THESIS

TRIM EFFECTS ON MOTION STABILITY OF SUBMERSIBLE VEHICLES

by

Selçuk Örnek

June, 1994

Thesis Advisor: Fotis A. Papoulias

Approved for public release; distribution is unlimited.
Trim Effects on Motion Stability of Submersible Vehicles

Abstract

The effects of trim on stability of motion during depth control of submersible vehicles are analysed. Full state feedback control is used to provide stable response in the dive plane, and feedforward control is used to ensure steady state accuracy. A complete set of stability maps is generated for various values of metacentric height, longitudinal center of gravity/center of buoyancy separation, forward speed, and control law time constant. The results clearly indicate ranges of parameters that should be chosen in design and operation of a given vehicle.
TRIM EFFECTS ON MOTION STABILITY
OF SUBMERSIBLE VEHICLES

by

Selçuk Örnek
Lieutenant Junior Grade, Turkish Navy
B.S., Turkish Naval Academy, 1988

Submitted in partial fulfillment
of the requirements for the degree of

MASTER OF SCIENCE IN MECHANICAL ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL
June 1994

Author: _______________________

Selçuk Örnek

Approved by: _______________________

Fotis A. Papoulias, Thesis Advisor

Matthew D. Kelleher, Chairman
Department of Mechanical Engineering
ABSTRACT

The effects of trim on stability of motion during depth control of submersible vehicles are analysed. Full state feedback control is used to provide stable response in the dive plane, and feedforward control is used to ensure steady state accuracy. A complete set of stability maps is generated for various values of metacentric height, longitudinal center of gravity/center of buoyancy separation, forward speed, and control law time constant. The results clearly indicate ranges of parameters that should be chosen in design and operation of a given vehicle.
TABLE OF CONTENTS

I. INTRODUCTION .. 1

II. EQUATIONS OF MOTION 2

III. CONTROL LAW .. 7
 A. INTRODUCTION 7
 B. FEEDBACK CONTROL 8
 1. Pole Placement 8
 2. Pole Location Selection 10
 C. FEEDFORWARD CONTROL 11

IV. BIFURCATION ANALYSIS 16
 A. STABILITY 16
 B. BIFURCATION 17
 C. RESULTS AND DISCUSSION 19

V. CONCLUSIONS AND RECOMMENDATIONS 35
 A. CONCLUSIONS 35
 B. RECOMMENDATIONS 36

APPENDIX BIFURCATION ANALYSIS PROGRAM 37
NOMENCLATURE

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Closed loop dynamics matrix for the linearized system</td>
</tr>
<tr>
<td>α</td>
<td>Control surface coordination gain</td>
</tr>
<tr>
<td>$b(x)$</td>
<td>Local beam of the hull</td>
</tr>
<tr>
<td>B</td>
<td>Vehicle buoyancy</td>
</tr>
<tr>
<td>C_0</td>
<td>Control matrix in state space</td>
</tr>
<tr>
<td>c_1, c_2</td>
<td>Quadratic drag coefficient</td>
</tr>
<tr>
<td>d_q, d_v</td>
<td>Coupled heave and pitch terms</td>
</tr>
<tr>
<td>δ_b</td>
<td>Cross flow drag terms</td>
</tr>
<tr>
<td>δ_s, δ</td>
<td>Bow plane deflection</td>
</tr>
<tr>
<td>I_y</td>
<td>Vehicle mass moment of inertia</td>
</tr>
<tr>
<td>I_I, I_p</td>
<td>Cross flow drag terms</td>
</tr>
<tr>
<td>k_1, k_2, k_3, k_4</td>
<td>Controller gains in $\theta, w, q, \text{ and } z$</td>
</tr>
<tr>
<td>K_0</td>
<td>Feedforward gain</td>
</tr>
<tr>
<td>m</td>
<td>Vehicle mass</td>
</tr>
<tr>
<td>M</td>
<td>Pitch moment</td>
</tr>
<tr>
<td>M_a</td>
<td>Partial derivative of M w.r.t. a</td>
</tr>
<tr>
<td>θ</td>
<td>Pitch angle</td>
</tr>
<tr>
<td>q</td>
<td>Pitch rate</td>
</tr>
<tr>
<td>T_c</td>
<td>Time constant</td>
</tr>
<tr>
<td>U</td>
<td>Forward speed</td>
</tr>
<tr>
<td>U_o</td>
<td>Nominal speed</td>
</tr>
<tr>
<td>w</td>
<td>Heave velocity</td>
</tr>
<tr>
<td>W</td>
<td>Vehicle weight</td>
</tr>
<tr>
<td>x</td>
<td>State vector</td>
</tr>
<tr>
<td>x_b, z_b</td>
<td>Body fixed coordinates of vehicle center of buoyancy</td>
</tr>
<tr>
<td>x_g, z_g</td>
<td>Body fixed coordinates of vehicle center of gravity</td>
</tr>
<tr>
<td>z</td>
<td>Deviation off the nominal depth</td>
</tr>
<tr>
<td>z_{GB}</td>
<td>Vehicle metacentric height</td>
</tr>
<tr>
<td>Z</td>
<td>Heave force</td>
</tr>
<tr>
<td>Z_a</td>
<td>Partial derivative of Z w.r.t. a</td>
</tr>
</tbody>
</table>
I. INTRODUCTION

The fundamental goal of submarine control is to reach and maintain ordered depth. Experimental designs involve expensive model testing such as Darpa Suboff Model (DTRC Model 5470) [Ref. 6]. Much research has been done in depth control of submarines [Ref. 3, 5]. Our goal is to develop an analytic method to determine the stability properties of a design.

