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ABSTRACT

With the requirement for a spacecraft to maintain an orbital altitude band, a
simple energy balance algorithm has been developed using a combination of radial
distance and spacecraft specific energy for fixed-vector thruster control. While each
trajectory produces a unique band, initial attempts at producing a pre-specified band have
been unsuccessful. It is theorized that a certain radial bandwidth would correspond to a
specific set of control parameters, and that by creating maps of the relationship between
the two for various spacecraft configurations a method of maintaining the pre-specified
band could be found. This thesis studies variations in spacecraft configurations and finds
dependence of orbital bandwidth on thrust-to-drag ratio and ballistic coefficient. Also,
within certain ranges of the control parameters, multiple trajectories produce equivalent
radial bands. Analysis shows that all single-burn trajectories are characterized by similar
efficiencies, and are less efficient than a Forced Keplerian Trajectory (FKT).
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I. INTRODUCTION

Optimizing orbit maintenance trajectories for low-Earth orbiting (LEO) spacecraft is
increasingly important as space agencies around the world strive to maintain orbiting
programs with shrinking budgets. Conceptually, an orbit may be maintained using a
Forced Keplerian Trajectory (FKT), where thrust is used to cancel drag. This would prevent
orbital decay, maintaining a true Keplerian orbit. While this strategy is technically
impractical due to limitations in thrust vectoring and thrust magnitude adjustments, it does
provide a benchmark by which other strategies may be measured. While optimal control
theory [Ref. 1], shows that an FKT is not the optimal solution to the orbit maintenance
problem with respect to fuel, studies have yet to find a trajectory which is more fuel-
efficient.

Historically, most orbit reboost strategies have been based on the Hohmann transfer,
consisting of two thruster burns, where the first burn starts the spacecraft on an elliptical
path to a higher altitude, and the second bum circularizes the spacecraft's orbit at the desired
altitude. The Eccentricity Intercept Targeting and Guidance (EITAG) trajectory developed
by Gottlieb [Ref. 2] notes variations of eccentricity, e, vs semi-major axis, a, and integrates
backwards in time from the desired orbit. A two bum trajectory is developed which reboosts

and circularizes the orbit while minimizing errors in achieving the target orbit.

A third orbit maintenance strategy proceeds from the notion that a spacecraft must be
maintained within a specific radial band. A space station, for example, must be maintained
within an altitude band that can be reached by various launch vehicles for servicing and
manning requirements. A precise, circular orbit is not necessary. With this in mind, a single-

bum trajectory, boosting the spacecraft as it nears the lower altitude boundary, then allowing




it to decay over time, would maintain the required band while reducing the number of
required bums, and perhaps, the fuel required for orbit maintenance.
Pauls [Ref. 3] and Wilsey [Ref. 4] developed a computer model for such a strategy,

using various parameter variations to optimize the trajectory. While their results show that a
! single-bum trajectory is less fuel-efficient than the FKT benchmark, further study is
warranted. In addition, an accurate method of predicting the actual controlled radial band is
desired.

By non-dimensionalizing the equations of motion, greater clarity and precision will be

achieved when varying the control parameters. These results will be used to create maps of
radius and energy which will allow better control of the spacecraft's radial band.




II. DEVELOPMENT OF THE ORBIT MAINTENANCE PROCEDURE

A. NON-OPTIMALITY OF A FORCED KEPLERIAN TRAJECTORY

Wle optimal control theory techniques show that a Forced Keplerian Trajcctory
(FKT) is not optimal with respect to fuel [Ref. 1], significant insight into the problem can be
gained by looking into an extremely simplified version of the orbit maintenance problem
[Ref. 5]. If an FKT is optimal, the theory should lead to an optimal control history where
thrust is equal to drag.

Figure 1 Orbital band

The problem may be simplified by stating that the only requirement of the control system is
to maintain the orbit semi-major axis, a, and eccentricity, e, within such limits that the orbit
remains within the specified band. These two orbital elements define the shape of the orbit
within the orbital plane. This shape could theoretically vary from a circular orbit (¢=0)




where g varies from Rpin t0 Ryax (see Figure 1), to an elliptical orbit with perigee equal to

Rmin and apogee equal to Ry, , With e variation dependent upon the size of the band.
Further simplification is possible by looking only at the portion of the problem relating

to semi-major axis, a. This leaves a one degree-of-freedom system for optimization. To get

an equation of motion for semi-major axis, the work-energy theorem is used

AE= [F-ds (1)

This can be used to relate the specific mechanical energy of the orbit to the forces involved,
namely thrust and drag

il::__T—Dds
dt [m dt

-(T‘D)v 2)
m

Recalling the definition of the specific mechanical energy, € = -u/ 2a,

de _ p da
T ¥
This leads to an equation for &,
2
a=28Y(1-D) 4)

The other equation of motion for the system comes from the rocket equation

P N (5)
llpgo ve




where the specific impulse, I, and the acceleration due to gravity are multiplied to define the
exhaust velocity of the engine, v,.

The final major simplification comes from focusing on the band to be maintained.
When attempting to maintain a small enough band, the change in a is small, so the squared
term is essentially constant. Additionally, such a band would require a small change in

velocity,Av, to maintain it. Thus, v is also assumed to be constant. These assumptions allow
Equation 4 to be rewritten as

a=X (T-D) (6)

where k is a constant.

The optimal control problem is now formulated as finding the control history that best
transfers the spacecraft from some initial condition a, to some final condition ay. The
optimality criterion is minimizing fuel burned, which can be stated as maximizing the final
mass. The problem constraint is the available thrust, which is defined as

0<T<T,_, M

Thrust is the single element of control in the simplified problem. From optimal control
theory, the Hamiltonian is

Hed, X (T-D)-2 L
m

ATl Y | A (8)

m v m

[k.k A\ AKD




where A and A _ are the Lagrange multipliers, or costates of the system, corresponding to

the semi-major axis and mass respec. ely.
Pontryagin's Maximum Principle (PMP) states that at every point on the trajectory of
the system, the optimum control history maximizes the Hamiltonian. Stated mathematically,
u' =argmax_ _ H 9)

wel

By examining Equation 8, it is clear that the control variable, T, that maximizes the H-

function depends upon the sign to the quantity in brackets, which is called the switching

function, s
Ak A
Sm= __:_.. - .__-. (10)
m v,
Noting the constraint upon thrust, application of the PMP shows that
T_ . s>0
Te { = 11
{0 s<0 an

Called a bang-bang controller, this optimal control history contains no reference to drag;
therefore the optimal control for such an orbital transfer does not define thrust equal to
drag. The Forced Keplerian Trajectory is thus shown not be the optimal control method.

