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CHAPTER 1
INTRODUCTION

Fundamental to positioning is the concept of height or elevation above some vertical
reference datum. Since the process of determining heights (or height differences) using spirit
leveling demands that the vertical reference surface be an equipotential surface, historically the
geoid has been used for that purpose. By its very definition, the geoid refers to an equipotential
surface of the gravity field of the earth that most closely approximates the mean sea level in the
spatial least squares sense, at a given time.

There are more than three hundred regional vertical datums in the world today, most of
them are based on the long term mean value of the local mean sea level observed at one or more
primary tide gauge stations, with an implicit assumption that the mean sea level at these tide
gauge sites coincide with the geoid. With the present day accuracy requirement of £10 cm for
the vertical datum definition (Rapp, 1983), the mean value of the local mean sea level observed
at the tide gauge sites cannot be considered to coincide with the geoid. The departure of the
mean sea level (with respect to a specific time period) from the geoid is termed as Sea Surface
Topography (SST), which has a magnitude of up to £2m globally even over long time scales.
SST can be considered as a function of the geographic location (¢, A) and the time (t). Therefore
it varies temporally and spatially. Most of the temporal variations within a specific period can be
averaged out using appropriate filters, but those which are not cyclic in nature must be
considered for the computation of SST at the epoch for which the mean sea level is computed.
This leads to the concept of an epoch-dependent datum (Cross et al., 1987). This datum is
established by taking tide gauge readings at one or more tide gauge stations over a particular time
span and reducing these measurements to a specific epoch within the time interval. All heights
are then referred to this adopted vertical reference datum. Mean sea level at a later epoch will
not coincide with this reference surface.

Since the vertical datums adopted by different countries are based on mean sea levels
computed for differen: epochs, using different procedures, and tide gauge measurements, they
differ from each other as well as with the geoid to an extent of +2m. Estimated vertical datum
inconsistencies &h (Laskowski, 1983) and its propagated effects on terrestrial gravity anomalies
over continental plates are given in Heck (1990, Table 1). The magnitude of the effects of
vertical datum inconsistencies on gravity anomalies are on the order of 0.5 mgal (ibid.). We see
this effect reflected as systematic regional biases in gravity anomaly data banks.

A few years back, geodetic applications were not affected by such discrepancies in
vertical datums as they have played a small role in the problems of geodesy. As greater accuracy
is required and more accurate measurements are made now, the problems caused by vertical
datum inconsistencies have started surfacing more dramatically than before (Rapp, 1987). The
requirements for defining and realizing a global vertical datum with a precision on the dm- or
even cm-level has become essential now, more than before, due to the improved measurement
accuracy provided by the space geodetic techniques. Several arguments emphasizing the need
for a global vertical datum have been discussed by Heck and Rummel (1990) and Carter et al.
(1989). A few of the strong arguments are as follows:




» The establishment of a global vertical datum will provide a means to accurately connect
national and continental vertical datums.

» Removal of the systematic regional biases in gravity anomaly data banks, noted earlier due to
referencing heights to different level surfaces in different vertical datum zones, requires the
definition of a global vertical datum, so that the gravity anomalies can now refer to one
unique geopotential surface.

« Comparisons between the results of geodetic leveling and oceanographic procedures for
determining sea surface slopes over long distances require a consistent vertical datum.

In addition to the above arguments, the rapid growth in positioning through the Global
Positioning System (GPS) has created a need for better understanding of orthometric heights
globally and how they can be determined using GPS.

1.1 Problem and the Background

Attempts to come up with a global vertical datum or a world vertical network, either by
connecting the existing regional vertical networks or by defining a global datum irrespective of
any specific regional vertical datum, is not new to the geodetic community. A special study
group 1.75 on the World Vertical Reference System was established at the 1983 Hamburg
TUGG/IAG meeting, with the primary purpose to study methods for the determination of a
unique vertical reference surface that could be used on a global basis, under the chairmanship of
Prof. Richard H. Rapp of The Ohio State University. The study group recommended that the
need to study the vertical datum problem is more relevant in this space geodetic age and we
should take advantage of the new data and programs that are now on the horizon (Rapp, 1987).
“The First International Conference on Geodetic Aspects of the Law of the Sea” organized by the
1IAG Subcommission GALOS, at Denpasar, Bali-Indonesia 8-13 June 1992, by their resolution
no. 3 noted the importance of consistency in defining sea coast positions for boundary purposes,
urged the International Association of Geodesy to pursue with other interested organizations the
possibi(lli;y of advocating a global vertical datum and also to investigate a suitable definition of
such a datum.

In addition to several International commission reports and seminar proceedings,
numerous papers have also been published in the past twenty years to document the problem of
the global vertical datum definition and proposed solutions. The relative merits and demerits of
the oceanographic approach suggested by Cartwright (1985), Altimetric-Gravimetric approach
by Mather et al. (1978), and Integrated Geodesy approach of Hein and Eissfeller (1985) are
discussed in detail by Pavlis (1991) and partially by Heck and Rummel (1990).

With respect to the global vertical datum definition, the combination of geometrical and
geodetic data is proposed in many ways. Colombo (1980), Rapp (1980), Hajela (1985) and
Pavlis (1991) have suggested techniques for vertical datum connection by estimating the
geopotential differences over intercontinental locations using satellite and terrestrial
measurements. They use three-dimensional geocentric coordinates of at least one fundamental
point in each vertical datum system. The geoid height at these locations can be calculated from
some high-degree geopotential model, and the influence of local differences between the actual
gravity field and the global model is determined from gravity anomalies given in some spherical
cap around the fundamental point. The estimated accuracy of vertical datum connection between
different continents is about 15 to £17 cm (Pavlis, 1991).

Another approach described by Rummel and Teunissen (1988), Heck and Rummel
(1990), and Xu and Rummel (1991), uses globally distributed gravity anomalies. These values
are given referring to different vertical datum realizations for different parts of the earth. Fixing




onec datum as reference, all the others may be determined if the orthometric heights of the
stations in local vertical datum together with their geocentric coordinates are known for at least
one fundamental benchmark in each vertical datum zone.

The ideas described in the above two paragraphs clearly show that the studies so far made
lead to either a connection between selected vertical datums or suggest a procedure to determine
the potential difference between selected benchmarks on two different regional datums which
can lead to a vertical datum connection. The concept of defining and realizing a global vertical
datum, independent of any particular regional datum, has been discussed by Rapp and
Balasubramania (1992). This dissertation work enhances the ideas formulated in the report
(ibid.) to come up with a practically realizable global vertical datum.

1.2 Oreanization and § f the P Stud

From the above sections we see that most of the countries in attempting to define a
vertical reference surface have relied on local mean sea level as the surface that is accessible
through tide gauge measurements. Since we are now moving into an era where more precise and
more consistent height datum determinations are essential, there is a necessity to come up with a
vertical datum that can be used on a global basis. There are basically two issues involved in this
global vertical datum development, that is, connection of existing vertical datums and definition
of a global datum independent of any particular regional datum. As mentioned earlier, these
issues ha;re been discussed in the literature in the past few years, but no specific action has been
taken so far.

This dissertation will attempt to address these issues. In addition to detailed
mathematical modeling to define and realize a global vertical datum to an accuracy of £10cm
after considering all the error sources in the observed data, a test calculation has also been
included to come up with the first iteration global vertical datum to an accuracy permitted by the
available data today.

Two different approaches are developed for this purpose. The first approach uses the best
available station positions from the present and future space geodetic networks, highly accurate
geopotential models and surface gravity data around the space stations for defining and realizing
a global vertical datum. This approach can be considered as an ideal solution of the problem, but
needs to be treated as a long term proposal since the data required are not available all over the
world and/or to required precision.

The other approach can be considered more of an operational development for immediate
implementation but less accurate than the first approach. This approach is mainly dependent on
the widely available space geodetic data from GPS (Global Positioning System) and DORIS
(Doppler Orbitography and Radiopositioning Integrated by Satellite) tracking networks and
highly accurate regional geoid height models.

The dissertation structure is as follows:

Chapter 2 explains the height datum fundamentals, bringing out the different types of
heights that are in use today with their definition, computation and intercomparisons. Procedures
for establishing a more accurate and meaningful regional vertical datums, which in turn can help
in realizing an accurate global vertical datum, are also discussed in this chapter.

The primary step in the development of global vertical datum involves generating
mathematical models and defining required observations. Since the data availability in the
various parts of the world is not uniform, the development of mathematical models under
different data scenarios is discussed in Chapter 3. Consideration of different error sources in the




available terrestrial gravity anomalies and their impact on computed gravimetric undulations are
included in this chapter. Also included are the observation equation model development and the
adjustment procedure to estimate the parameters defining the global vertical datum.

In Chapter 4, a test calculation for implementing the Global Vertical Datum based on the
available data on six of the regional vertical datums is included. The six regional vertical datums
considered in the test calculations are viz., North American Vertical Datum (NAVD 88),
Ordnance Datum Newlyn (ODN, UK), IGN 69 (France), NN (Germany), AHD:71 (Australia)
and Scandinavian datums. Though there is no single regional vertical datum as Scandinavian
datum, the individual datums RH70 (Sweden), N60 (Finland) and NN1954, NNN1957 (Norway)
were combined to serve as a single regional datum for computational convenience. More details
on the Scandinavian height datum are given in Chapter 4. Two different computational
procedures, namely, Least Squares Collocation technique and modified Stokes’ integration
technique, have been used to compute the gravimetric undulation. These results have been
compared with undulation values from regional geoid height models (for U.S. and Scandinavian
space geodetic stations only) which are generally developed using Fast-Fourier Transform (FFT)
techniques.

Chapter 5 deals mainly with the simplified approach in realizing a global vertical datum.
The theory behind the model development along with test results and plots in the area of GPS
traverses in the U.S.A., Canada and Western Europe are included in this chapter. Height bias
modeling has been done in four test areas in Canada and the U.S.A.

While Chapter 6 brings out the summary and conclusions drawn from this dissertation
work, Chapter 7 lists the recommendations for the acquisition and use of data for defining and
realizing a global vertical datum to a precision of a few centimeters.




CHAPTER 2
PRELIMINARIES AND DEFINITIONS

There are fundamentally two different height systems available today which can be
realized with approximately the same order of accuracy (Torge, 1987). The first one is the
gravity field related height system which is based on leveling and gravity data along the leveling
lines. These observations lead to geopotential heights, if referred to a zero height level surface.
The other one is the ellipsoidal height system realized through satellite techniques such as SLR,
GPS-positioning etc. Original results are the cartesian coordinates of the stations in a near
geocentric coordinate system which can be transferred to heights called ellipsoidal heights over
the reference level ellipsoid. Knowing the gravimetrically derived geoid information from geoid
height models, the orthometric height of the station can be computed in very good approximation
using the relation:

H=h-N 2.1)
In the above equation, the ellipsoidal height, h, is the distance from a defined ellipsoid to a point,
measured along the straight line that is perpendicular to the ellipsoid and passes through the
point. The orthometric height, H, is the separation between the geoid and the point measured
along the curved vertical defined by the equipotential surfaces of the earth’s gravity field and N,
the geoid undulation, is the separation between the defined ellipsoid and geoid (Rapp, 1992).

The relative orthometric height accuracy that can be achieved using the above two height
systems are given by Niemeier (1987, Table 3) and shown in Table 2.1.

Table 2.1 Height System and Accuracy For Commonly Used Observation Techniques

Height | Observation Additional | Quantities available | Relative accuracy
system technique information for ortho. ht. of computed
computation orthometric hts.
1. Gravity | geometric - height increments | £1-2.5 cm/10 km |
field related | leveling Surface gravity | potential differences
;rigol:lomeu'ic Surf - heigh:lixl:%tlcé_nems $2-25 cny/10 km
evelin ace gravity { potential differences
2. Satellite | GPS _gra cllipsoidal height | £2 cny10 km
based differences
geoid geoidal undulation
differences

Though several papers have been published on the topic of obtaining the orthometric
heights using GPS and other space geodetic techniques in the recent years, no country in the
world has so far adopted the orthometric heights obtained from space geodetic techniques for
defining their vertical network. The main reason for this is the insufficient knowledge of the
regional geoid heights to the accuracy of leveled heights. With constant efforts to improve the
regional geoid height models and also the ellipsoidal height accuracy for GPS observations, it
may be possible in the future to replace conventional leveling by satellite based techniques. But




as of today, since the conventional leveling is the only technique accepted by the geodetic
community for defining precise heights, the following sections discuss the various heights and
height systems that are used in different parts of the world today which are based mainly on the
‘gravity related height system’.

Detailed discussions on height systems, their measuring procedures and the treatment of
height networks may be found in the books of Heiskanen and Moritz (1967, Chapter 4), Torge
(1991, Chapter 6), Vanicek and Krakiwsky (1986, Chapter 19), Bomford (1980, Chapter 3) and
others. Additional details on various kinds of heights and their computation may be found in
Krakiwsky (1965) and exhaustive treatise only on orthometric heights in Rapp (1961).

» | Height Defini { Height §

For decades the well known geometric or spirit leveling was the only technique used for
determination of precise heights. New leveling techniques such as motorized geometric leveling,
motorized trigonometric leveling and motorized 3D-traversing, etc., have been developed now,
to achieve the same accuracy as conventional leveling but to reduce the time and expenses
involved to perform conventional leveling for extended networks (Niemeier, 1986). All these
measurements (leveling, theodolite measurements, etc.) are almost exclusively referred to the
system of level surfaces and plumb lines, the geoid playing an essential part.

1.1 Level Surfaces and Geopotential Numbers
Level instruments and theodolites, by virtue of their dependence on the local horizon with

respect to their orientation by the actual gravity vector ¥, are influenced by the actual earth’s
gravity field. The surfaces

W(x, y, z) = Wq = const., 2.2)

on which the potential W is constant, are called equipotential surfaces or level surfaces. Due to
the figure of the earth, the earth rotation and inhomogeneous mass distribution the level surfaces
near the earth’s surface are not parallel and the lines that intersect all equipotential surfaces
orthogonally are not exactly straight but slightly curved (refer Figure 2.1).

level surface
W = constant

Figure 2.1 Level Surfaces and Plumb Lines




For a displacement along the level surface, the potential difference dW = 0, for displacement
along the outer surface normal n the potential difference is

dW =-gdn 2.3)

where dn is the separation between the level surfaces and g the magnitude of gravity at the
plumbline (see Figure 2.3 also). Equation (2.3) provides the link between the potential
difference dW and the difference in height of neighboring level surfaces. :

As reference for most height systems the geoid plays an important role. Connected with
the geoid is the zero point or datum problem. One has to define which point Py, is located on
geoid having a potential W,. Since it was tacitly believed that the mean sea level should
theoretically coincide with the geoid, or that the departure of the two surfaces was negligible (or
unknown), locating the geoid or fixing the point Py with respect 10 a reference benchmark on the
shore was reduced to the task of determining the position of the mean sea level. In most of the
regional vertical datums in the world today, the point P, has been identified to lic on the long
term mean value of the local mean sea level (generally with 18.6 years of sea level data) with
assigned potential W = W, Establishment of a reference benchmark with respect to P, is shown
in Figure 2.2 (given as Figure 19.1, Vanicek and Krakiwsky, 1986).

MSL §_§0|D
LOCAL MEAN_ S.L.

N INSTANTANEOUS

Figure 2.2 Establishment of Height of Reference Benchmark
(from Vanicek and Erakiwsky, 1986)




Procedures for establishing the fundamental benchmark to serve as the origin for the regional
vertical datum and the problems inherent in the determination of local mean sea level for that
purpose are discussed in Vanicek and Krakiwsky (1986, Chapter 19, p. 424-425).

For a surface point P, the potential difference to the geoid (local vertical reference datum
through the point P, with potential W = Wy) is,

P P
C,=W,-W, =~[dW= [gdn (24)

Py Po
where C; is defined as the geopotential number, which can be determined by leveling and

surface gravny values, starting from the zero point P,. For the definition of other variables used
in equation (2.4) refer to Figure 2.3 below:

Figure 2.3 Geoid, Level Surfaces, Height Increments dn and Gravity g

To compute C; it is not necessary to know the mean gravity g between P and P, along the
plumb line. G'e’opotcnnal numbers are, therefore, the only quantities that can be determined
without any density hypothesis. The geopotential number is independent of the particular
leveling line used for relating the point P to the reference benchmark. The geopotential number
is the same for all points of a level surface and can thus be considered as a natural measure of
height, even if it does not have the dimension of a length (Heiskanen and Moritz, 1967). Some
of the height datums in the world today, for example NAVD88, UELN73, etc., consider
geopotential number as the basic quantity for the definition and computation of their height
systems. The geopotential number C is measured in geopotential units (g.p.u.) where

1 g.p.u. = 1 kgal meter = 1000 gal meter




and 1 g.p.u. corresponds to a change in height of about 1 meter.
2.1.2 Ortl ic Heigl
The orthometric height Hp, of a point P is defined as (Heiskanen and Moritz, 1967, (4.21))

H, = %L @.5)

where Cp is the geopotential number at the point P and g the mean gravjty along the plumbline
(refer to Figure 2.4) between the surface P and its corresponding point P, on the geoid. Since
we need the density distribution between the surface of the earth and the geoid for computing g,
the practical determination of this quantity is impossible without additional assumptions.

Several hypotheses have been made about the variation of gravity between the terrain
surface and the geoid to approximate this mathematically rigorous quantity g. Depending upon
the method/rigorousness of estimating g, numerous types of orthometric heights are defined and
used in various parts of the world today. When working in a country or area where a specific
type of orthometric height is used, we need to understand its definition and accuracy limitations.
Some of the different kinds of orthometric heights used in practice are discussed in the following
sections.

2.12.1 Ri ly C 4 Ont ic Heigt

Rigorous orthometric heights are those where there has been actual attempts to determine
the actual gravity g, along the plumb line from the surface point to the corresponding point on
the geoid, as closely as possible.

plumb line

P
carth's surface

- s T W =W,
H= Q
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Figure 2.4 Reference Surfaces Used in the Reduction of Poincaré and Prey
From equation (2.5) we know that the orthometric height at the point P is
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Hpg

where Cp is the geopotential number at the point P, Cp = Wo - Wp, and g is the mean gravity
along the plumb line from P to P, The mean gravity § can be written as

- 18
E=q fe(z)dz (2.6)
0

where g(z) is the actual gravity at the arbitrary point Q which has the height z (refer to Figure
24).

The simplest method to compute an approximation for the actual gravity gq at Q is by using the
Poincaré and Prey reduction procedure discussed in Section 4.3, Heiskanen and Moritz (1967).
This procedure is based on the assumption that the area around the gravity station P is
completely flat and horizontal (Figure 2.4) with the masses between the geoid and the earth
surface having constant density (2760 kg/m3). This flat plate with thickness equal to the height
of the station is also called a Bouguer plate. Based on the Prey reduction procedure we get a
value for the actual gravity at Q as:

8o =gp +0.0848 (Hp - Hp) 2.7)
with g in gals and H in kilometers.

If we calculate g as the mean of gravity gp, measured at the surface point P, and of gravity gq
computed at the corresponding geoid point Q (= P, HQ = () by Prey reduction then,

- 1
E=5{8s +80) =5 (8¢ + £ +0.0848H,) =g, + 0.0424 H, 2.8)
From equations (2.5) and (2.8), we get the orthometric height at the point P approximately as

C
= ———
H, =2-70.04220 29

The orthometric heights, Hp, computed using equation (2.9) are called ‘Helmert heights’, with
Hf in meters, the geopotential number Cp given in g.p.u., gp in gals and the H is Hp in
kilometers.

Helmert heights computed using equation (2.9) can be considered as the sufficient
approximation to true orthometric heights for most of the applications. Sometimes in
mountainous areas and for highest precision, it will be necessary to consider the variation in
topography in addition to the infinite Bouguer plate. The heights computed taking topography
into account, assuming normal gradient for free-air reduction and a constant density of 2670
kg/m3 are called ‘Niethammer heights’. Detailed discussion on Niethammer heights are given in
Krakiwsky (1965).

Helmert heights and Niethammer heights are rigorously computed approximations for

orthometric heights used in some parts of the world, where dense gravity data and terrain data are
available.
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Another (not so rigorously computed, but making use of geopotential number)
orthometric height was proposed by J. Vignal (1954); this so-called ‘Vignal height’ is used in
some countries. In this case, the mean gravity along the plumb line is computed in two steps
(Krakiwsky, 1965, pp. 96-97).

* The normal gravity, ey, is computed on the spheroid for the latitude, ¢y, of point P.
» This value is then reduced upward to the mid-point of the plumb line by a negative free air

F

. )
correction, —5-!-

Thus, we get the mean gravity to be approximately,

_ 5F H
E=1,, - =7,,~0.3086- 3¢

Then the Vignal height at point P will be

C C
Hv -g- 'Y” -0-1543‘ HP (2.10)

where Y,, is in gals, Hp is in km and Hy in meters.

