The ADST ARWA Visual System Module Software Programmer's Manual provides information needed by the programmer to understand the instruction set architecture of the specified host and target computers. SPM provides information that may be used to interpret, check out, troubleshoot, or modify existing code on the host and target computers.
1 SCOPE

The scope of this Software Programmer's Manual (SPM) is discussed in the following subparagraphs 1.1, 1.2, and 1.3.

1.1 Identification

This document applies to the Advanced Rotary Wing Aircraft (ARWA) Visual System Module (VSM) Computer Software Configuration Item (CSCI). The host and target computer system for the VSM CSCI is the Harris NightHawk.

1.2 System Overview

The principal purpose of the Visual Module is to simulate out-the-window and sensor imagery and to display the imagery to the crew members of an ARWA device. The Harris NightHawk computer system runs the software which performs these functions.

1.3 Document Overview

The purpose of this document is to provide information needed by a programmer to understand the instruction set architecture of the specified host and target computers. The Software Programmer's Manual provides information that may be used to interpret, check out, troubleshoot, or modify existing software on the host and target computers.

Section 1 outlines the scope of the document.

Section 2 describes the documents referenced in this specification.

Section 3 outlines the software programming environment.

Section 4 describes the programming information relative to the host and target computers.

Section 5 provides general design notes.

2 REFERENCED DOCUMENTS

The following documents of the exact issue shown form a part of this specification to the extent specified herein. In the event of conflict between the documents referenced herein and the contents of this specification, the contents of this specification shall be considered a superseding requirement.

Government
3 SOFTWARE PROGRAMMING ENVIRONMENT

a. Equipment Configuration.

The computer system being used for the VSM host and target computer consists of a Harris NightHawk Series 4000 computer with 2 processors. The Series 4000 is based on the Motorola Reduced Instruction Set Computer (Risc) 32-bit MC88100 microprocessor with an integral Institute of Electronic and Electrical Engineers (IEEE) 754 Floating Point Unit. Virtual Memory and cache are provided by a Motorola MC88200 Cache/Memory Management Unit.

The VSM computer consists of a NightHawk HN4402-AEN1 computer operating at 25 Megahertz (MHZ) requiring 120/208 Vac, 30A, 60 Herz (Hz), two-phase input power. Included are 16 megabytes (MB) of local memory, 32 MB of global memory, a 12-slot Harris VME bus (9U), a 7 slot Versa Modular European (VME) bus (6U), two built-in RS-232 ports, 16 additional serial ports, four external interrupt receivers, a 100 MB/second memory bus, and a console processor with cathode ray tube (CRT) terminal. The HN4402-AEN1 has 2 central processing units (CPUs) and 128 kilobytes (KB) cache memory. Additional components of the computational system includes a 125 MB 1/4"
Tape cartridge, a 1.2 gigabytes (GB) hard disk drive, and a 330 MB hard disk drive.

The VSM computer also houses a Scramnet interface board for communicating with the ESIG-2000 image generators, and an FDDI board for communicating with the Flight Station Module (FSM) and Simulation System Module (SSM) on the ARWA Global Bus. An ethernet connection allows a connection to developmental networks.

b. Operational Information.

The features and specifications summarized below apply to the Series 4400 computer system architecture.

CENTRAL PROCESSING UNIT

Longword Length - 32 bits

Processors (HN4400) - one, two, or four per system

System Bus - Harris VME (HVME)

Physical Address Space - 4GB

Floating Point - On-Chip Accelerator

Memory Management Unit - Implemented using Motorola MC88200CMMU, 25MHz 4 KB memory pages 56-entry Page Address Translation Cache

Cache Memory - Implemented using Motorola MC88200 CMMU, 25 MHz; both write-through and copy-back algorithms used; concurrent address translation and cache access.