B. ORBIT CONTROL STRATEGY

It is desired to maintain a spacecraft within a specified radial band, using a single
thruster firing to reboost the spacecraft when it nears the minimum radius. Wilsey [Ref. 4],
shows that such a scheme is possible using radius and spacecraft specific energy as control

parameters. Figure 1 shows such a radial band, defining radii and energies.
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To facilitate this orbital control scheme, it is necessary to initiate thruster firing prior to
the spacecraft decaying to the minimum altitude, and shut down thrusters prior to gaining
the maximum altitude. Thruster firing is controlled by orbit radius, with

f)r-RO-rlh (12)

where 1y, is the radius of thruster initiation. Spacecraft specific energy is then monitored

throughout the burn, with thruster cut-off occurring when
E=Ey (13)

with E,;, being specific energy at thruster cut - ff. By specifying values for &r and E;p,

minimum and maximum radii will be achieved, denoted by ry, and ryy, respectively. Thisis

pictured in Figure 2.
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“glermrust Control Parameters

The choices for &r and Fyy, will produce a unique maximum band, but what values
correspond to the desired band? Does a specific, desired band produce a specific trajectory?
How do the bands and associated trajectories vary with changes in spacecraft parameters
such as thrust-to-drag ratio, specific impulse, and hallistic coefficient? Ross, Pauls, and

Wilsey [Ref. 6] propose a simple "energy-balance” algorithm where or and E,;, are varied




until the desired radial band is achieved [Appendix. A]. By following this procedure and
mapping Or and E,, as they vary with the actual band attained for different spacecraft
configurations, a relationship between the parameters is sought which would remove the

need for iteration and allow orbit trajectory prediction.

C. DEVELOPMENT OF THE EQUATIONS OF MOTION

The initial investigation of a single burn, low-earth orbit trajectory will be simplified by
assuming an orbit which is initially circular. The spacecraft is a non-lifting (blunt) body,
therefore the only aerodynamic force which affects it is drag. The external forces thus
pertarbing the orbit are aerodynamic drag, gravity, and thrust. Looking at the orbital
dynamics as a two-body problem, the coordinate system may be defined as shown in

Figure 3.

Figure 3 Orbial Coordinate System

The equations of motion for this system are

F
a,-ZF‘ (14)




F
au-z—ml (15)

where a; and a,, are the radial and transverse components of the inertial acceleration, XF,
and ZF,; are the sums of the respective forces, and m is the spacecraft mass. As seen in

Figure 3, drag and thrust can each be broken into components
D =-Dsin(y) D, =-Dcos(y) (16a&b)
T =Tsin(a) T, =Tcos(a) (17a&b)
where y denotes the flight path angle (between the velocity vector and the transverse axis),

and a represents the thruster elevation angle (between the thrust vector and the transverse

axis). Rewriting the equations of motion in polar coordinates using equations 16 and 17

leads to
. D T
']‘-Gzr--_p_———'-l»_' (18)
rz m m
. . D T
Ore 20tm ——4+ = (19)
m m

where p is the earth's gravitational parameter, and 0 is the angular position of the spacecraft.
D. NONDIMENSIONALIZATION QF THE EQUATIONS OF MOTION

When dealing with an orbital system, the use of standard dimensional units leads to
large variations in numbers that cause computational errors. To counter this and to better
study the effects of variation of certain parameters, a system of canonical units is developed

to non-dimensionalize the equations of motion.




1. Definitions
To nondimensionalize the equations, base units for length, mass, and time are
defined. The base length is the radius of the target orbit, which is defined as the midpoint of
the desired radial band, and is denoted by ry,. The base mass is the initial spacecraft mass,

and is denoted by my,. The base time is defined as the period of a circular orbit at a radius of

rp divided by 2x,, and is denoted by ty,

3
rb

gt (20)

These base units are then used to define the nondimensionalized variables for radius, mass,

andtime
T=2L
Ts (21)
m= 1
o (22)
T:T‘.
b (23)

The variable 0 is dimensionless by definition.
In addition to the three "basic” units, a base unit for density is also defined, and denoted
by pp. Using a local exponential density model with atmospheric scale height

pup e (24)

10




Py is defined as equal to p,. Nondimensionalizing p with ry, , and setting rer equal tory
produces a nondimensionalized density

p=eBo-v (25a)

where

=P, (25b)

This is used in the determination of drag, as drag is given by

D=LpAC,v’ (26)

where A is the surface area, Cgy the drag coefficient, and v the spacecraft velocity. A table of

quantities, their nondimensionalized cousins and relating factors is given in Appendix B.
2. Equation Nondimensionalization
The above definitions are used to develop the nondimensionalized variable

derivatives

i dr
d:’ dt( ) dt(df)_ ) t, tb 27)

]
~——
—
]
I

9994 .‘l?.] =4 de)t_ -9 (& (28)
b

- o"
dat” dt ) dt|df dtt, t, t

where primes denote a nondimensionalized parameter differentiated with respect to time.

These derivatives are used to yield the nondimensionalized equations of motion




-, D T
T SR e S (29)
7 m
o D, T
8+ 207 = ———+ ¥ (30)
m m

where the nondimensionalized values of both drag and thrust components are related to their

dimensionalized counterparts by the same factor

- t
FaF—-2_ ,F=DT

m,r,

31

3. Parameter Development
To study the effects of varying spacecraft design parameters on the orbit trajectory
and their related bands, nondimensionalized parameters are developed which represent
ballistic coefficient, engine specific impulse, and thrust-to-drag ratio. These parameters can
be thought of as quantifying atmospheric effects, spacecraft shape, and engine sizing.
a. Nondimensionalized Ballistic Coefficient, B
Recalling equation 26, the nondimensionaliztion of drag requires the

nondimensionalized density defined above, p , and a nondimensionalized velocity, v

Using the velocity equation
Vailer?d’ (32)
and the relationships in equations 27 and 28 gives
Vai?lt 33)
t