The stability of a design will have a significant impact on its responsiveness. A vehicle with a large margin to instability will not be very responsive. The problem becomes one of determining how close to the margins we can get without a total loss of stability. By expanding the scope of our research to include nonlinear terms we are able to define the limits of stability and therefore margins.

Previous studies analyzed stability properties of the system, specially static bifurcations [Ref. 2] and bifurcations to periodic solutions [Ref. 1]. The latter study which is used as a basis for this work, was restricted to level, zero trim flight paths.

The purpose of this thesis is to develop a program for finding the limits of stability for an out of trim submarine at moderate and high speeds. These limits are mapped using a Hopf bifurcation analysis program included in the Appendix.
II. EQUATIONS OF MOTION

The motion of the submersible in the vertical plane can be modeled by four coupled nonlinear differential equations for pitch rate (q), heave velocity (w), pitch angle (θ) and heave (z). With a body fixed coordinate frame at the vehicle's geometric center, we can express Newton's equations of motion as

\begin{align*}
 m (\dot{\phi} - Uq - z_0^2 - x_0^2) &= Z_d \dot{q} + Z_d^2 + Z_b \dot{b} + Z_d^3 + Z_d^4 + Z_d^5 \\
 -\frac{1}{2} \rho \int C_D b(x) \frac{(w - xq)^3}{|w - xq|} \, dx
\end{align*}

\begin{align*}
 I_x - m x_0 (\dot{\phi} - Uq) - z_0 \dot{w} q m &= -x_0 B \cos \theta - z_0 B \sin \theta + M_b \dot{b} \\
 M_b \dot{b} + M \dot{d} + M \dot{d}^2 + M \dot{d}^3 + M \dot{d}^4 + \frac{1}{2} \rho \int C_D b(x) \frac{(w - xq)^3}{|w - xq|} \, dx
\end{align*}

\begin{align*}
 \dot{\theta} &= q \\
 z &= -U \sin \theta + w \cos \theta
\end{align*}
Equations 2.1 through 2.2 can be written in a more compact form as,

\[\dot{\omega} = a_{11}Uw + a_{12}Uq + a_{13}x_{\theta\theta} \sin \theta + a_{13}x_{\theta\phi} \cos \theta + b_u U^2 \delta_s + b_w U^2 \delta_w + d_w(w, q) + c_1(w, q) \] \hspace{1cm} (2.5)

\[\dot{q} = a_{21}Uw + a_{22}Uq + a_{23}x_{\phi\phi} \sin \theta + a_{23}x_{\phi\theta} \cos \theta + b_u U^2 \delta_s + b_u U^2 \delta_w + d_u(w, q) + c_2(w, q) \] \hspace{1cm} (2.6)

where,

\[D_v = (m - Z_w)(I_y - M_q) - (mx_G + Z_q)(mx_G + M_w) \]

\[a_{11}D_v = (Z_w - 2CDE_0U\tan \theta_0)(I_y - M_q) + (mx_G + Z_q)(M_w + 2CDE_1U\tan \theta_0) \]

\[a_{12}D_v = (m + Z_q + 2CDE_1U\tan \theta_0)(I_y - M_q) + (mx_G + Z_q)(M_q - mx_G - mx_GU\tan \theta_0 - 2CDE_2U\tan \theta_0) \]

\[a_{21}D_v = (M_w + 2CDE_1U\tan \theta_0)(m - Z_w) + (mx_G + M_y)(Z_w - 2CDE_0U\tan \theta_0) \]

\[a_{22}D_v = (M_q - mx_G - mx_GU\tan \theta_0 - 2CDE_2U\tan \theta_0) + (mx_G + M_y)(m + Z_q + 2CDE_1U\tan \theta_0) \] \hspace{1cm} (2.7)

\[a_{23}D_v = -(m + Z_w)B \]

\[a_{13}D_v = -(mx_G + Z_q)B \]

\[b_1D_v = (I_y - M_q)Z_b - (Z + Z_q)M_b \]
\[b_2 D_v = (m - Z_w) M_b + (mx \omega + M_\omega) Z_b \]

\[d_q(w,q)D_v = (m - Z_w) I_q + (mx \omega + M_\omega) I_w \]

\[d_w(w,q)D_v = (I_y - M_q) I_w - (mx \omega + Z_q) I_q \]

\[c_1(w,q)D_v = (I_y - M_q) m z_0 q^2 - (mx \omega + Z_q) m z_0^2 \]

\[c_2(w,q)D_v = - (m - Z_w) m z_0 w q - (mx \omega + M_\omega) m z_0^2 \]

In these equations the submersible is assumed to be neutrally buoyant (W=B), and statically stable (\(z_a > z_b\)). Here we can assume \(z_a\) to be zero, hence \(z_a = z_b\).

