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ABSTRACT

We derive the closed form expression for the bit error probability of dense WDM
systems employing an external OOK modulator. Our model is based upon a close
approximation of the optical Fabry-Perot filter in the receiver as a single-pole RC filter for
signals that are bandlimited to a frequency band approximately equal to one sixtieth of the
Fabry-Perot filter's free spectral range. Our model can handle bit rates up to 2.5 Gb/s for

a free spectral range of 3800 GHz and up to 5 Gb/s when the power penalty is 1 dB or

less.
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L INTRODUCTION

Wavelength division multiplexing (WDM) systems have been increasingly proposed
as an attractive alternative to coherent optical frequency division multiplexing (FDM)
systems [Ref 1-5]. Although WDM systems with direct detection do not have the
channel capacity of coherent optical FDM systems, they are much less costly to
implement. Furthermore, present filter technology enables the designers to tightly pack
the channel, resulting in dense WDM systems that can provide aggregate bit rates of many
terabits per second (1 Tb/s = 10" b/s). Dense WDM systems are particularly attractive in
the area of undersea surveillance where hundreds of sensors and data collection sites are
envisioned being merged onto single-fiber superhighways through massive data fusion.
Other applications call for relatively low-bandwidth data collection over many months to
be dumped quickly to a remote recording site in a matter of minutes. This
“collection-and-dumped” compression can demand total data rates on the order of
hundreds of Gb/s. Long distance between data collection sites and a remote recording site
requires the use of optical amplifiers. Therefore, it is necessary to pack all channels within
the optical amplifier bandwidth.

A dense WDM receiver with on-off-keying (OOK) modulation can be modeled as
shown in Fig. 1. Conceptually, the analysis involves two main operaticns: 1) a

convolution operation to evaluate the signal at the output of the optical filter, a




Fabry-Perot (FP) filter in our investigation, and 2) the integration of the output of the
photodetector. Evaluation of bit error probability by the numerical analysis of these two
operations has been carried out in [Ref 6], with a number of approximations made to
reduce the computational complexity. In this investigation the FP filter is shown to be
well approximated by an RC filter within the frequency range | /- f, | < FSR / 20z, where
FSR is the free spectral range of the FP filter [Ref. 7] and £, is the FP filter center
frequency. For example, given FSR = 3800 GHz, the approximation works very well for

| ff,| < 60.5 GHz; that is, the effects of adjacent channels within a 121 GHz bandwidth
centered at f, must be included, while all others can be neglected. This simple model
agrees well with [Ref. 6] as demonstrated in Section III. Furthermore, this model enables
us to obtain a closed form analytical expression for the bit error probability for which
numerical results can be obtained with little effort. Our investigation shows that this
simple model provides accurate results as compared to those in [Ref. 6] for bit rates up to
2.5 Gb/s when the effects of four adjacent channels are included with FSR = 3800 GHz.
Actually, when the power penalty relative to single channel operation is 1 dB or less, there
is virtually no difference in the effect of four or two adjacent channels. Thus, for this
power penalty criterion, this simple model can handle bit rates up to 5 Gb/s for a FP filter's
FSR = 3800 GHz.

In Section II the closed form expression for the decision variable, and consequently,

the bit error probability assuming all channels are bit synchronous as in [Ref. 6] is derived.

Section III presents the numerical results which include the bit error probability versus the




signal-to-noise ratio as function of the FP filter bandwidth and channel spacing, and the
power penalty (relative to single channel operation without filtering or with filtering but no
intersymbol interference) versus the channel spacing as a function of the bandwidth.

Finally, a summary of results appears in Section IV.




II. ANALYSIS

The receiver model for the dense WDM system is shown in Fig. 1. The desired
signal is filtered by a Fabry-Perot (FP) filter that rejects adjacent channels. The
photodetector is assumed to have a responsivity £ (A/W). The detected current is
amplified by a low noise amplifier that contributes a postdetection thermal noise n(r) with
spectral density N, (AHz). The decision variable at the output of the integration is
compared to a threshold a to determine whether a bit zero or bit one was present.

A. INPUT SIGNAL

For convenience, we designate channel O as the desired channel, and channel & as
an adjacent channel where k = -M/2, .., -1, 1, ..., M2 with M an even integer. We
consider the equivalent lowpass (complex envelope) data signal in channel 0 and channel &

as follows:

bo(9)

= boipr(t—il) )

I==Lo

0 |
be() = I_ZL b 1€’ pr(t - IT) )

where
T: bit duration
., ={0,1}: bit in channel 0 in the time interval (i, (i+1)T)

b,,={0,e’*}is the  bit in channel k in the time interval (/T,(/+1)7)
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¢, : a phase offset between channel & and channel 0 and is assumed to be uniformly
distributed in (0, 2x) radians
o, ' radian frequency spacing between channel £ and channel 0 with o, = -0,
The function p(t - iT) is defined as
. l, iT<<(i+)T
prt=iT)={y, oterwise (3)
In both (1) and (2), the non-negative integers L, and L represent the number of bits in

channel O and &, respectively, that proceed the detected bits b,, The received dense

WDM equivalent lowpass signal at the input of the FP filter is given by

) = JPbo)+ & JPbi(t) @
k=,;Ag/2

where P is the received optical power.
B. FABRY-PEROT FILTERED OUTPUT SIGNAL

The FP filter can be characterized by the following equivalent lowpass transfer
function [Ref. 1,7]

1-p 1-A-p
H(f)= I-pe 729 FRR ¢ 1-p




H(f) _ l-p 1-A-p )

1- pcos( )+}psm(m) I-p

where p is the power reflectivity, 4 is the power absorption loss (zero for an ideal FP
filter) and FSR is the free spectral range. For |f: < FSR/20n and assuming A = 0, we can

approximate H ( f) as follow:

H(f)= =

.2
(l- )"Tl;;;f l+](l-p)FSR

~- ]w f 1 < FSR20m (63)
where
FSR(1-
- _—; P) (6b)

The free spectral range FSR can be related to the full width at half maximum (FWHM)

bandwidth B and the finess F of the FP filter as

n

FSR=

pB
5 = BF Y

Thus if the signal is bandlimited to | /| < FSR/20x, we can truly approximate (5) with a

single-pole RC filter with the following transfer function and impulse response

H(f)= m (8)




h(y=ce™ , t>0 )