2122 N 10t ic Heigt
Normal orthometric heights can be considered as a coarse approximation to true
orthometric heights. In determining this kind of orthometric height geopotential numbers are not

used. Most of the countries which lack dense gravity data coverage adopt this kind of simple
orthometric height obtained by the following relation

H; =Hj.1 + Ah +dH (2.11)
where H; is the normal orthometric height of the ith station,

Hj.1 is the normal orthometric height of the previous station in the level network,

Ah is the leveled difference corrected for all systematic errors, and

dH s called the normal orthometric correction, which accounts for the effect of

coggergenoc of equipotential surfaces of the normal field and is given by Rapp
(1961) as

dH = -f*sin2¢Hd¢ ' (2.12)

In equation (2.12), f* is the gravity flattening defined as equation (2.98) in Heiskanen and Moritz
(1967). The negative sign in the expression indicates that the equipotential surfaces converge
towards the poles. Also the ¢, H in eqn. (2.12) refers to the mean latitude and elevation between
the two stations i and (i-1), respectively, and d¢ is the difference in latitude between the two
stations.
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2.1.3_Normal Heights
Normal heights are defined in the normal gravity field, that is, with respect to a level
ellipsoid with normal potential U = Uy, by the formula

G o_1H .,
H _-?L, Y=g jyaH (2.13)
0

The mean normal gravity value ¥ can be computed without any hypothesis. The integration
from ‘0’ implies that the normal height is zero at the reference surface from which the potential
difference, Cp, was determined by leveling.

P Earth surface W # tan
r —4"‘"—GCOPW=W,, surface a constant
n 4
Telluroid () U # a constant
H straight ellipsoidal normal
h
H* normal plumb line
? T —— Quasi-geoid W x a constant
f
v n 1Y Ellipsoid U=
= psoid U=U
Q Q °

Figure 2.5 The Telluroid (Z), Normal Height H* and Height Anomaly {

As depicted in Figure 2.5, the normal height H* of the point P is defined as the height of
the corresponding point Q on the telluroid (X) above the reference ellipsoid measured along the
normal plumb line from Q toQg. However, since the curvature of the normal plumb line is very
small and regular (Heiskanen and Moritz, 1967), the length measured along the normal plumb
line can be considered to be equal to the straight ellipsoidal normal height to sufficient accuracy.
The normal height H* is also interpreted as the height of the surface point P leading to the point
P} on the so-called quasi-geoid which is not a level surface but is considered to be located close
to the geoid since EL N. The telluroid (Z) is defined as the surface, sufficiently close to the
earth's surface, whose normal potential U at every point Q is equal to the actual potential W at
the corresponding point P, so that Uq = Wp, corresponding points P and Q being situated on the
same ellipsoidal normal (Heiskanen and Moritz, 1967). The height anomaly { is the distance of
the telluroid point Q form the earth's surface point P, or the height of the quasi-geoid point Pj
from the reference ellipsoid.
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The normal height H*, and hence the telluroid Z, can approximately be determined by
leveling combined with gravity measurements according to Heiskanen and Moritz (sec. 4-5,
1967). First the geopotential number of P, Cp = Wy, - Wp, is computed by

P
Cp= fgdn (2.14)
P

where g is the locally measured gravity and dn is the leveling increment. The normal height H*
is then related to Cp by the analytical expression given as equation (4-44) (ibid.).

2
ne=Ce 1+(1+f+m—2fsin=¢)£L+(£L] 2.15)
Yo aYo \2Y

where ¥, is the normal gravity at the ellipsoid, for the same latitude ¢. a, f are the semi-major
axis and flattening, respectively, for the ellipsoid and m is the constant defined by egn. (2-70) in
Heiskanen and Moritz (1967). From equation (2.13) it is clear that H* can be computed
independent of the density assumption unlike the orthometric height H (see equation (2.5)). This
property of computed normal heights makes it preferable to adopt them as official heights for
certain regional vertical networks. For example, some Eastern European countries, France,
Germany, etc., use normal heights in their national height systems.

21.4 Inter C ison B Various Heiel

As discussed in the previous two sections, the basic quantity for height determination is
the geopotential number Cp. Depending upon the technique, purpose and type of gravity data
used we arrive at different heights. Most of the countries in the world today adopt orthometric
heights of one kind or the other for their national height systems. Due to sparse and not very
accurate gravity coverage a few years ago, normal orthometric heights (ref. section 2.1.2.2) have
been the preferred and adopted heights in many countries. NGVD29 (U.S.A.), AHD71
(Australia), ODN (U.K.) are few examples of national height systems adopting normal
orthometric heights in their regional vertical networks.

Recently a new vertical datum called the North American Vertical Datum of 1988
(NAVDS8) based on a minimum constrain¢ adjustment of Canada-Mexico-US leveling
observations, has been established for implementation in the North American countries
(Zilkowski et al., 1992). This vertical datum adopts Helmert orthometric heights (refer to
Section 2.1.2.1) computed using observed gravity data and precise level differences, which can
be considered closer to the true orthometric heights. Orthometric heights determined using
simple, empirical but sufficiently accurate relations between geopotential numbers and
orthometric heights are also used in countries like Austria (Erker and Siinkel, 1989).

Rapp (1961) has carried out a numerical computation of orthometric heights at the
benchmarks along a precise leveling line, about 125 km long, described as REUN, 211
Miinchen-Fasangarten-J-A-D-2-Mittenwald, in Report no. 59 of the German Geodetic
Commission. The orthometric heights have been computed both with rigorous techniques like
Niethammer method and Helmert method (refer to Sec. 2.1.2.1) and also using the quicker
method of applying normal orthometric correction to leveled differences. The results given as
Tables 14 and 15 of his report (ibid.) clearly show that the difference between the heights
computed by Niethammer formula and Helmert formula is on the order of 1.5 cm. But the
difference between the Helmert formula and one obtained by applying normal orthometric
correction to leveled differences shows a considerable difference of about 8 cm which is greater
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than what could be allowed on the basis of leveling accuracy, over a leveling line length of 125
km. This shows that the normal orthometric correction does not satisfactorily take into account
the effect of gravity on the leveling measurements, but it does reduce the discrepancy in
elevations due to non-parallelism of equipotential surfaces.

In countries belonging to former Soviet Union, East European countries, France,
Germany, etc., the normal height, H*, (discussed in Section 2.1.3) is used as official height in
their national height systems. The relationship between the normal height H* and the
orthometric height H is discussed in Sections (8-12) and (8-13) of Heiskanen and Moritz (1967)
and also in Section 2.3 of Rapp and Balasubramania (1992). _

22.1 Existing Proced

The current practice of establishing a regional vertical datum in a country or area, with
some exceptions like NAVD88, UELN73, etc., is to connect the precise leveling nets to several
tide gauges widely dispersed around the perimeter of the net and carry out an adjustment solution
constraining the mean sea level at these tide gauges as zero, with the implicit assumption that the
geoid and mean sea level coincide at these tide gauges.

As discussed in Chapter I and also with reference to Figure 2.2, we see that the mean sea
levels computed at the tide gauges do not coincide with the geoid due to the existence of sea
surface topography (SST) caused by ocean currents, temperature, and density variations, as well
as air pressure and wind stress. In addition, close to the shore, the sea bed topography and river
discharge may also play a significant role. Since the magnitude of the estimated SST varies from
one tide gauge to another, the resulting adjustment of the leveling data to fit these different mean
sea levels will lead to distortion in the level networks.

To understand the extent of variation in mean sea levels due to SST at different tide
gauges, refer to Figure 2.6 below (refers to Figure 9, Zilkowski, et al., 1992).
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Figure 2.6 Height Differences Between NAVD88 and the Orthometric Height of Tidal
Benchmarks Above LMSL (epoch 1960-78) (units = cm)
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Figure 2.6 shows the height differences between the orthometric heights of tidal bench
marks above local mean sea level (epoch 1960-78) at different tide gauge sites along the U.S.
Coast, and the recently made available NAVDS88 heights. NAVDS88 vertical datum has been
established by a minimum constraint adjustment of Canadian-Mexican-U.S. leveling
observations holding fixed the height of primary benchmark at Father Point/Rimouski, Quebec,
Canada as zero height. From Figure 2.6, we can understand that though there can be several
reasons for the noted height differences at the tidal benchmarks, the main contribution to the
differences is the SST, which varies to some extent from one tide gauge to another along the
same coast and vary to a greater extent from one coast to another. Without removing the SST
effects at tidal stations, it would be incorrect to constrain the heights of tidal benchmarks to zero
height in the adjustment solution for establishing a regional vertical datum.

229 Modeline for Ideal Regional Vertical D Definii
2221 Estimation of Sea Surface T ;

One obvious solution to the problem of relating the reference surface at the tide gauge
sites to the mean sea level is to model the SST.

Several global and regional models have been developed so far mainly using altimetric
data to estimate the SST. The Ohio State 1991 global SST models to degree 10 and 15 have
been developed based on analysis of one year Geosat altimeter data from the orbits computed
with GEM-T2 potential coefficient model and consistent station coordinates (Rapp et al., 1991).
The commission error in the estimation of SST in the ‘ocean areas’ is about £10 cm in the case
of 10,10 model while the error for the 15,15 solution is higher because twice as many
coefficients are included in the degree 15 model. The extrapolation of SST at the tide gauge
points from these models is not recommended at this time since the inaccuracy in the estimate of
SST in shallow coastal areas will be too high to contribute anything to adjusted level heights.

Efforts have been made by fcw researchers to model the local SST variation by
considering monthly mean sea level and other data for several tide gauges. Merry and Vanicek
(1983) proposed a technique which makes use of the response of sea level to external effects
such as atmospheric pressure, temperature, wind, and so on. Their experiment with relevant data
at various tide gauge sites in the Maritime Provinces of Canada concluded that their resuits do
not represent the entire SST at the tide gauges but only reflect the local variations of SST.
Similar studies have been carried out by Merry (1990) to determine the variation in mean sea
levels at the tide gauge sites along the coast of South Africa. Heck and Rummel (1990) have
developed formulas for extrapolating current and SST information along shallow coastal waters
from locally measured data. The main difficulties with these methods are:

* They are better suited to the determination of SST differences between adjacent tide gauges
rather than to the determination of absolute SST.

* Due to the inadequacy of the hypothesis and imperfect modeling of frictional forces in the
continental shelf areas (eg. bottom friction and surface windstress) the SST required for
relating vertical reference surface to the tide gauge sites cannot be estimated to intended
precision (Heck and Rummel, 1990).

+ The effort required to obtain the necessary data is significant and the methods may prove to
be non-viable purely on economic grounds.
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2222 Combined Adi Solution for Defining Regional Vertical D

Several techniques for defining a regional vertical datum have been put forward by
various authors in recent years. The general consensus amongst them is that, for establishing a
regional vertical datum, we need to consider the potential differences derived from a combination
of leveling and gravity data, precise altimeter data from missions like ERS-1,
TOPEX/POSEIDON, etc., and the tide gauge records at the primary tide gauge stations and come
up with a combined adjustment solution.

Groten and Miiller (1990) have suggested such a combined adjustment model using
gravity field as well as leveling data, altimetry and tide gauge data and three- dimensional
coordinates directly determined by GPS. The ongoing Bass Strait vertical datum definition
project in Australia (Rizos et al., 1991) is also another effort to integrate geometric information
(from space geodetic techniques) and gravity field information (from surface gravity data and
accurate regional geoid models) for regional vertical datum definition. Vanicek (1991) has
proposed five different approaches for defining a regional vertical datum depending on
availability of data and rigorousness required in defining the vertical datum.

Based on the assumption that realistic models to estimate the SST at reference tide
gauges may be available in the near future, the following procedure can be adopted to come up
with an adjustment solution for defining the vertical datum. Assuming that we have the
following data:

» observed geopotential differences between the leveling bench marks expressed in
geopotential units (gpu), ACjj = C; - C; for all i, j (excepti = j)

« geopotential numbers at the reférence tide gauge sites obtained from realistic models to
estimate the sea surface topography,

We can set up an observation equation model, introducing the estimated geopotential numbers at
the tide gauge sites as stochastic constraints The formulation of the model will be

y=AX+e¢,D{y}=0?P"!

2.17
zo = KX +¢,,D{z,} = 6}P;' 217

where is the nx1 observation vector (of geopotential differences AC;;)
is the nxm coefficient matrix of observations
rank A=q<m<n
is the number of parameters
is the mx1 parameter vector (unknown)
is the nx1 random error vector
is the £x1 vector of stochastic constraints having the same structure of observation
vector with
o as corresponding £x1 random error vector
is the weight matrix of observations
P, is the weight matrix of the stochastic constraints
o2  is the common variance component (unknown)

K is the ¢xm coefficient matrix of the constraints
A
rank K = ¢ <m and rank [K]=m
D is the dispersion operator.

& ®xB »«<
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Assuming no correlation between y and z,, we can write the least squares solution for the
adjusted parameters to be (B. Schaffrin, 1990)

X =(ATPA +K™PK)" (ATPy + K"P,z,) (2.18)
and the dispersion matrix of the estimated barameters to be
D{X}=03(ATPA +K"PK)" (2.19)

The problems with solution (2.18) at present conditions as pointed out by Zilkoski et al.
(1992) are:

* Realistic models to compute the SST at the tide gauge sites to required accuracy are
unavailable at this time, and

* An a priori estimate of standard errors for tidal stations where SST effects were not removed
completely would be too large relative to precise leveling differences to allow any
contribution to the final adjusted heights.

To overcome the inconsistencies in the estimated SST values, the ‘robust sequential
updating procedure’ suggested by B. Schaffrin (1987, 1989, 1990) can provide an excellent
adjustment technique in the presence of ‘weak prior information’. This procedure provides
solutions when the stochastic prior information, included as stochastic constraints in our
observation equation model, is allowed to have a certain (guessed) bias Bo or even certain
suspected scaling error in the bias Bo. As discussed in B. Schaffrin (1987), the adjusted solution
suppresses the inconsistencies in the estimated geopotential numbers at the tide gauges without
destroying the homogeneity of the geopotential differences observed at the leveling benchmarks.

Vanicek (1991) has suggested using orthometric heights computed with equation (2.1) at
space geodetic stations can be included with leveling data in a leveling network adjustment, in
order to homogenize the error distribution within the network. But since the uncertainties of
geoid height differences used to convert the ellipsoidal height differences to orthometric height
differences are presently large compared to formal errors of leveling height differences (Zilkoski
et al., 1992), such a suggestion is impracticable as of today.

22.2.3 Summary and Conclusions
1. The primary reference surface for heights is the geoid. Since it is approximated as the mean
sea level (that is, as a temporal mean of all the instantaneous sea level heights at the epoch

‘t’), it is imperative that the tide gauge records be included in the regional vertical datum
definition.

2. The mean sea level degarts from the geoid due to the existence of the quantity called Sea
Surface Topography (SST). Since this quantity depends on meteorological, geophysical,
hydrological and oceanographic components at the tide gauge sites and its magnitude is a
combination of all these components, it varies considerably from one region to another.
Therefore, it is impracticable to include SST for a Global vertical datum modeling. But it is
possible that the change in SST from one tide gauge location to another in a given datum can
be determined to a reasonable accuracy, which could enable multiple relative tide gauge
information to be incorporated into a regional vertical datumn definition without creating the
distortion problem noted earlier.
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3. At present suitable techniques/realistic models to determine the SST exactly to intended
precision are not available. But without removing SST effects at the tidal stations, it would
also be incorrect to constrain the heights of tidal benchmarks to zero height in the
establishment of regional vertical datums. In such a scenario, the suggested approach will be
to estimate the SST as accurately as possible and then set the tidal benchmark height to be
equal to (MSL-SST). Now the tide gauge heights (or geopotential number) can be used as
stochastic constraints, keeping in mind the noise at these stations will be too high due to the
undetermined bias in the SST values. To accommodate for the bias in the estimated SST
values at the tide gauge sites and possible scaling error also in the bias, the robust sequential
updating procedure suggested by B. Schaffrin (1987) can be adopted for adjustment of
regional vertical datum.

4. The suggestion to include the orthometric heights, computed using space geodetic techniques
and global/regional geopotential models, in order to homogenize the error distribution within
the regional vertical datum adjustment seem to be impracticable as of today, as the
uncertainties of geoid heights (or geoid height differences) are presently large compared to
formal errors of leveling height differences (Zilkoski et al., 1992).
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CHAPTER 3
GLOBAL VERTICAL DATUM DEFINITION - AN IDEAL APPROACH

Defining and realizing a Global Vertical Datum to an accuracy of +10 cm is essential
today for the various reasons cited in Chapter 1. With the existing measuring techniques and
available improved models and procedures, the question is not whether we need to establish a
precise vertical datum that can be used on a global basis, but to what accuracy and how soon.

Recognizing the fact that the data are neither uniformly available all over the world nor to
the required precision, modelling procedures for a Global Vertical Datum that can be realized are
discussed in this chapter. The available data as of today can be used in the models developed for
estimating the parameters that will define the Global Vertical Datum, but only as a first iteration
attempt. As understandable, it may require several iterations before achieving an Ideal Global
Vertical Datum that could meet all the requirements stated in Chapter 1.

The modelling procedures have been developed for different data scenarios but with the
assumption that the data are available everywhere and also to the required precision, that a
Global Vertical Datum established to an accuracy of £10 cm would warrant. It is also assumed
g:t the ;cgional vertical datums have been established based on the procedures discussed in

apter 2.

3.1 Data Reaui for Modelling P

Basically four kinds of data are essential for modelling the Global Vertical Datum. They
are accurately determined free air gravity anomalies, precise heights of the stations above the
regional vertical reference datums, an accurate global geopotential model, and accurate
cllipsoidal heights of the stations above an adopted geocentric ellipsoid. In this section a full
description and accuracy requirements of required data types are given.

31,1 Free-air Gravity A i
Two different approaches are used in defining the free-air gravity nomalies. The first

approach is termed as ‘a classical approach’ (Chapter 2-13, Heiskanen and Moritz, 1967) and the
other as ‘Molodensky approach' (Section 42, Moritz, 1980).
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Geop through point P, W=Wp

Earth surface

Telluroid £

Ellipsoid U=,

Figure 3.1 Various Equipotential Surfaces and Heights Used in Defining
the Free-air Gravity Anomalies

In the classical approach the gravity anomaly Agc is defined as the difference in
magnitude of the gravity vector at P and the normal gravity vector at Qg (refer to Figure 3.1).

Ag. =8p, — 73, (3.1)

where gg is the magnitude of the observed gravity at P reduced to geoid point P,, and Y5, is the
magnitua'é of normal gravity at the point Q, computed on the reference ellipsoid.

The observed gravity at the point P is reduced to the point P, on the geoid using free-air
reduction procedures discussed in Heiskanen and Moritz (1967, Section 2.23). If gp is the

observed gravity at the surface of the earth then the value of gy at the geoid may be obtained as
a Taylor expansion: ’

85, ’-'gp"gg'

where %ﬁ is the vertical gradient of the gravity at P and H is the orthometric height of the station

H-... (3.2)
P

above the geoid. Considering only the linear term, the quantity —gﬁ-l,ﬂ accounts for the free-

air reduction of the observed gravity to the geoid. Here we have assumed that there are no
masses above the geoid or that such masses have been removed beforehand so that this reduction
is indeed carried out in "freec-air". From equations (2-215) and (2.217) in Heiskanen and Moritz
(1967), we note that the vertical gradient of gravity can be computed by:

dg _dy  0Ag
oh ~3h " an 33)
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where % is the normal gravity gradient given by equation (2-121) and Qﬁﬁ is the anomalous

part which can be computed using equation (2-217) in Heiskanen and Moritz (1967). Due to
lack of dense gravity coverage required for computing the actual vertical gradient of gravity
using equation (3.3), it is generally approximated by normal gradient of gravity, setting the
anomalous part equal to zero. Based on-this approximation, equation (3.2) can be written to
second-order as:

gt 1 9%
8p, =8r '—%H“ﬁﬁﬂz (3.4)
Substituting the values for the first and second derivative of normal gravity from equations (2-

121) and (2-122) from Heiskanen and Moritz (1967), in equation (3.4), we can write the free-air
gravity anomaly in ‘classical sense' as:

2
Agc=g,—760(1—2(l+f+m-2fsin’¢)%‘-+3(%) ] (3.5)
In the Molodensky approach, the gravity anomaly is defined as (refer to Figure 3.1):

Agm=8p-1q (3.6)

where gp is the gravity observed at the surface point P and the ¥, is the normal gravity at the
corresponding point Q on the telluroid (£). The normal gravity at({hc point Q, Y, is computed
from the normal gravity at the ellipsoid Y, , by the normal free-air reduction, but now applied
upwards.

dy dy
Yo=To+ 52 H + =2 H 4. (3.7)

where H* is the normal height of the point P. A direct formula for computing T at Qs also
given by equation (2-123) in Heiskanen and Moritz (1967) as:

. o \2
Yo =y%[l-2(l+f+m—2fsin2¢)%-+ HT) ] (3.8)
From (3.6) and (3.8) we write:
. o \2
Agy = g,—y%[l—2(1+f+m-2fsin2¢).}_:_ 3(_*;_] ] (3.9)

A reasonable estimate for the numerical difference between the free-air anomalies computed
using equations (3.5) and (3.9) can be determined as follows:

Considering only up to the first order normal gravity gradient, %:- = 0.3086 mgal / meter, we
can write from equations (3.7) and (3.4) as:
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Agy =8p —Yq, +0.3086H"

Agc =8 "7& +0.3086H

Agy - Ag, =0.3086(H° —H) (withyq, 2715,
=0.3086(h ~{ - h+N) = 0.3086(N ~ {) mgals

(3.10)

where N is the geoid undulation and { the height anomaly. From equation (8-104) in Heiskanen
and Moritz (1967), we get:

(€~ N) o =+0.1H, -H,, (3.11)

where H is the elevation of the station above vertical reference datum and Hyy the average height
of the area considered.

For an elevation of 1000 meters, substituting (3.11) in (3.10) we get:

AgM - Agc = -0.03086 mgals (3.12)

Though the numerical difference between the two anomalies as implied by equation
(3.12) is small, conceptually they are very different. While the free-air anomalies computed
using equation (3.9) are referred to ground level, the classical free-air anomalies from (3.5) are
referred to sea level (Heiskanen and Moritz, 1967, p. 293). This distinction should be carefully
kept in mind when using the different types of free-air anomalies in the definition of global
vertical datum.

