE);
else
if component_granularity(c) = composite
then
BASECOMP := c;
else
bind(id, ¢, BASEHOLD);
end if;
end if;
end loop;
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for id:psdl_id,c:psdl_component in psdl_program_map_pkg.scan(A) loop
if component_category(c) = psdl_type
then
bind(id,c,ATYPE);
else
if component_granularity(c) = composite
then
ACOMP := ¢;
else
bind(id, ¢, AHOLD);
end if;
end if;
end loop;

for id:psdl_id,c:psdl_component in psdl_program_map_pkg.scan(B) loop
if component_category(c) = psdl_type
then
bind(id,c,BTYPE);
else
if component_granularity(c) = composite
then
BCOMP := c;
else
bind(id, ¢, BHOLD);
end if;
end if;
end loop;
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Create the Merged Specification

Merge the states

merge_states (MERGESTATES,states(BASECOMP) ,states (ACOMP) ,states (BCOMP),
MERGEINIT, get_init_map(BASECOMP), get_init_map(ACOMP),
get_init_map(BCOMP));

Merge the Exceptions

assign (MERGEEXCEPTIONS, merge_id_sets(exceptions(BASECOMP),
exceptions (ACOMP), exceptions(BCOMP)));

Merge the Keywords

assign (MERGEKEYWORDS, merge_id_sets(keywords(BASECOMP),
keywords (ACOMP) , keywords (BCOMP))) ;

Merge the Informal Description

MERGE_INF_DESC := merge_text(informal_description(BASECOMP),
informal_description(ACOMP),
informal _description(BCOMP)) ;

Merge the Formal Description

MERGE_AX := merge_text(axioms(BASECOMP),
axioms (ACOMP) ,
axioms (BCOMP)) ;
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Merge the Maximum Execution Times .

MERGEMET := merge_met(specified_maximum_execution_time (BASECOMP),
specified_maximum_execution_time(ACOMP),
specified_maximum_execution_time(BCOMP));

Merge the Implementation

Extract the prototype dependency
graphs frdm the psdl components.

assign(GBASE, build_PDG(BASECOMP));
assign(GA, build_PDG(ACOMP));
assign(GB, build_PDG(BCOMP));

Create the Preserved Part

assign(PP, preserved_part(GBASE, GA, GB));

Create the Affected Parts of each
modification graph.

-=- put_line("Affected Part: A");
assign(APA, affected_part(GA, GBASE)); -- First Modification
-- put_line("Affected Part: B");
assign(APB, affected_part(GB, GBASE)); -- Second Modification
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Create the Merged Graph using the
Preserved Part of the Base and
the Affected Parts of both
modifications.

assign(GM, graph_merge(PP, APA, APB));

Merge the streams

assign (BASESTREAMS, streams(BASECOMP));

assign (ASTREAMS, streams(ACOMP));

assign(BSTREAMS, streams(BCOMP));

assign(MERGESTREAMS, merge_streams(BASESTREAMS, ASTREAMS, BSTREAMS));

Merge the timers

assign (BASETIMERS, timers(BASECOMP));

assign(ATIMERS, timers(ACOMP));

assign(BTIMERS, timers(BCOMP));

assign (MERGETIMERS, merge_timers(BASETIMERS, ATIMERS, BTIMERS));

Merge the triggers

for id: psdl_id in id_set_pkg.scan(vertices(GBASE)) loop
if not eq(id, EXT)
then
bind(id, get_trigger(id, BASECOMP), BASETRIG);
end if;
end loop;
for id: psdl_id in id_set_pkg.scan(vertices(GA)) loop
if not eq(id, EXT)
then
bind(id, get_trigger(id, ACOMP), ATRIG);
end if;
end loop;
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for id: padl_id in id_set._pkg.scan(vertices(GB)) loop

; if aot eq(id, EXT) . .
: then
bind(id, get_trigger(id, BCOMP), BTRIG);
end if;
end loop;

assign(MERGETRIG, merge_trigger_maps(vertices(GM),
BASETRIG, ATRIG, BTRIG));

== Merge the execution guards

for id: psdl_id in id_set_pkg.scan(vertices(GBASE)) loop
if not eq(id, EXT)
then
bind(id, execution_guard(id, BASECOMP), BASEEG);
end if;
end loop;
for id: psdl_id in id_set_pkg.scan(vertices(GA)) loop
if not eq(id, EXT)
then
bind(id, executio<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>