Figures 2a-b show the magnitude and phase (radians) of H( /) of the FP filter in (5) and
its single-pole RC filter approximation given in (8) for p=0.99, F=312.6, B=12.1 GHz
and FSR = 3800 GHz. Note that as the frequency increases, the phases of the FP filter
and the RC filter differ markedly, but the magnitudes of their transfer functions remain
identical and attenuate rapidly. When | f | > FSR/20x, the magnitude of H( /) is very
small, and therefore, the effect of adjacent channel interference beyond this frequency
range is negligible. Figure. 3 shows the normalized impuise response of both FP and
single-pole RC filters. In summary, the above approximation is valid for dense WDM
analysis when the filter finess F is large or equivalently the FWHM bandwidth B is small
since the equivalent lowpass signal must be bandlimited to about | f | < FSR/20n.

This approximation has been used in [Ref. 5] to study spectral efficiency of optical
FDM/ASK systems, which involves the evaluation of the decision variable for worst-case
analysis using the eye diagram technique. Since we are interested in the detected bit b

in the time interval ( 0,7 ), we consider the output filtered signal s( ¢ ), 0< t < T given by

s(O) = sp(t) + sisi() + sac1(), 0<t<T (10)

where
s, (1): desired signal

5., (1 ): intersymbol interference signal
8
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Figure 2: Spectral characteristics of the Fabry-Perot fiiter and the approximated
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sp(t) = Ji’-bo,o (j; h(t- t)dt

=Jﬁbo,o(l-e‘°'), O0<t<T (11)

(l+l)7'

sisi®) = JP zf bo, | ht—t)dr

iI=-Lo 1T
=JPe -Zl. bo (VT —e*T), 0<t<T (12)
(I+1)T _
saci(t) = JF Aﬁ {[ 2! b 11' h(t - t)e/*<*dr]
k==0

1
+bio [ h(t-1)e/®dr}, 0<t<T
0

=JPee & LAl T beselroonT

k=-M/2 ‘*J"’k I=L

-y 4 b, o(e“@D! ~ 1)}, 0<t<T (13)
The FP filtered output s(f) is detected by the photodetector which produces a

current of # | s(#) ' Amps. This current plus additive white postdetection thermal noise

current from the amplifier is integrated by the integrator to obtain a decision variable for

the threshold detector.

11




C. DECISION VARIABLES
The decision variable Y appearing at the integrator output consists of the signal

component X and noise component N

Y=X+N (14)
where
x=| @l as)
0
N =(j)Z n(?) dt (16)

We note that N is a zero mean Gaussian random variable with variance N,T. Substituting
(10)-(13) into (15) we obtain the signal component X as a function of the two parameters
cT and o,7, which represent the effect of intersymbol interference and adjacent channel

interference, respectively.
X= #PTb} o [1-2(1-e~T) + 5= (1 - %))
+ fﬂ(l —e ¥ -25 b, i(e@DeT — gicTy)2

2cT i=—Lo

M2 -l bi

PT 2T
+#2(1 - .
f 2cT (l € )| hk_fbglz I=-L l+yjorT/cT

(e(cT+jwkT)( I+1) _ e(cT+jcom1)|z

12



2 br.obnm o

+ f cT k=-MPR2 m=-M/2 (l+jﬂ)kT/CT)(l jﬂ);-T/CT)
k=0 m=0
O =Om e TN |
{e ;(u,,r D, t TSesTieT

j(ukT-omT)-'cT > QkFOm

e~ (cTwemD)_| =2¢cT
|l+jm..T/cT 2(1 ™)}

pey P e
k=-M/2 m—";Aglz joog, (1tjorT/cTX1-jomT/cT)

k=0

_e-(f-‘TﬂUnln

(cTHo TXI+1) _ ,(cT+o DI
(e —é€ )[ lyjouT/cT

—(1-e N} +—F~ m°°(l +e T - 2¢~T)

i bO (e(1+l)cT_etcT)+Pn’°°

—2Re{(1 +e7%*
i=—Lo
by

=M_2 I=-L 1+jo,T/cT
k20

_Ze-cT ) (e(cT HoxT)(I+1)

—e(THo)ly 12 “ﬁ’z br.o (e""k “L T
k=-M/2 l+j(DkT/CT kT/CT

k=0
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e cTro,D _
ze_ch k l)} i b (e(H-l)cT

1
2 1-j@ T /cT

e NRe( T T (1 -eT)

=M =L ljacT/eT

(e(cT+jouT)(l+l) — e(cT+j¢o,,T)l)

+ 72 bro yl| l-e’(‘r‘/‘tr))
k=-M/2 l+j(l)kT/CT l‘j(l)kT/CT
=0

+e 2T _1)} a7

D. BIT ERROR PROBABILITY

For a detection threshold a and an ISVACI bit patten b = {b,,, b,, },i=-L,, .. -1,
I=L, . .0, k=-M2, .. M2, k=0, the conditional bit error probability of the OOK
signal represented by the Gaussian random variable Y in (14)-(16) is given by [Ref. 8]

P.(b) = toE> }1’1") 2Q(“'X°"” ()
where Q (X) is defined as
0w =7 [ ey (19)

and X, and X, are the values of X in (17) for b,, = O and b,, = 1, respectively. The

average bit error probability P, is obtained by taking the expected value of P, (b) in (18)

14




over all bit patterns 5. The minimum bit error probability is obtained by optimizing over

the threshold a. In summary, given ., we calculate the following expectations:
P. =§ {Pe(b)} (20)

Pe,min= MinE {Pe(b)} =min s —— T pb)

M(L+IPL
24t 2M patterns

where

p(b) =3G= )M{I IQ(“ X°‘°/-“_* 24D g5 ... A

2x )
X1 (®oz...Oun)a
+£ M,('; o T VAP _pp .. .ADM
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OI. NUMERICAL RESULTS

In this section we present the numerical results for a) bit error probability versus
signal-to-noise ratio Z =#PJTIN, as a function of the normalized channel spacing
(normalized to the bit rate)

1=-‘;—g—=(Af)T (22)

where Af = 0,/ 2nk is the equal channel spacing in GHz, and b) power penalty versus
normalized channel spacing / as a function of the FP filter parameter c¢7 = (#/ /p )BT
where B is the filter full width at half maximum bandwidth(FWHM).