The free-air anomalies defined and computed using either approach need to be corrected
for the following systematic corrections:

2) Amnospheric Correction (3ga):

In the problem of physical geodesy, whether following the Molodensky approach or
classical approach, it is assumed that the anomalous potential T outside the boundary surface is a
harmonic function or, in other terms, that the space outside the surface is empty. Therefore the
effect of atmosphere on Ag must be removed by computation. Detailed discussions on the effect
of atmosphere on gravity anomalies and the amount of correction needed to be applied on
gbs?rval 9gaa)vity can be found in Moritz (1980, pp. 422-425), Pavlis (1988, 1991) and Rapp and

avlis .

We can make use of the following relation given by Pavlis (1991, p. 33) for computing

the atmospheric correction that needs to be added to all gravity anomalies derived from terrestrial
observations.

8g, =0.8658-9.727x10°H, + 3.482x10"H} (mgal) (3.13)
where Hp is the orthometric height of the gravity station in meters.

Since the indirect effect of atmospheric corrections on the computed height anomaly/geoid
undulation is in the order of -0.7 cm (Moritz, 1980, p. 425), it can be safely neglected.
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In the computation of gravity anomalies, the normal gravity calculations require the
values of geodetic latitude for the points of gravity observation. Since in the gravity formula the
latitude values used are defined in the local horizontal datum (which is not generally consistent
with global geocentric datum), a systematic error is introduced in the normal gravity computed
and thus in the gravity anomaly. As the transformation parameters from regional horizontal
datum to global geocentric datum can be determined to 10.1 arc second accuracy in geodetic
latitude and longitude (refer to Tables 9.1 and 9.2, DMA Tech. Report, Part I, Dec. 1987), the
error in gravity anomalies due to horizontal datum inconsistancy can be easily computed and
applied. A detailed discussion on the effect of horizontal datum inconsistency on observed
gravity anomalies and hence on undulations computed using them are discussed in Chapter 4.
The magnitude of the correction to gravity anomalies, 8gH, is about 0.3 mgals (Heck, 1990,
Table 4) and the correction to the corresponding undulation computed using them is about 10
cm.

| Gravity Formula Correction (3ecl:

The computed free-air anomalies in different parts of the world should correspond to the
same normal gravity formula used for computing the normal gravity values. If they are
computed with different gravity formulas then corrections are needed to be applied to make them
all compatible to a single reference formula. For example, if some of them referred to GRS67
formula and the rest to GRS80 formula, then we can use the following relation given by Moritz
(1992):

(Y1980 - Y1967) = (0.8316 +0.782 sin2¢ - 0.0007 sin*p) mgal ' (3.19)

to compute the correction to be applied to the gravity anomalies computed with GRS67 formula.
More discussions on the correction to be applied to currently available free-air anomaly data sets
are included in Chapter 4.

) Ellipsoidal Comrections ( )

In most of the formulas in physical geodesy relating to gravity anomalies and geoidal
heights such as Stokes' formula, Molodensky series etc., one usually neglects the flattening of the
reference ellipsoid, arriving at expressions which are formally valid on the sphere only. Since
this spherical approximation can cause an error of about £20 cm in the computed undulation and
in our problem of global vertical datum definition we need higher accuracies, ellipsoidal
corrections to free-air gravity anomalies should be applied.

Rapp and Pavlis (1990) have given the necessary analytical expressions for the
computation of ellipsoidal correction terms that are to be applied to the free-air gravity
anomalies. The above terms are of the order of tens of microgals and of long wavelength in
nature. Their effects have been studied in detail by Cruz (1986) and Pavlis (1988, 1991).

3.1.2 Precise Heights Above Regional Vertical Ref L

The different types of heights that are used in the various regional vertical networks in the
world are discussed in Chapter 2, the most common heights being the normal heights, Helmert
orthometric heights and normal orthometric heights. As discussed in Chapter 2, the basic
quantity for height determination is the geopotential number C which is given by the relation:
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where g; is the measured gravity and An; the leveling increments. In this modelling effort, it is
assumed that the leveling increments meet the first order leveling procedure requirements and the
gravity observations refer to the International Gravity Standardization Network 1971 (IGSN71)
which defines the primary global gravity datum.

3.1.3 Ellipscidal Heigl

Precise ellipsoidal heights at the fundamental stations used in the modelling are obtained
from observations with currently available space geodetic techniques like SLR, VLBI, GPS and
DORIS networks. The original results from these observations will be the cartesian coordinates
X, Y, Z of the stations with respect to a specific coordinate system. Considering a global
geocentric reference system such as International Terrestrial Reference Frame 1990 (ITRF 1990)
as a basic reference system, the individual station coordinates in their respective coordinate
frame can be transformed to the global reference frame. Boucher and Altamimi (1992) give the
seven parameters necessary to convert between some general reference systems and ITRF90.
For more discussions refer to Rapp and Balasubramania (1992).

3.1.4 Global Gegpotential Models
The gravitational potential field at any point outside the earth can be expressed as an
infinite series of spherical harmonics as follows:

Vg(1.6, l)——(l+ PN 2( ) (Cam cosml+s_,,smml)l’_,(cose)) (3.16)

n=2 m=0

where GM = product of the gravitational constant and mass of the earth,
a = mean equatorial radius of the earth,
Cam» San = fully normalized spherical harmonic coefficients,
P, (cos®) = fully normalized Legendre polynomial,
n, m = degree and order of spherical harmonic expansion, and
r, 0, A = spherical coordinates.

In practice since the gravitational potential has to be determined from the combination of satellite
and terrestrial information, we can represent the potential only by a truncated series with a finite
number of terms. Such a finite expansion of potential coefficients, complete to degree and order
Nmax, will be called as a global geopotential model and equation (3.16) becomes:

V(r,0,A)= (1+ ol Z( ) (c cosm).+s,,,, sxnml) l,,,,(cos())) 3.17)

n=2 m=0

The higher the maximum degree, Nmax, in the series, the greater the resolution we have in
representing the potential and quantities derived from it. For a series that is complete (i.e., all
coefficients are known) to degree N, the resolution (R) of the geoid model can be estimated from
(Rapp, 1991):

111kmx180 _ 19980 (km)
N = N (3.18)

R(km)=
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Pertinent information on available global geopotential models are given in Featherstone (1992,
Table 3.1), and they are reproduced in Table 3.1 below.

Table 3.1: Information on Global Geopotential Models.

globe! geopotentisl model Mo, | GMogu (13377 | tequ (m) | data used
OSUS1A (Rapp ot of, 1991) 360 | 2986004.36x10° | 6378137 | staag
OSUSIA (Rapp & Paviis, 1990) 360 | 3986004.36x10% | 6378137 | staatg
OSUBSB (Rayp & Paviis, ibid) 360 | 3988004.36x10° | 6378137 | stsatg.pg
OSUSSE (Rapp & Cruz, 1986) 360 | 3986004.36x10° | 6378138 | stsag
OSUBSSF (Rapp & Cruz, ibid 360 | 3986004.36x10° | 6378138 | st,satgpg
OSUS1 (Rapp, 1981¢) 1280 | 3986004.36x10% | 6378137 | stsag
GEM-T1 (Marsh et of, 1987) 36 | 3986004.36x10° | 6378137 st
GEM-T2 (Marsh et ol, 1990a/b) 36 | 2986004.36x10° | 6378137 t
GEM-T3 (Nerem et of, 1991) 50 | 3986004.386x10% | 6373137 | staalg
GRIM3-L1 (Reigber et af, 1985) 36 | 2986005x10° | 6378140 | staatg
GRIM4-S1 (Reigber & Balmino, 1991) | 36 | 3966004.4x10° | 6378136 | stsatg
WGS $4-EGM (Kamar, 1984) 18 1986008 x 10° 6378137 staalg
GPM2{ (Wenzdl, 1985) 200 f - - sta\lg
IFESSE2 {{ (Basi¢ et o, 1989) 360 - - stsatg

GRS 30 (Moritz, 1980a) 3986005 10° 63718137 -—

is table 3.1: st — satellite orbit perturbation information,
sa — satellite altimeter derived information,
tg — observad terrestrial gravity anomalies, and
pg — pradicted terrestrial gravity anomalies.
t not currently held, § tailored moddl.

The following procedure can be adopted in setting up the observation equations for
defining the Global Vertical Datum when normal heights of the stations referred to regional
vertical datum and the free-air anomalies in the Molodensky sense are known:

25




P Geop through point P
W=Wp

surface
% Spherop through point Q
Ug=Wp

Telluroid
lobal quasi-geoid
- - - * W # a const
*H: 'H; = 2
w=w, | ¢~F--
X ¢, IF -‘ -\Regional quasi-geoid
l', W £ a const
Reference ellipsoid
& o l Yu=y
Q

Figure 3.2 Various Reference Surfaces and Normal Height

In the above figure, Q; is the fundamental benchmark serving as the origin for the
regional vertical datum 'i'. The procedure for establishment of this benchmark is discussed in
Chapter 2. Let Hp be the normal height of the point P computed with geopotential number Cp =
Wo - Wp, where Wy is the geopotential of the unique (but unknown) fundamental surface
referred to as the Global Vertical Datum, and 'H; is the normal height of the same point P, but
computed with geopotential number Ci = W,, referring to ith regional vertical datum.
From equation (2.15):

2
H,‘,=£1’-[l+(l+f+m—2fsin2¢)—(—:L+[—C2—) J

Yo o \¥q
) (3.19)
H; = S2| 14+(1+ £+ m-2fsin’¢) L+ [ Le )
Yo, Yq, aYq,
e o |Cp C
and H ~Hp =| =& =L |=—(C, ~C
H; P (YQ., 'YQ.,J ( P p)
where Y, is the normal gravity at the ellipsoid, for the same latitude ¢.
Denoting Cp —Cp =Wy —Wj =Cq,, then
. L] C [\]
H -H; = ..._‘;s_ (3.20)

26




T

From equation (8-8) in Heiskanen and Moritz (1967), the normal gravity 1 for the telluroid
point Q is given by

Yo=Tq +[g-hl] H;+-21-!-[%L}LH;’+... (3.21)
Qo

Neglecting higher order terms,

R
+[(%)% +1’r[§;—ZL (5 H)

(3] (3 (2

where ¥ is the normal gravity computed from elevation information referring to the regional
vertical dtum (i.e. HY).

(Hp - H;) (322)

(13 -5)

From the previous section we know the free-air anomaly in Molodensky sense, Ag,, is
defined as:

Agy=8p- o (from equation (3.6))

where g, is the magnitude of the actual gravity acceleration at the surface point P, and
1Q is the magnitude of the normal gravity acceleration at the comresponding telluroid point
Q.

Therefore, we can write from equations (3.20) and (3.22)

Ag,, =Agf} —i[(gﬂ% +(g—:'3}](§;;—ni]}cq,o (3.23)

where Agy,Agl? are the gravity anomalies computed with normal gravity Yo determined
using normal heights Hp, H; of the point P referring to Global Vertical Datum and
regional vertical datum 7', respectively.

Coqyo is the potential difference between the geopotential surfaces referred to as global
and regional vertical datums.

Now define g’ =Y—::[(§-H% +(%})[H"_;HJ.)] (3.24)
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From equations (2-121) and (2-122) in Heiskanen and Moritz (1967) with spherical
approximation we have, ..l.(%): -2 and,
Yo R
1 (8%y) (Hi-H ) 6 (Hi.HY . .
K(&’;) (—P——l—z ]-i-,{—l—l-z ) (it is small and can be neglected).

Therefore, we can write equation (3.24) to be,
. 2 :
q R (3.24)

From equation (45.42) in Moritz (1980), the computation of the height anomaly { can be done
using the following expression:

R - R
§"=‘:°*Tn_y Iof A&‘S‘“”d"*ﬁ.z,,—.,{! g, S(y)do (3.25)

where {, = i:yﬁ- -‘ly"-ﬂ- (refers to equation (2-181) in Heiskanen and Moritz (1967)),

6(GM) = GM - (GM)q is the difference between the true geocentric gravitational constant
and that of adopted reference ellipsoid and AW, = Wy - Uo,

R is the mean radius of earth,

O is the spherical surface,

v is the mean gravity of the earth,

Agy, are the free-air gravity anomalies defined in Molodensky sense,

y is the spherical distance between the computation point P and the variable points K,
S (y) is the Stokes’ function,

gn are the correction terms evaluated by the recursive formula.
8 =-32'L.(g.-.) (3.26)

In equation (3.26), z is the height difference between the station point P and varying
points K, z = hx - hp. The operator Ly, is evaluated recursively as (refers to equation (45-47) in
Moritz (1980))

L,(8g)=1Li[L,..(Ap)] (3.27)

In planar approximation, L is given by
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L,(Ag)=9£l=%‘- [!Ag—i{é&do (3.28)

with £, =2Rsin!g-

Starting from g, = Ag,, from equation (3.26) we can write:

g =- (g -bp) Ly(gy
8=~ (hy - bp) Ly(8;) - (g - hp)? L (gg) (3.29)

and so on. The terms gj, g2, etc. are called as Molodensky correction terms.

The evaluation of the equations (3.26) to (3.29) by formulating convolution integrals for the
planar approximation and then solving them in frequency domain using Fast Fourier Transform
techniques are discussed in Sideris and Schwarz (1986, 1988).

The free-air gravity anomalies derived in Molodensky sense and used in equation (3.25) are to be
corrected for atmospheric and other corrections listed in Section 3.1.1. We can denote these
corrected anomalies as Ag.

Based on the discussions in Sideris and Schwarz (1988), for a highly accurate
computation of the height anomaly {, using equation (3.25), consideration of Molodensky's
correction terms up to g2 seems to be significant. But numerical tests (ibid.) also show that these
correction terms are very sensitive to the high frequencies of the gravity field and thus should be
computed with the densest grid of data available. Presently dense grids of gravity data required
for computing the correction terms accurately are available only in the United States and in some
countries in Western Europe. Therefore consideration of correction terms beyond the g; term in
the computation of the height anomaly all over the globe seems impossible as of today (1994).

Non-consideration of the g2 term in the height anomaly may lead to an error of about 2
cm in a moderately undulating terrain and more in rough mountainous areas. Sideris and
Schwarz (1986) have pointed out that the use of free-air gravity anomalies corrected for terrain
(also called as Faye anomalies) in the computation of the height anomaly makes the g terms
smaller, smoother and easier to interpolate. Hence the use of Faye anomalies in the computaticn
can minimize the error due to neglecting the g2 term.

Now considering only up to Molddensky's correction term g1, equation (3.25) simply
becomes:

e =Lot g 1] (B + £1)SC¥do (3.30)

If terrain corrected free-air anomalies are available, then from equation (24) of Wang (1993), we
can rewrite equation (3.30) as:

&e=Lo +:4-% [1(aeS +C)S(\v)do—9$ln; - "f:" HY - "39 3h? 3.31)

where (Agf+ C) is the gravity anomaly corrected for terrain and other systematic effects listed
in Section 3.1.1,
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H; is the normal height of the point P at which the height anomaly is computed,

oh2 = 0.453 - 0.018 sin¢ + 0.087 cos¢ cosA + 0.204 cos¢ sinA. (km2) where ¢, A are the
geographic latitude and longitude of the point P, respectively, and

Agy =(Ag, ~2nGpH;) is the Bouguer anomaly, Agp is the surface free-air anomaly, G is
Newtonian gravitational constant and p is the density of topographic mass.

Equation (3.31) is based on the assumption that the gravity anomaly Ag§ is linearly correlated
with elevation, and it provides an accurate solution for computing the height anomaly when
terrain-corrected free-air anomalies are available.

Combining equations (3.23) and (3.31), we can write:

- R =» c i --B_ n i
Go =+ gy £ 1085 +J St -5 S0 [ 2o,

_Bgpy. TOpye_ 7Gps .
Y 7 Y

_ 1 *y) H;-Hj
where q’"?&:[(%)qo*(?a‘ﬂ)%‘z—’J

In =quation (3.32) n denotes the number of regional vertical datums considered in the Global
Vertical Datum definition.

(3.32)

From Figure 3.2, we note that approximately,
. . CQ 0 '
H,=H; + _yi_ (3.33)

where H; is the normal height of the station referred to the global vertical datum,
H; is the normal height of the station referred to the regional vertical datum, and

C$.o = wo _ wlo

also
hp=Hp +{, (3.34)
where hp is the ellipsoidal height of the point P.

Substituting CO=S(GM)—AW° in equation (3.32) where §(GM) = GM - (GM)p is the

Ry Y
difference between the true geocentric gravitational constant and that of adopted reference

ellipsoid, we get:
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=2 AW, R EH(Asu+C) Sy)do, - R zq'cn,.,ﬂsw)doj

gy _ﬁEH;’ ..__251,2
Y Y Y

(3.35)

Since the GM value is known to an accuracy of approximately 0.003 ppm, GM shall be regarded
as known in the discussion and one can assume gGM) = 0 (Rapp and Balasubramania, 1992) in
equation (3.35).

From equation (3.34) we can write:
Ce=hp—Hp (3.36)

Comparing equations (3.35) and (3.36):

.« _—-AW R 2 (o J R a .
hp-Hp=—-24— Agy +C)S(y)do, —— 3 q'C S G,
p—Hp Y 4“7:-212'( EM ) (y)do; 41ry,-§1q Q,o{{ (y)do;

~Agyyy; FOPyw TGP g
Y Y Y

From equation (3.33) H =H; + C‘Y

(3.37)

Substituting (3.33) in (3.37) we get:
-AW, . Co ;
h,-H; = ———Q-y +-—7-*-+ zjj(AgM+C) S(y)do; ———Eq iCoy0° jjS(\v)dc,
(3.38)
a2 K

Substituting (3.24') in (3.38) and rewriting the known and unknown terms, we get:

hy =H; - Z” (Agu +C) S(y)do; +é&H;+ nGp H? + nGP 5;.2
.l' oj y ,Y Y
AW, , a0 2 1 (3.39)
=——10 0, < 2 1 .
Y v Y EC"P{«: I s("’)d",}

In equation (3.39) the left hand side can be computed using the observations. Let it be denoted
by Y. Then,

Y=h,-K; ——z () aek +c) S(y)do, +—_§1H;+"$P H;’+"$P sh*  (3.40)

FC,

where hp is the clhpsoldal height of the point P, and H; is the normal height of the station
referred to the ith vertical datum in which it lies.
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Since in equation (3.40) the terms A‘?l,lcy-g, etc. are small, and the difference between

H; and H; is also very small, we can replace Hj, Hj in the right hand side of equation (3.40)
by H; and H;’, respectively.

Denoting the gravimetric height anomaly (without zero height anomaly term) by i, we can write
equation (3.39) as:

Y =hy-H; -{} =-'A.;% +E$“1 +%§1Cq.o{71;, ] S(\v)do,-} (3.41)
9
i R 2 j . nG
where {j= {{(Agg +C)'s(y)do; —(ﬁ‘-%!l-li + "3" H + YP 8h2) (3.42)

Equation (3.41) is the required observation equation when free-air anomalies in Molodensky's
sense and normal heights of the station above regional vertical datum are given.

From equation (2.5) we know that the orthometric height of a surface point P with respect
to an equipotential surface W = W (in our case the global vertical datum) is given by:

n=S

where Cp is the geopotential number at point P (Cp = Wg - Wp) and g the mean gravity along
the curved vertical between the surface point and its corresponding point P, on the giobal
vertical datum (Refer to Figure 3.3). In the same way the orthometric height of the point P with
respect to the regional vertical datum ‘i' (W = W) can be written as:

Hi= —CE':L where C, =W5-W, (3.43)
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Figure 3.3 Various Equipotential Surfaces and Orthometric Height

In Figure 3.3, Q; can be considered as the fundamental benchmark of the i-th regional
vertical datum. The potential of the reference surface for the global vertical datum is Wg. We
define as before Cq o = W, - Wj as the potential difference between the equipotential surfaces of
the regional datum 1 and the global vertical datum. Introducing an arbitrary ellipsoid where U is
the potential on the surface, we define AW¢ = W - Ug. Also in the above figure the distance
between the global vertical datum and the arbitrary ellipsoid is given. This depends on the
disturbing potential at the point Po,T,o , and AWg = Wy - Up.

From equations (3.1) and (3.4) we know the free-air anomaly in a classical approach including
terms only up to the second order is written as:

A Ny y 1 3.44
8c = 8?“'3%‘ ‘2—!'5—}.%' -5 (3.44)

where H is the orthometric height and y is the normal gravity on the ellipsoid. Since the
orthometric heights of the stations are knou?ﬁ with respect to the regional vertical datum i, Hi, the
gravity anomalies computed using equation (3.44) will refer to the regional vertical datum only.
Denoting the free-air anomalies referring to the regional vertical datum i as Agg., we can derive
the relationship between Age and Ag,, that refer to the global vertical datum as follows:

For an arbitrary reference ellipsoid, following a simple generalization of Brun's formula
we can write (refer to Figure 3.3)

TF —AWO

where Ty refers to the disturbing potential at the point P, on the global vertical datum.
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Similarly for the regional vertical datum'i' we can write

T, ~AWi
N =—?§-r-3 (3.46)

where Ty, refers to the disturbing potential at the point P} on the regional vertical datum, and
AW; = W} - Ug is the potential difference.