12
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which is substituted, along with p_into equation 26. Nondimensionalizing drag using
equation 31 gives

(34)

By defining the ballistic coefficient as the base mass divided by the product of the surface
area and the drag coefficient,

B=——% (35a)

the nondimensionalized ballistic coefficient is then defined as

Ba_B_ (35b)
p brb

which leads to the final nondimensionalized equation for drag

D=l— (36)
° B
b. Mass/Thrust Parameter, p
Fuel mass flow and thrust are related by the rocket equation,
S S (37)

1.2,

Following the example of equation 27 when nondimensionalizing the derivative of mass and

using the thrust relationship of equation 31, the nondimensionalized mass flow is written

13




S (38)
llpgotb
By defining
Ty
p= T2 1 (39)
lpgo b

variations in spacecraft specific impulse. I5, , can be incorporated into a final

nondimensionalized equation for both mass flow and thrust
' = - pT (40)
c. Thrust-to-Drag Ratio, T,

The thrust-to-drag ratio is defined as the thrust divided by the drag at the target
orbit. As both thrust and drag are forces and thus nondimensionalized by the same factors,

this ratio may be written

y YL (1)
Do

14




IIl. COMPUTER MODEL DEVELOPMENT

A. ORIGINAL DEVELOPMENT

Originally developed by Pauls [Ref. 3] and refined by Wilsey [Ref. 4}, a computer
program, written in FORTRAN, was developed to simulate the orbital motion of a
spacecraft. The main routine controlled input, output, and subroutine calls. Subroutines
computed drag and orbital parameters, controlled thrust, and updated the equations of
motion. A fourth-order Runge-Kutta numerical integration routine was used to integrate the
equations of motion. The nondimensionalized equations were simplified by defining new
state variables, which transformed the two second order differential equations into a set of
four first order differentials.
B. STATE VARIABLE DEFINITIONS

A five element state vector, x , is defined as

X,=r 42)

xz-t-%'- 43)

x,=0 (44)

x‘-é-%ﬂ (45)

X ,=m (46)
15




These states can be nondimensionalized using the factors introduced previously and
substituted into the equations of motion. Combining equations 29 and 30 with the

nondimensionalized state variables produces

dx., N D T .
__-.-i|i;-.l_q.—l_).siny+lsma 47)
i x;om o om
dx 2% X, > T
a2 D_ cosy + _T_ cosa (48)
di X, M X

As the flight path angle, v, is a function of the velocity vector, the geometric functions can be

represented by

X X X
siny=_2 cosy= 'V 3 (49a&Db)
v

Substituting these relationships into equations 47 and 48 leads to the final equations of
3 motion as they are programmed into the simulation:

—_——F (50)

—_-—.+Lsino. (1)
m

—_—tmX (52)

- -— + cosQL (53)




dx _
s 5t (54)
at

C. PROGRAM EXECUTION

Program execution begins with the input of variables from the user as well as an input
file (see Appendix A). Following the definition of the initial conditions, the DRAG
subroutine is called. The first call establishes the drag of the FKT benchmark. Execution
then enters the main loop, where drag is called again, computing the instantaneous velocity
as well as the density. With the velocity updated, the specific energy is computed and the
CONTROL subroutine is called. This routine controls thruster activation and cut-off. With
a thrust value thus determined, subroutine EQN updates the equations of motion. RK4 is
the fourth order Runge-Kutta routine that integrates the state variables. Flight-path angle,
fuel-burned totals and achieved altitudes are updated once every radian, while the routine
ORBELMTS updates the classical orbital elements. The equations of motion are updated
5000 times per orbit, while all pertinent variables are sampled ten times per orbit.

D. VALIDATION

Since the program logic remains intact, the validation process is simplified. The initial
baseline test consists of running the program with the spacecraft in an initially circular orbit
with gravity the only external force. Radius, velocity, specific energy and angular
momentum all remain constant, validating the basic equations without drag or thrust.

The next step in the validation process compares the trajectory produced by the
modified version with those produced by the earlier program for a consistent set of inputs.
Since an in-depth validation is done by Wilsey [Ref. 4], duplicating the results of the earlier
version validates the modified program. The main difference between the two versions lay in

the nondimensionalizing process, and the calculating of instantaneous spacecraft mass. To

17
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achieve universality, all input variables and parameters are already nondimensionalized.
Using input values which correspond to those used in the earlier study, the modified version

produces equivalent results.

E. DEVELOPMENT OF "SMART" VERSION

The aim of this study is to determine values of dr and E,}, which will maintain a
specified band, therefore a version of the program that accepts input values of dr and E;j, to

simulate the trajectory is developed. This program is used as a test to validate the results
obtained using the parameter mapping procedure. A listing of the program is found in
Appendix C, while example input and output files are listed in Appendix D.

18




IV. PARAMETER MAPPING

To remove the iteration on ér and Ey, which is required in the algorithm, a way of

determining these control parameters for a given band prior to program execution is
required. In addition, the variations in the control parameters for different spacecraft
configurations must be known.

To achieve these goals and possibly find a mathematical relationship between the
parameters, a mapping technique is used. Running the simulation for a specific spacecraft
configuration produces a set of trajectories. Multiple simulation runs for various
configurations produces a family of trajectory curves. Combining all of the trajectories into
a catalog where the achieved band is graphed against dr and E,y would bypass the

algorithm's iteration process; for a given spacecraft configuration and a desired orbital band,
values for 8r and Eqj, could be pulled from the maps and input into the control program.

A. PARAMETER VARIATION

For this work, a spacecraft configuration is defined as a set of the three
nondimensionalized parameters previously introduced. Five values for each parameter are
combined to produce a database of 125 different configurations. The parameter values and
their dimensionalized counterparts are listed in Table 1. These values are chosen to
represent a range of actual values for thrust-to-drag ratio, ballistic coefficient and specific
impulse (Is). Increasing values of T/D represent moving up to more powerful motors.
Increases in specific impulse, the amount of thrust per unit weight of propellant, are
reflected in decreasing values of p. The I, values reflect those of different propellent

19




systems, from cold gas propellants (Isp = 100), to ionic propulsion systems (g, = 3000).
Increasing values for B, the nondimensionalized ballistic coefficient, represent an increase in

Table 1 PARAMETER VALUES FOR MAPPING PROCEDURE

1.202¢4 (75)

2.404e4  (150)

4.808e4 (300)

8.013e4 (500)

spacecraft mass, decrease in surface area, or both, according to equations35aand b. A
representative large orbiting platform with the following characteristics
mass = 20,000 kg
surface area = 60 m2
drag coefficient =2.2
would have a ballistic coefficient of 150 kg/m2.
B. PROGRAM MODIFICATION

Two modified versions of the computer simulation are used to accomplish the mapping.