Figures 4-5 show the minimum bit error probability versus signal-to-noise ratio

(Z) for cT =S and 10, respectively, and that of a single channel (SC) operation without
filtering or with filtering but without IS/. In Fig. 4 we observe that a large degradation
occurs due to IS/ for ¢T = S which represents a narrowband filter. As the FP filter
bandwidth is made larger as in Fig. 5 with ¢T = 10, the ISI is reduced but the AC/
increases.

In our model, we are constrained to M = 4 for the case under consideration. We set
a FP filter with free spectral range, FWHM B=121.6 GHz, FSR = 3800 GHz, finess F =

FSR/B=312.6, and c = 38.4 GHz, 1/T=2.56 Gb/s, thencT = 15.

16
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Figure 4: Probability of bit error versus signal-to-noise ratio as a function of normalized
channel spacing for ¢T=5
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Figure S: Probability of bit error versus signal-to-noise ratio as a function of normalized
channel spacing for c7=10

18

B e et

20




(i.e. channel spacing is 12 times the bit rate or 30.4 GHz). In this model the farthest
adajcent channel for M = 4 is twice the channel spacing which is 60.8 GHz. This verifies
the assumption | f-f, | < FSR/20n = 60.5 GHz, where f, is the FP filter center frequency.
This result agrees well with that in [Ref. 6; Figs. 6,9, M/F =0.4,a=0.2]. Thus we
incorporate the degradation caused by the four nearest adjacent channels. We observe
that for bit rates of 1 Gb/s or less, our model is valid up to M = 10, and very little
difference is observed between M = 4 and M = 10. Also, we observe that there is little
difference between M = 2 and M = 4 when I > =10 for bit rates up to 3 Gb/s. In all results
wesetL,=2and L =0.

Figure 6 also shows the power penalty for a dense WDM system relative to a single
channel operation at the minimum bit error probability of 10"°. This is the required
additional signal power (dBW) for the dense WDM system to be able to operate at the
10" bit error probability achieved in the single channel system with a SNR=12dB. The
dense WDM system is IS/-limited at 2.2 dB, 1 dB, 0.5 dB, and 0.4 dB in power penalty
for cT =5, 10, 15, and 20, respectively. It is seen that for a 2.3 dB power penalty, the
normalized channel spacing can be as close as / = 6 (i.e., a channel spacing of six times the
bit rate) for c7 = 5. If the power penalty criterion is 1 dB, the normalized channel spacing
is I=12 for cT' = 10, 15, 20. We remark that although the exact transfer functions of the
FP filter is used in [Ref 6], a number of approximation have been made to obtain
numerical results. The approximations are 1) the /S/ is obtained by modeling FP filter as

a single-pole RC filter [Ref 6, Egs. (4) and (36)), 2) approximating the finite integration

19
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with an infinite integration in the calculation of ACI [Ref. 6, Eq. (15)], and 3) the beat
interference is ignored. On the other hand, the /57 and AC/ in our investigation are
obtained by modeling the FP filter as a single-pole RC filter, using finite integration and
including the beat interference. Since the results in our investigation and in [Ref. 6] agree
well, we conclude that approximations are quite valid. We also note that our resuits also
agree well with the simulation carried out in [Ref. 1, Fig. 17].

The above numerical results shown in Figs. 4-6 are obtained with an optimized

threshold setting. Figure 7 shows the power penalty for fixed threshold a = #P7/2 which

is the same optimum threshold for single channel operation (midpoint between the
received power for bit zero and bit one). It is seen that the performance of a dense WDM
system is quite sensitive to o for a narrow band filter. An additional 1.8 dB is observed
forcT =5 for]>8, and 0.5 dB for ¢cT = 10 for ] > 12. Negligible degradation is observed
for cT'= 15, 20 for I > 16.

Figures 8-9 show the power penalty versus normalized channel spacing as a function
of FP filter parameter cT for the worst-case analysis with optimal threshold and fixed
threshold, respectively. The worst-case bit pattern is fixed to produce the minimum X,
and maximum X, where X, and X are the values to X in Appendix-A equation (9) with

b, ,=1 and b,, = 0 respectively.

21
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We observe that the power penalty for the worst-case analysis is only slightly larger
than that of the exact analysis for / > 10 shown in Fig. 6. Similarly the power penalty for
the worst-case analysis with fixed threshold is only slightly larger than that of the exact
analysis with fixed threshold for / > 10 shown is Fig. 7. The reason for this is that for
large channel spacing (/ > 10), the ACI effect is small, so the AC/ bit pattern has a small
influence on the power penalty.

Figure 10 shows the normalized optimal threshold for the exact analysis shown in
Fig. 6. It is observed that a 0.4 for / > 10. Note that the normalized optimal threshold

for the single channel operation is o =0.5.

25




o
©
L

e
~J
T

Threshold
o
L

ot
(4]
—

Optimal
o
+

0.1

Figure 10: The normalized optimal
function of Fabry-Perot

e i) . - R

26

*CT=5
o CT=10
+CT=15
y x CT=20
X. .
X
B T O RRMERT I oo
000 gAY
***’ ...................... - *
10 12 14 16 18 20
|

threshold versus normalized channel spacing as 3
filter parameter cT




IV. CONCLUSIONS

We have presented a simple model for the analysis of dense WDM systems
employing an external OOK modulator. The only approximation that we use involves the
modeling of the Fabry-Perot filter by a single-pole RC filter assuming the equivalent
lowpass signal is bandlimited to the frequency range | /| < FSR/20x . This model
enables us to obtain a closed form expression for the bit error probability which previously
can only be obtained via numerical analysis [Ref. 6]. For FP filter with an FSR around
3800 GHz, our model can include the AC/ effects of four adjacent channels for bit rates
up to 2.5 Gb/s. Our numerical results show that this model agrees well with that in