At steady state the cross flow drag integral terms \(I_n\) and \(I_p\) have the form,

\[I_n = -C_D w |w| \int b(x) \, dx \quad I_p = C_D w |w| \int b(x) \, dx \]

(2.8)

From equation (2.3) it is seen that \(w\) is equal to \(\tan \theta_0\) at steady state. The \(\int b(x) \, dx\) term is computed numerically for the SUBOFF model as \(E_0\), and \(\int b(x) \, dx\) term as \(E_1\). Therefore, the cross flow drag terms become,

\[I_n = -C_D w |w| / E_0 \quad I_p = C_D w |w| / E_1 \]

(2.9)
Because we have two rudders at the bow and the stern, our system of equations is multi-input. To reduce this system into a single input system the linear combination of the control inputs will be modified into the following form,

\[\delta = \delta_s, \quad \delta_b = \alpha \delta_s \] \hspace{1cm} (2.10)

where \(\alpha \) is the control surface coordination gain. The value of \(\alpha \) ranges from -1 to 1. The selection of the value of \(\alpha \) will allow the planes to operate as desired for the particular maneuvering condition, i.e., \(\alpha = 0 \) for no bow plane control, \(\alpha = -1 \) for bow plane and stern plane opposed to each other, yielding the maximum pitch moment, and \(\alpha = 1 \) for bow and stern plane control in the same direction, yielding the maximum heave force.
FIGURE 2.1 Geometric representations of the basic definitions.
III. CONTROL LAW

A. INTRODUCTION

The control design problem can be expressed in state space as follows,

\[x = Ax + B \delta \]

where the state vector is

\[
\begin{bmatrix}
\theta \\
w \\
q \\
x
\end{bmatrix}
\]

Equation 3.1 in our case is,

\[
\begin{bmatrix}
\dot{\theta} \\
\dot{w} \\
\dot{q} \\
\dot{x}
\end{bmatrix} =
\begin{bmatrix}
0 & 0 & 1 & 0 \\
a_{12} - b_{12} k_1 & a_{11} - b_{12} k_2 & a_{12} - b_{12} k_3 & -b_{12}^2 k_4 \\
-u & 1 & 0 & 0 \\
a_{21} - b_{21} k_1 & a_{21} - b_{21} k_2 & a_{22} - b_{21} k_3 & -b_{21}^2 k_4 \\
-a_{12} - b_{11} k_1 & a_{11} - b_{11} k_2 & a_{12} - b_{11} k_3 & -b_{11}^2 k_4 \\
\end{bmatrix}
\begin{bmatrix}
\theta \\
w \\
q \\
x
\end{bmatrix}
\]

Our aim is to find a controller which will assure us a stable closed loop system. The only control input is the dive plane angle, \(\delta \).
B. FEEDBACK CONTROL

1. Pole Placement

The full state feedback controller is a linear function of the states and has the form,

$$\delta = -Kx$$

(3.4)

where K is the vector of feedback gains which are to be determined in order to give the desired closed loop system dynamics. Substituting equation 2.12 into 2.10 yields,

$$\dot{x} = (A - BK)x$$

(3.5)

The feedback gains K must be chosen such that $A - BK$ has the desired eigenvalues. The actual characteristic equation of the closed loop system is given by,

$$\det(A - BK - sI) = 0$$

(3.6)

The required values of K are obtained by matching coefficients in the two polynomials of the actual and the desired characteristic equations. Equation 3.5 becomes,

$$\begin{bmatrix}
\dot{\theta} \\
\dot{w} \\
\dot{q} \\
\dot{z}
\end{bmatrix} =
\begin{bmatrix}
0 & 0 & 1 & 0 \\
-\mu & \alpha & 0 & 0 \\
a_{12}^2 & a_{12}^1 & 0 & 0 \\
-a & 1 & 0 & 0
\end{bmatrix}
\begin{bmatrix}
\theta \\
w \\
q \\
z
\end{bmatrix} +
\begin{bmatrix}
0 \\
b_1u + a_{12}^2u_2 \\
b_2u + a_{22}^2u_2 \\
0
\end{bmatrix}$$

(3.7)

The characteristic equation of the closed loop system is,
which reduces to,

\[s^4 + (A_2k_2 + A_3k_3 - E_1)s^3 + (-B_1k_1 - B_2k_2 - B_3k_3 - B_4k_4 - E_2)s^2 + (-C_1k_1 - C_2k_2 - C_3k_3 - E_3)s + (-D_1k_1 - D_2k_2) = 0 \]

(3.9)

where,

\[A_2 = -B_4 = b_1 u^2 \]
\[A_3 = -B_1 = b_2 u^2 \]
\[B_2 = (a_{22} b_1 - a_{12} b_2) u^3 \]
\[B_3 = C_1 = (a_{11} b_2 - a_{21} b_1) u^3 \]
\[C_2 = D_1 = (a_{23} b_1 - a_{13} b_2) z_{ab} u^2 \]
\[C_4 = (a_{22} b_1 + b_2 - a_{12} b_2) u^3 \]
\[D_2 = (a_{11} b_2 - a_{21} b_1) u^4 \]
\[E_1 = (a_{11} + a_{22}) u \]
\[E_2 = a_{23} z_{ab} + (a_{12} a_{21} - a_{11} a_{22}) u^2 \]
\[E_3 = (a_{13} a_{21} - a_{11} a_{23}) z_{ab} u \]

Now, let's assume that we want to place the closed loop poles at \(-p_1, -p_2, -p_3, -p_4\) to have the desired system response. Then the desired characteristic equation is,

\[s^4 + a_1 s^3 + a_2 s^2 + a_3 s + a_4 = 0 \]

(3.11)
where,
\[\alpha_1 = p_1 + p_2 + p_3 + p_4 \]
\[\alpha_2 = p_1 p_2 + p_1 p_3 + p_1 p_4 + p_2 p_3 + p_2 p_4 + p_3 p_4 \]
\[\alpha_3 = p_1 p_2 p_3 + p_1 p_2 p_4 + p_1 p_3 p_4 + p_2 p_3 p_4 \]
\[\alpha_4 = p_1 p_2 p_3 p_4 \]

The feedback gains can now be computed by equating the coefficients of equation 3.9 and 3.11,
\[A_2 k_2 + A_3 k_3 = -\alpha_1 - E_1 \]
\[B_1 k_2 + B_2 k_2 + B_3 k_3 + B_4 k_4 = \alpha_2 + E_2 \]
\[C_1 k_1 + C_2 k_2 + C_4 k_4 = \alpha_3 + E_3 \]
\[(D_1 + D_2) k_4 = \alpha_4 \]

We established the method for placing the poles of the system, but we also need to know the desired locations of the poles.