One tracks the nondimensionalized orbital decay, 87, while the other focuses on the thruster

cut-off energy,E .

1. Automatic variation of ordered band
Boih control parameters, 87 and E,, , can be defined by an "ordered” band. The

amount of orbital decay defines the lower bound, while the thruster cut-off energy defines

20




the upper bound. By varying this ordered band, a range of values for df and Em can be

simulated and mapped. A program loop added outside of all subroutine calls and data
output commands automated repetition of the simulation, allowing the ordered band to vary
from 50 km to O km (which would simulate the FKT), in 2.5 km increments. For each
ordered band, the program simulated 50 orbits, or approximately three days of spacecraft
flight.

2. "Bubble sort" of minimum and maximum radii

The actual band of a trajectory is defined as the radial distance between the

minimum and maximum radii that is achieved during the simulation. Two

nondimensionalized variables,T__ and T__are initially defined as equal to the initial orbit

radius. As the program simulates the trajectory and the instantaneous orbit radius is
computed, it is compared to the two variables. Whenever the instantaneous radius is less

than the radius held in T __, the variable takes on this new, lesser radius. Conversely, T is

updated to the instantaneous radius whenever the orbit goes above the current maximum. At
the end of a trajectory simulation, T and ¥__will hold the minimum and maximum radii
achieved. The variables are reset for each trajectory, producing an actual band corresponding

to each variation in 87 and E,,

3. Actual band vs. ordered band
The purpose of the "ordered” band is tutorial; it provides a way to visualize and vary

the control parameters &t and Em. Once the simulation is run, the ordered band has no real

significance. The actual radial band that is achieved for the given set of control parametersis
all that is of practical interest. An orbit maintenance problem as developed here is defined by

the band to be maintained, not the individual obit radii. Any specified minimum and

21
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maximum orbit radii form a radial band. By looking at the achieved band rather than the

minimum and maximum radii separately, the dimension of the problem is reduced.

C. MAPPING ACTUAL BAND VS. 8 ANDE

Output from each of the parameter-mapping versions consists of the values of the
respective control parameter and the corresponding actual band produced. An example plot
for thruster cut-off energy is shown in Figure 4. This depiction of the trajectory is then
combined with similar trajectory curves corresponding to different spacecraft

configurations, producing a catalog of trajectories. With a specific spacecraft and a required

band to be maintained, values of the control parameters 8t and f:‘.m can be pulled from the

plots and used to maintain the spacecraft's orbit, removing the need for iteration in the
proposed algorithm.

Achieved Band
Figure 4 Example map of achieved band vs. thruster
cut-off energy :
22




V. ANALYSIS AND RESULTS

Analysis of the parameter maps consists of investigating the effects of spacecraft
parameter variation on achieved band. While 125 different spacecraft configurations are
catalogued, investigation is focused on four configurations which best exhibit the noted

phenomena. The following configurations are studied:

Config 533 Config 234 Config 342 Config 453
T/D = 500 T/ID=175 T/D = 100 T/D =250
B=150kg/m2 B=150kg/m2 B=300kg/m2 B =500kg/m?

The prefix D- or E- on the maps indicate the source file of the data; D represents actual

band plotted against orbital decay ( 57), while E represents actual band plotted against

thruster cut-off energy (E,, ) The first digit refers to T/D ratio, the second to B, and the third

to Igp- On each plot, only one parameter is varied.

Accuracy of the mapping technique is also tested by using the control parameters in the
"smart” version of the simulation and noting the size of the actual band achieved. All figures
discussed are located in Appendix E.

\

A. VARIATION OF SPECIFIC IMPULSE, I,

Figures 1 through 4 show the effects of varying a spacecraft engine's specific impulse.

In all cases, the effect of varying l; is extremely small. Figure 1 shows no variation between

trajectories. It is also noted that the curves for actual band vs. 8F exactly match the shape of




the actual band vs. E‘h . This is due to the way the control parameters are varied together,

using the concept of the "ordered” band introduced in the previous chapter.

Figures 2, 3, and 4 all show families of trajectory curves corresponding to spacecraft
whose configurations differ only in the value of their engine's specific impulse; thrust-to-
drag ratio and ballistic coefficient remain constant within each figure. While individual

trajectories differ, the general shape in each case remains the same. Also, as the actual band

narrows, the trajectories become practically identical. This convergence represents identical
control parameters producing equivalent bands for different spacecraft configurations.
Recalling the definition of the mass/thrust parameter p (equation 39) and Table 1 it is

clear that despite large changes in specific impulse, the parameter p remains a small number
that varies little. Figures 1 through 4 confirm that variations in specific impulse have littie
effect on the orbital band maintained using the single-burn algorithm.

B. VARIATION OF BALLISTIC COEFFICIENT

Figures 5 through 8 show the effects of varying the spacecraft's ballistic coefficient.
Again, the values of thrust-to-drag ratio and (in these cases) specific impulse remain
constant throughout each figure. Comparing the trajectories in any of the individual maps
shows considerably more effect on actual band by variation of ballistic coefficient than was
produced by varying specific impulse.

Generally, the size of the actual band for a given control parameter decreases with
increasing values of the nondimensionalized ballistic coefficient. Figure 5 shows this trend
with only small deviations. Figures 6 and 7 show larger variations between individual
trajectories, but the shrinking of the actual band does continue. Figure 8 shows less

variation, which points towards a relationship between the ballistic coefficient and the thrust-
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to-drag ratio. Varying ballistic coefficient has less of an influence on configurations with
larger values of T/D.

Recalling equations 35 and 36, increasing spacecraft mass or reducing spacecraft
surface area leads to an increase in ballistic coefficient, which in turn decreases drag. As the
thrusters modeled in this simulation operate at a constant thrust, those configurations with
large thruster values feel little effect from the decrease in drag, while those with smaller
thrusters, and thus smaller T/D ratios, more easily "sense" the decreased drag. With thrust
and drag smaller, the algorithm is better able to control the actual band.