From (3.45) and (3.46) we get
N-N! =-;-[(T,° - Ty~ (AW, - AWS)]

since Ty =Ty , We can write
o P}

N-Ni=- 9_;{3 (3.47)

with eqn. (3.47), eqn. (3.45) can be modified as

. Ty —AW,+C
Ni=N+Sae_ "R 0t e (3.48)
Y Y
From equation (2-148") in Heiskanen and Moritz (1967) we have the relation:
dT}

Ag. = —-E-M-%N (3.49)
where Ag, is the gravity anomalies defined in a classical sense referring to the global vertical

datum,

N is the geop-spherop separation between the GVD and the arbitrary reference ellipsoid,
Yis the normal gravity, and

San' is the derivative along the ellipsoidal normal.

Similarly for the case of the regional vertical datum 'i', we can write

Agi =—%’L+§£N‘ (3.50)

Now substituting for Ni from equation (3.48), we get

Agi.:%%—%-é%vug-%%-% 3.51)

In spherical approximation, setting r =R,




= —-21 n - a'r .
S--PeaF -5 (352)
Substituting (3.52) in (3.51)
iz2aw.-2.c..-[2,9
Agc - i . Aw° | -R' Qlo (E"' aR (3-53)
From eqn. (2-179") in Heiskanen and Moritz
Ag. = —%{--%T+%AW, (3.54)

From equations (3.53) and (3.54) we get

Agc = Ag:, +%qu

(3.55)
From equation (2-181) in Heiskanen and Moritz (1967), we can write:
3(GM) AW, . R
NP)=—>—=- + Ag S(y)do 3.56
B= Ry vy amy [/ 48cS¥) (3.56)

Substituting (3.47) and (3.55) in (3.56) and assuming that 3 GM) is equal to zero because of the
high accuracy in the determination of GM today (1994) as noted earlier, we get:

AW, Cgo = R 2
NiPy="8Wo , Cao & R g )[A +2C ]da‘ 3.57
®==7 Z‘mrvg W] 28+ g Cae 0 2D

where i’ refers to the ith regional vertical datum and
Yj' = 1, 2...n, n being the number of regional vertical datums considered.

The free-air anomaly used in equation (3.57) should be corrected for the systematic errors
listed in Section 3.1.1 and also for the terrain effect. If Faye anomalies are used in the Stokes’
formula in equation (3.57) then by Helmert's second method of condensation, an indirect effect
correction is needed to be applied to the computed undulation. The required eguation for
computing the indirect effect as given by Grushinsky's formula (Wichiencharoen, 1982) is:

5N =#EH*’ (independent of j = 1,...n) (3.58)

where the quantities G, p, y are defined earlier and Hi is the height of the station in the regional
vertical datum.

Assuming the free-air anomalies Agc are corrected for systematic corrections and also for terrain,
equation (3.57) gets modified as:
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- -AW, , C R 2 e eV, 2 nGp .,
i(P)=—8Wo 400 , R_ £ RGP i
Ni(P) Tt ey }_‘,ﬁS(v)[(Agc+C) +ch‘o]dc, ” H (3.59)

=l L]

where (Agg + C)j refers to the free-air anomalies defined in a classical sense, cormrected for terrain
and other systematic corrections referring to regional vertical datum ‘', for j = 1, 2, ...n where 'n’
is the number of regional vertical datum considered in the global vertical datum definition.

Assuming that we have a set of space geodetic stations on regional vertical datum 'i', for
which we know the ellipsoidal heights 'h’ above an arbitrary geocentric reference ellipsoid and

the orthometric heights Hi above the local vertical datum, then we can write from equation (2.1)
and Fig. 3.3:

Ni=h-Hi (3.60)
comparing equations (3.59) and (3.60)

i _ =AW, . Coo., R & i, 2 nGp .2
h-H ="8Wo 00, R sl (ags.+CY+<C ]@.__BH'
Y v 4my ,):1{{ (W) (A5+C) +3 Copo [do, =5

22 1 xGp
C..{—I[[S APy
T Q‘.,{‘m {{ (v)do,} y

¥h

-AW,  C R & PRY
=_?_2+—-$9-+m£j;{8(w)(Agc+C)doj+

Re-arranging the known/observable and unknown terms, we get:

-w-R3 ¢ +CY 7GP 42
h-H 4mj-lj;{(Agc+C)S(w)doj+ v H:

-Aw,  C 2: 1
="2N0 4, "% L L5 C, d— y)do.
Y Y v ,-21 0’0{4"!5!8( J}

(3.61)

Denoting the left hand side of equation (3.61) as Y, we write:

Y=h-H '[ZR— 3 Jf(Agz +C)'stw)do, -ﬂyﬂn"} (3.62)

j=lq;

The third term on the right hand side of the equation refers to the geoid undulation computed
using terrain corrected gravity anomalies without the zero undulation (Ng) term. Denoting the
third term by Ni and from equation (3.61) and (3.62) we can write:

chom-Ni=8Wa, oo 280 1L

Y=h-H -Ni= oty +yjzﬂcojo{4u£jjsw)do,.} (3.63)
i_ R & c i _1G

where Nl__._..4 ,2'; {{(Agc+C) S(y)do; —EY H? (3.64)
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Equation (3.63) is the required observation equation when free-air anomalies in the classical
sense and orthometric heights of the station above the regional vertical datums are given.

As explained in section 2.1.2.2, normal orthometric heights are used in countries which
lack dense gravity data coverage. However, they are considered for all practical purposes as a
coarser approximation to true orthometric heights. Therefore, the procedure described in Section
3.2.2 can be used for setting up the required observation equations in this case also. Since
normal orthometric heights are not true orthometric heights, such heights can produce a
systematic error in the definition of global vertical datum.

33: - [G . .xlal ! l!lll .

To achieve the highest accuracy in the computation of gravimetric height anomaly, i, in
equation (3.42) or the gravimetric undulation, Nj, in equation (3.64), the procedure that can be
followed is to combine the surface gravity anomaly data defined in a regional vertical datum
limited to a small cap (100 to 200 km) about the computation point and coefficients from an
accurate geopotential model. Some of the currently used techniques for computing gravimetric
height anomaly/geoid undulation are discussed in the following paragraphs.

3.3.1 Modified Stokes’ Techni

This technique makes use of gravity anomaly data in a cap around the point of interest
and a set of potential coefficients from an accurate global geopotential model to compute the
height anomaly/geoid undulation. This technique has been discussed by several authors; to
mention a few, Despotakis (1987), Pavlis (1991), and Sjoberg (1991). From equation (2.40) in
th;spotakis (1987), we can write the modified Stokes' equation (here incorporating the indirect
effect term):

=R Rs - TGPy
N 4”7!{ AgS(y)o+ 7, Q. (AR, @A) -—EH (3.65)

where Ag are the free-air gravity anomalies corrected for systematic errors listed in Section 3.1.1
and considered in a cap radius v,
Qn are the Molodensky truncation coefficients defined by equation (7-34) in Heiskanen
and Moritz (1967), and
Agn (6, 1) the nth degree harmonic representation of Ag (6, A).

The first term on the right hand side of equation (3.65) corresponds to the contribution of gravity
anomalies, in a cap (¥ = y¢), to the undulation computation and the second term to the remote
zone contribution to the undulation computation. When terrain corrected gravity anomalies are
used, equation (3.65) gets modified as:

-_R _*Gpp_
N= gy [[(8g+CB(w)do —;-EH’—

(3.66)
=.—R—— R & T _NGp 2
amy 08+ C)Sty)o+ 2= Q. (n8g100)- T2H
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where AgT(0,1) is the nth degree harmonic term of (Ag + C).

From discussions in Rapp (1993a), AgI(6,A) in the above equation is related to Agy (8, A) in
equation (3.65) as follows:

Ag:(8,A)=Ag,(8,1)+C,(8,1) (3.67)

where C is the terrain correction, the coefficients of C can be found by replacing Ag (8, A) in
equation (4) (Rapp, 1993a) with C, the terrain correction.

Since potential coefficient models available for use have yiclded estimates of the
potential, we can calculate Ag?(6,A) from potential coefficients as:

AgT(O,\)= %?i(n - l)(%)n io (E,,,, cosmA+S__ sin ml)ﬁ_, (cos®) (3.68)

Using (3.66) and assuming gravity anomalies used in the cap refer to only one datum 'i' in which
the station lies, from equation (3.42) we get:

G = gy [ (485 +C) sty + 35 Q. AT O1)-

‘Yn-O

(3.69)
CER

Similarly, using (3.66) and assuming gravity anomalies used in the cap refer only to the datum '
in which the station lies, from equation (3.64) we get:

i_ R c i R & nG
N] = m{{(Agc + C) S(‘V)doe + -ﬁn‘E}Qn ("’)Ag:(e!x) - 721‘112 (3'70)

The gravimetric height anomaly {} and the gravimetric undulation Ni computed by
equations (3.69) and (3.70) with the Modified Stokes' technique are based on spherical
approximation. But to get the solution with respect to an ellipsoid as reference surface we need
to apply ellipsoidal corrections to the height anomaly/undulation computed. Rapp (1981) has
developed procedures to compute the correction needed to fully refer the solution to an ellipsoid
surface (equation (31), ibid.). Despotakis (1987, Chapter VI) has also derived the ellipsoid
correction term to be applied to the height anomaly/undulation computed using gravity
information in a cap surrounding the computation point combined with potential coefficient
information, following the similar lines as in Rapp (1981). Denoting the ellipsoidal correction
term as AN, equations (3.69) and (3.70) get ified as:

= ?%H(Asﬁ +c)iS(\v)d<sc +2%-§°Q. (v)Ag: (6,1)—-

3.71)
_[A&lﬂ;+_"gﬂﬂ;’+-@-28h’]+AN
Y Y Y
i—_R ) R & G
Ni = gy (85 +CJSvo. +75 Q.wAET@1) - B HE 44N (3:72)
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and
- e2 m _ a . - » 1_2 -
AN -“i—y-ngo(Qu xll )mgo(c-. Cosml'i-H_ smﬂll)P_(sul ¢)+ez[4 4 mz ¢]No (3'73)

where Qp are Molodensky's truncation coefficients (Heiskanen and Moritz (1967, Section 7.4)),
X are the Fourier coefficients of Stokes' function beyond the cap radius vy, and
Gnm, Hnm are the coefficients defined in equation (39-81) in Moritz (1980).

The first term in equation (3.73) arises from the fact that the ellipsoidal effect e2Ag!l:
where Ag! is defined by equation (39-80) in Moritz (1980), has to be removed from the terrestrial
gravity anomalies Ag¢ used in the cap. As shown in Despotakis (1987) this correction term is
dependent on the cap radius Y in which the gravity anomaly data are used and its magnitude
amounts to about 1-2 cm when y = 2°,

The second term in equation (3.73) corresponds to the ellipsoidal correction to the
spherical undulation itself and is given as equation (39-21) in Moritz (1980) also. This term has
been derived assuming average normal gravity being used at the station. If actual normal gravity
computed at the stations are used in computing the undulation, this term becomes zero.

332 LeastS ~oliocation Techni

As discussed in section 16 of Moritz (1980), Least Squares Collocation (LSC) technique
provides the most accurate result obtainable on the basis of given data when prior information is
included. Prediction of height anomaly {} or gravimetric undulation N}, based on the corrected
free-air anomalies given in a regional datum can be done accurately using least squares
collocation technique provided the required covariances are known.

The statistical approach to collocation is based on the theory of stochastic processes in
which the gravity anomaly field is treated as a stationary stochastic process on a sphere with the
assumption that both the observations and signals represent ergodic processes with zero
expectation everywhere (Moritz, 1980, p. 76) and the average product of two signal quantities is
the covariance between them. Therefore, in the case of gravity anomalies it is assumed that,

M{Ag} = 0 =E{Ag} and M{Ag(P) - Ag(Q)} = C (P, Q) = E{Ag(P) - Ag(Q)} (3.74)

The definition of the mean operator M{-} as a homogeneous and isotropic average over the
whole sphere is an important assumption in this technique.

On a global scale, the anomalous gravity field exhibits a seemingly random behavior necessary
for a statistical interpretation of the ficld. But when the area of interest is of limited extent, as in
our case with limited surface gravity data, the global gravity field behavior represents a
systematic component and short wavelength features become prominent from the statistical point
of view (refer to Figure 3.4 given as Figures 1(a) and 1(b) in Collier and Leahy, 1992).
Therefore, the conditions for equation (3.74) need to be modified with the requirement that the
local average behavior must be zero and a local covariance function must be used.
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Figure 3.4 Gravity Field on a Global and Local Scale
(from Collier and Leahy, 1992)

To satisfy the requirement of zero expectation as well as that of isotropy and
homogeneity for the covariance function, it is essential that the presence of all systematic trends
in the local behavior of the gravity field be eliminated from the gravity data prior to generating
an empirical covariance function. After the removal of the trend component, the remainder of
the gravity field shall here be considered to behave in a stochastic fashion. Global geopotential
models up to degree and order 360 can be used for removing the trend in the gravity field.
Practical computation of reference gravity anomalies from a set of potential coefficients (up to
degree 360), computation of a global covariance function and then scaling it to fit local data are
discussed in detail in Ba¥i¢ and Rapp (1992).

From equation (18-21) in Moritz (1980), the required expression for predicting the
residual geoidal undulation/height anomaly at the space geodetic stations, using the LSC
technique is given by

§=C,CY (3.75)

where s is the predicted residual geoid undulation/height anomaly,
Y are the residual gravity anomalies obtained after removing the reference
anomalies computed using global geopotential model from the observed free-air
anomalies corrected for terrain and other systematic effects,
Cg; is the cross covariance matrix between unobserved and observed quantities, and
C is sum of the covariance matrices of the signal t and noise n (Cy+Cpn)=D{Y}.

In addition to providing an accurate prediction of height anomaly/geoid undulation, least
squares collocation technique can also provide the accuracy of the predicted quantities which can
be &omputc% ggmg the error covariance matrices given as equation (17-44), (17-47) and (17-48)
in Moritz (1980).




E.=C_-C.C'C, (3.76)
where E, is the error covariance matrix of predicted geoid undulation,

C;: is the auto covariance matrix of unobserved geoid undulation,

Ca1, Cy5 are the cross covariance matrices as before C,=C(s,Y}, and

C is the total covariance matrix of observations (Cy + Con)=D(Y}.

The height anomaly/geoid undulations predicted using LSC technique are to be corrected
for ellipsoidal corrections following the procedure described in Section 39 of Moritz (1980). The
discussions given in there indicate that the ellipsoidal correction computed and applied in Section
3.3.1 for the Modified Stokes' Technique can be applied in this case also. As pointed out earlier,
the magnitude of ellipsoidal correction is in the order of 1-2 cm. The geoid undulation predicted
?3sing LSC technique should also be corrected for indirect effect discussed in Section 3.2.2 (eq.

58)).

The practical problem in using this procedure (mainly with available software) may be
the inversion of the matrix C in equation (3.75) as well as the equation (3.76). The size of the
matrix to be inverted will be (nxn) where n is the number of observations. Procedures to
circumvent the problem of inverting the matrix have also been developed for predicting using the
LSC technique. However, depending on the limitations of the computers used, in terms of CPU
time and memory, the number of observations used for predicting will be curtailed.

333 Fast Fourier Transform (FFT) Techni

The conversion of gravity anomalies, defined in a regional vertical datum to geoid
heights can be done using FFT method also, after removing the long wavelength part of the
gravity field using an accurate geopotential model, complete to degree and order 360. This
method takes advantage of the possibility of expressing the planar approximation of Stokes'
integral in a two dimensional convolution form. According to the convolution theorem
(Bracewell, 1978), the Fourier transform of a convolution is the product of the spectra of the two
functions being convolved. Detailed discussions on expressing the Stokes' integral in a planar
form and its transformation to spectral form are given in Sections 2.3 and 2.5 of Zhao (1989).
The planar approximation underlying this approach is permissible due to the use of a high-order
spherical harmonic reference field, yielding near-negligible indirect effects (Forsberg, 1990).
However, it is also possible to apply FFT directly to the spherical Stokes' formula. This gives
more accurate results and therefore the extension of the area of integration can be enlarged
(Strang van Hees, 1990). A review of FFT methodology may be found in Schwarz et al. (1990)
and the different sources of error in the use of FFT methods for conversion of gravity anomalies
to geoid heights in Farelly (1991).

Though the high computation speed of FFT makes this technique a very efficient one in
various scientific fields, computation of height anomaly/undulation at one station (not falling at
any grid corner of given gravity anomalies) does not give any specific advantage for this method.
Accuracy of prediction is almost the same as modified Stokes' technique or even less due to
interpolation of the final geoid undulation to the station from grid comers, where N are predicted.

Most of the regional geoid height models such as GEOID93 (Milbert, 1993), GSD91
(Mainville and Véronneau, 1990), and NKG-89 (Forsberg, 1990) makes use of FFT technique for
their development. The required values for {; and N; for equations (3.42) and (3.64) can also be
interpolated from the regional geoid height models where it is available.
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3.4 Adjustment Process
The discussions in this section follow the procedure suggested by Rapp and
Balasubramania (1992).

From equations (3.41) and (3.63), we get the observation equations at each of the space
geodetic stations 'k' where k = 1, 2...z and 'z’ is the total number of stations used in the global
vertical datum definition:

-AW, . C 23 1
= ——l Q0 , < — .
Y, > +_?x_+ > ,~§C°’°{ i {{ S(w)do,} 3.77)

we now define the integral:

Jw)= 4= [ S(w)do, (3.78)
S
Considering terrestrial gravity anomalies only around a small cap (Y = 2°) we write:

A/
J(\vc)=% ofsw)sinwdw (3.79)

Equation (3.79) is also equation (2-225) in Heiskanen and Moritz (1967). The integration is
given by Lambert and Darling (1936, p. 103). We have:

Jye)= %{1 +4sin%i -cosy, —6sin® 121 —-:-:-sin2 v, —-;-sin2 v, log,(sin%ﬁ-b sin? l"z-ﬁ)} (3.80)

Now assuming that the anomalies in the cap refer to only one vertical datum as discussed
in Section 3.3.1, in which the station lies, then for j = i equation (3.77) reduces to:

Y, =13:V—°+-C%2(1+2J(wc)) (3.81)
If gravity anomalies in other vertical datums are involved, additional terms are needed in
equation (3.81).
The general form of equation (3.81) can be written as:

Y=AX+e (3.82)

Where Y is the misclosure vector from equations (3.41) or (3.63), A is the coefficient matrix, X
are the parameters of the model (AWo and Cq;0), and e the observation error vector. The
coefficient of AWq will be -1/y and the coefficient of Cq;o will be (1+2J(y))/Y, where we assume
the same cap size for all stations.

In our global vertical datum problem, there will be z observation equations and I+1
parameters where I is the number of vertical datums considered. In this system there will be a
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rank defect of 1 because nothing has been set to define 4 fixed datum or surface. This defect can
be removed by introducing a constraint. One such procedure as discussed by Rapp and
Balasubramania (1992) is to carry out a free network adjustment as is done for some types of
horizontal networks or to introduce a physically meaningful constraint on the system. We define
the constraint equation such that:

1 N 2 ..
3(Wo-Wj) = ZE(CQIO) = a minimum (3.83)
=l is
To implement equation (3.83) we introduce a datum constraint such that

KX=0 with K:=[0, 1, 1.....1] (3.84)
where K is the 1xm coefficient matrix of the constraints with rank K = 1, and

rank[A]=m=I+l.
K

Defining the Lagrange target function as:
o=(Y - AX)T Z71(Y - AX) +2A(KX) (3.85)

a Jeast squares solution based -~ equation (3.85) leads to the following system of equations:

5 S

The solution of the above equation yields the following estimated parameter vector:
X=(AT%;'A+KTK)"ATS'Y (3.87)
The error covariance matrix of the estimated parameters would be:
3. =(ATZ; A+K'K) AT Z;' A(AT Z;' A+KTK) (3.88)

The elements of K are in principle arbitrary. The simplest selection of the elements
would be to set all but one element to 1 as shown in equation (3.84). This would imply that all
vertical datums would contribute equally to the determination of the reference surface of the
global vertical datum. An alternative solution would be one where some vertical datums would
be given greater weight in defining the global vertical than others. Proper solution of the actual
numerical values for the K elements depends on various factors such as the number and accuracy
of space geodetic stations considered in each datum, number, type and accuracy of tide gauges
considered in defining the regional vertical datum etc. Also we note that W does not directly
enter the constraint defined by equation (3.84). Therefore, the K value corresponding to AWy
parameter must be chosen as zero.

Equations (3.87) and (3.88) are the key equations in estimating the adjusted parameters
defining the global vertical datum and their accuracy estimates. Actual estimation of parameters
and their accuracy are carried out in the next chapter based on availabic data in various regional
vertical datunss.
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CHAPTER 4
REALIZATION OF THE FIRST ITERATION GLOBAL VERTICAL DATUM

Based on the modeling procedures discussed in Chapter 3, a first iteration test
computation to estimate the parameters defining the Global Vertical Datum was carried out with
available data from six regional vertical datums. The different regional vertical datums
considered for realizing the Global Vertical Datum (GVD) are: North American Vertical Datum
88 (NAVDS88), Ordnance Datum Newlyn (England), IGN 69 (France), NN (Germany), AHD71
(Australia), and Scandinavian Datum. Data used in the numerical investigations, corrections
applied to them, different techniques used in evaluating certain gravimetric quantities and the
results obtained are discussed in the following sections.