2. Pole Location Selection

In a typical second order system control law design, transient response specifications are given. This results in an allowable region in the s-plane where the desired location of the poles can be obtained. For higher order systems the concept of dominant roots can be employed. In selecting poles the physics of the system must be considered. If the poles are too negative, a small time constant will result, and the system may not be able to react that fast. If we use big gains
K, this also means that the control effort will be large. In practice there are limits based on actuator size and saturation.

Considering the control law design to stabilize the submarine to a level flight path at $\theta = 0$ it is required that the submarine return to the level flight, after some small disturbances in θ or z, within the time it takes for the vehicle to travel three ship lengths. Since our model is 14 feet long and its velocity is 5 feet/sec., the required recovery time is about 10 seconds. This means the time constant is 3 seconds and the closed loop poles should be placed at approximately -0.3.

After placing the poles using equation 3.13 the control law is found to be,

$$\delta = 0.9917 \theta + 0.8333 w + 0.6026 q - 0.0351 z \quad (3.14)$$

C. FEEDFORWARD CONTROL

The previous discussion on feedback controller assures closed loop stability, but it acts as a regulator in other words takes all the states to zero values. If we have constant disturbances or we want to track some reference value other than zero we can not do this with state feedback alone.
In the case of non-zero set points or constant disturbances we again need to have the exact same full state feedback to ensure closed loop stability. But we also need to introduce an additional term to our controller in the form
\[u = -Kx + k_0 \]
(3.15)
where k_0 is the constant feedforward term. k_0 is given as [Ref. 4],

$$k_0 = H_c^{-1}(0) x_0$$ \hspace{1cm} (3.16)

where x_0 is the reference values of the states and $H_c^{-1}(s)$ is the closed loop transfer function,

$$H_c^{-1}(s) = C (sI - A + BK)^{-1} B$$ \hspace{1cm} (3.17)

Another way of getting k_0 is looking at the steady state equations of motion. In steady state all the time derivatives in equations 2.1 through 2.4 go to zero and we have,

$$w = \tan \theta_0$$ \hspace{1cm} (3.18)

$$Z_6 \delta + Z_\omega \omega - I_H = 0$$ \hspace{1cm} (3.19)

$$-(x_G - x_B)B \cos \theta_0 - x_G B \sin \theta_0 + M_\delta \delta + M_\omega \omega + I_p = 0$$ \hspace{1cm} (3.20)

If the equation 3.19 is multiplied with M_6 and equation 3.20 with Z_6 and set equal to each other and plug in the equation 3.18, we have an equation depending only on θ.

$$(Z_6 M_6 - M_\omega Z_\omega) \tan \theta_0 + x_G B Z_6 \cos \theta_0 + x_G B Z_\omega \sin \theta_0 + C_D (E_0 M_6 - E_1 Z_6) \tan \theta_0 |\tan \theta_0|$$ \hspace{1cm} (3.21)

Where E_0 and E_1 are the integral terms computed numerically for the Suboff model. The steady state value of θ_0 is found from equation 3.20 by using a Newton-Raphson method in Bifurl program in the Appendix. Then we can get δ from
equation 3.19,

\[\delta = \frac{I_H - Z_{w^*}}{Z_o} = \frac{-C_D E_k \tan \theta_0 |\tan \theta_0| - Z_{w^*}}{Z_o} \]

(3.22)

After getting \(\delta \), we easily find \(k_o \) from equation 3.15,

\[k_o = \delta + kx \]

(3.23)

A plot of the steady state angle \(\theta_o \) versus \(x_o \) for different values of \(z_o \) is shown in Figure 3.2.
FIGURE 3.2 Steady state pitch angle θ_e as metacentric height varies.
IV. BIFURCATION ANALYSIS

A. STABILITY

The nonlinear equations of motion in the dive plane 2.1 through 2.4 can be expressed in a compact form as follows,

\[x = f(x) \] \hspace{1cm} (4.1)

Where \(x \) is the state variable vector \(x = [\theta, w, q, z] \). We know that the equilibrium points, \(x_0 \) of the system are defined by,

\[f(x_0) = 0 \] \hspace{1cm} (4.2)

This is a nonlinear system of algebraic equations and it may have multiple solutions in \(x_0 \), which means that the nonlinear system may have more than one positions of static equilibrium. If we pick one equilibrium, \(x_0 \) we can establish its stability properties by linearization. The linearized system becomes,

\[\dot{x} = Ax \] \hspace{1cm} (4.3)

where \(A \) is the Jacobian matrix of \(f(x) \) evaluated at \(x_0 \),

\[A = \frac{\partial f}{\partial x} \] \hspace{1cm} (4.4)
and the state has been defined to designate small deviations from the equilibrium \(x_0 \),
\[
x \to x - x_0
\]
(4.5)

In system dynamics as long as all eigenvalues of \(A \) have negative real parts, we know that the linear system will be stable. This means that the equilibrium \(x_0 \) will be stable for the nonlinear system as well. This is in fact Lyapunov's linearization technique.