C. VARIATION OF THRUST-TO-DRAG RATIO

Figures 9 through 12 show the effects of varying the spacecraft's thrust-to-drag ratio.
Each plot represents a family of spacecraft with consistent values of ballistic coefficient and
specific impulse, but different T/D ratios. Comparing individual trajectory curves withina
map shows that increasing thruster size generally increases the actual orbital band achieved.

As with ballistic coefficient variation, the effects of varying T/D are more profound than
when changing specific impulse. Once again, the effect of large thrusters is most noticeable,
as they seem to cancel out irregularities present in configurations possessing smaller
thrusters. In each figure, the trajectory corresponding to that configuration with the largest
thrust-to-drag ratio ( T/D = 500) is a smooth curve, and in some cases almost a straight line.
Larger values for T/D ratio inhibit the single-burn algorithm; for a given value of either
control parameter, a larger thruster produces a larger band. Smaller thrusters, which may be
thought of as being more responsive to this control scheme, produce a tighter orbital band.

D. MULTIPLE TRAJECTORIES FOR A SPECIFIED BAND
An assumption made during the formulation of the single-burn algorithm and the

mapping procedure covered here deals with the relationship between the control parameters
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and the band they produce. Given a spacecraft and a set, periodic thruster firing schedule

(defined values of 8t and Em ), a certain radial band will be maintained. The parameter

mapping technique essentially reverses this process, starting with the required radial band
and looking at the required thrusting scheme.
It seems reasonable to assume that since a unique thruster firing schedule produces a

specific radial band, the converse will also hold; a certain radial band will yield unique

values of 87 and E,, . As can be seen in Figures 2 through 12, this is not the case. On each

map, there is a region where a specific band can be produced by multiple values of each
control variable. Such a choice between control parameter values could lead to new
optimizing opportunities: which trajectory is "best"? To investigate this development, the
"smart" version of the simulation is used to study different thruster firing schedules for a

specific spacecraft configuration.

E. "SMART" PROGRAM VALIDATION

Figure 13 shows the two plots relating actual band to the control parameters for
Configuration 234 introduced previously. For nondimensionalized radial bands between
approximately .0076 and .0095 times the base orbit radius, there are three possible values
for both control parameters. To validate the smart program and investigate the control
parameter relationships, the following trajectories are chosen which produce nearly equal
radial bands:

Trajectory  Actualband

Traj.1 0.008610134
Traj.2 0.008608818
Traj3 0.008789484
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The values of 87 and E“ corresponding to each trajectory are used by the smart program to

generate the specific simulation for 50 orbits.

1. Trajectory comparison
The orbit radius of each individual trajectory is shown in Figures 14 through 16. A

combined plot is shown in Figure 17. While each trajectory produces a radial band of
comparable width, the bands and the thruster firing patterns are quite different. Figure 14
shows Trajectory 1's decay to initial thruster firing taking just over ten orbits, followed by a
long bumn. After thruster cut-off the orbit's eccentricity is quite significant, as seen in the

rhythmic variation in nondimensionalized radius (Rbar) as the orbit decays again toT,, .

Figure 15 shows a similar pattern for Trajectory 2, with a smaller orbital decay and a shorter
bum-time.

Figure 16 shows a much different pattern. Decay to the initial thruster firing occurs
rather quickly, with the orbit proceeding directly to a highly eccentric state. The eccentricity
of the orbit causes the spacecraft to hit the specified thrusting radius as well as the thruster
cut-off energy more frequently. The orbit actually becomes an ellipse whose apogee and
perigee are bounded by the minimum and maximum radii of the orbital band. Noting the
minimum and maximum radius values for Trajectory 3 plotted in Figure 16 and the

definition of eccentricity

em = 2 (55)

the eccentricity is found to be approximately 0.0043. Figure 18 compares the eccentricities
of the three trajectories, and that of Trajectory 3 confirms the computed result, as it tends

towards a steady-state value of approximately 0.0045.
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2. Efficiency comparison

Given these differing burn patterns, which one is best? A performance index must
be defined to be optimized; this study looks at maximizing fuel efficiency. Figure 19 shows
the mass of fuel bumed for each trajectory, as well as that for a Forced Keplerian
Trajectory.

Itis clear that the conclusions made by Wilsey [Ref. 4] are confirmed; none of the
single-burn trajectories are more fuel-efficient than an FKT. What is of interest, however, is
that the average slope of the fuel-burned curve appears independent of thruster burn pattern.
Regardless of the frequency and length of thruster firing, all three single-burn algorithm
produce the same average fuel bumn rate. |

3. Variation Of Orbital Simulation Length
In comparing these trajectories, it is helpful to look at different orbital parameters,
including spacecraft specific energy. The nondimensionalized specific energy is defined as

=2 ]
fay -2 56
2 T (56)

and is shown for each orbit in Figure 20. The near vertical increases in specific energy
correspond to thruster firings; the greater the rise in energy, the longer the burn. Trajectory
3 quickly reaches a state where the specific energy is tightly controlled by a high-frequency,
short-burn schedule. With only two bumns showing for the other trajectories, however,
sound conclusions cannot be drawn; more data is required. An additional series of
simulations is run for a period of 100 orbits, with orbit radius, specific energy, and fuel
mass burned shown in Figures 21 through 24, respectively.




a. Transition to a Tight Energy State

From Figure 21, it is seen that Trajectory 2 undergoes a significant change around
its 65th orbit; the radial band maintained expands significantly. Comparing the three
trajectories in Figure 22, it is seen that Trajectory 2 transitions to a tightly governed energy
state very similar to that reached earlier by Trajectory 3 (although the energy level of
Trajectory 2 is higher). This transition appears due to the eccentricity of the orbit increasing
to a point where the orbit grazes the prescribed band; the perigee and the apogee of the orbit
are consistently in contact with the bounds defined by the control parameters, as shown in
Figure 23. Despite the change in the thrusting pattern and the increase in radial band size,

Figure 24 shows that the slope of the fuel-burned curve remains consistent, above that of the
FKT.




