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ABSTRACT

We consider a coherent system S consisting of m independent components for
which we do not know the distributions of the components’ lifelengths. If we know
the structure function of the system, then we can estimate the distribution of the
system lifelength by estimating the distributions of the lifelengths of the individual
components. Suppose that we can collect data under the ‘autopsy model’, wherein a
system is run until a failure occurs and then the status (functioning or dead) of each
component is obtained. This test is repeated n times. The autopsy statistics consist
of the age of the system at the time of breakdown and the set of parts that are dead
by the time of breakdown. Using the structure function and the recorded status of
the components, we then classify the failure time of each component. We develop a
nonparametric Bayesian estimate of the distributions of the component lifelengths
and then use this to obtain an estimate of the distribution of the lifelength of the
system. The procedure is applicable to machine-test settings wherein the machines
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CHAPTER 1
INTRODUCTION AND SUMMARY

Consider a coherent system S consisting of m independent components for which
we do not know the distributions of the component lifelengths. Assume that each of
the m components occupies one of two sta es, functioning or failed. We consider the
statistical model in which each element of a sample of n replicates of S is observed
until it fails. The observed data consist of the set of components that are in a failed
state and the failure time of the system. The failure times of the dead components
are not directly observed. The set of dead components and the system failure time
comprise the “autopsy statistics” of the system. This model is usually called the
autopsy model.

Two statistical problems arise in considering the autopsy model-—the problems
of estimating the distributions of the component lifelengths and the distribution of
the entire system’s lifelength. One approach to estimating the distribution of the
system lifelength is to use only the observed system failure times. For example, we
could use the empirical distribution function. However, such an approach ignores the
(partial) information we have about the components of the system. If the struéture
function of the system is known, the distribution of the lifelength of the system
can, in general, be calculated from knowledge of the distributions of the component
lifelengths. Hence, an alternative approach would be to estimate the distributions of
the lifelengths of the m components of system S and then use the structure function

of S to estimate the distribution of the system lifelength.

1




9

Clearly, the component information provided by the autopsy model is quite lim-
ited. It is reasonable to consider alternative testing procedures which provide more
component information. However, the autopsy model is important when alternative
testing procedures such as separate testing of components are not possible or prac-
tical. For example, it may be difficult to reproduce the conditions which exist in
the functioning system when components are tested separately. For such systems,
it is important to obtain every bit of information about the components when they
are parts of a machine or other system. In these settings, as well as the case of cer-
tain biological systems, the autopsy model is natural. Probabilistic aspects of the
autopsy model were considered by Meilijson (1981), Nowick (1990), and Antoine,
Doss, and Hollander (1993). Inferential aspects of the autopsy model have been
considered only by Watelet (1990) and Meilijson (1994).

The U.S. Air Force’s C-17 transport airplane’s Fuel Quantity (FQ) computer
is an example of a system in which the “component” is a logical subsystem whose
status can be readily determined in the field. The FQ computer is a parallel system
of order two, consisting of an “A” bus and a “B” bus. When this system’s data
were first examined by the authors, there were approximately 2440 cumulative flying
hours spread among six different prototype C-17’s, each of which contained one FQ
computer. We present a data analysis using our procedure in Chapter 3.

Consider the autopsy statistics as described above. Assume that the system
we wish to study is a coherent system (see Chapters 1 and 2 of Barlow and
Proschan (1975)). We can use the structure function, the set of dead components,

and the failure time of the system to say more about the failure times of each com-
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ponent. Specifically, for each of the n replicates of S, we can classify the failure time

of each of the m components as follows:

[C1] Component failure time is greater than system failure time.
[C2] Component failure time is less than system failure time.
[C3] Component failure time is equal to system failure time.

[C4] Component failure time is either less than or exactly equal to system failure

time, but we cannot tell which.

The first two categories correspond to what are usually termed right-censored
data and left-censored data, respectively. Right-censored data occur when the com-
ponent is still alive when the system fails. Left-censored data occur when the com-
ponent is dead and information contained in the structure function, along with
information contained in the set of dead components, allow one to deduce that the
component’s death occurred prior to the system failure time. Similarly, the third
category arises when a component is observed in a failed state and we deduce that
it caused the system to fail. The last category occurs whenever all the components
in a redundant system or a redundant subsystem belong to the set of dead compo-
nents. In this case, we know there is exactly one component, whose identity we do
not know, with a failure time equal to that of the system, while the failure times of
all the other components are strictly less than that of the system.

The last category above is problematic, particularly in frequentist settings, and
is at the heart of the issue of “identifiability”. (General references on identifiability

are given at the end of this chapter.) For example, consider a parallel system of




4
order two. Let the distributions for components 1 and 2 be F, and F;, respectively.
Both components will always be dead when the system is observed in a failed state.
Under the autopsy model, one can only observe the system failure time, which has
distribution Fy F,. This simple redundant system is not identifiable in the frequentist
sense in that it is not possible to determine F and F; from a knowledge of the
distribution of the observed data.

We use a Bayesian framework because, for the applications we have in mind, we
have a small amount of data but have extensive past experience on the components
in other systems. For example, in the case of the C-17 FQ computer, similar but
not identical FQ computers exist in other aircraft for which there has been more
extensive testing. Thus, we have strong reasons to suspect the distribution of the
lifelengths of the components approximately comes from a certain parametric family,
and we have some knowledge about the parameters of this distribution. A Bayes
procedure makes sense here since we have only limited testing hours on just six
FQ systems, each within a C-17, and we wish to estimate the distribution of the
lifelength of the FQ system when it is part of the C-17.