B. BIFURCATION

Values of the nonlinear system parameters at which the qualitative nature of the system's motion changes are known as critical or bifurcation values. The phenomena of bifurcation, i.e., quantitative change of parameters leading to qualitative change of system properties, is the topic of bifurcation theory. Euler buckling (Pitchfork bifurcation), limit cycles (Hopf bifurcation) are common examples of bifurcation.

Classical definition of stability states, that the real part of all the eigenvalues of the system must be negative. Therefore, our initial investigations into the stability of the SUBOFF model was to find those eigenvalues whose real parts cross the imaginary axis. We used the bifurcation analysis program, included in the Appendix, to calculate the eigenvalues of the system.
By linearizing the equations of motion, equations 2.1 through 2.4, the state space equations of the dynamic system can be written in the form,

$$\dot{x} = Ax + Bu$$

(4.5)

where,

$$u = -Kx$$

(4.6)

and K is the vector of controller gains, as calculated by pole placement in equations 3.13. The eigenvalues of the system are found by solving,

$$\det(A - BK - sI) = 0$$

(4.7)

In the bifurcation program a pseudo-root locus method is employed where the time constant, T_c, is fixed. The constant T_c fixes to placement of the system poles at a given nominal forward speed U_0 and then the model speed, U, is varied incrementally with the system eigenvalues calculated at each speed increment. When the real part of an eigenvalue changes sign between the limits of a speed increment a bisection method is employed to find the speed where the real part of the eigenvalue equals zero.

For each point where the real part of an eigenvalue crosses the imaginary axis the associated T_c and U are plotted on a bifurcation map. This map delineates the regions of
classical stability (all eigenvalues on the left hand plane) from the regions of instability. A family of bifurcation maps were generated by varying nominal speed, U_0, initial stability, z_{gs}, and longitudinal center of gravity/buoyancy separation, x_{gs} of the submersible.

Figure (4.1) shows a typical bifurcation map with its five distinct regions [Ref. 1]. Region I is the area of classical stability. In region II there is one real positive eigenvalue which is indicative of a pitchfork bifurcation. Pitchfork bifurcations of this model were previously examined by Reidel [Ref. 1]. Regions III, IV, and V have at least one pair of complex conjugate eigenvalues with a positive real part. This would indicate that there should be an unstable oscillatory behavior for the model.

C. RESULTS AND DISCUSSION

The classical stability region in bifurcation maps lies between pitchfork and Hopf bifurcation boundaries. The limits or parameters must be defined for the system designer prior to starting the design. By maximizing the region of stability we can give the designer the most leeway in his work. There are
FIGURE 4.1 A typical bifurcation map showing the five distinct regions
two parameters that we used to change the bifurcation maps, the longitudinal separation between center of gravity and center of buoyancy, x_{gb} and the initial stability, z_{gb}.

First we look at the change in x_{gb}. In figures 4.2 through 4.7 we plotted bifurcation curves for different initial stabilities as x_{gb} varies. We can see that as x_{gb} increases the Hopf bifurcation branches $H1$ and $H2$ move towards higher speeds and time constants and thus increasing the stability area. The $H3$ branch however remains constant.

The other important point that we observed is that the system becomes unstable at nominal speed at higher time constants. This is unexpected because we are designing around our nominal speed. A more careful examination in the trimmed case shows that the actual forward velocity becomes, $\sqrt{u^2+w^2}$. Therefore the system may become stable at a value of u other than nominal.

The next parameter we examined was the initial stability, z_{gb}. Figures 4.8 through 4.14 show the effect of varying z_{gb} from .2 to .4 ft for different x_{gb} values. The $H3$ branch remains constant while the upper speed $H2$ branch moves down effectively decreasing the area of stability. The low speed curve $H1$ moves upwards and increases the low speed area of stability.
FIGURE 4.2 Bifurcation map as xg changes between xg=0 and xg=−.2, zg=.2.
FIGURE 4.3 Bifurcation map as \(x_g \) changes between \(x_g=0 \) and \(x_g=.2 \), \(z_g=.2 \).
FIGURE 4.4 Bifurcation map as \(x_0 \) changes between \(x_0 = 0 \) and \(x_0 = -0.3 \), \(x_0 = 0 \), \(x_0 = -0.3 \), \(z = 0.3 \).
FIGURE 4.5 Bifurcation map as x_g changes between $x_g=0$ and $x_g=.3$, $z_g=.3$.

25
FIGURE 4.6 Bifurcation map as x_g changes between $x_g=0$ and $x_g=-.3$, $z_g=.4$.
FIGURE 4.7 Bifurcation map as x_g changes between $x_g=0$ and $x_g=0.3$, $z_g=0.4$.
FIGURE 4.8 The effects of changing zg on the bifurcation maps, zg=.3.
FIGURE 4.9 The effects of changing zg on the bifurcation maps, xg=.2.
FIGURE 4.10 The effects of changing \(z_q \) on the bifurcation maps, \(x_g = .1 \).
FIGURE 4.11 The effects of changing zg on the bifurcation maps, zg=0.
FIGURE 4.12 The effects of changing zg on the bifurcation maps, xg = -1.
FIGURE 4.13 The effects of changing zg on the bifurcation maps, zg=.2.
FIGURE 4.14 The effects of changing zg on the bifurcation maps, zg=-.3.
V. CONCLUSIONS AND RECOMMENDATIONS

A. CONCLUSIONS

Hopf bifurcation analysis is a very useful design tool in the design and evaluation phase. Hopf bifurcation analysis and an identification program that can evaluate the hydrodynamic coefficients for the submersible vehicle will be very useful and save money and time by reducing the amount of model testing. An effective set of control system parameters can be generated in this process that will be optimal for the final design of the submersible.