VL. CONCLUSIONS AND RECOMMENDATIONS

The purpose of this thesis was to create a catalog of control parameter maps for various
spacecraft configurations, using a proposed single-burn trajectory algorithm for low-earth
orbit maintenance. Such maps are used to remove the iteration required in the algorithm
(Appendix A), assuring maintenance of the desired band and removing the need for human
intervention in the control process. Additionally, study of the relationships between control
and spacecraft configuration parameters led to new insights into the orbit maintenance
problem. Finally, comparison of all single-bum trajectories to the Forced Keplerian
Trajectory (FKT) benchmark for optimization of fuel-efficiency could not corroborate the
optimal control theory finding that the FKT is not the optimal trajectory.

The FORTRAN simulation developed by Pauls [Ref. 3] and refined by Wilsey [Ref. 4]
was further modified by nondimensionalizing the entire simulation, then developing two
versions to accomplish the parameter mapping. A "smart" version was also developed which
would accept as input the control parameters mapped out in the thesis, thus testing the
validity of the plots.

Three nondimensionalized spacecraft configuration parameters related to thrust-to-drag
ratio, ballistic coefficient, and specific impulse were defined and varied through a range
practical values. Their individual effects upon the spacecraft's trajectory were studied.
Variations in specific impulse produced little change in the trajectories. Variations in
ballistic coefficient and thrust-to-drag ratio produced more pronounced changes between
trajectories, with a coupling noted between the two. While increasing the value of the
ballistic coefficient generally decreased the size of the maintained band, the influence of the
ballistic coefficient was significantly reduced for high thrust values. High values of T/D
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produced larger radial bands, and also seemed to cancel out any orbital irregularities present
in spacecraft with smaller, less powerful thrusters.

An interesting discovery was that a specific radial band could be produced by different
combinations of control parameters; the relationship between an orbital band and a thruster
firing schedule was not one-to-one. This allowed for further optimization studies, as a
certain single-burn scheme might actually be superior to an FKT.

While the FKT was shown to be consistently better than all single-bumn trajectories in
this study, the differences in thruster firing patterns proved intriguing. Different trajectories
producing comparable radial bands had drastically different thruster firing times and
frequencies. High orbit eccentricity, where the orbit's perigee and apogee were bounded by
the radial band , sent the trajectory into a periodic, high-frequency, low burn-time thrusting

scheme, where specific energy varied little. Fuel-burn curves for each single-burn trajectory

maintained a consistent siope, even after the orbit transitioned to this tightly governed
specific energy state.

This thesis opens the door for further study as well, since some questions were
unanswered, and new questions have arisen. A comparison of the single-burn algorithm to a
dual-burn algorithm such as EITAG [Ref. 2] is warranted. While not superior to an FKT, a
single-burn orbit maintenance algorithm may still be better than the dual-burn solution.
Additionally, what effects do other orbital parameters such as flight-path angle and
spacecraft velocity have upon the trajectory? Is the transition to the tight energy state
globally valid? And on a grander scale, what is the optimal orbit maintenance strategy? What
form of bang-bang control will minimize fuel burned and provide the most efficient means
of maintaining a continued presence on orbit? With man's continued presence in space
seemingly contingent upon maximizing performance and efficiency while minimizing cost,

such study is certainly warranted.
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APPENDIX B

Nondimensionalization Table
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APPENDIX C

PROGRAM LISTING

PROGRAM ORBMAINT
ORBMAINT is a self-contained, nondimensionalized orbit maintenance program
that will control the orbit of one body orbiting another. The program consists of a main
routine controlling input, output, and subroutine calls, and five subroutines which
compute atmospheric drag, the equations of motion, the standard orbital elements, and
the number and duration of thruster firings. A 4th order Runge-Kutta integrator is used
to solve the eﬁuations of motion. The program also performs comparative calculations

for a Forced Keplerin Trajectory (FKT)
VARIABLE DEFINITIONS

ARRAYS:
XBAR(1) nondimensionalized orbit radius
XBAR(2) nondimensionalized orbital radial velocity
XBAR(3) theta
XBAR(4) nondimensionalized orbital angular velocity
XBAR(S) nondimensionalized spacecraft mass
XBDOT(1) derivative of XBAR(1)
XBDOT(2) derivative of XBAR(2)
XBDOT(3) derivativeof XBAR(3)
XBDOT(4) derivative of XBAR(4)
XBDOT(5) derivative of XBAR(5)

FILE INPUT:
ROBAR initial nondimensionalized orbit radius
MOBAR initial nondimensionalized spacecradft mas
FORBIT number of orbits to simulate
STEP time increment step size
PRNT print interval step size
EETABAR atmospheric scale height
TDBAR nondimensionalized thrust-to-drag ratio
BBAR nondimensionalized ballistic coefficient
PBAR nondimensionalized mass/thrust parameter

USER INPUT:
ALPHA

ALPHAR thrust angle

DLTRBR nondimensionalized orbital decay: ROBAR-RTHBR
ETHBR nondimensionalized spacecraft energy

COUNTERS:
TBAR current time (initial value =0)
INDEX (initial value =0)
KOUNT (initial value =0)




C INITIAL AND BOUNDARY CONDITIONS:

.C DOBAR initial nondimensionalized atmospheric drag
C EOBAR initial nondimensionalized spacecraft energy
C VOBAR initial nondimensionalizedspacecraft velocity