1 Daa Used in Different Regional Vertical D

The ITRF91 coordinate system was sclected as the consistent coordinate system for
defining the station coordinates of the space geodetic stations such as VLBI, SLR, GPS, etc.,
used in the realization of GVD. Station coordinates in the ITRF91 (for epoch 1988.0) for all
space stations, except for one, used ir this study were obtained from Table T6 in IERS Technical
Note 12 (Boucher et al., 1992(a), pp. 81-86). An ideal ellipsoid with the following parameters
was adopted as the reference ellipsoid for this study:

a=6378136.3m
f = 1/298.257222101

GM = 3986005 x 108m3s-2 .1
®=7292115 x 10-11 rad s

The last three parameters are the same as the parameters defining the GRS80 ellipsoid. The list
of stations used, their ellipsoidal coordinates, ellipsoidal heights and heights in local vertical
datum are given in Table 4.1.

4.1.1 North American Vertical D 88 (NAVDSS)

This vertical reference datum has been recently established (Zilkoski et al., 1992) based
on a minimum-constraint adjustment of Canadian-Mexican-US leveling observations, holding
fixed the height of the primary tidal bench mark, referenced to the local mean sea level height
value at Father Point/Rimouski, Quebec, Canada. NAVDS88 values are given in Helmert
orthometric height units. This height system will eventually replace the National Geodetic
Vertical Datum 29 (NGVD29) height system used in the United States during the next five to
seven years. The NGVD29 height system was established by constraining the local mean sea
level at 26 tide gauge stations (21 in the US and 5 in Canada) held fixed at 0.0 elevation. The list
of gi3stortions present in the NGVD29 height system are given in Table 1 of Zilkoski et al. (1985,
p. 23).

A total of nine space geodetic stations (seven SLR stations and two VLBI stations) falling
in this regional vertical datum are considered in this study. Location of these space geodetic
stations are shown in Figure 4.1. The precise heights of these stations as listed in the NASA
Space Geodesy Program Catalogue of Site Information (NASA Tech. memo 4482, 1993) refer to
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the NGVD29 height system. The VERTCON software (Version 1.00, 1992) received from
Vertical Network Branch, NGS which computes the modeled difference in the orthometric height
between the NAVDS8 and the NGVD29 for a given location specified by latitude and longitude,
was used to convert the NGVD29 normal orthometric heights to NAVD88 Helmert orthometric
heights. The amount of correction to be applied at each of the geodetic stations is shown in
Table 4.7. The 3'x3' gravity anomaly grid for the conterminous US, used as input data set for the
development of GEOID90 Geoid Height Model by NGS was also used in this study. These
gravity values are atmospherically corrected Helmert anomalies based on the International
Gravity Standardization Net 1971 (IGSN71). Detailed documentation on this gravity data set
can be found in Milbert (1991a). As quoted by Milbert (1991b) these 3'x3' mean anomalies have
a standard deviation of 1.5 mgal.

4.1.2 Ordnance Datum Newlyn, ODN (England)

ODN has been established based on the tidal observations taken between 1st May, 1915
to 30th April 1921 at the tide gauge on the South pier of Newlyn, Cornwall, England (Wilson,
J.I., personal communication, March 1993). Heights are referred to the Tide Gauge Bench Mark
which is defined to be 4.751 meters above the datum. Heights determined from this datum are
based on either the 2nd Geodetic leveling of England and Wales (1920 to 1952) or the 3rd
Geodetic leveling of England and Wales (1953 to the present).

The SLR station (CDP No. 7840) at Herstmonceux, England is the lone station falling in
this regional datum to be used in this study. The station's orthometric height referring to the SLR
axis has been accurately determined in 1991 by first order leveling.

The gravity data used around this station are taken from the same 6'x10' atmospherically
corrected gravity data set used by Despotakls (1987) in his dissertation work, and they are not
corrected for terrain.

.13 Institut Géosraphiqus National 69. IGNG9 (France)

The SLR station (CDP No. 7835) of Grasse, France is the only station in IGN69 used in
this study. IGN69 is a normal height system using GRS67, with zero at the Marseille tide gauge.
The height of the axis of the SLR station used resulted from an adjustment of the 1st order
leveling net re-observed during 1961-1969 (C. Boucher, personal communication, April 1993).

The 6'x10' atmospherically corrected (but not corrected for terrain) data set used by
Despotakis (1987) was also used in this study.

4.1.4 Nommal-Null (NN), (Sea Level Datum), Germany

The heights in the German height system (NN) are referred to the level surface through
the reference point of mean sea level. This reference point is situated 37.000m below the
standard benchmark which was established via leveling lines from the tide gauge at Amsterdam
("Normaal Amsterdamsch Peil, NAP). Details regarding this height system are discussed in
Torge (1991, Section 6.2.3, p. 228).

The SLR station (CDP No. 7834) at Wettzell, Germany is used in this study for realizing

the GVD. The gravity data used are from the 6'x10' mean anomaly data set used by Despotakis
(1987).
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1.5 Australian Height D 71 (AHDT1). Ausiali

The Australian Height Datum was established on May S, 1971 by the division of National
Mapping, Australia (National Mapping Council, 1979) carrying out a simultaneous adjustment of
97320 km two-way leveling, holding mean sea level for 1966-68 fixed at zero at thirty tide gauge
stations around the coast of the Australian continent. The important characteristics of this datum
as discussed by Morgan (1992) and Rizos et al. (1991) are listed as follows:

« ADH?71 is primarily a homogeneous third order or mapping datum with an estimated internal
precision of about 8 mm vk where k is the length of level run in kilometers.

» Data making up the AHD71 are not accurate enough for geodetic, geodynamic and
oceanographic studies. A mid seventies re-leveling program indicates that substantial errors
exist in the original data.

+ The difference between the constrained solution AHD71 and a free adjustment suggests a rise
of mean sea level up the east coast of about 1.5m, though this result is in disagreement with
physical oceanographic measurements (Sturges, 1974).

Two SLR stations, one at Yarragadee (CDP No. 7090) in Western Australia and another
at Orroral Valley, Canberra (CDP No. 7943) in Eastern Australia are considered in this study for
realizing the GVD. Figure 4.3, shows the locations of these stations. The gravity data used are
from the 2'x2' mean anomaly data used by Despotakis (1987). Again these data also are
corrected only for atmosphere and not for terrain.

1.6 Scandinavian D

Though there is no single regional vertical datum known as the Scandinavian datum, the
individual datums RH70 (Sweden), N60 (Finland), and NN1954, NNN1957 (Norway) were
combined to serve as a single regional datum in this study mainly for computational
convenience. The following factors also prompted the decision:

» These three datums are in the same peninsular region and also have been included in the
UELN-73 adjustment.

« In the three systems, the elevations can, in principle be reduced to any epoch by using
published land uplift rates (Cross et al., 1987, p. 207).

» Most of the ongoing projects of scientific interest in the Nordic area consider these datums
together. Fennoscandian Land uplift studies (Ekman and Mikinen, 1990), the Baltic sea
level project with GPS (Pan and Sjtberg, 1993) are some examples for the same.

* We have a precise regional geoid model NKG-89 (Forsberg, 1990) covering all these three
datums.

The VLBI site (CDP No. 7601) of Metsahovi, Finland, the VLBI station (CDP No. 7602)
at Tromsp, Norway and the GPS station identified as NDG (Sweden) in the European north-
south GPS traverse proposed by IAG SSG 3.88 to control and improve the European geoid
(Torge et al., 1989) are the three space geodetic stations considered in this study. The ellipsoidal
coordinates referring to WGS84 and the normal height referring to UELN-73 for the GPS station
in Sweden were obtained from the Appendix to the paper by Torge et al. (1989). The precise
heights of the VLBI stations at Metsahovi and Troms referring to their local height systems
were obtained from NASA Tech Memo 4482. Since the GPS station height is referred to UELN-
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73, and in general Swedish heights are approximately equal to UELN heights (within 1-2 cm)
(Forsberg, personal communication, May 1993) the other station heights were also converted to
Swedish heights using the following conversion:

» Tromsp, Norway local height converted to Swedish height by subtracting 9 cm (Forsberg,
personal communication, May 1993).

. Met;ahovi, Finland local height to Swedish height by subtracting 8 cm (Pan and Sjbberg,
1993).

The Faye anomaly data in a 5°x5° area around each station in Norway, Sweden and
Finland were received from René Forsberg. They were point anomaly data sets selected closest
to the center of every 3'x6’ cell in the area. Using the GEOGRID program, in collocation mode,
and after removing the reference field using OSU91A geopotential model, the anomaly data were
predicted at every 2'x2' grid corner. The reference anomaly at the grid corners was then added to
the residual anomaly predicted and the final data set was used in the computations.
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Table 4.1 Stations Used in Global Vertical Datum Definition Study

- -

Station Latitude Longitude Ellip.ht —E;;;atio;.
' (a=6378136.3) above
Local Datum
(m) (m)

--7051-QUINCY 39 58 24.577 239--~; 37.432 1060.686--15;;:;;6--
7062 SANDDI 32 36 2.667 243 9 .32.660 989.219 1022.000
7082 BEARLA 41 56 0.899 248 34 45.417 1963.700 1976.51%
7091 WESTFD 42 37 21.701 288 30 44.233 92.794 120.502
7086 FTDAVS 30 40 37.311 255 59 .2.369 1962.178 1983.161
7105 GSFCMD 39 1 14.176 283 10 20.0S50 19.890 53.050
7204 GREENB 38 26 16.164 280 9 50.944 813.222 844.715
7110 MOPEAK 32 S3 30.254 243 -34 38.140 1839.702 1870.778
7234 PITOWN 34 18 3.666 251 52 50.665 2365.390 2385.940
7069 PATRIK 28 13 40.669 279 23 39.191 -22.937 6.533
7602 TROMSO 69 239 46.702 18 56 21.9864 133.599 101.400
7601 METSAH 60 14 31.069 24 23 2.9%9 60.269 40.598
1001 ONSGPS 57 53 S50.713 12 2 46.382 39.959 2.736
7835 GRASSE 43 45 16.883 6 55 16.034 1323.560 1272.100
7834 WETZLL 49 8 41.775 - 12 52 41.142 661.836 614.440
7840 RGOUK1 SO 52 2.565 0 20 10.040 76.058 39.633
7943 CANBRR -35 -37 -29.751 148 S§7 17.296 949.635 929.500
7090 YARRAG -29 -2 -47.410 11S 20 48.272 242.051 266.568
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12 S i Comecti Gravity 2 i

The systematic corrections needed to be applied to the terrestrial gravity anomalies were
mainly the horizontal datum inconsistency correction (dgH) and the gravity formula correction
(8gG). as they have been already corrected for atmospheric effects. Since we didn't have dense
DTM data for applying the terrain correction to the gravity anomaly data sets that were not
corrected for the terrain, they were used as such. Despotakis (1989), based on his undulation
computations with data at 12 space stations in thc western United States, has shown that the
mean and RMS difference of computed undulations decreased by about 50 cm when the terrain
corrections were taken into account. The standard deviation decreased about 20 cm when
terrain-corrected gravity data was used. The extent of dgy and dgg corrections needed/applied to
the various gravity data sets are discussed below:

42.1 Horizontal Daum Inconsi Comection (8s

As mentioned in section 3.1.1(b), this correction is needed because of the systematic error
introduced in the computation of normal gravity due to erroncous latitude values. Detailed
theory behind such a correction is given in Heck (1990, Section 3.3, pp. 96-101). In Table 4.2,
the details regarding the size and shape of the reference cllipsoids associated with the local
geodetic datums are given. Also changes in the equatorial radius Aa and in the flattening Af
between the locally adopted reference ellipsoids and WGS84 reference ellipsoid are given. Table
4.3 gives the datum transformation parameters from the various local horizontal datums on which
the stations used in this study lie and the ITRF91 reference frame. The transformation is done in
two stages. In the first stage, the transformation is done from Local geodetic datum to WGS84
datum using the parameters given in Table 7.13 in DMA Technical Report Part 1 and in the
second stage WGS84 to ITRF91 combining the parameters given in Boucher and Altamimi
(1991, Table 4, p. 53) and IERS Tech. Note 12 (Boucher et al., 1992a, Table 2, p. 27).

Table 4.2 Local Geodetic System - To - WGS84; Comparison of Ellipsoidal Parameters

Semi-major

Regional Local Geodetic Inverse Aa Af
Vertical Datum and Axis Flattening (m) 104
Datum Associated Ref. a 1/£ 10
Ellipsoid m
North NADE3 SO TR0 00
American (GRS80)
England Ord. Survey of Great | 6378363.396] 299.32 | -426.396 | 0.12
Britain
(Airy)
Scandinavian European 1950 | 63/8388.0 | 297.0 2251.0 | 0.141
German (Intemational)
French
Australian Australian Geodetic | 6378160.0 | 298.25 -23.0 | 0.0008
1966
(Australian National)
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Table 4.3 Horizontal Datum Transformation Parameters from Local Geodetic Datum to ITRF91

[Regional Vertical Ax Ay Az € v © As
Dawm m | m | m | " " | (10%)

rican X ! 0 0.0 0.0 0.0 0.0
_Is‘fg_g!and 436199 " 544 | 0945 | 0261 | 0.435 | 20.8927 ]
candinavian
German |
French -102 | -102° | -129 | 0413 | -0.184 | 0.385 | 2.4664 |
Australian -127 | -30 153 | 0.058 | -0.018 | -0.080 | 1.2065

-0. Sl . 01 . . 011

The effect of horizontal datum inconsistencies on the computed gravimetric quantities are
given in Table 4.4. Since the latitude values of the stations in the same regional vertical datums
vary considerably, the extent of correction also changes from one station to another. The details
given in Table 4.4 were computed only for one station in each of the different datums considered.
The name of the station at which the computation was carried out is given in parenthesis.

Table 4.4 Errors Introduced due to Horizontal Datum Inconsistencies on Certain Gravimetric

Quantities
[Regional Datum rror in Latitude | Corrections to Cormrections to the
(arc seconds) gravity anomaly { computed undulation
(mgals) (5gH) (cm)
ﬁ-ﬁgland 1.5 0.036 1.2
erstmonceux)
candinavian, 32 0.078 1.8
German
(Wettzell), French
Australian 35 0.097 2.3
(Yarragadee)

From the table above, it is clear that the correction required due to horizontal datum
inconsistencies is quite substantial and must be taken into account when 10 cm accuracy is
sought in the definition of the GVD. The computed values in Table 4.4 compare well with the
values given in Tables 2a and 4 of Heck (1990). The gravity data used in this study were all
corrected for the Horizontal datum inconsistencies (8gy).

42.2 Gravity Formula Comeetion (5

The gravity formula used in the computation of gravity anomalies in NAVDS88 and in the
Scandinavian datums refer to the formula implied by the GRS80 constants, in which the semi-
major axis is taken as 6378137.0m. Similarly in other European and Australian stations, as
discussed in Despotakis (1987), the gravity formula is computed using a = 6378136.0m. But in
our study for the adopted ideal reference ellipsoid we have a = 6378136.3m. Therefore, the
gravity anomalies are to be corrected for change in semi-major axis using the procedure
explained in Despotakis (ibid., p. 51). The computed dgg corrections for the gravity data sets in
NAVDS8S and the Scandinavian datums amounts to -0.216 mgal and for other gravity data sets in
ODN, IGN69, NN and AHD71 datums, it is +0.093 mgal.
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Two different techniques, namely, Modified Stokes' technique and Least Squares
Collocation (LSC) technique were used in the computation of gravimetric height
anomaly/undulation at the space geodetic stations used in the GVD definition study.

3.1 Modificd Stokes' Techai

As explained in section 3.3.1, this technique makes use of terrestrial gravity anomaly data
in a cap around the station and a set of potential coefficients from an accurate geopotential model
to compute the height anomaly/undulation. Equations (3.71) and (3.72) are the key equations
used for this purpose.

4311 Selection of Cap Si

Accuracy of computed height anomaly/undulation depends largely on the extent of the
terrestrial gravity data used around the computation point. As shown in Table 8 of Pavlis (1991,
p. 119), the grid spacing has only a minor effect on the quality of the result. Computation of
undulation/height anomaly using Modified Stokes' technique with (3.71) or (3.72), involves four
main error sources in its estimation. They are:

1. Errors associated with the gravity anomalies being given at discrete locations (or as mean
values) instead of a continuous function (called sampling error or discretion error and
denoted as 8Ny).

2. Errors associated with gravity data in the cap surrounding the station (called propagated error
and denoted as 6N?7).

3. Errors associated with the potential coefficients of the reference field (called commission
error and denoted as 8N3).

4. Errors associated with the neglected potential coefficients above degree M (called omission
error and denoted as dN4).

The total global root mean square error assuming uncorrelated error sources is:
8N = (N2 + N2 + 8N§ + 8N2)112 4.2)

Table 4.5 below shows the estimated accuracy of gravimetric undulation computed using
equation (4.2) for different cap sizes of terrestrial gravity anomaly data. Detailed discussions on
the different error sources listed above and the required expressions for computing the same are
given in Section 3.1 of Pavlis (1991) and in Section 2 of Despotakis (1987). With potential
coefficients from the OSU91A model and anomaly error degree variances referring to mean earth
radius of 6371 kilometers, the values in Table 4.5 were computed using the reciprocal distance
error covariance model, described in Pavlis (ibid., Section 3.4.2), with variance 4 mgal2 and
correlation length 0°1. As can be seen from the results, due to the increase in the propagated
error with an increase in cap size, beyond certain cap radius use of terrestrial gravity data does
not improve but degrades the result. The estimated total error in the computed undulation for cap
size Yy = 2° and y = 3° are almost the same indicating the use of Ag data in a 2° cap size for
computing the undulations should be adequate.
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Table 4.5 Estimated Accuracy of Computed Gravimetric Undulations Using Terrestrial Gravity
Data in Different Cap Sizes Along with the OSU91A Global Geopotential Model
(degree 360). Units are in cm.

Cap size Sampling pagated | Commission | Omussion | Total error
radius () error error error error
(8Ny) (8N7) (dN3) (8Ng) (3N)
0° 0.0 0.0 +56.0 +16.6 384
1° 4.0 7.6 188 12.6 208
2° +4.0 10.7 +14.6 +19 +18.6
3° 4.0 2.8 *12.2 1.5 183
4° 4.0 £13.5 ¥10.5 1.2 +18.4

As mentioned in the previous section, the gravity data around the space geodetic stations
in the Scandinavian datum were available only in an area of 5°x5° in the latitude and longitudinal
directions. Since these stations are located in extreme northern latitudes, the gravity data
required in the longitudinal direction is almost double the latitude extent, which can be computed
using the following relation:

AL=2%

~cosé @.3)

where ¢ is the latitude of the station, A and AA are the latitude and longitudinal extents. As the
data availability in longitudinal direction from the computation point is limited to 2° to 295,
terrestrial gravity data to a smaller latitude extent alone can be used. Table 4.6 shows the extent
of the cap size radius of the terrestrial gravity data that can be used for estimating height
anomaly/undulation with Modified Stokes' technique, with available data.

Table 4.6 Computation of Possible Cap Sizes of Terrestrial Gravity Data That Can Be Used in

Scandinavian Datum
tations Latitude ¢| Oravity data | Max. permissible Selected cap size
avall.ablc in fin latitude extent | o qins of Ag data
longitude Ad = Adcosd
direction AA
7601 | Metsahovi, 60°14’ 253 1°241 1°
Finland _
1001 { Onsala (GPS), 57923 1°9 1°045 0°5
Sweden
7602 | Tromsp, Norway | 69°30' 2%0 07869 0%5
4.3.1.2 Numerical Results

Tables 4.7 and 4.9 show the results of the gravimetric height anomaly/undulation
computations carried out at the space geodetic stations in the United States, Europe and
Australia. Since ODN (England) values are given as orthometric heights, the gravimetric
undulation computed at the Herstmonceux SLR station (CDP No. 7840) alone is shown
separately in Table 4.9(b). For other European stations the results are given in Table 4.9(a).

The first column in all the tables refers to the number and name of the stations and the
next five columns show the various components of the height anomaly/undulation computed
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using equations (3.71) and (3.72). The various components shown in column (2) to0 (6) are: the
cap contribution in (2), remote zone contribution computed using potential coefficients in (3),
indirect effect or corrections to height anomaly depending on computed quantity N;or{; in (4),
ellipsoidal corrections in (5) and the total gravimetric undulation/height anomaly in (6).

In Table 4.7, the geometric undulation at the U.S. stations computed with NGVD29
heights, corrections to convert these undulations to NAVDS88 height system computed using
VERTCON (version 1.00) software and the resulting undulations in NAVDS88 height systems are
also given in columns (7), (8) and (9) respectively. Similarly, in Table 4.9(a), the geometric
height anomaly computed with respect to the local height datum, corrections needed to convert to
Swedish height systems in the case of station numbers 1001 and 7602 and the final height
anomaly are given in columns (7) to (9). Since the other European stations and Australian
stations are assumed to lie in their local height datum, no correction was needed to the compated
geometric height anomaly/undulation at these stations.
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Since the LSC technique is based on the ergodic assumption discussed in Section 3.3.2,
the basic covariance functions referred to in equations (3.75) and (3.76) are assumed to be
homogeneous and isotropic, depending only on the spherical distance y between two points. In
this study theoretical covariances were computed based on the noise model of the reference field
and on a hypothetical model for the behavior of the anomaly degree variances (Cn) of the Earth's
gravity field. The expressions for the fundamental covariance functions used in this study, as
given in Ba%i€ and Rapp (1992), are as follows:

C(Ag,Ag)= ZSC s™*1P, (cosy) + ZC s**2P, (cos V) 4.4)
n=2

C(Ag,N =Re [}: 3C, s"'P_(cosy)+ 3 —n_ C. s“*’P (cosw)] 4.5)
'Y n=2N—1 % n-

2 -
C(N,N)= B-l Y s"'P_(cosy)+ 2-—C-9—2s“"’P,, (cosy) (4.6)
n=2(n 1) 361 (n - 1)
where 8C; are the error degree variances related to the reference field defined through a set of
geopotential coefficients computed as,

2(n+2)
8C, = (GM)( —n’(RJ 3 (B2 +E2) (4.7)

m=0

T cnm» € snm are the standard deviations of the potential coefficients Cpr, and S ym, Rg is
the mean earth radius (6371 km), Rp is the radius of Bjerhamar's sphere and n, m are degree and
order of the harmonics,

Cp, are the anomaly degree variances computed by the well known Tscherming/Rapp
(1974) (T/R) anomaly degree variance model,

- A(n-1) 4.8)
" (n=2)(n+B) |

with parameters A = 343.3408 mgal2, B = 24 and s=(R%2)=O.9988961 recommended by
E
Jekeli (1978).