This type of analysis can set the limits of the ranges of important parameters such as metacentric height and longitudinal separation of buoyancy/gravity centers. As we have seen changes in these two parameters can have dramatic effects on stability. It was found that the moderate speed region of stability increases with increasing metacentric height. The same is not true, however, for high speeds. The longitudinal separation of center of gravity/buoyancy can have a profound effect on stability. It was found that the vehicle may be unstable even at nominal speed. This was attributed to the fact that at high trim angles, the feedback gains which are computed at zero trim, can no longer guarantee stability.
B. RECOMMENDATIONS

The bifurcation analysis program should be expanded to evaluate the performance of the submarine including effects of external forces such as wave effects, currents, and free surface effects.
PROGRAM BIFUR1.FOR

BIFURCATION ANALYSIS

PARAMETERS ARE: TC VS. U

IMPLICIT DOUBLE PRECISION (A-H,O-Z)

DOUBLE PRECISION K1,K2,K3,K4,L,MQDOT,MWDOT,MQ,MW,MDS,MDB,MD,
& MASS,IY,P1,P2,P3,P4,XGB,ZGB

DIMENSION A(4,4),FV1(4),IV1(4),ZZZ(4,4),WR(4),W1(4),XL(25),
& BR(25),VEC0(25),VEC1(25),VEC2(25)

COMMON P1,P2,P3,P4

OPEN (11,FILE='BIF1.RES',STATUS='NEW')
OPEN (12,FILE='BIF2.RES',STATUS='NEW')
OPEN (13,FILE='BIF3.RES',STATUS='NEW')

NUMERIC INFO OF DARPA SUBOFF MODEL

WEIGHT=1556.2363
BUO =1556.2363
L =13.9792
IY =561.32
G =32.2
MASS =WEIGHT/G
RHO =1.94
XB =0.0
ZB =0.0
CD =0.4
CD = 0.5*CD*RHO

C
WRITE (*,*) 'ENTER MIN, MAX, AND INCREMENTS IN Tc (nondim)'
READ (*,*) TCMIN, TCMAX, ITC
WRITE (*,*) 'ENTER MIN, MAX, AND INCREMENTS IN U (nondim)'
READ (*,*) UMIN, UMAX, IU
C
WRITE (*,*) 'ENTER NOMINAL SPEED'
C
READ (*,*) U0
WRITE (*,*) 'ENTER XG AND ZG'
READ (*,*) XG, ZG
U0 = 9
C
ZGB = ZG - ZB
XGB = XG - XB
TCMIN = TCMIN*L/U0
TCMAX = TCMAX*L/U0
UMIN = UMIN*U0
UMAX = UMAX*U0
C
HYDRODYNAMIC COEFFICIENTS
ZQDOT = -6.3300E-04*0.5*RHO*L**4
ZWDOT = -1.4529E-02*0.5*RHO*L**3
ZQ = 7.5450E-03*0.5*RHO*L**3
ZW = -1.3910E-02*0.5*RHO*L**2
ZDS = -5.6030E-03*0.5*RHO*L**2
ZDB = -5.6030E-03*0.5*RHO*L**2
MQDOT = -8.8000E-04*0.5*RHO*L**5
MWDOT = -5.6100E-04*0.5*RHO*L**4
MQ = -3.7020E-03 * 0.5 * RHO * L ** 4
MW = 1.0324E-02 * 0.5 * RHO * L ** 3
MDS = -2.4090E-03 * 0.5 * RHO * L ** 3
MDB = 2.4090E-03 * 0.5 * RHO * L ** 3

XL(1) = 0.0
XL(2) = 0.1
XL(3) = 0.2
XL(4) = 0.3
XL(5) = 0.4
XL(6) = 0.5
XL(7) = 0.6
XL(8) = 0.7
XL(9) = 1.0
XL(10) = 2.0
XL(11) = 3.0
XL(12) = 4.0
XL(13) = 7.7143
XL(14) = 10.0
XL(15) = 15.1429
XL(16) = 16.0
XL(17) = 17.0
XL(18) = 18.0
XL(19) = 19.0
XL(20) = 20.0
XL(21) = 20.1
XL(22)=20.2
XL(23)=20.3
XL(24)=20.4
XL(25)=20.4167
DO 102 N=1,25
 XL(N) = (L/20.)*XL(N) - L/2.
102 CONTINUE
 BR(1)=0.0
 BR(2)=0.485
 BR(3)=0.658
 BR(4)=0.778
 BR(5)=0.871
 BR(6)=0.945
 BR(7)=1.010
 BR(8)=1.060
 BR(9)=1.18
 BR(10)=1.41
 BR(11)=1.57
 BR(12)=1.66
 BR(13)=1.67
 BR(14)=1.67
 BR(15)=1.67
 BR(16)=1.63
 BR(17)=1.37
 BR(18)=0.919
 BR(19)=0.448
 BR(20)=0.195
BR(21)=0.188
BR(22)=0.168
BR(23)=0.132
BR(24)=0.053
BR(25)=0.0

DO 104 K=1,25
VECO(K)=BR(K)
VEC1(K)=XL(K)*BR(K)
VEC2(K)=XL(K)*XL(K)*BR(K)
104 CONTINUE

CALL TRAP(25,VECO,XL,EO)
CALL TRAP(25,VEC1,XL,E1)
CALL TRAP(25,VEC2,XL,E2)