[Ref. 6].
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APPENDIX A

DERIVATION OF FORMULA FOR DECISION VARIABLES

DESIRED CHANNEL : CHANNEL 0
ADJACENT CHANNEL : k,k=-M/2,....-1,1,.... M/2;: M : even

BIT IN CHANNEL 0 IN ith TIME INTERVAL (iT, (i + 1)T)
bo; € {0,1}, boo : DETECTEDBITIN (0, 7)
BIT IN CHANNEL k IN /th TIME INTERVAL (IT, (I + 1)T) :

bis € {0,e/*} WHERE = J=1 . IMAGINARY NUMBLER

o, . FREQUENCY SPACING BETWEEN CHANNEL k AND CHANNEL 0,
0, =-0,
¢, . PHASE OFFSET BETWEEN CHANNELS k AND CHANNEL 0,

UNIFORMLY DISTRIBUTED BETWEEN (0, 2x)

DATA SIGNAL IN CHANNEL 0 :
bo() = 2, bo,pr{t~i)
I==Lo
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DATA SIGNAL IN CHANNEL k :
b= _ﬁL b pr(t - IT)
L,,L: INTEGERS

1, Ox<T
p T(t) {0 otherwise

v ¢ |, iT<t <(i+DT
4 T(t =1 7)—{ 0, otherwise
THE RECEIVED SIGNAL AT THE INPUT OF THE FP FILTER OF

CHANNEL OIS :

n)=JPbor & JPbu)
k=0

P : RECEIVED OPTICAL POWER.

THE OUTPUT OF THE FP FILTER IS

[+ o
ro(f) = _L h(t - t)r(t)dr
WHERE A7) IS THE EQUIVALENT LOWPASS IMPULSE RESPONSE OF

THE FP FILTER OF CHANNEL 0

ro(f) = JP f h(t - Dbo(t)dt + /P Afz h(t )bi(1)dr
= JPboo f h(t - Dpr(t)dt

+/P 25 bo; | ht-pr(z—iT)dr

I"—o —QC
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+/P Aﬁz % bi; | h(t e/ pr(t— INdr

SINCE THE DETECTION INTERVAL IS 0 <¢ < 7, WE ONLY NEED TO

EVALUATE s(t) = r(f), 0<¢<T

(n+l)T

s() = J_boofh(t t)dt+J— ﬂ bo, h(t - t)dr

i==Lo :T

(I+ nr

+JP 3‘.2 (L2, bu [ ho-vemvan)
+bio ;{ h(t - 1)/ dt}
0<t<T
= Sp(t)+s s . A1) (1)
Sg(t) : DESIRED SIGNAL
S;5(t) : INTERSYMBOL INTERFERENCE

S,(t) - ADJACENT CHANNEL INTERFERENCE

FPFILTER
LOWPASS EQUIVALENT TRANSFER FUNCTION
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1-A-p l-p 1-A-p
H(f)= —2 oAt .

p . POWER REFLECTIVITY

A : POWER ABSORPTION LOSS (4= 0 FOR IDEAL FILTER)
FSR : FREE SPECTRAL RANGE
SINCE f << FSR (FOR OPERATING FREQUENCY RANGE)

WE CAN APPROXIMATE H( f) AS (ASSUME 4=0) :

1
H(f)= =
Y (1 pm 1 s
FSR(1-p)
H(f)=—= 2 g WHERE c=—F—
FOR FP FILTER WE ALSO HAVE
FSR _ *JP
B 7 1-p

B : FULL WIDTH AT HALF MAXIMUM BANDWIDTH (FWHM) OR HALF
POWER BANDWIDTH

THUS

ce™ >0
h(t) {0 otherw:se (2)

TION | 19

1. S, (0):
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—

h(-1)

pr(7)
0
—
O0<t<T
/)-
_/
0! T

Qo

_j;: h(t - D)pr(t)dt

=j h(t—-1)dt
0

-

4 t<0
t

\_

0 T

T

/

o0

[ ht-vpr(v)=0

—w
—
t>T
_44
T
0 T 1t

\.

w©

.L h(t - T)pr(t)dt

=jz h(t—t)dt
0
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s5(t) = VP boo g Wt - dt

SUBSTITUTING (2) INTO (3) WE OBTAIN

t t
s8(?) = JP boo I ce™"Idr = JP booce™ f edt
0 0

= J}?bo.oce‘“%e“ 8 = \ﬁ"bo,oe"'(e“ ~-1)

= JPboo(l1 -e™)

a)BIT1:55,1(0) = JF(I -e™)

b)BITO :sgo(f) =0

2.8, (8):
pr(t—il)
ss
iT G+)T

O0<t<T 3)
0<t<T
O0<t<T
0<t<T

e ™
—//4 t<il

| . .

t it (@(+1DT

o

[ h@e-tpr(x-iDdt =0

-0
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- N

iT<t<(@+1)T t> @+ 1T
sS SS
iT : G+DT 0 iT G+1)T 0,
\. -/ N\

ih(t-f)pr(‘r— iNd ih(t—‘t)pr(‘t— iDdt

t G+DT
={ h(t-1)dr = | h(t-1)dr
iT iT
(1+l)T
sisi() = JP i bo: | Mt-tdt 0<t<T )

i==Lo iT
SUBSTITUTING (2) INTO (5) WE OBTAIN

G+)T

sisi(®) = JP Z bo; _[ ce-9dr

i==Lo iT

=JP 3 bo,cer| @I

i=—Lo

sisi(D) __‘/_ i bO e—ct(e(H»l)cT ICT)

i=—L 0
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sisi(f) = JPe™ ZE bo (VT —e*T)y 0<t<T ()

i=—Lo

WORST-CASEISI: bo; =b- , Lo =
sig(0) = JPb_e™ 0<t<T (68)
3. S,c(b):
[ Y [ ~
pr(t—IT) pr(v)
SS T T
IT (+nT 0 0 r
L I=-L,.., -1 R 1=0 )

SO THIS IS THE COMBINATION OF THE ABOVE 2 CASES

(1+1)T

saci(t) = /P Aﬁ {[25 bk, h(t - t)e/¥"dr]

k=-M/2
k0 IT

t
+bro | h(t—v)e®dr} 0<t<T ™M
0
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SUBSTITUTING (2) INTO (7) WE OBTAIN