MEMORY SUBSYSTEMS

Maximum Physical Memory - 144MB

Global Memory - 8 to 128MB (with parity)

Global Memory Config - Available in increments of 8-, 16-, 32-, and 64-MB per board; 0, 1, or 2 boards per system (note: cannot install two 8-MB boards)

On-board Memory - 0 or 16MB (with parity)

INTERRUPTS
HVME/VME - 7

High-Speed Edge-Triggered - 4

I/O Bus - 8-, 19-, or 21-Slot Harris VME (HVME), superset of VME with parity checking and synchronous burst mode performance enhancement; triple-height Eurocard (9U)

I/O Bus Performance - 40MB per second (with memory expansion); 10MB per second (without memory expansion)

COMMUNICATIONS

Serial Lines (Standard) - Two asynchronous RS-232C lines (console terminal, user)

Serial Lines (Optional) - 16-line asynchronous/synchronous and 32-line asynchronous RS-232C multiplexers

Local-Area Network - Ethernet (IEEE 802.3), TCP/IP

Wide-Area Network - X.25 TCP/IP packet switching; Defense Data Network (DDN) conformance

Special Interfaces - MIL-STD 1553B Interface; Encore High Speed Data (HSD) channel; Digital Equipment Corporation (DEC) DR11; IEEE 488

Additional operational characteristics, capabilities and limitations of the computer system can be found in the MC88100 Risc Microprocessor User's Manual (0890373) and the Series 4000 Architecture Manual (0830040-020).

c. Compilations, Assemblies, and Linkages.

Equipment required for performing compilations and assemblies on the computer system consists of the HN4402-AEN1 computer and associated compilation software. The C, Fortran, and Ada compilation software is stored on an internal hard disk.

The standard Unix "edit" line editor and "vi" visual editor are standard source code editors on the NightHawk. A Harris visual editor is also available.

All Ada compilations and linking is performed under the Harris Ada Programming Support Environment (HAPSE). The HAPSE tool, "ada", is a validated Ada compiler that supports the complete Ada language specification, as defined by MIL-STD-1815A. The compiler operates in several
distinct phases, designed to meet the needs of the entire software development process. These phases include:

- Determination of compilation unit dependencies
- Syntax checking
- Semantic checking
- Code generation and optimization
- Instruction scheduling
- Machine-code assembly.

Various options can be invoked with "ada" that control compilation phases. For example, during preliminary software development it is often useful to limit the compilation phases to syntax and semantic checking. Errors from these phases can be automatically fed to a text editor for fast, iterative editing and compiling.

HAPSE provides several methods for generating executable programs from compiled sources. A prelinker, "a.ld", is provided that verifies and creates an executable image of all component units required for a given main unit. "a.ld" can either be invoked directly or called from the compiler "ada" or the dependency recompilation tool "a.make", if specific options are given. The HAPSE "a.make" tool provides for program generation after automatic recompilation of modified units. It operates in a similar fashion to the Harris CX/UX operating system "make" tool, with the exception that all compilation/file dependencies are automatically determined/maintained by the tool.

The HAPSE debugger, "a.db", provides full Ada symbolic debugging facilities, including:

- Visual and line oriented screen presentation
- Symbolic access to Ada packages, variables, expressions
- Display of objects and their Ada source representation

Additional information regarding the equipment and software necessary to perform compilations and assemblies on the computer system are described in the CX/UX HAPSE Reference Manual (0890288-040).

4 PROGRAMMING INFORMATION
a. Programming Features.

The computer's instruction set architecture is described in the MC88100 Risc Microprocessor User's Manual (0890373).

b. Program Instructions.

Instructions in the computer's instruction set architecture are described in the MC88100 Risc Microprocessor User's Manual (0890373).

c. Input and Output Control Programming. Input and output control programming of the computer system include:

(1) Initial loading and verification of computer memory.

Harris NightHawk initial loading is completed upon normal power-up booting of the system. The computer memory can be verified using the Harris Stand-Alone INTERface (SAINT). SAINT examines the system configuration and automatically determines which diagnostics should be executed. An options menu allows the operator to alter the number of passes, display options, error processing, the list of programs to be run, and the CPUs on which the programs should be executed. As each program is run, SAINT records the pass/fail status of the program and provides a comprehensive status report after all diagnostic programs have been run. SAINT is capable of running diagnostics on local, global, and HVME reflective memories.

Additional information on SAINT can be obtained in the Series 4000 Diagnostic Reference Manual (0855004-030).

(2) Serial and parallel data channels.

The processor motherboard has an I/O port board connector that provides access to the system address and data bus, as well as some important control signals. This connector allows an I/O controller to directly connect to the processor board. Four bidirectional transceivers interface the backplane data bus to the backplane address/data bus. Bidirectional transfers are controlled by flags that select the direction of data flow and enable the output.