The covariance functions computed with the error degree variances of the OSU91A
reference field up to degree 360 and beyond in the T/R model with Jekeli parameters and used by
Ba%i¢ and Rapp (1992) were also used in this study. The behavior of the covariance functions are
shown in (ibid., Table 4.1 and Figure 4.4). For the prediction of residual geoid undulation/height
anomaly using the local gravity data around the computation point, the global covariance
function should be scaled to the local covariance function so as to reflect appropriately the
accuracies of predicted quantities.

The scaling procedure described below follows closely the discussion in Hwang (1989,
Section 3.3).
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For the prediction area, the variance of residual anomalies is computed by,

——y2
o= (2er - 2g) )

im) n

where n is the total number of points used for prediction and A-—g is the mean of the residual
anomalies.

Let CGG(0) be the variance of anomalies based on (4.4). We have to apply a scaling factor a to
this quantity so that the resultant will be identical to the variance of anomalies given by equation

(4.9). Thus o is:

2
= O
(o4 GG ) 4.10)

The local covariance functions then can be constructed by multiplying equations (4.4), (4.5) and
(4.6) by the scaling factor o .

To ensure a realistic scaling factor, the lowest value of a was taken to be 0.120 and the
maximum value limited to 1.5. In this range, it was assumed that the accuracy of predicted
undulation will be within acceptable limits.

Based on the above discussions, the equations (3.75) and (3.76) are modified for this
study as follows:

-1
§=C,,(Cn+%cm) Y @.11)

-1
E, =a[C_ —c.,(cn +-&cm) c,,] 4.12)

Equations (4.11) and (4.12) are similar to the expressions given by Hwang (1989) as equations
(3.24) and (3.25).
4.3.2.2 Numerical Results

The residual undulations computed at the space geodetic stations in the United States are
shown in Table 4.10. The computations were carried out with different grid sizes and number of
points to understand their effects on computed undulations. Residual undulations computed with
gravity data in 6'x6' grid size and covering an area of 4°x4° around the computation point were
selected for this study. This was done not only for the reason that it covered the same extent of
gravity data used by the Modified Stokes' technique to compute the height anomaly/undulation,
but of the three cases considered they had the least standard deviations in their estimates. Table
4.11 shows the estimated height anomaly along with the accuracy estimate at the Scandinavian
datum stations as well as at the other European space geodetic stations considered in the study.
The number of points used in predicting the residual height anomaly/undulation are shown
within the parenthesis under each computed value. The undulation computed at the Australian
stations are shown in Table 4.12.
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Table 4.11 Computation of Height Anomaly/Undulation at Scandinavian and Other European

Stations Using LSC Technique. Units are in meters.

Station Residual height | Ellipsoidal | Reference otal height
anomaly/ corrections | height anomaly/ | anomaly/
undulation + undulation undulation.

"x6' Ag i corrections
23:&:‘ agml: to height SLsc/NLsc
anomaly
7601 Metsahovi 0.091 $0.08 -0.010 19.497 19.578
(1031

1001 Onsala (GPS) | 0.1 .079 -0.014 35.802 35.959
1600)

7602 Tromsg 07%9:‘0%7533- 20.023 31.226 30.985
(1600)

7834 Wettzell 0.2'§2;4'£g.'16"' 20.025 46.405 46.674
(1440

7835 Grasse -0.180 :1(:)0.18 -0.113 51.383 51.090
(1280)

7840 Herstmonceux | -0.223 8:1:(?.06 0.011 45.583 45371
(1480)

Table 4.12 Computation of Gravimetric Undulation at Australian Space Geodetic Stations Using

LSC Technique. Units are in meters.

Station ‘Residual Ellipsoidal { Ref. undulation “Total
undulation correction (OSU91A) undulation
6'x6' Ag in + NLsc
4°x4° area Indirect

effect
7090 Yarragadee -U.U?GOOHO.OG -0.004 -24.833 -24.909
(1600)
7943 Orraral Valley, | -0.230 £0.13 -0.035 18.957 18.692
Canberra (1600)

Tables 4.13 to 4.15 show the comparison between the gravimetric undulation/ height
anomaly computed using the Modified Stokes' technique and the LSC technique with the
geometric undulations computed at the stations for the ideal reference ellipsoid (a = 6378136.3
m). The undulations interpolated from regional geoid height models GEOID93 (in the United
States), NKG-89 (in Scandinavian countries) snd AUSGEOID93 in Australia received from Jim
Steed (personal communication, Dec. 93) are also included in the tables for better comparison.
The values of the observation vector Y in equations (3.41) and (3.63) are also shown for the

different techniques with corresponding statistical information such as
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r.m.s.value = /il
n

i("i "i)z
standard deviation = m(-;l_—T

(4.13)
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3.4 Discussion of the Resul

The results from Tables 4.13 and 4.14(a) and (b) show that the computation of
gravimetric undulation/height anomaly using the two different techniques, i.c., Modified Stokes’
and LSC techniques, are consistent at 20 cm, except for the four stations 7082, 7204, 7086 and
7069 falling in the United States, where the difference between the two techniques varies from
29 cm to 54 cm. In Table 4.15 also, we sec the undulation computed at the two Australian
stations using the Modified Stokes' and LSC techniques differ by about 45 cm to 65 cm. One of
the reasons for such a large difference between the computed gravimetric undulations from the
two techniques may be that only a limited number of data points (1600) was used in the LSC
technique for predicting the residual undulation due to computer limitations in memory and CPU
time. The following Table 4.16 show the gravimetric undulations computed at the SLR station
7943 Orroral Valley, Canberra, Australia using Modified Stokes' technique with terrestrial
gravity data in different cap sizes, the undulation value computed using the LSC technique with
the data points limited to 1600 and also the geoid undulation value interpolated from
AUSGEOID93 model received from Jim Steed (personal communication, Dec. 1993).

Table 4.16 Computation of Gravimetric Undulation Using Modified Stokes' Technique With
Terrestrial Gravity Data in Different Cap Sizes. (Units are in meters)

Cap | Cap contribution | Remote zone | Ns = N1 + N2} Undulation | Undulation from
size Ni contribution } + corrections | from LSC | AUSGEOID93
N2 techt(lic)lue Model
0°5 2.620 15.820 18.440
1°0 5.019 13.242 18.261
1°5 6.744 11.409 18.153 18.692 18.644
[ 2%0 7.447 10.584 17.996 |

(*with data points for prediction limited to 1600 at Orroral Valley, Canberra)

From Table 4.16, we see that the undulations computed using the terrestrial gravity data in a cap
size of 0°5, can vary to an extent of about 40 cm, when compared with undulations computed
with gravity data in a cap size of 220. The geoidal undulations obtained from the AUSGEQOID93
model which uses terrestrial gravity data in a cap size of 5 and OSU91A potential coefficients
for its computation (Kearsley et al., 1990) compares well with the undulations computed using
the LSC technique with the number of data points used for prediction limited to 1600 and also
with the undulation computed using the Modified Stokes' technique with cap size = 0°5. This
suggests that the differences in the computation of undulation between the Modified Stokes' and
LSC techniques may be due to the extent of the terrestrial gravity data used in the
computation/prediction.

In Table 4.15 we also notice a difference of about 1.0 meter between the computed Y
values at the Yarragedee station in Western Australia and Orroral Valley station in eastern
Australia. The difference observed is for both the Modified Stokes' and LSC techniques used for
computing the gravimetric undulations, as well as for the AUSGEOID93 undulation values
received from Jim Steed (personal communication, Dec. 93), though both the stations are
assumed to lie in the same height system AHD71. Since as quoted by J. Steed (ibid.),
AUSGEOID93 is the most accurate geoid model available in Australia at present and also
ellipsoidal heights of the stations are obtained to an accuracy of 5 cm, the large difference of
1.0 meter in computed Y value (Y =h - Houp71 - N 2 between the two stations as observed from
all the three techniques, causes serious concern. Th:s can be due to one or more of the following
factors:
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(a) the long wavelength error in the global geopotential model used,

(b) bias caused by systematic errors in the gravity anomaly data used, (for example the
gravity anomaly around the Australian stations are not corrected for terrain), and

(c) distortions in the defined height system.

To verify whether the difference in Y-value is mainly due to long wave length errors in
the OSU91A global geopotential model used in the study, the computations of the height
anomaly/undulation using Modified Stokes' technique were repeated with the latest JGM-2
(NASA model) from degree 2 to 70 and augmented with OSU91A model from degree 71 to 360
and the results are shown in Appendix 'A’' of this report. Details regarding JGM-2 model
development can be found in Nerem et al. (1993). From the results, we see the difference in the
value of Y computed using the different potential models at the Australian space geodetic
stations vary only by 5 to 9 cm, implying that the long wavelength error in the geopotential
model used alone is not the contributor to the 1.0 m difference. Also the terrain corrections
computed at the Australian stations using ETOPOSU 5'xS' elevation data set (as no other dense
elevation data are available in this area), shows the terrain correction is on the order of 0.07
mgals accounting for an undulation correction of about 2 cm. The above discussions point out
that the large difference in computed Y-values between the two stations may be mainly due to
the distortions in the AHD71 height system. As discussed by Morgan (1992) and referred to in
Section 4.1.5, there is reason to believe that substantial errors must exist in the original leveling
data used for developing the AHD71 height system.

4 Estimation of P Defining the Global Vertical D

The estimated values of parameters defining the GVD, that is AWq and Cq,o (fori = 1,
2,...n, n being the number of regional vertical datums considered) and their accuracy estimates
were computed using equations (3.87) and (3.88) after setting up the observation equations as
explained in Chapter III at each of the 17 stations considered in this study. The elements of the
A matrix (of size 17x7) used in these equations are shown in Table 4.17, where its first column
corresponds to the AW term and the rest six columns to the Cq;0 values. The elements of the K
vector were chosen to be equal to the number of space geodetic stations used in the
corresponding regional vertical datum. As stated in Section 3.4, the value in K corresponding to
the AW parameter was chosen to be equal to zero.

44,1 Sei he Variance-Covariance Matrix (%)

The variance-covariance matrix of observations Ly was set up assuming that the three
observations types: ellipsoidal height (h), orthometric hcigflt (H) and height anomaly/undulation
(N) are independently determined such that:

Ty =Zh + ZH +EIN (4.4)

where Zp, £y and I\ are the variances of the observed/computed quantities h, H and N
respectively.

Determination of orthometric height standard deviation is rather a difficult task.
Conceptually, one would take the diagonal elements of the variance-covariance matrix of the
vertical network adjustment for a specific datum. Since such information is not available for all
the datums considered in this study, based on the general information regarding the regional
leveling networks, certain reasonable standard deviations can be assumed. For the NAVD88
datum heights obtained by applying corrections to NGVD29 heights, a standard deviation of 5
cm has been assumed at all the stations in the United States. Similarly, at the Australian stations,
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an accuracy of £10 cm has been assumed, since AHD71 is based on only a third order leveling
network (Morgan, 1992). For the European stations, the standard deviations of the normal height
has been interpolated from the figures of the adjusted UELN73 leveling networks given in
Ehmsperger et al. (1982).

Determination of ellipsoidal height standard deviation at the space geodetic stations can
be easily done, since Table T6 in IERS Technical Note 12 (Boucher et al., 1992a) gives the
standard deviations of the rectangular coordinates X, Y, Z also, in addition to providing station
coordinates in ITRF91 reference frame. Assuming that the rectangular coordinates are
unc;oél;elated, by error propagation we can compute the error in the corresponding ellipsoidal
coordinates.

The determination of geoid undulation accuracy can be done based on the discussion in
Chapter 5.4 of Rapp and Balasubramania (1992), when using the Modified Stokes' technique for
computing the gravimetric height anomaly/undulation. With OSU91A standard deviations of the
potential coefficients, assuming a correlation length of 0°1 and using Gauss-Markov first order
error covariance model (Pavlis, 1991, p. 107), the estimated standard deviations of the height
anomaly/undulation are given in Table 4.18. For the LSC technique the standard deviations of
the predicted undulations can be obtained from Tables 4.10 to 4.12. The diagonal elements of
the Xy matrix for the Modified Stokes' technique and the LSC technique are shown in Tables
4.19 and 4.20, respectively.
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Table 4.17 Elements of A Matrix With 17 Stations and 7 Datum Unknowns With Varying Cap
Radius. Units are in cm.

. -1.0206 1.0978 0.0000 0.0000 0.0000 0.0000 0.0000

-1.0206 1.0978 0.0000 0.0000 0.0000 0.0000 0.0000
-1.0206 1.0978 0.0000 0.0000 0.0000 0.0000 0.0000
-1.0206 1.0978 0.0000 0.0000 0.0000 0.0000 0.0000
-1.0206 1.0978 0.0000 0.0000 0.0000 0.0000 0.0000
-1.0206 1.0978 0.0000 0.0000 0.0000 0.0000 0.0000
-1.0206 1.0978 0.0000 0.0000 0.0000 0.0000 0.0000
-1.0206 1.0978 0.0000 0.0000 0.0000 0.0000 0.0000
-1.0206 1.0978 0.0000 0.0000 0.0000 0.0000 0.0000
-1.0206 0.0000 1.0581 0.0000 0.0000 0.0000 0.0000
-1.0206 0.0000 1.0390 0.0000 0.0000 0.0000 0.0000
-1.0206 0.0000 1.0390 0.0000 0.0000 0.0000 0.0000
-1.0206 0.0000 0.0000 1.0978 0.0000 0.0000 0.0000
-1.0206 0.0000 0.0000 0.0000 1.0978 0.0000 O.0000
-1.0206 0.0000 0.0000 0.0000 0.0000 1.0978 0.0000
-1.0206 0.0000 0.0000 0.00CO 0.CO0N 0.0000 1.0978
-1.0206 0.0000 0.0000 0.0000 0.0000 0.0000 1.0978
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Table 4.19 Computation of Variance-Covariance Matrix of Observations Ty (Modified Stokes'

Technique)
Station Standard Deviations (meters) T, =02 +0% + 02| weight
Y matrix
P=X
ellipsoidal ht. | ortho. ht. | undulation
Ch OH ON
7051 Quincy +0.01 10.05 +0.18 0.035 28.57
7082 Bear 10.02 +0.05 $0.18 0.035 28.33
Lake
7091 +0.01 +0.05 10.18 0.035 28.57
Westford
7086 Ft. Davis +0 01 10.05 10.18 0.035 2837 |
7105 GSFC 5 H).O1 +0.05 10.18 0.035 28.57
7204 Green 10.01 10.05 30.18 0.035 28.57 |
Bank
7110 Monu. +0.01 +0).05 10.18 0.035 2857 |
Peak
7234 Pie 10.01 +5.05 H).18 0.035 2857 |
Town
7069 Patrick F0.11 0.05 +0.18 0.047 21.28
AF
7601 +0.03 +0.05 $0.19 0.040 25.32
Metsahovi
| 1001 Onsala +0.24 +0.04 +0.76 0.095 10.49
| 7602 Tromsp $0.01 .05 +0.26 0.070 14.25
7834 Wettzell | $0.01 10.04 $0.25 0.064 15.58
7835 Grasse 10.01 +).04 10.25 0.064 15.58
7840 F0.01 10.06 $0.25 0.070 15.11
Herstmonceux _
7090 10.01 +0.10 .| 0.25 0.073 13.77 |
508 o
oral +0.01 +0.10 +0.25 0.073 13.77 |
Valley,
Canberra
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Table 4.20 Computation of Variance-Covariance Matrix of Observations Zy (Least-Squares
Collocation Technique)

Station/Datum Standard Deviations (meters) Z, =07 +0% +02] Weight
matrix
pP=I}

ellipsoidal ht. | ortho. ht. | undulation
- Ch OH ON
7051 Quinc +0.01 +0.05 10.19 0.387 2584 |
‘ ear 0.02 +0.05 $0.19 0.039 25.64
Lake
7051 T0.01 T0.03 T0.06 0.008 TIWL R
Westford
| 7086 Ft. Davis +0.01 $0.05 $0.10 0.013 7037
7105 GSFC 5 +0.01 +0.05 +0.05 0.005 196.08
7204 Glr(een +0.01 10.05 +0.05 0.005 196.08
Ban
7110 D;Ié)nu. +0.01 +0.05 $0.18 0.035 28.57
Pe
7234 Pie +0.01 +0.05 $0.18 0.035 2857 |
Town
7069 Al:lgtrick +0.11 $0.05 $0.05 0.017 58.48
7601 +0.03 10.05 +0.08 0.010 102.05 |
Metsahovi _

1001 Onsala +0.24 $0.04 | 0.07 0.064 15.60
7602 Tromsd +0.01 $0.05 +0.24 0.060 16.61 |
7834 Wettzell +0.01 +0.04 10.10 0.012 8547

7835 Grasse +0.01 +0.04 +0.18 0.034 2933 |

7840 +0.01 10.06 +0.06 0.007 136.99

Herstmonceux

7090 30.01 10.10 30.06 0.014 72.99 |
7 +0.01 $0.10 $0.13 0.027 37.
Valley,
Canberra
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Estimation of F Using Different Techni

The parameters defining the GVD estimated separately for Modified Stokes' technique
and LSC technique are shown in Figures 4.5 to 4.7. The estimated parameters are the vertical
separation between the defined Global Vertical Datum (GVD) and the adopted reference
ellipsoid, AWg/y, and the vertical separation between the GVD and regional vertical datum,
Cq,0/y; fori =1, 2,...n where n is the number of regional vertical datums considered in the study.

- AHD71
-~ Scandinavian
10216
58%12 NN
28+22
IgN69
8122 GVDW =W,
2523
3245
44+5 ODN
— et e e e e e e e — e — — - — =Ref. Ellipsoid U = U,
1 NAVDSS

Figure 4.5 Regional Vertical Datum Separation From Defined Global Vertical Datum (Using
Modified Stokes' Technique to Compute N or £); Units are in cm
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+AHD71
NN
3sts
Scandinavian 33£10
];17
. - y GVDW:WO
111:16 :
12%3 IGN69
293
NAVDSS 3513
- ODN
—————————— - = == = = &= = = —T= = Ref. Ellipsoid U= U

Figure 4.6 Regional Vertical Datum separation from defined Global Vertical Datum (using LSC
technique for computation of N or {); units are in cm

+Scandinavian [ 7
NN
52116
12
Pz 35+22
10269 GVDW =W,
+
3322 27423
2615 3315
ODN
| NAVDSS . L
———————————————————— Ref. Ellipsoid U = U,

Figure 4.7 Regional Vertical Datum Separation From Defined Global Vertical Datum (From
LSC Technique but Using the Weight Matrix of Modified Stokes' Technique); Units
are in cm

143 Discussion of the Resul

Figures 4.5 and 4.6 show the estimated values of the separation between the regional
vertical datums considered in the study, as well as the adopted reference ellipsoid from the
defined Global Vertical Datum (GVD) surface computed using Modified Stokes' and LSC
techniques. Though from these figures it is clear that the different regional vertical datums used
in the GVD definition, show the same pattern of their relative positions (except Scandinavian
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datum), their numerical values of separation are quite different. One of the reasons for their
numerical difference is the used weight matrix, Z.', for estimating the parameters. As can be
derived from Tables 4.19 and 4.20, the estimated errors in the predicted height
anomaly/undulation using LSC technique is unbelievably over-optimistic at certain stations,
leading to a larger weight matrix than the one used for Modified Stokes' technique. Even though
the computed Y values using Stokes' and LSC techniques agree within 320 cm for most stations,
say particularly in Europe, the standard deviations of the computed height anomaly/undulation
using Stokes' technique is 2 to 4 times larger than for the predicted undulation using LSC
technique. This is mainly because, the ergodic assumption on which the LSC technique is based,
does not differentiate between probabilistic mean and spatial mean (which are very different
when real world data is considered) and hence generally result in optimistic accuracy estimation.

Since the two different techniques are mainly employed to compute the gravimetric
height anomaly/undulation and the results compare very well also (at least at U.S. and European
stations) it should be possible to use the same variance-covariance matrix for both the cases. The
main difference in setting up the weight matrix for both the cases, as can be inferred from Tables
4.19 and 4.20, comes from the large standard deviations in predicted/computed undulation, as we
have assumed the same standard deviations in orthometric heights and ellipsoidal heights for
both techniques.

Assuming the weight matrix computed for Modified Stokes' is acceptable to LSC
technique also, the parameters defining the GVD were estimated again using the LSC technique
with the new weight matrix. The results are shown in Figure 4.7.