(I+l T

saci(f) = P Agz {[i bii IT ce~UVe/ort gr]

k-— 12

’ .
+bro | ce " Ve/¥ dr}
0

@+nr

k=-M2 I=-L IT

k=0

t

+bioce™ | e€vODdr}
0

(ctyop ) I (+1)T ]

—Ct€
-JF % 2 [z bisce -
k20

_cte("ﬁ k)t t

cHjo i }

+boce

2
sacr(®) = JP ce™ I:%/ L([ 3 by (ecHoihT _ glermniTy]

p) C+](0k J=-L
k20

+bio(e©VoD - 1)} 0<t<T ®)

WORSE-CASE ACI : by =bio=b,L =0
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becHer)
sy ={Pee B S
k=0

Saer(h = JPb 0<t<T (8a)

ke=—MI2 l+1 7
k0

OUTPUT OF PHOTODETECTOR : 2 |s(9)|?

T
SIGNAL OUTPUT OF INTEGRATOR : X = 2 [ |s(9)| dt
0

Is@)|? = Isa(0) + sist() + sac1(D)|?
= |s8®|? + Isisr @ * Hsaci®|* + 2Re{sp(O)s1s (D}
+2Re{sp(Dsacr(t)} +2Re{si5(Dsaci(D)}
WORSE-CASE
1)s8(8) = VP boo(l —e™) 0<t<T
lsp())|2 = Pb}o(1 —e™)? =Pbjo(1 -2 +e7*) 0<t<T

i 2 2 2 T 2 T
[ |sa(t)|%dt = PTb}, - 2Pby, [ e'dt+ Pby g [ edt
0 0 0
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= PTb3 - 2Pb} g e™'|{ + Pbj g€ ']

2 2
= PTB2, + 220 ~T - 1) - S2(e 2T — 1)

= PTh3o[1 + 2(e™T - 1) - 55:(e ™% - 1))
= PTh3o[1 - 2(1 —e™T) + 5=(1 — e 7))
2) sig() = JPb_e™ 0<t<T
¥ @)’ = Pble 2 0<t<T

T v T o 21 -20r|T
(];ls,s,(t)lzt =Pb3(j;e’ 'dt = Pb2—e~>;

- _fz_’:%(e-—ZcT - = %’2_3(1 - e—ZcT)

/2
sy sien=JPb & =

k=M 14j2%
k20

0<t<T
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eﬂﬁk-ﬂh)l

o2 =Pls)> '€ B el
sicr®) 16l k——M/Zh—-M/2(1+]c)(lj— O<t<T
20
A )
s ar=pp)> € E L [eNerow
gl pa0) |8 302 342 T ;—)g dt
h20
—pp2 € ¥ ] L fore,H|T
ke MI2 heMP2. (142 X122y @ 08~
k20 he0
M/2 1
= P|b|2 Afz 1 g

Ic—-M/Z h=-M12 (14j=EX1-j22) (E-=2)
0 he0

[¢/FeT — |

0, 0
_ P|? b|? 12 12 e;(—-—)cr 4
- A& Ag Ok_%h

Tl k-M/Z h-h;nglz JO4EY 1222

@ = £, 1= INTEGER >0

T
(@k—0n) Jp — § 1 Ok=0h
THEN (I)ef R K Ay

T
we 2, _ 2 1
[ Isieno|de = PTio hg,z =
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4 2Re{sp(D)sig(0)} = 2Re{JP boo(1 —e™")JP b_e™}

=2Pboob-(e " -e %) 0<t<T

j 2Re{s5(1)s]g(1)}dt = 2Pboob-{ ] - =IT}

e-cT 1 ¢ 2c1'_l

=2Pboob_{— o

PTboob-
=—=—(1-2¢"T+e*T)

5 2Re{syBsaci()} = 2Re{ VP boo(1 -e~)JPb ‘&

e

w
k=—MI2 1+j=

k20

= 2PbooRe{b A%: ;""""_'f;:(i’f."_)'.}

k=-M/2 l+]—
k=0

IZRe{sB(t)sAa(t)}dt 2PbooRe{b Aﬁ —l—

k=-M/2 l"'] =
k=0

T Iy T .
[f e dt-[ e Fo0d1]}
0 0

O = -2—"7.£I-,l= INTEGER>0




T
0Kl Jp = (a0 _ 1) =
gef dt =~ 1)=0

T . ~csop)T ~cT oM T T
—~(cjork Jp — © =1 _1lle =1l
ge dt= """y = ¢ = O
T ~T
11
| 2Re{sy()saci(r)}dt = 2PbooRe{b bﬁz - =)}
0 k=—Ml2 -+
k=0
ThooRe{b
— 2PThooRe{ }{l_e—cT) %2 1

T =M 143
k20

) 2Re{sig(Osci()} = 2Re{ P b-e<JPb & £

/2 l+]—

-(“‘Nk)'

=2Pb_Re{b & ¢ =)
k=-M/2

k20

Faresiuscioy= 200ty '€ bt
k==0

cT b2 1HE)?
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SUMMARY OF WORST-CASE ANALYSIS

co,,=3’;-g ] = INTEGER > 0

r 2
X=2 [ |s0)|dt
0

2
- £ {PT2o[1 - 2(1 - =Ty + 5=(1 - e 2] + 5(1 - e7>T)

+PT\b Aﬁ} e+ 1 -2e~" +e7%")
Tl M2 1H=%)? o *

b
Tooskeldl () _ T v

cT

k=M2 1H=E)?
k20

IZPn-Re{b} _ =T 1
a1 )k-;%.;lz 1HE)?