r C RMNBR nondimensionalized minimum orbit radius
i C RMXBR nondimensionalized maximum orbit radius
C PROGRAM VARIABLES:
C ABAR nondimensionalized semi-major axis
C APOGEE nondimensionalized orbit apogee
C DBAR nondimensionalized atmospheric drag force
C EBAR nondimensionalized spacecraft energy
C ECC orbital eccentricity
C GAMMAD
C GAMMAR flight path angle
C HBAR nondimensionalized angular momentum
C FUELKEP keplerian fuel burned per program iteration
C TOTKEP total keplerian fuel burned
C MBRFUEL nondimensionalized mass of fuel burned
C PERIGEE nondimensionalized orbit perigee
C PRDBAR nondimensionalized orbit period
C RHOBAR nondimensionalized atmospheric density
C RTHBR nondimensionalized radius of thruster firing
C TBARF simulation stop time
C THBAR nondimensionalized spacecraft thrust
C THBRCAP nondimensionalized spacecraft thrust capability
C THBRKEP nondimensionalized keplerian thrust
C THGMA flight path angle at thruster initiation
C VBAR nondimensionalized spacecraft velocity
C CONSTANTS:
C Pl pi
g J state variable index
C vanabledeclarations:
IMPLICIT REAL*8(A-HM-Z)
c DIMENSION XBAR(5),XBDOT(S)
C constant definitions:
}’l =DATAN(1.0D+00)*4.0D+00
=5
C
C initialize keplerian fuel totals
FUELKEP=0.0D+00
TOTKEP=0.0D+00
gCCCCCCCCCCCCCCCCCCCCC
OPEN(10, FILE="input', STATUS='OLD")
OPEN(20, FILE="orbpar’, STATUS=NEW")
OPEN(30, FILE='orbel', STATUS='NEW")
c OPEN(40, FILE="orbetc', STATUS='"NEW")
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read input file
READ(10,1)ROBAR,MOBAR ,FORBIT,STEP,PRNT ,BETABAR,
*TDBAR,BBAR,PBAR
FORMAT(10(/,21X,D15.9))

convert time and intervals to radians
TBARF=2.0*PI*FORBIT
STEP=2.0*PI*STEP
PRNT=2.0*PI*PRNT

read user inputs of thrust angle and control parameters
PRINT*, 'ENTER ALPHA'
READ*,ALPHA
ALPHAR=ALPHA*P1/180.0D+0

PRINT*, 'ENTER DLTRBR'
READ*, DLTRBR

PRINT*, 'ENTER ETHBR'
READ*, ETHBR

initialize counters
TBAR=0.0D+00
INDEX=0
KOUNT=1

initialize state variables
XBAR(1)=ROBAR
XBAR(2)=0D+0
XBAR(3)=0D+0
XBAR(4)=(1/ROBAR)**1.5
XBAR(5)=-MOBAR

initially, set achieved orbit radii to center of orbital band
RMNBR=ROBAR
RMXBR=ROBAR

set radius for thruster initiation
RTHBR=ROBAR-DLTRBR

CALCULATIONS
call DRAG to determine initial and keplerian atmospheric drag

CALLDRAG(BBAR XBAR,BETABAR,VBAR,DBAR)
DOBAR=DBAR

commence calculation loop. call DRAG to determine s/c velocity and atm drag

100 CALLDRAG(BBAR XBAR,BETABAR,VBAR,DBAR)

C
C

determine s/c energy
EBAR=(VBAR*VBAR)Y2.0-(1/’XBAR(1))

determine spacecraft thrust capability
THBRCAP=TDBAR*DOBAR
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determine keplerian thrust (=atmospheric drag)
THBRKEP=DOBAR
call CONTROL to fire or shutdown thrusters
CALL CONTROL(ETHBR, XBAR,THBAR ,RTHBR . EBAR, THBRCAP)
call EQN to update the orbital equations of motion
CALLEQN(DBAR . XBAR . XBDOT,VBAR, THBAR ALPHAR PBAR)
call RK4 to do the runge-kutta integration over time
CALLRK4TBAR XBAR XBDOT J STEP,INDEX)

check for completion of runge-kutta integrator. if not done, loop back to 100
IF (INDEX .NE. 0) GO TO 100
runge-kutta complete: update variables for computation of orbital elements
and output
GAMMAR=ATAN(XBAR(2)/(XBAR(1)*XBAR(4)))
GAMMAD=GAMMAR*180.0D+0/PI
compute flight path angle during thrusting, THGMA
IF (THBAR .GT. 0.0D+00) THEN
THGMA =GAMMAD
ELSE
THGMA=0.0D+00
ENDIF

RBAR=XBAR(1)

MBAR=XBAR(5)
MBRFUEL=MOBAR-MBAR
FUELKEP=THBRKEP*PBAR*STEP
TOTKEP=TOTKEP+FUELKEP

IF (RBAR .LE. RMNBR) RMNBR=RBAR
IF (RBAR .GE. RMXBR) RMXBR=RBAR
ACTBAND=RMXBR-RMNBR

call ORBELMTS to determine the classical orbital elements

CALLORBELMTS(EBAR,RBAR,VBAR,GAMMAR,ECC ABAR APOGEE,

*PERIGEE,PRDBAR)

check if print interval acheived. if not, skip ouput section
IF (KOUNT .LT. DNINT(PRNT/STEP)) GO TO 200

OUTPUT

WRITE(20,2)TBAR/(2.0*P1), RBAR,VBAR MBRFUEL ,EBAR
FORMAT(2X,F6.2,2X ,F11.92X F11.92X F11.92X F11.9)

WRITE(30,3)TBAR/(2.0*P1) ABAR ,ECC, APOGEE PERIGEE,PRDBAR
FORMAT(2X F6.2,1X F11.93X F8.63X F11.9,1X F11.92X F8.4)

WRITE(40,4)TBAR/(2.0*P1),DBAR,GAMMAD., THBAR TOTKEP
FORMAT(1X,F6.2,2X F12.9,1X ,F104,1X F11.9,1X,15.12)

once printing completed, reset counter
KOUNT=0
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update counter

KOUNT=KOUNT+1

check if simulation complete. if not loop back to 100

IF (TBAR .LT. TBARF) GO TO 100

PRINT?¥*, 'Actual band achieved: '
PRINT*, ACTBAND

END

CCCCCCCceeececceeccecccccc
DRAG calculates the spacecraft velocity and the atmospheric drag acting on the
spacecraft, using a local exponential atmospheric density model

SUBROUTINEDRAG(BBAR,XBAR ,BETABAR,VBAR.DBAR)

IMPLICIT REAL*8(A-H M-Z)
DIMENSION XBAR(5)

calculate spacecraft velocity
VBAR=((XBAR(2)*XBAR(2))+(XBAR(1)*XBAR(4))**2)**0.5
calculate nondimensionalized atmospheric density

RHOBAR=EXP(-BETABAR*(XBAR(1)-1))

calculate nondimensionalized atmospheric drag

DBAR=RHOBAR*VBAR*VBAR/(2. O*BBAR)

RETURN
END

CCCCCCCceceeeeecececcececec
g EQN updates the spacecraft equations of motion

SUBROUTINEEQN(DBAR,XBAR XBDOT,VBAR,THBAR,ALPHAR ,PBAR)