C
ALPHA=0.0
ZD=ZDS+ALPHA*ZDE
MD=MDS+ALPHA*MDB

C CALCULATING THE SS PITCH ANGLE \(\theta_0 \)
C WITH NEWTON-RAPHSON METHOD
P1= ZW*MD - MW*ZD
P2= XG*BUO*ZD
P3= ZG*BUO*ZD
P4= CD*(MD*E0 - ZD*E1)
WRITE(*,*) P1,P2,P3,P4
EPSI=.0000001
THETA0=0
IF(XGB.GT.0) P4=-1*P4
18 DO 19 I=1,2000
 FT=FUNC(THETA0)
 DFT=DFUNC(THETA0)
 DELT=FT/DFT
 THETA0=THETA0-DELT
 IF(ABS(DELT)-EPSI) 20,20,19
19 CONTINUE
 FT=FUNC(THETA0)
20 WRITE(*,*) THETA0, FT
C
 DV=(MASS-ZWDOT)*(IY-MQDOT)-(MASS*XG+ZQDOT)*(MASS*XG+MWDOT)
A11DV=(IY-MQDOT)*(ZW-2*CD*EO*U*TAN(THETA0))
 & +(MASS*XG+ZQDOT)*(MW+2*CD*E1*U*TAN(THETA0))
A12DV=(IY-MQDOT)*(MASS+ZQ+2*CD*E1*U*TAN(THETA0))+
 & (MASS*XG+ZQDOT)
 & *(MQ-MASS*XG-MASS*ZG*U*TAN(THETA0)-2*CD*E2*U*TAN(THETA0))
A13DV=-(MASS*XG+ZQDOT)*WEIGHT
B1DV=(IY-MQDOT)*ZD+(MASS*XG+ZQDOT)*MD
A21DV=(MASS-ZWDOT)*(MW+2*CD*E1*U*TAN(THETA0))
 & +(MASS*XG+MWDOT)*(ZW-2*CD*EO*U*TAN(THETA0))
A22DV=(MASS-ZWDOT)*(MQ-MASS*XG-MASS*ZG*U*TAN(THETA0)-2*CD*E2*U
 & *TAN(THETA0))+ (MASS*XG+MWDOT)*
 & (MASS+ZQ+2*CD*E1*U*TAN(THETA0))
A23DV=-(MASS-ZWDOT)*WEIGHT
B2DV = (MASS-ZWDOT)*MD + (MASS*XG+MWDOT)*ZD

C

A11 = A11DV/DV
A12 = A12DV/DV
A13 = A13DV/DV
A21 = A21DV/DV
A22 = A22DV/DV
A23 = A23DV/DV
B1 = B1DV/DV
B2 = B2DV/DV

C

EPS = 1.D-5
ILMAX = 1500

C

DO 1 I = 1, ITC
 WRITE (*, 2001) I, ITC
 TC = TCMIN + (I-1) * (TCMAX-TCMIN) / (ITC-1)
 POLE = 1.0 / TC
 ALPHA3 = 4.0 * POLE
 ALPHA2 = 6.0 * POLE**2
 ALPHA1 = 4.0 * POLE**3
 ALPHA0 = POLE**4
 A2M = B1*U0**2
 A3M = B2*U0**2
 A0M = -(A11+A22)*U0-ALPHA3
 B1M = B2*U0**2

43
B2M=(B2*A12-B1*A22)*U**3
B3M=(B1*A21-B2*A11)*U**3
B0M=(A11*A22-A12*A21)*U0**2-A23*ZGB-ALPHA2-B 1*U0*K4
C1M=(B2*A11-B1*A21)*U0**3
C2M=(B1*A23-B2*A13)*ZGB*U0**2
K2=C1M*B0M*A3M-B1M*C0M*A3M-C1M*B3M*A0M
K2=K2/(C1M*B2M*A3M-B1M*C2M*A3M-C1M*B3M*A2M)
K1=(C0M-C2M*K2)/C1M
K3=(A0M-A2M*K2)/A3M

C

DO 2 J=1,IU
 U= UMIN+(J-1)*(UMAX-UMIN)/(IU-1)
 A(1,1)=0.0D0
 A(1,2)=0.0D0
 A(1,3)=1.0D0
 A(1,4)=0.0D0
 A(2,1)=A13*(XGB*SIN(THETA0)-ZGB*COS(THETA0))+B1*U*U*K1
 A(2,2)=A11*U +B1*U*U*K2
 A(2,3)=A12*U +B1*U*U*K3
 A(2,4)= B1*U*U*K4
 A(3,1)=A23*(XGB*SIN(THETA0)-ZGB*COS(THETA0))+B2*U*U*K1
 A(3,2)= A21*U +B2*U*U*K2
 A(3,3)= A22*U +B2*U*U*K3
 A(3,4)= B2*U*U*K4
 A(4,1)= U
 A(4,2)= 1.0D0
A(4,3)= 0.0D0
A(4,4)= 0.0D0

C
CALL RG(4,4,A,WR,WW,0,ZZZ,IV1,IV1,FV1,IERR)
CALL DSTABL(DEOS,WR,WW,FREQ)