X = #PT{b2,[1 - 2(1 -e~T) + 31 - e7*T))]

+bU5(1 - e 2TY] + boob_[(1 - 2™ +€T)]

T

+1bI? + 2(1 - e<T)Re{b}(b- ~ boo)] h‘%z —L)
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WHERE b € {0,e*},Re{b} € {0,cosé},|5|* € {0,1}

EXACT ANALYSIS

T
o[ lsa(®))dt = PTbEo[1 - 2(1 — e~T) + 50=(1 — e7%T)]
0

2 sig(f) = JPe™

bo,,-(e"'”)‘T - eicT) 0<t<T
L

i==Lo

lssr(0)? = Pe’u'[izgo bos (€T — Ty 0<t<T

T _ | |
5! lsisr(0)|*dt = %(1 - T )[iifl_o bo.(e+)<T — gT))2

12 = O
- / - 1 (14j=X+1)eT
= JPce™ Aﬁ - Z!. bu e <
3) SACI( ) S 14 Ck){[l=_L (

(B + b,,,o(e“*jg}"' -1)} O0<t<T
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3 o
sACl(t) = JFe—“ Af i _;L;;bk’[(e(lﬂ =Ni+1)T

k=-M12 I=~L 14j=
k=0
_e(!+1—)lc7')+ J-_ A? bg,o (ejaul -cl)

0<t<T

b  a—
|saci(®))? = Pe ™'l Aﬁz '_2; T;:b" ,(e(wc Wi+1eT _ g(147=5)eT |2

2 brob,, - »
+P fs ‘f = "'°‘” (e — e~T)(eTom! — e~")
k=-M2 m=-M2 (14j=X1-j=<")
k20 mz0

§ _ buba 2k
+2PRe{ A‘f Aﬁz 2'. (g7 N T
k=—M/2 m=-MI2 I=—L (14j5X1-j"2)
k=0 mx0

2k jom -
__e(l+]—c-)lc7')(e—(l+j =—)ct - 2ct)}

T
EVALUATE [ |s4ci(9)]’dt :
0

a) hSACl(i)ﬁdl = '%(1 - e %) b > bﬁfu
0

k=-M2 I=-L V=
k20

(e(l+j:c"—)(l+l)c7‘ - e(l-o-j’:.—")lcT)I 2

4

Lo



SPECIAL CASE : ® =2—T""—’ I=INTEGER >0

/2 -
_ %TT_(I_ REN “(‘-' Z‘. ___(e(l+l)cT_ eleT)|2

k=-M_2 I=-L l+1
20

T Aﬁz A%Z brobno
t = *
? g IsACI(t)lzd k——Mlz m=-M12 (14jEX1~ 12){]ef a

T T ‘ T
~f e~(cvonidy— | e cHon¥dtt( e~2'dt }
0 0 0

_p ¢ M _bubm (T ar=on
= Ty em U JopomT_)
Ir=k;1\g/2 m=-M2 (14=X1-=) oo 0, 0,

) e~ copT_) e~{ctrom)T_ 1 <2¢T
C~J@ + cHOm (1 ¢ )}

PT brobmo
=T = (O

D =WOm }
T M2 m=M2 (14=EX1-22)
k=0 m=0

e’(—"ucm )

@ om

K==

amk#\)m

T | OB ey
g% 1 2

SPECIAL CASE : ®} =3"T-"' = INTEGER >0
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T eT
(© p~0 T, oy =00m OO,
I el((llk m)’dt = {0, (D:m. = {%

ol = gjoul = |

- PT{ Ailz 'bk.O'z + = /2 bk.ﬁbno re_‘r—l
k=-M72 1HEE)? ‘T k=M M2 (1473212 28
) 20

-<T_ | _
+sz:.7+2(1-€ =N

- bk.lb‘
0 | Isaci(0)|2dt = 2PRe{ & —
) I | Aci( )ls { k=—MI2 m=-M/2 I=L (14j=£)1-j22)
k=0 m#0

o o T om T
(e(l+j7"-)(l+l)cT _ e(l+j-§)lcT)[ I e~ (et gy J‘ e=2 dt}
0 0

12 2 - biib,
= ZP—;: Re { Aé Aﬁ i —_——_a:l .o'm'
d k=-M12 m=’;%/2 I=-L (14j=X1-j=7)

k=0

_e—(lﬁ c

v amb 21 -e =N}

(e(l+j = )(l+l)cT - e(l+j—-)lcT)[

SPECIAL CASE - ®©} = 3’;—"’- I=INTEGER >0




_ APT LY (e(+1)eT _ gheT
B 2" Re{k—gnm—tﬁ:!ﬂ =1 (14212 ) )[w
k0

—5(1-e*N]}

T ot 1
24 = PL1 _ o~ 2Ty| 2! (1= N+1)T
g Isact O°dt = 7(1 - ™) Af.m__L w ;

_emyery|2 o BT M2 ME_ Dudmo
CT " —Mi2m=—M02 (I2X12)

()
{ {cT , @p=Qm }+ eITXT_)
ST 12
O om ’ mkwm
.’(T- T )

2 = bub,',,
+2ZLRe B L .
k=—M/2 m=-M/2 I=-L (1+J < X158
k20 mz0

(e(l+] = )(l+l)cT _ e(\+j = )lcT)[____

=

~3(1 - €N}
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SPECIAL CASE -

2 d »
2 ”T - ko (41T _ L IcTy|2
HSACI(’)| dt = £3(1 - ™) k—li%/z IE-!L - o €17 =€)
20 ¢

Py '€l ¢ e
k=—M12 1HEF) ‘T k=-MI2 m=-M12 (1ER 152
k20 k20 mz0

e-—cf_l e cT_l 1 2T
—-e
[+ +70- D)

- byib,,
+2£IRe{ Agz A§2 i »..o2 /(1+l)cT
T S amerie L (2122
k20 m=z0

~e N2 — 501 -}

T
a) (j;ZRe{sB(t)s;s,(t) Ydt

_I Z[J__boo(l— -ct)][J_e—ct 2 b, (e(t+l)cT icT)]dt

i=-L 0

= 2Pboo z bo,(e(”l)cr ech) j’ (e—ct ~2ct)dt

i=L 0
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T
g 2Re{sp(D)sis (D)}t

"2Pboo Z bo,(e"*”‘T etcT)[e""T ez" T]

i=-Lo

_ 2PTboo 'l ’(e(z+l)cT e:cT)[l —cT+%e-2CT_%]
T 1--Lo

_ PTboo 2{ bo (T — giTy(1 + ¢~%T — 2¢~T)