IMPLICIT REAL*8(A-HM-Z)
DIMENSION XBAR(5) XBDOT(5)

PI=DATAN(1.0D+00)*4.0D+00

A=XBAR(1)*XBAR(4)*XBAR(4)
B=1/(XBAR(1)*XBAR(1))
C=DBAR*XBAR(2)/((XBAR(5)*VBAR)
E=THBAR*SIN(ALPHAR)YXBAR(5)

F=2.0*XBAR(4)*XBAR(2)/XBAR(1)
G=DBAR*XBAR(4)/(XBAR(5)*VBAR)
H=THBAR*COS(ALPHAR)/(XBAR(5)*XBAR(1))

XBDOT(1)=XBAR(2)
XBDOT(2)=A-B-C+E
XBDOT(3)=XBAR(4)
XBDOT(4)=-F-G+H
XBDOT(5)=-PBAR*THBAR
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RETURN
END
CCCCCCcccceceececececececcecce
C ORBELMTS calculates the nondimensionalized orbital elements

C
SUBROUTINEORBELMTS(EBAR,RBAR,VBAR,GAMMAR ,ECC,ABAR,
*APOGEE, PERIGEE PRDBAR)
IMPLICIT REAL*8(A-H.M-2)

PI=DATAN(1.0D+00)*4.0D+00

calculate angular momentum
HBAR=RBAR*VBAR*COS(GAMMAR)
calculate eccentricity
PROB=(1.0+2.0*EBAR*HBAR*HBAR)
IF (DABS(PROB) .LT. 1.0D-12) THEN
ECC=0.0D+00
ELSE
ECC=PROB**0.5
ENDIF
calculate semi-major axis
ABAR=-1.0/(2.0*EBAR)
calculate apogee
cal .:lPOGE.E=ABAR*( 1.0+ECC)
culate peri
PERIGE%:ABAR*(I.O-ECC)
calculate period
PRDBAR=2.0*PI*(ABAR**1.5)

RETURN
END
CCCCCCCCcecceeeeececececceecce
C RK4 does the fourth order runge-kutta integration

C
SUBROUTINE RKATBAR,XBAR,XBDOT J,STEP,INDEX)
IMPLICIT REAL*8(A-H,M-Z)
INTEGER INDEX,I
DIMENSION XBAR(5).XBDOT(5),SAVED(5),SAVEX(5)

INDEX=INDEX+1
GOTO(1,23,4),INDEX

DO 101=1]J

SAVEX(I)=XBAR(I)

SAVED(1)=XBDOT(1)

10 XBAR(I)=SAVEX(I)+0.5D+0*STEP*XBDOT(I)
TBAR=TBAR+0.5D+0*STEP

RETURN

DO 201=1J
SAVED()=SAVED(1)+2.0D+0*XBDOT(I)

O 00 0
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XBAR(I)=SAVEX(I)+0.5SD+0*STEP*XBDOT(I)
RETURN

DO 301=1J
SAVED(I)=SAVED(1)+2.0D+0*XBDOT(I)
30 XBAR()=SAVEX(1)+STEP*XBDOT(l)
TBAR=TBAR+0.5D+00*STEP

wn

c RETURN

4 DO 401=1)

40 XBAR(I)=SAVEX(I)+STEP/6.0D+0*(SAVED(I)+XBDOT(I))
INDEX=0
RETURN

C
END

CCCCCCCCCCccececeecececeececce
C CONTROL determines if the spacecraft is within radial and energy limits prescribed
C Dby the desired radial band and controls firing of the thrusters accordingly

C
SUBROUTINE CONTROL(ETHBR XBAR, THBAR ,RTHBR ,EBAR,
*THBRCAP)
IMPLICIT REAL*8(A-H .M-Z)
DIMENSION XBAR(5),XBDOT(5)

check if thrusters already on
IF (THBAR .EQ. THBRCAP) GO TO 100
check if orbit radius is less than or equal to thrusting radius
IF XBAR(1) .LE. RTHBR) THEN
check if s/c energy is less than or equal to thrusting energy
IF (EBAR .LE. ETHBR) THEN
if both are true, then fire thrusters
THBAR=THBRCAP
ELSE
if not, do not fire thrusters
THBAR=0D+0
ENDIF
ELSE
THBAR=0D+0
ENDIF

O 0O 60 00

@)

C
C checkif s/cen greater than thrusting energy. if so, turn off thrusters
::00 IF (EBAR. E. ETHBR) THBAR=0D+0

RETURN
END
C

CCCCCCCCCCccecceccccecececcececcecececeecececececccecceccceccceccccc




A. SAMPLE INPUT FILE

1.000000000D+00
1.000000000D+00
1.000000000D+02
2.000000000D-04
1.000000000D-01
1.407286740D+02
7.500000000D+01
2.403901513D+04
7.902309754D-01

APPENDIX D

ROBAR
MOBAR
FORBIT

STEP
PRNT

BETABAR

TDBAR
BBAR
PBAR

B. SAMPLE OUTPUT FILES (through 20 orbits)
SPACECRAFT CONFIGURATION: 234

T/D:75 B:150 Isp:1000
REQUIRED BAND: 0.006035
DLTRBR: 0.001035681
ETHBR: -0.499482695
ACHIEVED BAND: 0.0059946
FILE: ORBPAR

ARE 2 2

1.00 0.999733807 1.000133083
2.00 0.999457389 1.000271285
300 0999169910 1.000415031
4.00 1.003238879 0.997268162
500 1.003357471 0.997127460
6.00 1.003534507 0.996949890
7.00 1.003680096 0.996803384
800 1.003794299 0.996688313
9.00 1.003874691 0.996606844

10.00 1.003919779 0.996560448

11,00 1.003930433 0.996548591

1200 1.003904591 0.996572859

13.00 1.003843996 0.996631972

1400 1.00374789%4 0.996726219

1500 1.003617000 0.996855001

16.00 1.003452807 0.997016952

17.00 1.003257664 0.997209856

1800 1.003034742 0.997430684

1900 1.002785952 0.997677081

2000 1.002513219 0.997947130

4]

0.002913851
0.003182619
0.003451645
0.003720414
0.003988924
0.004257950
0.004526460
0.004795487
0.005063997
0.005332249
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