C
IF (J.GT.1) GO TO 10
DEOSOO= DEOS
UOO = U
LL= 0
GO TO 2
10 DEOSNN = DEOS
UNN = U
PR= DEOSNN*DEOSOO
IF (PR.GT.0.D0) GO TO 3
LL = LL+1
IF (LL.GT.3) STOP 1000
IL = 0
UO = UOO
UN = UNN
DEOSO = DEOSOO
DEOSN = DEOSNN
6 UL = UO
UR = UN
DEOSL = DEOSO
DEOSR = DEOSN
C U = (UL+UR)/2.D0
ALPHA = (DEOSL-DEOSR)/(UL-UR)
U = (DEOSL-ALPHA*UL)/ALPHA
A(1,1) = 0.0D0
A(1,2) = 0.0D0
A(1,3) = 1.0D0
A(1,4) = 0.0D0
A(2,1) = A13*(XGB*SIN(THETAO)-ZGB*COS(THETAO))+B1*U*U*K1
A(2,2) = A11*U +B1*U*U*K2
A(2,3) = A12*U +B1*U*U*K3
A(2,4) = B1*U*U*K4
A(3,1) = A23*(XGB*SIN(THETAO)-ZGB*COS(THETAO))+B2*U*U*K1
A(3,2) = A21*U +B2*U*U*K2
A(3,3) = A22*U +B2*U*U*K3
A(3,4) = B2*U*U*K4
A(4,1) = -U
A(4,2) = 1.0D0
A(4,3) = 0.0D0
A(4,4)= 0.0D0

CALL RG(4,4,A,WR,WI,0,ZZZ,IV1,FV1,IERR)
CALL DSTABL(DEOS,WR,WI,FREQ)

DEOSM = DEOS
UM = U
PRL = DEOSL*DEOSM
PRR = DEOSR*DEOSM
IF (PRL.GT.0.D0) GO TO 5
UO = UL
UN = UM
DEOSO = DEOSL
DEOSN = DEOSM
IL = IL+1
IF (IL.GT.ILMAX) STOP 3100
DIF = DABS(UL-UM)
IF (DIF.GT.EPS) GO TO 6
U = UM
GO TO 4
5 IF (PRR.GT.0.D0) STOP 3200
UO = UM
UN = UR
DEOSO = DEOSM
DEOSN = DEOSR
IL = IL+1
IF (IL.GT.ILMAX) STOP 3100
DIF = DABS(UM-UR)
IF (DIF.GT.EPS) GO TO 6
U = UM
4 LLL = 10+LL
WRITE (LLL.*) U/U0,TC*U0/L
3 UOO = UNN
DEOSOO = DEOSNN
2 CONTINUE
1 CONTINUE
C
SUBROUTINE DSTABL(DEOS,WR,WI,OMEGA)
IMPLICIT DOUBLE PRECISION (A-H,O-Z)
DIMENSION WR(4),WI(4)
DEOS=1.0D+20
DO I = 1,4
 IF (WR(I).LT.DEOS) GO TO 1
 DEOS = WR(I)
 IJ = I
1 CONTINUE
OMEGA = WI(IJ)
OMEGA = DABS(OMEGA)
RETURN
END

C
SUBROUTINE TRAP(N,A,B,OUT)
C NUMERICAL INTEGRATION ROUTINE USING THE TRAPEZOIDAL RULE
IMPLICIT DOUBLE PRECISION (A-H,O-Z)
DIMENSION A(1),B(1)
N1 = N-1
OUT = 0.0
DO I = 1,N1
 OUTF1 = 0.5*(A(I)+A(I+1))*(B(I+1)-B(I))
 OUT = OUT+OUT1
FUNCTIONS USED IN NEWTON RAPHSON ROUTINE

FUNCTION FUNC(THETA0)
IMPLICIT DOUBLE PRECISION (A-H,O-Z)
COMMON P1,P2,P3,P4
FUNC = P1*DTAN(THETA0) + P2*DCOS(THETA0) + P3*DSIN(THETA0)
& + P4*(DTAN(THETA0))**2
RETURN
END

FUNCTION DFUNC(THETA0)
IMPLICIT DOUBLE PRECISION (A-H,O-Z)
COMMON P1,P2,P3,P4
DFUNC= P1*(1.D0/DCOS(THETA0))**2 - P2*DSIN(THETA0) +
& P3*DCOS(THETA0) + P4*2.D0*DTAN(THETA0)*(1.D0/DCOS(THETA0))**2.D0
RETURN
END
LIST OF REFERENCES

INITIAL DISTRIBUTION LIST

1. Defence Technical Information Center
 Cameron Station
 Alexandria VA 22304-6145
 No. Copies 2

2. Library, Code 052
 Naval Postgraduate School
 Monterey CA 93943-5002
 No. Copies 2

3. Deniz Harp Okulu
 Tuzla
 Istanbul, TURKEY
 No. Copies 2

4. Golcuk Tersanesi Komutanligi
 Golcuk
 Kocaeli, TURKEY
 No. Copies 2

5. Taskizak Tersanesi Komutanligi
 Kasimpasa
 Istanbul, TURKEY
 No. Copies 2

6. Deniz Kuvvetleri Komutanligi
 Personel Egitim Daire Baskanligi
 Bakanliklar
 Ankara, TURKEY
 No. Copies 1

7. Professor Fotis A. Papoulias, Code ME/Pa
 Department of Mechanical Engineering
 Naval Postgraduate School
 Monterey, CA 93943-5100
 No. Copies 1

8. Department Chairman, Code ME/Kk
 Department of Mechanical Engineering
 Naval Postgraduate School
 Monterey, CA 93943-5100
 No. Copies 1
 Naval Postgraduate School
 Monterey, CA 93943-5100

10. Selcuk Ornek
 Korfez cad. No: 27-A/9
 Derince, Kocaeli
 41900, TURKEY