T 0

_ PTboo(l +e-2cT Ze-cT) z bO (e(H-l)cT__ech)

i==Lo

5) 1 2Re{sp(Dsaci(H)}dt

T

=2 [ Re{[JP boo(1 —€™)]

0

[ AﬁZ 2‘1 e(l+j—-)(l+l)cT_e(l+1—)lcT)
k-;%/Z I=-L l+J—

HP B o)y

k=M1 14
kz0
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\,

=2 [ Re{Pboo(1-e™)e™

<

P 3 ST (0BT P
k=-MI2 1L 14/
k20

2 - 2% B}
2 (eon! — e~ — g (1 TTNI 4 20}
k=-M/2 14z

k20

= 2Pb oRe{ A& _i bu (e(l"'l"‘)(lﬂ)CT - e(l+1 - )IcT)

k=—M2=—L 14
)
T 12
[ e —e >"ydr+ Ai b"_ﬁk
0 k:l;ag/z 14

T o
J' (e]mkr —e~ — g~ (1Tt 4 e-2ct)dt}
0

2 d by o
= 2Pb0.0Re{-}(%+%e-ZCT_e-cT) A% 3 (e“*f k14 1)eT

ke=-M/2l=-L l+] +
k=0

bro ,e®T-1 | e<T-1 e""l -(Uc)cT_l

(l+_] = )IcT)+
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k=-M/2 l+_]—\ Jok ¢ 2 (1 J )c
k=0

)}




b o
PT’booRe{(1+e 2T _ 9¢-<T) ‘%’ 2} —‘L(e(“f b\ e l)eT
M2l 1=

2 T
_e(l+j-°:—")lc1')+2 A& bo (e’"‘k 2l e<T-1- —2cT+

kM2 V4= 2
20

e"("'j c

Ly

lj—

SPECIAL CASE : @} = 2—’;—"-’ I =FIXED INTEGER > 0

T
felndr = (e -1) =0
0

THEN

5) 2Re{sy(Dsaci()}dt

2 < b k]
= o0 e (1 + T - 2¢™T) Mo S b T

k=—M/2=—L 1422
k20

-cT
_(ieTy 4 o "fz beo e‘CT—l— 2T 4.4 + 1

k=12 1y

)}
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T
(J; 2Re{s 5 (saci(f)}dt

= 2ReI[J— Pe™ 25 bo(e™T — giT)]

i==Lo

d b 2k ok
[JI_)e—ct ’:ﬁ;/zl—zfl‘ 1.,:1_( (1) (I+1)eT _ p(14 )lcT)
k20

B G oot _ eyl
k—;}\g l+—

= 2PRe{ %2 E 25 ”°"’“( (i+1)eT _ gicT)
k=-M2 I=-L i=Lo 4=

k=0

M2 <l by
(e(l"'] z )(1+1)CT_e(l+] = )ICT) Ie—ZadH_ ) 3 0sbk0
k‘k;AgIZ i==Lo l+j‘-

\

T o
(e(i+l)cT_eicT) j’(e—(l—j-ci)ct _e-2ct)dt}
0

p= < bobd
—2PRe{ Aﬁ z! 2! 0 “( (x+l)cT_ech)
k‘;%/Z I=-L i==Lo l+]—-

(e(l+j:’c5)(1+l)c7'_ e(l+j2§)lcT)_2%(1 — e-ZcT)
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/2 bo.bro 1! -2
+ i ! (i+1)eT _ picT ;e___ LT _|
3in i o — (e )| T (. )1}

(i+1)cT _ picT bt oy _ e-XT
:—go b (e ¢ )Re{ -k%/z I==L 14j —(l )

©
bio ,Z(I—e’""Tk)‘T)

.m .m 2
(e(l.,.}—c‘i)(kl)cT — e(l+]_c‘£)ICT)+ Aﬁ 1 Dk
e hr e

O \
=2 14

+e 2T - 1))

SPECIAL CASE - ) = 2"7’" /= INTEGER > 0

T
g 2Re{s g (Dsaci(t)dt

_ PT '2!' b (i+1)T _ icT 2 —Zl. by e~2T
= (e —e"*Re f 1-
T =1, 04( ) {lr-—Mlz = 12 vy )

(142 )(I+l)cT ( 142 eT 2 bio 2-2¢~T -2cT
(e i Tet )+k__:_§g/2 l+j [(1 z:;;)+e “=1]

WHERE e(l+j2§)(1+l)cT = o(eONH+DT — g(cT+jo THI+1)

— ecT(l+l)ejmT(I+l) - ecT(I+l)




SIMILARLY=> e/ FWeT = g(evfordT = gell

T
= g 2Re{s g (Dsaci(f)}dt

= by,

_Pr 'zl’ b (i+1)eT _ picT
== (e — e )Re
T =L, 0. ) {lz:-M/Z =L W2

_ y=2cT\(pcTU+1) _ peTl bro r,2-2e~T +e-2T _
(1-e)e ¢ )+l:-§;/2 12 l-f%) ¢ i3
k20




APPENDIX B

MATLAB COMPUTER PROGRAMS

exact analysis with optimal threshold signal out of the integrator, the signal X contains desired
signal and ACI & ISI and postdetect noise ,The formula for the BER is :
1
2M(L+l)+Lo oM 2 p(b)

pattern

where p(b) = 3GEM{ [ -. IQ(“ "°“'}“i 2udy 4y ... APV

I I Xl(O-M;__‘_DMfz)’a )dP_rp ..dOrp }

M is number of adjacent channels. Since we assume upper and lower channels are synchronized
individually, i.e. for our model the power of (1/2x) is fixed to 2, also we only have two
integrations and two arguments.

M=4; k=[-M/2:-1 1-M/2];
m=k;
% produce the controlled matrix b to control 64 different bit patterns
ml=[ zeros(1,32) ones(1,32) ];
m2=[ zeros(1,16) ones(1,16) zeros(1,16) ones(1,16)],
m3=(],
fori=1:4
m3=[m3 [zeros(1,8) ones(1,8)]];
end
md=(],
fori=1:8
m4=[m4 [zeros(1,4) ones(1,4)]];
end
mS=zeros(1,64),
m6={],
fori=1:16
m6=[m6 [zeros(1,2) ones(1,2)]];
end
m7=(],
for i=1:32
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m7={m7 zeros(1,1) ones(1,1)];
end

b={m1;m2;m3;m4,;m5,m6,m7]’,

% signal to noise ratio range in dB
RPTN_DB={10:0.5:25]; %RPTN_dB
ppp=10.(0.1*RPTN_DB),
len1=length(ppp):.