Figures 4.5 and 4.7 compare well except for certain numerical differences. Even the
Scandinavian datum which came out to be below the German datum in Figure 4.6, is placed
above in Figure 4.7 agreeing with the results in Figure 4.5. The Scandinavian datum which is 58
cm above the defined GVD in Figure 4.5 is about 39 cm above the same in Figure 4.7. The
Australian height datum AHD71 which is about 102 cm above the GVD in Figure 4.5 is only 52
cm in Figure 4.7. The reason as can be seen from Table 4.15 is that the gravimetric undulations
computed at the Australian stations using Modified Stokes' technique and LSC technique differ
by about 50 to 70 cm. The probable reasons for such a difference are discussed in Section 4.3.4.
The datum differences between the Scandinavian datum (assumed to coincide with Swedish
Height System) and German Height System, varies from 4 cm £ 12 cm in Figure 4.7to 30 cm
12 cm in Figure 4.5. The estimates of difference between the same datums as given by Pan and
Sjoberg (1993) is about 16 cm £ 9 cm. The difference of 33 cm between the IGN69 and ODN
height systems agrees well with the estimate of 30 cm £ 8 cm given by Willis et al. (1989).
Similarly, the difference of 38 cm 22 cm in Figure 4.7 and 20 cm * 22 cm in Figure 4.5
between the German height datum (NN) and French height system (IGN69) compares well with
the estimate of 50 cm given by Boucher (1993, personal communication) based on the
comparison of heights at stations along the French-German border. Though there is a conflict in
the Australian Height datum (AHD71) which is shown as 72 cm below the German height
system (NN) in Rapp (1993) and it is 74 cm above the German height datum in Figure 4.5, the
difference between the German height datum (NN) and the NAVD88 datum shown in Figure 4.5
agrees well with the estimates given by Rapp (1993) to +4 cm.

Also the difference of 32 cm (or 33 cm, depending on the solution) between the defined
Global Vertical Datum surface and the adopted reference ellipsoid suggests that the exact value
of the semi-major axis 'a’ should be about 6378136.62 m or 6378136.63 m which agrees well
with the recent estimates of 'a’ from TOPEX/Poseidon data (Rapp, 1993, personal
communication).
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CHAPTER 5
GLOBAL VERTICAL DATUM DEFINITION - A SIMPLIFIED APPROACH

In Chapter 3 we have considered an ideal solution for defining a Global Vertical Datum
(GVD), assuming that the required data are available everywhere and also to required precision to
achieve an accuracy of +£10 cm in its definition. In fact reliable and accurate gravimetric data are
available only in small portions of the world like in the United States, western Europe, etc. and
may require substantial effort and coordination in the part of an International organization to come
up with implementation of GVD that can meet the scientific and practical needs of the geodetic
community. A simplified approach in realizing a GVD has been discussed in Rapp and
Balasubramania (1992,Sections 3 and 7). As pointed out in the report (ibid.) the realized Vertical
Datum will not have the sophistication of the ideal GVD but could meet the various practical needs
when the highest accuracy is not required. Theory behind such a simplified approach,
development of Height Bias models, and certain numerical tests are presented in this chapter and
the discussions closely follow the concepts explained in Rapp and Balasubramania (ibid.).

5.1 Basic Concepts

This approach is mainly dependent on the widely available space geodetic techniques such
as Global Positioning System (GPS) and DORIS tracking networks which are becoming, and
promise to remain for sometime, some of the most important and readily accessible geodetic
measurement systems, in particular GPS. The concept underlying this approach is to let [TRF 92
or any other geocentric reference frame realized by the International Earth Rotation Service (IERS)
define a fundamental reference system. Knowing the transformation parameters that will allow the
conversion from the individual coordinate system that is associated with the tracking type used,
such as GPS, DORIS, etc. to the ITRF system, the rectangular coordinates of the stations will be
known in a center-of-mass, properly scaled coordinate system. Now assuming an ideal reference
ellipsoid, after defining its equatorial radius and flattening (refer to equation 4.1), the ellipsoidal
height h at the stations can be computed using standard techniques. The ellipsoidal heights or
height differences are then used in ¢ onjunction wit*: the geoid vndulation inform: ion tc sompute
orthometric heights using e¢quation 2.1. The o0.d .metric heights thus computed refer to a
conceptual surface ‘the geoid) which is not physicaliy realizaole _ad also nct associated with any
specific mean sea level. The geoid undulation information required at the statio~s can either be
obtained from regional geoid height models like, GEOID93 (in USA), GSD91 (in Can~3da), NKG-
89 (in Scandinavian countries), etc. if available, or can be computed throvgh Stokes’
technique/LSC technique by combining poten.al coefficient information from high degree (360)
model with surface gravity data (discussed in Chapter 3). In areas where either of .he above two
methods is not feasible, the global geopotential models available today that are complete to degree
360 can be used. One such model giving moderately good results is the OSU91A model described
by Rapp, Wang, Pavlis (1991). The use and accuracy of the OSU91A model for geoid
determination are described by Rapp (1992) and Rapp and Balasubramania (1992).

The limitations of this method relate to the precision in which the ellipscidal heights or
height differences can be determined in geocentric reference frames with GPS and DORIS tracking
networks and also on the accuracy of available geoidal information. Widely available GPS
observations (height determination specifically), precise undulation values and a Height Bias model
are essential for implementing this approach.
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5.2 Devel ¢ a Height Bias Model

Since the regional vertical datums that are realized and used today do not have the ideal
geoid as reference surface, the orthometric heights computed on a regional vertical datum will be
different from the orthometric height that is computed with respect to an ideal geoid. The difference
may simply be a constant or it may be a difference driven by a number of factors including
distortions in a local vertical network (Rapp, 1992). Let Hj be the orthometric height computed

using the relation,
Hy = h-N S.1)

where h is the ellipsoidal height of the station measured along the ellipsoidal normal passing
through the station and N is the geoidal undulation which is the separation between the defined
ellipsoid and the ideal geoid Let Hp be the orthometric height computed in a local vertical datum.

Assume a linear relation between Hp and Hj as follows:
Hp = Hp+c(,A) (5.2)

where c(9,A) can be considered as a correction term or height bias term, dependent on position in
the datum to correct orthometric heights referred to an ideal reference surface to the regional vertical
reference datum. If sufficient points are available, the value of 'c’ can be mapped and represented
in some functional form depending cn the size of the area and the behavior of 'c’. Once this bias
function is determined for a region, the ideal orthometric height computed based on discussion in
the previous section can be converted into the orthometric height in the local datum.

Development of a Height Bias model or setting procedures for mapping the Bias function
'c’ in some functional form requires GPS observations (height determination specifically), precise
undulation data and consistent orthometric heights in a local vertical datum. Currently such
information is available in the United States, Canada and in some parts of Europe. On our request,
the Geodetic Survey of Canada (A. Mainville, personal communication, April 1992) provided the
GPS data for four traverses: South Alberta (106 stations), North Alberta (51 stations), Central
Alberta (52 stations), and the Great Slave Lake Area (91 stations). In addition, the orthometric
heights for all the GPS stations in the Canadian Geodetic Vertical Datum-28 (CGVD-28) and the
high resolution geoid model GSD91 were also obtained. For the United States, the National
Geodetic Survey (D.Milbert, personal communication, Oct. 1992) provided the data for GPS
traverses in Florida (52 stations), Virginia G10S (62 stations), and in Oregon (44 stations). They
aiso supplied the orthometric heights of all the traverse stations in National Geodetic Vertical
Datum 29 (NGVD-29) and the high resolution Geoid Height Models GEOID90 and the latest
GEOID93. GPS traverse data for 49 stations in the Tennessee area along with their orthometric
heights received from Zeigler, State of Tennessee, Department of Transportation, Nashville,
Tennessee were also used for developing Height Bias model in the Tennessee area. The
VERTCON (Version 1.00,1992) software (mentioned in Chapter 4) received from Vertical
Network Branch, NGS was used to convert NGVD-29 normal orthometric heights to NAVDS8S
Helmert orthometric heights.

Based on the data received, the following procedure was followed to develop a suitable Height
Bias model:

(a) Since the GPS stativ.: coordinates in the Canadian GPS traverses as well as Tennessee GPS

traverse were given in the WGS84 coordinate system, they were transformed to ITRF90
geocentric coordinate system, using the transformation parameters given in Boucher and
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Altamimi (1991), to make the origin of the coordinate system compatible with the geopotential
model used. In the case of GPS traverses received from NGS, the station coordinates were
already in the ITRIF90 geocentric system as reported by Milbert (1991b) and no transformation
was required.The geoidal undulations were then interpolated using the corresponding geoid
height models.

(b) The orthometric height bias 'c’ was then computed using the relation

c(¢A) = (hGPs - NGEOID MODEL) - HLOCAL DATUM (5.3)

Examples of orthometric height bias tables are given in Table 5.1 for the Oregon area in the
USA and in Table 5.2 for the Great Slave Lake Area in Canada. For the U.S traverses, both the
currently used NGVD-29 heights as well as the newly established NAVDS88 heights were used in
developing the Height Bias functions. Statistical analysis of the height bias values for U.S and
Canadian traverses are given in Table 5.3.

Table 5.3 Statistics of the Difference in Orthometric Heights Derived From GPS/GSD91 and
CGVD28 Heights in Case of Canadian Traverses and From GPS/GEOID93 and
NAVDS88 Heights for GPS Traverses in the United States. Units are in cm.

Taverse
No. of stations a1 521 62 ® [ 51 [ 32
Min. Ht. Bias value | -101] -120| 31 ] ® | 271 80 | - %j|
Max. Ht. Bias value | -20 | 32 1201 621 45 | &84 |
"Mean A B V102 113 31 -
Standarddeviation® | 201 46| 19| 111 111 81 211 16

*derived from spatial distribution
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Table 5.1 Computation of Orthometric Height Bias Function (c), in Oregon GPS Traverse Area,
Oregon, United States. Heights are in meters.

- — - - - D T . s T T S A e G W e S G R e TP G SR e W W S W W W e Y

Lon
(deg)

- - - T A D W - TP D T D S G TP WD S W e S M D G D Gy e S . SR S T R WP A e = S e . G A W - -

239.26
237.29
235.93
242.76
238.20
239.40
237.01
236.79
242.18
236.71
239.82
239.78
241.92
241.43
237.20
242.95
242.75
237.12
238.81
242.74
236.03
236.77
235.92
235.82
239.45
235.88
238.45
241.30
- 235.90
236.54
236.16
236.64
238.0S5
236.30
238.44
240.93
239.96
237.43
239.64
239.23
236.30
236.42
235.84
242.28

. o - - D D R D G S D Gy . AT - WD > = B = -y T T > D D T s W T = Vo G U T = - - -

Ell.ht
(h)

557.101
533.994
~-6.483
665.492
1392.601
1394.157

36.439°

-16.333
845.869
59.025
863.124
784.779
882.872
1255.053
1.696
1323.322
1246.949
400.721
17.243
1971.917
12.240
41.651
$3.461
3.745
1334.608
-15.986
81.190
1099.198
-21.098
416.104
‘150 598
140.826
1116.756
17.992
947.275
1256.144
1301.683
221.158
1425.684
1328.545
302.623
21.257
1126.284
1343.711

Ortho.ht
(H)
{NGVD29)

577.160
$56.686
16.121
682.364
1412.875
1412.739
58.039
3.562
862.066
80.570
882.423
803.820
899.963
1273.403
22.843
1339.038
1261.640
423.829
37.637
1988.030
33.989
62.907
76.690
27.942
1354.065
7.050
101.612
1115.895
2.492
435.452
5.530
163.290
1136.953
38.079
967.450
1273.921
1319.711
242.724
1445.488
1347.868
325.620
43.451
1151.520
1361.257
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1414.165
1413.949
$9.089
4.542
863.176
81.590
883.513
804,930
901.063
1274.553
23.783
1340.108
1262.940
424.849
36.637
1989.070
35.029
63.927
77.720
29.012
1355.265
8.100
102.632
1117.105
3.562
436.522
6.580
164.350
1138.153
39.139
968.600
1275.111
1320.941
243.854
1446.678
1349.088
326.680
44.541
1152.590
1362.397

Geoid.ht
{N)
{GEOID93)

-20.573
-220 988
-22.817
-17.630
-20.648
-19.044
-21.098
-20 . 297
"17- 0‘9
-21.900
"19 . 975
-19 . 616
"17 . 773
"19 . 139
-21 . 5‘8
-16.443
-15.771
-23 . 335
-20.810
-16 . 7‘9
-22.019
-21.539
-23.670
~24.483
-19.834
-23.219
-20 . 173
-17.553
"230 925
-19.856
-21.365
"22 . 788
-20.494
"20 . ‘19
-20.483
-18.452
-18.798
-21.958
-20.060
-19.742
-~23.320
~22.538
~25.296
~18.209

c = (h-N)-H

Ht.bias value
{NAVD88) (NGVD29)

{(units in cm)

'5006
-150‘
-7807
'22-2
-9136
-74.8
-7‘.2
‘57-8
-2508
~-66.5
'41.‘
-53.5
-‘103
‘36!1
-53-9
‘33-8
-2200
-79.3
-58-‘
-40.4
-7700
-73.7
"5809
"76.4
-8203
-86'7
-66.9
-35c‘
'73.5
’56.2
-81.3
‘73-6
"90.3
-72.8
-84.2
‘51-5
,"‘600
‘73-8
"930‘
-8001
-73.7
-74.6
"101'0
-‘7.7

51.4
29.6
21.3
75.8
37"
46.2
30.8
40.2
85.2
35.5
67.6
7.5
68.7
78.9
40.1
73.2
108.0
22.17
41.6
63.6
27.0
28.3
44.1
28.6
37.7
18.3
35.1
85.6
33.5
50.8
23.7
32.4
29.7
33.2
30.8
67.5
77.0
39.2
25.6
41.9
32.3
34.4
6.0
66.3



Table 5.2 Computation of Orthometric Height Bias Function in Great Slave Lake Area, Canada.
Heights are in meters.

- - — . T Y - A P A Ty S Y e Y A TS e -

c=(h-N)-H

Lat Lon Ellip.ht geold.ht (h-N) Ortho.ht Ht.error

{deg) (deg) (h) (N) (H}) {in cm)

{from GSD91) {in CGVD28)

62.475 245.559 183.350 -25.905 209.255 209.229 2.5
60.038 243,117 279.969 ~19.840 299.809 299.902 -9.2
60.426 243.647 263.951 -21.571 285.522 285.730 -20.17
60.800 243.408 244.827 -21.935 ,266.762 267.028 -26.5
60.709 244,995 216.481 -24.809 241.290 241.269 2.0
62.479 245.273 '155.184 -25.623 180,807 180.706 10.1
62.544 245.010 141.715 -25.083 166.798 166.700 9.8
62.593 244.813 142.511 -24.582 167.093 167.061 3.2
62.660 244.705 152.975 -24.274 177.249 177.221 2.8
§2.686 244.535 143.808 -23.980 172.788 172.753 3.4
62.709 244.411 147.611 -23.776 171.387 171.339 4.8
62.784 244,007 140.531 -22.935 163.466 163.455 1.0
62.641 243.743 210.678 -22.284 232.962 232.996 -3.3
62.556 243,591 233.449 -22.033 255.482 255.507 -2.5
62.382 243.503 250.968 -21.91S 272.883 272.957 -7.3
62,302 243.571 221.520 -22.063 243,583 243.699 -11.6
62.204 243.683 206.345 -22.334 228.679 228.722 -4.3
62.109 243.704 191.012 -22.422 213.434¢ 213.524 -9.0
62.024 243.687 188.108 -22.451 210.559 210.6S50 -9.1
61.979 243.563 196.285 -22.232 218.517 218.608 -9.1
61.837 243.329 203.860 -21.826 225.686 225.825 -13.8
61.781 243.228 201.425 -21.666 223.091 223.148 -5.7
61.711 243.103 197.065 -21.465 218.530 218.533 -0.3
61.677 242.975 190.166 -21.261 211.427 211.571 -14.4
61.601 242.859 175.645 -21.128 196.773 196.921 ~14.7
61.514 242.754 154.450 -21.025 175.475 175.646 -17.1
61.428 242.601 138.736 -20.823 159.559 159.752 -19.2
61.366 242.499 136.108 -20.732 156.840 157.021 -18.0
61.095 242,500 174.119 -20.585 194.704 194.958 -25.4
6§0.870 243.289 206.432 -21.749 228.181 228.496 -31.4
60.717 243.528 231.687 -22.030 253.717 253.948 -23.0
60.629 243.659 240.712 -22,095 262.807 262.961 -15.3
60.784 245.342 211.651 -25.497 237.148 237.128 2.0
60.611 245.510 245.756 -~25.469 271.225 271.277 -5.2
60.536 245.610 222.953 ~25.550 248.503 248.527 -2.4
60.407 245.733 242.665 ~25.609 268.274 268.213 .1
60.228 246.153 247.940 -25.958 273.898 273.778 11.9
60.174 246.295 239.781 -26.070 265.851 265.70S 14.6
60.149 246.444 241.794 -26.275 268.069 267.889 18.0
60.120 246.619 232.888 -26.527 259.415 259.22¢ 19.0
60,035 246.872 226.431 -26.810 253.241 253.042 19.9
60.026 247.027 219.796 <-27.054 246.850 - 246.597 25.3
60.014 247.753 161.315 -28.010 189.325 188.848 47.17
60.013 247.955 172.707 -28.241 200.948 200.560 38.7
60.00S 248.046 178.882 -28.335 207.217 206.868 34.8
$9.999 248.162 183.599 -28.439 212.038 211.711 32.7
62.458 _245.413 165.830 -25.813 191.643 191.579 6.3

81




Table 5.2 (cont.)

62.519
62.759
60.456
60.283
61.185
61.313
60.106
60.173
60.263
60.343
60.506
60.625
60.684
60.739
60.725
60.740
60.804
61.039
60.838
60.000
60.047
60.046
60.329
60.670
60.698
60.825
60.865
60.928
60.986
61.132
60.965
60.731
60.742
60.766
60.559
60.001
60.985
60.931
60.936
61.048
61.173
61.2S5
61.731
60.654

245.101
244.193
245.675
245.955
246.301
242.400
243.242
243.308
243.424
243.555
243.747
243.939
244.067
244.482
244.645
245.179
245.465
246.312
244.220
247.395
247.190
246.745
245.851
245.404
245.256
245.629
245.759
245.883
246.180
246.370
246.045
244.844
244.260
244,148
243.860
243.018
242.783
243.082
242.933
242.599
242.469
242.473
243.139
243.634

160.654
158.507
229.981
245.985
132.292
138.238
269.264
267.289
269.261
269.673
251.176
190.459
170.230
165.580
167.320
204.241
206.889
135.807
138.667
197.123
203.371
242.739
241.294
232.053
230.009
190.050
179.217
165.257
139.620
131.929
137.190
178.432
151.468
148.883
236.930
276.084
171.68S
226.397
214.140
187.730
152.332
134.933
208.827
243.395

~25.285
~23.318
‘250583
~25.714
~27.566
~20.580
‘2001‘2
-20.420
~20.821
-210223
-210990
-22.742
'23-100
-23.981
-24.253
-25-163
-25.756
-27.525
-23.710
-27.534
'27-3‘5
-26.620
~25.623
-25.382
-25' 197
-26.062
~26.381
‘260669
‘270235
-27.653
-27 0013
-24.599
~-23.571
-23.44
-22.382
‘19-586
-20.924
'210‘75
-21.195
-20.697
-20.634
-20.709
-21.516
-22.101
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185.939
181.825
255.564
271.699
159.858
158.818
289.446
287.709
290.082
290.896
273.166
213.201
193.330
189.561
191.573
229.404
232.645
163.332
162.377
224.657
230.716
269.359
266.917
257.435
255.206
216.112
205.598
191.926
166.8SS
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Though several procedures exist to map the bias function 'c’, the following three are the generally
used techniques for interpolating a function value at any point, given the function values at certain
known points in that area. A few other techniques are also discussed in Shrestha et al (1993).

(a) Global surface fitting using deterministic polvnomial functions : This technique provides a
simple way of modelling the bias function value. Different types of polynomial functions can
be used to model the Height Bias function 'c’, for example - bilinear polynomials, quadratic
polynomials, cubic polynomials, etc. Though itisa very simple technique, these polynomial
functions provide unpredictable errors in the interpolated values away from the known station
points, making it unsuitable for our purpose.

(b) Mini ilti i i i : Cubic spline functions provide a
continuous and smooth composite function fitting the known data more accurately without the
undue oscillations caused by polynomial functions away from the known stations. Due to the
versatility of this technique, it has been implemented in the NADCON software of the NGS
(Dewherst, 1990) for the transformation of positional data from the NAD27 to NADS83
coordinate system. The main disadvantage of this technique is that the accuracy of the
predicted value of the function cannot be estimated in a simple way. Though the height bias
plots made from this method for Canadian GPS traverse areas showed a good agreement with
plots made using least squares collocation technique, it was not chosen to model the height
bias function for the main reason that the accuracy of the predicted bias function value couldn't
be determined in a simpler way as in the case of the LSC technique.

(c) Height Bias modelling using least squares collocation technique : As explained in Chapter 3,
this technique, in addition to providing the Best Linear Prediction of height bias values, also
gives the accuracy of the predicted value as given in equation (3.76) though sometimes too
optimistic. This technique was chosen to develop Height Bias model functions in the test
areas where GPS traverse data and geoid undulation data were made available.