(3) Discrete inputs and outputs.

The Harris NightHawk HN4402-AEN1 can communicate with discrete inputs and outputs through the HVME Input/Output (I/O) bus.

(4) Interface components.
The Harris NightHawk HVME I/O bus is the backplane of the computer system. Attaching to the HVME board is a single processor board, a global memory board, a fixed and removable disk controller, a tape controller, an ethernet controller, a Fiber Distributed Data Interface (FDDI) interface, a ScramNet reflective memory interface, and a printer interface.

(5) Device numbers, operational codes, and memory locations for peripheral equipment.

Device numbers and memory locations within the HN4402-AEN1 can be allocated by the user. HVME Primary I/O is allocated from memory address 0xc1000000 to 0xd5ffffff. Third party A32 primary I/O is allocated from memory address 0xe0000000 to 0xfeffffff. Third party A24 primary I/O is allocated from memory address 0xff000000 to 0xffffffffff and from memory address 0xffff80000 to 0xfffffffefff. Third party A16 primary I/O is allocated from memory address 0xffffffff to 0xffffffff.

d. Additional or Special Techniques.

I/O interfaces between the ESIG-2000 image generator and the NightHawk is performed via ScramNet reflective memory. Communication between the ARWA Global bus and the NightHawk is performed via an FDDI interface.

e. Programming examples.

Programming examples can be found in the CX/UX Programmer’s Guide (0890114-060).

f. Error detection and diagnostic features.

The I/O Subsystem test verifies the CX/UX system I/O configuration. Functionality of I/O controllers and attached peripherals is verified by the tests in "cxio." The "cxio" diagnostic allows testing of the following I/O devices: disk drive, 1/2 inch (9-track) tape, 1/4 inch cartridge tape, CRT terminal, asynchronous I/O port turnaround (RS-232/RS-422), printer, plotter, X.25 port to port loop back, real time clock, edge triggered interrupt / programmable interrupt generator, HSD (high speed data interface) to HSD loop back, DEC DR11W emulator loop back, and shared memory.

5 NOTES

ACRONYM LIST

ARWA Advanced Rotary Wing Aircraft
CPU Central Processing Unit
CRT Cathode Ray Tube
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CSCI</td>
<td>Computer Software Configuration Item</td>
</tr>
<tr>
<td>DDN</td>
<td>Defense Data Network</td>
</tr>
<tr>
<td>DEC</td>
<td>Digital Equipment Corporation</td>
</tr>
<tr>
<td>FDDI</td>
<td>Fiber Distributed Data Interface</td>
</tr>
<tr>
<td>FSM</td>
<td>Flight Station Module</td>
</tr>
<tr>
<td>GB</td>
<td>Gigabyte</td>
</tr>
<tr>
<td>HAPSE</td>
<td>Harris Ada Programming Support Environment</td>
</tr>
<tr>
<td>HVME</td>
<td>Harris Versa Modular European</td>
</tr>
<tr>
<td>HSD</td>
<td>High Speed Data</td>
</tr>
<tr>
<td>HZ</td>
<td>Herz</td>
</tr>
<tr>
<td>IEEE</td>
<td>Institute of Electronics and Electrical Engineers</td>
</tr>
<tr>
<td>I/O</td>
<td>Input/Output</td>
</tr>
<tr>
<td>KB</td>
<td>Kilobyte</td>
</tr>
<tr>
<td>MB</td>
<td>Megabyte</td>
</tr>
<tr>
<td>MHZ</td>
<td>Megahertz</td>
</tr>
<tr>
<td>RISC</td>
<td>Reduced Instruction Set Computer</td>
</tr>
<tr>
<td>SAINT</td>
<td>Stand-Alone INTerface</td>
</tr>
<tr>
<td>SPM</td>
<td>Software Programmer's Manual</td>
</tr>
<tr>
<td>SSM</td>
<td>Simulator System Module</td>
</tr>
<tr>
<td>VME</td>
<td>Versa Modular European</td>
</tr>
<tr>
<td>VSM</td>
<td>Visual System Module</td>
</tr>
</tbody>
</table>

6 APPENDIXES

Not Applicable.