% solalph function is provided by Professor Randy L. Borchardt

n=10;
[bpx,wikx]=grule(n); %bpx=bpy ,wik=wfy

% single channel
BER0=0.5%erfc(ppp/8"0.5),

pp=[]; thresh=[];, %thresh is not normalized threshoid

for CT=[5 10 1520] % cT is Fabry-Perot filter parameter
if CT==5
qqq={2:12 17 20];
elseif CT==10
qqq={3:12 17 20J;
elseif CT==15
qqq=[4:12 17 20],
elseif CT==20
qqq=[5:12 17 20J;
end

pe={]; thresh1=(];

for I=qqq
BER=(]; thresh2={],

for RPTN=ppp
ap=linspace(0,182,11),  %approximated thresholds
x3=0, % first few loops to find out the threshold which make the
% BER minimun don't care about the scale

fori=1:64 x3=x3+...
solalph('xx00',0,2*pi,2,bpx,wfx,0,2*pi,2,bpx,wfx,ap,b,CT,i,Lk, n, RPTN)+...
solalph('xx11',0,2*pi,2,bpx,wfx,0,2*pi,2,bpx, wik,ap,b,CT,i,Lk,m,RPTN),

end

(val,ind}=min(x3),
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r—

lef=ap(ind)-16.6,
if 1ef<0 Jlef=0; end % to aviod the threshold go beyond the negative side

ap=linspace(lef.ap(ind)+16.6,11),
% two more time to find alpha
x3=0;

fori=1:64 x3=x3+...
solalph(‘xx00',0,2*pi,2,bpx,wix,0,2*pi,2,bpx,wix,ap,b,CT,i, Lk, m,RPTN)+. .
solalph(xx11',0,2*pi,2,bpx, wfk,0,2*pi, 2 bpx,wfx,ap,b,CT,i,Lk,m,RPTN),
end

[val,ind]=min(x3),
lef=ap(ind)-3.1,

if lef<0 ,lef=0; end

ap=linspace(lef,ap(ind)+3.1,11),
% three more time to find alpha
x3=0,

for i=1:64
x3=x3+...
solalph(xx00',0,2*pi,2,bpx, wfx,0,2*pi,2,bpx,wfx,ap,b,CT,i, Lk, n, RPTN)+. .
solalph(x11',0,2*pi,2,bpx, wfx,0,2*pi,2,bpx, wix,ap,b,CT.,i,Lk,m,RPTN),
end

[val,ind}=min(x3);
lef=ap(ind)-0.57;

if lef<0 ,lef=0; end

ap=linspace(lef,ap(ind)+0.57.8),
% four more time to find alpha
x3=0;

for i=1.64
x3=x3+...
solalph(xx00',0,2*pi,2,bpx,wfx,0,2*pi,2,bpx,wix,ap,b,CT,i,Lk,m,RPTN)+. .
solalph(xx11',0,2*pi,2,bpx, wfx,0,2*pi,2,bpx,wfx,ap,b,CT.,i,Lk,m,RPTN),
end

[val,ind}=min(x3);
ap=ap(ind),
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% after find optimal alpha use double integration
qq3=0;

for i=1:64
qq3=qq3-+( dbgquadm(’xx00',0,2*pi,2,bpx,wix,0,2*pi.2,...
bpx,wix,ap,b,CT.i,.Lk,m,RPTN)+... ‘
dbgquadm(xx1 1',0,2*pi.2,bpx,wix,0,2*pi,2,...
bpx,wix,ap,b,CT,i,Lk,m, RPTN) )/(1024*pi"2),
end

BER=(BER qq3]; thresh2=[thresh2 ap},

if q@3<10°(-15) %for save time only interesting in 10°(-15)
ii=find(ppp==RPTN),
BER(ii+1:len1)=5%10"(-116)*ones( 1,length(ii+1:lenl) ),
thresh2(ii+1:len1)=(ap+2)*ones(1,length(ii+1:lenl) ),
break
end
end

pe=[pe;BER]; threshl={threshl;thresh2);
end

et1l>dp=[p1a;pv.-]; thresh=[thresh;thresh1];

time2=toc,
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% worse case form appendix setting optimal threshold equal (x0+x1)/2
M=4;
I=linspace(0,6,101), % set I value in linspceinteger to find minimum I
RPTN_DB=0:0.2:20, % x-axis dB range
RPTN=1040.1*RPTN_DB); % change to ratio
% single channel
BERO0=0.5*erfc(RPTN/8"0.5),
%lfind optimal alpha
pp=(l;
for CT=[5 10 15 20]
x3=0,
for k=1:0.5*M
x3=x3+2 /(1+(2*pi*k*I/CT)."2),
end
x0=(1-exp(-2*CT))/(2*CT)+x3*(1+2*(1-exp(-CT))/CT),
x1=1-2*(1-exp(-CT))/CT+(1-exp(-2*CT))/(2*CT),
[val,ind}J=min(abs(x0-x1)),
I=ceil(I(ind));
I=(I(ind)), % our minimum I value

% set different I and to find the BER
ss=[+1:1+10,
BER=(},
for I=ss
x3=0;
for k=1:0.5*M
x3=x3+2/(1+(2*pi*k*I/CT)"2),
end
x0=(1-exp(-2*CT))/(2*CT)+x3*(1+2*(1-exp(-CT))/CT);
x1=1-2*(1-exp(-CT))/CT+(1-exp(-2*CT))/(2*CT),
BER=[BER;0.5*erfc( RPTN*(x1-x0)/8"0.5) ];
end

pp=[pp.BER];
end

semilogy(RPTN_DB,BERO.--,RPTN_DB,pp(:.’))

axis([10 19 107(-15) 1])
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