3.3 Numerijcal Resuits

Assuming a correlation length of 40 km and data noise of £5 cm, with a second-order
Markov model covariance function fitted to the known height bias data (after removing the mean) at
the GPS traverse stations, the Height Bias value along with its accuracy was predicted for any
other location in the area using least squares collocation technique. Contour plots showing tiie
predicted Height Bias function in the area and its accuracy, one each for U.S traverse (in Oregon)
and Canadian traverse (in South Alberta) are shown in Figures 5.1, 5.2 and 5.4, 5.5, respectiv-
with a contour interval of 5 cm. The perspective view of the Height Bias functions are also shown
as 5.3 and 5.6 for those areas. To compare the Height Bias function values with different geoid
height models as well as height systems (NAVD88 and NGVD-29) two other plots are also
included as Figures 5.7 and 5.8. An orthometric height bias function plot in case of the
Scandinavian GPS traverse computed based on normal heights of the stations derived from UELN-
73 geopotential numbers is also given as Figure 5.9.

5.4 Di ion of Resul

From Figures 5.1 and 5.4, we see the advantage of developing such Height Bias models.
By knowing the orthometric height with respect to an ideal geoid using Geoid/GPS observations
using equation (5.1), its orthcmetric height in a local vertical datum can be computed using the
interpolated bias function 'c’. Also the plot showing the accuracy of predicted ‘c’' values serves as
a reliability diagram intimating the user with the accuracy of the predicted 'c’ value and hence the
orthometric height in the local vertical datum. From Figures 5.2 and 5.5, we see the accuracy of
predicted height bias function is of the order of +20 cm if we have well distributed GPS stations in
the area. Considering Figure 5.9, one can see the Height Bias function modelled for the
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Scandinavian GPS traverse, which runs through four different countries, namely, Germany,
Denmark, Sweden, and Norway cannot find its intended use for the following reasons:

» Height Bias function which was computed based on normal heights of the stations derived
from UELN-73 geopotential numbers is not compatible with the National height systems used
in different countries involved in the GPS traverse,

» The GPS traverse is almost a straight line traverse running from South-West to North-East
direction and covering no area as such.

One can conclude that this plot indicates how a GPS traverse should not be used if we want 10
develop a Height Bias model for an area with available undulation data. Comparing the contour
plots in Figures 5.1 and 5.7, the clear signature in the eastern part of Oregon due to the large bias
terms in using NGVD-29 heights, can be seen to be minimized when we use NAVDSS heights.
But we see the large bias terms in the western part of Oregon exist for both the height systems. The
possible reason for this may be the error in leveling data caused by the network design in
mountainous areas or may be due to the sea level slope observed along the Pacific Coast. As
pointed out by Zilkoski et al (1992), there are long north-south leveling lines through the valleys,
and only a few east-west lines that cross the mountains to create loops to help control and check
accumulation of errors.

2.3 Summary and Conclusions
1. The definition of a Global Vertical Datum (GVD) using the procedures described in this
Chapter eliminate a direct reference to mean sea level. This means that countries that do not

have access to the oceans can also use such a GVD if precise geocentric coordinates for one or
more points can be determined in the country (Rapp,1983).

2. The accuracy limitation of this approach relates to the precision in which the ellipsoidal heights
or height differences can determined in the geocentric reference frame with GPS or any other
space geodetic techniques and also on the accuracy of geoidal information available.

3. For getting the undulation information we have assumed that the terrestrial gravity has had a
common height system in the calculation of gravity anomalies. This assumption is clearly false
and hinders the fundamental goal at the +10 cm level of accuracy (Rapp and
Balasubramania, 1992).

4. The simplified approach discussed in this Chapter does provide a means for determining the
Global Vertical Datum since the geoid forms the reference surface. Unfortunately, we lack
sufficiently precise knowledge of the geoid undulations all over the globe to make the
procedure universally applicable.

5. The least squares collocation (LSC) technique described in Chapter 3, provides an accurate
procedure for modelling the Height Bias function and also to compute the accuracy of such
Height Bias function.

6. The modelled Height Bias function refers only to the particular geoid model and local height
system used in its development.

7. Well distributed control points in the local height datum help in developing a meaningful Height

Bias function that would enable the orthometric heights computed with respect to the geoid be
converted to the specific vertical datum system.
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HEIGHT BIAS FUNCTION PLOT
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Figure 5.1 Height Bias Function 'c’ Interpolated Using Least Squares Collocation
Technique with Oregon GPS Traverse Data Set (CEOIDY3/NAVDSS)
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ACCURACY ESTIMATE OF BIAS FUNCTION PLOT
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Figure 5.2 Accuracy Plot of Height Bias Function 'c’ Interpolated Using Least Squares
Collocation Technique with Oregon GPS Traverse Data S¢:tg >
(GEOID93/NAVDSS8)
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HEIGHT BIAS FUNCTION - A PERSPECTIVE VIEW
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Figure 5.3 Perspective View of the Height Bias Function 'c’ Interpolated Using Least
Squares Collocation Technique with Oregon GPS Traverse Data Set
(GEOID93/NAVDSS)
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Figure 5.4 Height Bias Function 'c’ Interpolated Using Least Squares Collocation
Technique with South Alberta (Canada) GPS Traverse Data Set
(GSD91/CGVD28)
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ACCURACY OF HEIGHT BIAS FUNCTION PLOT
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Figure 5.5 Accuracy Plot of Height Bias Function 'c' Interpolated Using Least Squares
Collocation Technique with South Alberta (Canada) GPS Traverse Data Set
(GSD91/CGVD28)
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HEIGHT BIAS FUNCTION - A PERSPECTIVE VIEW
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Technique with Oregon GPS Traverse Data Set (GEOID90/NGVD29)
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CHAPTER 6
SUMMARY AND CONCLUSIONS

Extending the concepts proposed by Rapp and Balasubramania (1992) for formulating the
World Height System, this study has considered two different approaches for defining and
realizing a Global Vertical Datum (GVD). The first approach is an idealistic approach in which
accurate information from various regional vertical datums are brought together in an adjustment
leading to the definition of GVD and the other one is a simplified approach based on space
positioning and geoid undulation information with geoid as reference surface. While the geoid in
the latter approach has no direct relationship with a mean sea level, the regional vertical datum
information used in the idealistic apgxach will be dependent on the mean sea level observations at
one or more tide gauges for their definition and establishment.

After a brief review of the different heights and height systems practically used in different
parts of the world along with their intercomparisons, the current procedures used to define and
establish a regional vertical datum using the long term mean sea level observations at one or more

i tide gauge stations were presented. It was emphasized here that since the mean sea levels
computed at the different tide gauges do not coincide with the geoid due to the existence of Sea
Surface Topography (SST) caused by ocean currents and various other factors, the resulting
adjustment of leveling networks to fit these mean sea levels will result in distortions in the realized
regional vertical datums. Several researchers have come up with ways and means to remove such
distortions including attempts to model the SST at the tide gauges as an absolute value and also as
difference between adjacent tide gauges. After listing the efforts so far made by numerous
researchers, a mathematical model for the combined adjustment solution to define an ideal Regional
Vertical Datum was proposed. This proposed solution was based on the assumption that realistic
models to estimate the SST values at the tide gauges are available. But since we realize that perfect
modelling of SST at the tide gauges is not possible, at least in the near future, and there will be
inconsistencies in the estimated SST values at the tide gauges, adopting the robust sequential
pmqgme put forward by Schaffrin (1986, 1990) was recommended for realizing an ideal regional
vertical datum.

Mathematical modelling required to relate the primary observables to the parameters to be
established was studied for different data scenarios. Separate modelling procedures were
devel for setting up the observation equations at the space geodetic stations, depending on the
type of free-air anomaly data and heights used in a regional vertical datum. Special emphasis was
also placed on identifying different error sources affecting the terrestrial gravity anomalies used for
defining and realizing a GVD to an accuracy of £10 cm. The effect of horizontal datum
inconsistencies in the used gravity data (3gy) and the corresponding correction needed to the

computed gravimetric height anomaly/ undulation were also determined. The maximum gy,

correction amounted to -0.097 mgal at the Yarragadee station in Australia with a resulting
undulation correction of about -2.3 cm. Though case studies have shown that for a highly accurate
computation of height anomaly using equation (3.24), consideration of Molodensky's correction
terms up to g was essential, as dense grid of gravity data as required for such computations may
not be available all over the globe in the near future, correction terms only up to g1 were

considered sufficient in the modelling procedure.
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A simplified approach for defining the GVD was also proposed in which the geoid forms
the ideal reference surface. Widely available GPS observations (height determination specifically),
precise undulation values, and a Height Bias model were considered essential for this approach.
Procedures for developing a Height Bias function which could enable the orthometric heights
computed with respect to the geoid be converted to the specific vertical datum system were also
discussed. Height Bias functions developed for certain areas along with their predicted accuracy
were also presented in the form of contour plots.

Two different techniques, namely modified Stokes' technique and least squares collocation
technique (LSC), were considered for computing the gravimetric height anomaly/ undulation at the
space geodetic stations using the surface gravity data in a small cap around the computation point
and potential coefficient information from a global geopotential model. To avoid time consuming
and unstable numerical inversion, the number of points considered for predicting gravimetric
height anomaly/undulation using LSC technique was restricted to 1600 points.

For numerical analysis OSU91A model (to degree 360) was considered as reference model.
The recently made available JGM-2 (NASA model) from degree 2 to 70, and augmented by
OSU91A model coefficients from degree 71 to 360 was also used to estimate the remote zone
contribution (beyond the cap radius in which surface gravity data were used) for the computation
of gravimetric height anomaly/undulation using modified Stokes' technique. The height
anomaly/undulations computed using the OSU91A reference model differed from the one
computed using JGM-2 (augmented) model by 2 to 17 cm at the space geodetic stations in the
United States, 4 to 25 cm at the European and Scandinavian stations and about 5 to 9 cm at the
Australian stations. These differences are consistent with the accuracy estimate of height
anomaly/undulations shown in Table 4.19 for the Modified Stokes' technique.

A first iteration attempt to estimate the parameters defining the GVD was also carried out
using the currently available data in six regional vertical datums. Data used in the numerical studies
had the following shortcomings:

» Limited gravity data were available in the Scandinavian datum, sufficient enough to use the
gravity data in a cap radius of 0°.5 to 1°.0 only, though capsize of 2° was considered optimal.

» Required data were available only at very few stations in the various regional datums
considered. While the number of stations used in the Australian datum was two, it was limited
to just one in Germany, France and England regional vertical datums. Also the gravity data
that were used at these stations was not corrected for terrain.

* In the United States, the NAVDS88 heights used did not result from direct precise leveling
measurements from an adjusted Bench Mark. They were interpolated using the VERTCON
(Version 1.00) software, which gives the corrections to convert NGVD-29 normal orthometric
heights to NAVD88 Helmert orthometric heights, only up to cm accuracy.

The following conclusions were arrived at based on the numerical investigations carried out
to realize a GVD, using currently available data with the mathematical modelling procedures
developed for an idealistic approach:

1. The different regional vertical surfaces used in the definition of GVD show the same pattern of
their relative positions to one another, in spite of using two different techniques, such as the
Modified Stokes' and the LSC technique, in their estimation.

2. The GVD can be realized to an accuracy of +5 cm with the accuracies of regional vertical datum
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connections to GVD ranging from £5 to £23 cm. It should be emphasized that the error
estimates reported here correspond to a ‘worst-case’ scenario, where £7 mgal was the accuracy
assumed for the terrestrial gravity data available at the European and Australian space geodetic
stations and the variance-covariance matrix set up for modified Stokes' technique was used in
the computations.

. The results (refer to Figure 4.5) obtained from this study show a major conflict with the results
reported by Rapp (1993). The Australian height datum AHD71 which is shown as 74 cm
above the German height datum NN in Figure 4.5 of this report, is shown as 72 cm below the
German height datum in Rapp (1993, fig 1).

. Other than the discrepancy stated in (3) above, the estimated separation between the regional
vertical surfaces compared mostly well with the results reported by various geodesists and
oceanographers based on their detailed regional studies. Some of the compared results are :

Rossiter (1967, p 295) based on his analysis of annual sea level variations in European waters,
has reported that the average value of the mean sea level in the northern Mediterranean (where
the Marseille tide gauge is located) is 20 cm below the N.A.P (on which German height datum
is based). This suggests that IGN 69 (France) is about 20 cm below NN (Germany). Boucher
(personal communication, 1993) has indicated that IGN 69 is about 50 cm below NN
(Germany). The result from this study shows that IGN 69 is 20 cm 222 cm below NN datum.

Also based on oceanographic studies, Lisitzin (1974) shows (refer figure 30, p 149, ibid) that
the mean sea level at southern England (where the Newlyn tide gauge is located) is about 20 cm
below the mean sea level in southern France suggesting that the ODN (England) may be 20 cm
lower than the IGN 69 (France). Willis et al (1989) based on geodetic observations using GPS
techniques have reported that ODN is 30cm £8cm below IGN 69. The result from this study
also shows that ODN is 33 cm below IGN 69.

The difference between German height datum NN and NAVDA8S8, reported as 76 cm by Rapp
(1993), agrees well with 72 cm from this study.

. The value of the semi-major axis 'a’ of the adopted ideal reference ellipsoid obtained as
a=6378136.60 1£0.05 m, for both the Modified Stokes' and the LSC technique, as a by-
product to this study agrees well with the recent estimates from TOPEX/Poseidon data (Rapp,
1993, personal communication).

. Estimation of the separation between various regional vertical surfaces from the realized GVD
was done on the assumption that the regional vertical datums were established to the required
accuracy, which in turn can help in defining the GVD to £10 accuracy level. In many of the
regional vertical datums only a single station has been used assuming that it represents the local
height system in entirety, which may not be true. Also bias caused by using gravity anomalies
with certain systematic errors (for example, gravity anomalies not corrected for terrain) should
alusr? be kept in mind when looking at the estimated values of separation between regional
surfaces.

. The estimates of the parameters defining the GVD computed both from modified Stokes' and
LSC techniques are generally in agreement, except for some numerical differences. These
numerical differences are mainly due to the differences in computed gravimetric height
anomaly/undulation between the two techniques which varied from 20 to 50 cm at certain
stations. Since we use homogeneous and dense gravity data around the computation point, one
can consider that for practical computation of height anomaly/undulation, modified Stokes'
technique provides a better solution. As also expressed by Moritz (1976, p. 38), even if the
data distribution is not ideal, it is better to use collocation for interpolation, in order to densify
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the data distribution, and subsequently apply Stokes' method, rather than using LSC technique
for a straight one step solution.

8. Finally, the results reported here are promising enough to warrant actual implementation of a

Global Vertical Datum that can help one go from one regional vertical datum to another
knowing the single bias function that separates the two datums.
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CHAPTER 7

RECOMMENDATIONS FOR THE ACQUISITION AND USE OF DATA FOR DEFINING
AND REALIZING A GLOBAL VERTICAL DATUM

In Section 3.1, the different kinds of data that are essential for defining and realizing a
Global Vertical Datum (GVD) are discussed in detail. A recommended strategy for acquiring and
use of such data for the implementation of a GVD are discussed in this chapter. The strategy
recommended is conceptually simple and built on ongoing International activities.

The definition and realization of the GVD should be developed around the IERS terrestrial
reference frame using the precise positioning data given by the SLR/VLBI observations all over the
world. There are about 171 IERS sites (refer to figure 7.1) carrying out mobile and fixed
SLR/VLBI observations distributed in over 42 countries (Boucher et al., 1993, Table 1). In
addition there are 85 operational/proposed IGS stations (refer to figure 7.2) and several DORIS
tracking stations (refer to figure 7.3), adequately complementing the SLR/VLBI stations forming a
dense mesh of space geodetic stations which can provide the required precise ellipsoidal heights for
the realization of GVD. Global geopotential models to degree 360 are currently available and
efforts are also on to improve the accuracy of such models.

As the problem of implementing a Global Vertical Datum, acceptable on a global basis, is
of longtenn character requiring close cooperation between specialists from various countries, a
special study group similar to IAG SSG 1.75 (Rapp, 1987) under aegis of IAG can be recreated or
the objective of the currently operational IAG SSG 5.149 on 'Studies on Vertical datums' can be
enhanced with more members from participating countries. This SSG in addition to identifying a
suitable International organization to coordinate the activities of the various scientific organizations
in different countries, will also lay down the procedure for data collection, storage, manipulation
and transfer of data and results by the participating countries.

The individual participating countries should be made responsible for the accurate
computation of gravimetric geoid undulation using a dense grid of anomaly and terrain data around
the computation point and also the same geopotential model considered to be accurate and used by
other participating countries. They will also provide the International organizations coordinating
this collective endeavor with the precise height of the space geodetic stations, referring to the same
point to which ellipsoidal height is referred, following the 1st order leveling procedures from an
adjusted Bench Mark in the regional vertical reference frame.

Finally, by building on existing structures, adding to the existing networks, and adapting
the existing infrastructure to the expanded needs associated with the Global Vertical Datum
concept, we can achieve a gradual and flexible implementation. For this we need to begin the
operation of realizing a GVD immediately, using existing data sources. The development of
required mathematical models and the first iteration attempt in realizing a GVD discussed in this
dissertation report are the first few steps in that direction.
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APPENDIX A

COMPUTATION OF GRAVIMETRIC HEIGHT ANOMALY/UNDULATION USING JGM-2
(AUGMENTED) GEOPOTENTIAL MODEL (TO DEGREE 360)

The OSU91A geopotential model which was used as the reference model in the
numerical investigations reported in Chapter 4 was replaced by the newly made available JGM-2
(NASA model) (Nerem et al., 1993) from degree 2 to 70 and augmented by OSU91A model

coefficients from degree 71 to 360, and the computation of gravimetric height anomaly {; and

undulation N} from equations (3.71) and (3.72) was repeated for all space geodetic stations used
in the GVD definition study. Table Al shows the newly computed values of remote zone
contribution to gravimetric height anomaly/undulation computation using JGM-2 (augmented
model) in column (2), with cap contribution in column (1) and other corrections in column (3)
reproduced from Tables (4.7) to (4.9b) along with the other components reproduced from Tables
(4.7), (4.8), (4.9a) and (4.9b). Total height anomaly/undulation as well as the Y values computed
using OSU91A model and JGM-2 (augmented) model are also shown for better comparison of

the variation in {/Nj computation using different global geopotential model coefficients.

From Table A1 we see that the height anomaly/undulations computed using the OSU91A
reference model differ from the one computed using JGM-2 (augmented) model by about 2 to 17
cm at the space geodetic stations in the United States, 4 to 25 cm at the European and
Scandinavian stations, and about 5 to 9 cm at the Australian stations. Since in the JGM-2
(augmented) model the lower degree harmonics have been computed more accurately than the
OSU91A model, the difference noted in the computed undulations can be considered to be due to
long wavelength error in the OSU91A geopotential model used as the reference model in the
numerical studies. The differences between the height anomaly/undulations computed using the
OSU91A reference model and the JGM-2 (augmented) model are consistent with the accuracy
estimate given in Table 4.19 for the Modified Stokes' technique. The estimated parameters
defining the Global Vertical Datum computed using the Y-values from JGM-2 (augmented)
model are shown in Figure Al. Comparison of Figures 4.5 and A1 show that the estimated
parameters agree to an extent of £10 cm in all cases except for ODN datum where the
disagreement is about 19 cm.

102




T AHD71
-Scandinavian
108t16
65 £12
NN
]m.
GVDW=W,
4122
IG
2525
R U — — = = = Ref. Ellipsoid U= U
a2ts 4123
~ODN
1 NAVDSS

Figure A1 Regional Vertical Datum Separation From Defined Global Vertical Datum (computed
using JGM-2 (augmented) Model and the Modified Stokes' Technique). Units are in
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Table Al: Comparison of Y-values Computed Using Different Global Geopotential Models.
Units are in meters.

Station name Various components of otal Ht | Geometric | Y values computed
gravimetric ht anomaly/ | anomaly/ |undulation using:
undulation undulation

"NAVDS8 Datum (1) ) k) [6)) 6) JOM-2 TOSU9TAT
(aug) t.)
7
7051 Quincy 3423 |-26.445] -0.07T | -23.000 | -23.734 1'.5'.3%3 0.652
Lake | 4.381 [-17.460] -0.221 | -13.100 | -14.005 | -0.995 | -0.827 |
cs 0.873 |-20.4491 -0.017 | -28.3593 | -28.296 | 0.297 | 0.293
7086 Ft. Davis 2411 |-24.0641 -0.213 | -21.868 | -21.642 | 0.226 | 0.116
7103 GOFCY 0.263 |-33.192] -0.014 | -32.943 | -32940 | 0.003 | 0.139
7110 Monu. Peak | 0.878 |-32.200] -0.206 | -31.618 | -31.816 | -0.198 | -0.227 |
e Town 3.440 |-24.101] -0.331 | -21.082 | -21.569 | -0.487 | -0.500
7069 Patrick AF | 0.910 |-30.384] 0.008 | -20.466 | -28.813 | 0.436 | 0.316
7204 Green Bank | 1.750 | -32.839] -0. 31,130 | -31.442 | -0.303 | -0.187
4333 [ 42410 0.020 | 46963 47396 | 0433 | 0590 |
713%4 Wettzell
'sm?nm(cwvﬁe 6.106 | 43.128 | 0.014 | 31.248 | 31460 | 0.212 | 0.390 |
7840 2.433 1 480321 0011 | 43.610 45405 | -0.205 | 0046
%elr)sgx))onceux
m 0.608 | 20042 [ -0.010 | 19.334 | 19.751 | 0417 | 0377 |
7601 Metsahovi
1001 Onsala 0.214 1359951 -0.014 | 35.767 37.223 1.436 1.337
7602 Tromsp -1.241 | 32260 -0.023 | 31.005 | 32.289 1.503 1.284
Australian 0.990 | -24.201[ 0.000 | -25.281 | -24517 | 0.764 | 0.813 |
T O oS30 o T
710.520 | 0. 981 | 20.103 2.124 | 2.030 |
Valley, Canberra
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