We consider a Bayesian framework for estimation of the distributions of com-
ponent lifelengths in which the prior distributions on each of the F;’s give most of
their mass to “small neighborhoods of a parametric family”. The prior distributions
which we use are derived from the Dirichlet process priors discussed by Ferguson
(1973, 1974). The Dirichlet process priors are probability measures on P parame-
terized by the set of all finite non-null measures on the real line R, where P is the
space of all probability measures on R. Let a be a finite non-null measure on the

Borel sets of R. The random distribution function F is said to have a Dirichlet
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process prior distribution with parameter o, denoted D,, if for every measurable
partition {By,..., By} of R, the random vector (F(B,),..., F(B:)) has the Dirich-
let distribution with parameter vector (a(B,),...,a(B¢)) (here and throughout the
rest of the paper, probability measures are identified with their ¢ :tive distri-
bution functions, and the same symbol is used to denote both a 1. .sure and its
distribution function whenever convenient). When a prior distribution is put on P,
then for every t € R, the quantity F(t) is a random variable. Write H = a/a(R),
so that H is a probability measure on R. If F' ~ D,, then EF(t) = H(t), wuile the
quantity a(R) indicates the degree of concentration of D, around its “center” H.
For example, it is well known that as a(R) — oo, D, converges to the point mass at
H in the weak topology. Ferguson (1973) showed that the Dirichlet priors have the
property that the support of D, is the set of all probability measures whose support
is contained in the support of H. For example, if the support of H is the positive
real axis, then the support of D, is the set of distributions of all positive random
variables. Ferguson also showed that if F' ~ D,, then F' is a.s. discrete.

The priors on each of the F}’s, 7 = 1,...,m, that we use are mixtures of Dirichlet
priors. To keep the notation less cumbersome, let m = 2. For component 1, we
consider a parametric family Hy, 6 € O, and put a mixture of Dirichlets as the
prior on Fj. That is,

Fy ~ / D, v(d9),

where for each § € ©, ay = ap(R)Hp, 0 < ap(R) < o0, and v is a probability mea-

sure on ©. Similarly, for component 2 we consider the parametric family Ky, ¢ € ¥,
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and put as prior on F; the mixture [ D, u(dy). For each v € ¥, 8, = 3,(R)K,,
0 < By(R) < o0, and u is a probability measure on V.

We use a nonparametric Bayesian procedure in which we put a Dirichlet process
prior on each of the F;’s. This has two advantages. First, we protect against the
problems associated with using an incorrectly specified parametric model. such as
obtaining an inconsistent estimator. Second, we can avoid the loss of efficiency due
to ignoring partial information we may have about a parametric model, since we
use prior distributions (on each of the F;’s) that concentrate their mass around the
hypothesized parametric family.

Our approach is based on the Gibbs sampling algorithm as discussed in Gelfand
and Smith (1990). We now review the algorithm. Let fy, _y, be the joint dis-
tribution of the (possibly vector-valued) random variables Y;,...,Y,. We suppose
that we do not kuow the form of fy, . y,, but that we know the conditional dis-
tributions fy,|y,, ji, ¢ = 1,...,p or that at least we are able to generate observa-
tions from these conditional distributions. Suppose we want to sample observations
from the joint distribution of the random variables Y,...,Y,, or simply an ob-
servation from one of the p marginals. The algorithm to generate an observation
from fy, .y, proceeds as follows. We fix arbitrary starting values Yl(o),...,}’;,(o)
and then update these values. Draw Y*) from fr,, #1(',}’2(0),...,)/;(0)). Next,
draw Y{" from fy,|y,,,~¢2(Yl(l), SYO Y(®). Continue until we draw Y\{!
from fy,y, ,#p(Yl(l),...,Y;(_l)l,-). We have now completed one iteration of the
scheme by visiting each variable. After k iterations, we have the random vari-
able (Yl(k), e ,Y;,(")). The sequence (Yl(j), e ,Yp(j)), j =12,...,is a Markov chain

and fy,,..y, is the stationary distribution of the chain. If one can establish i.iat the
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.....

,,,,,

to estimate fy,, .y,

Perhaps the most natural way to implement the Gibbs sampler here is to proceed
as is normally done in a Bayesian analysis of missing data problems under conjugacy.
That is, consider the pair (parameter 8, missing data): In such a setup, if we knew
the missing data, we would easily be able to find the conditional distribution of the
parameter 8, and if we knew the parameter § we would be able to generate the miss-
ing data. Indeed, this is precisely the approach taken by Doss (1994), who considers
the use of Dirichlet priors for the problem of estimating an unknown distribution F
in the presence of censoring. He considers random variables Xj,..., X, iid F, but
only observes X; € A;, where A, is a singleton if X; is uncensored and A; = (¢;, o)
if X; is censored on the right by ¢;. His approach is based on a Gibbs sampling
algorithm of length 2 involving (X, F'); that is, he generates X from Lyaa( X | F)
and F from Laata(F | X), where data consists of the séts Ay, ..., An. (Here, we use
the notation Lw,(W,) or L(W; | W3) to denote the conditional distribution of the
random variable W) given the random variable W3.) The details of carrying out the
steps of the algorithm rely on a constructive definition of the Dirichlet prior, given
in Sethuraman (1994).

Our initial approach was simply to extend the technique of Doss (1994) to our
setting; however, the approach fails since it turns out that the procedure produces
a Markov chain which does not converge to the posterior distribution. We present
an entirely different algorithm that produces a Markov chain which we argue (in

Chapter 2) does converge to the posterior distribution.
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We now give a preliminary explanation of our procedure for the case where the
priors on each of the F’s are single Dirichlets; i.e. F; ~ D,,. Let S;, i = 1,...,n,
be the vector of lifelengths of the m components (for system :) if we could see
them all. Let data be the set of autopsy statistics for the n systems. (It may
be helpful to think of the case of parallel systems. In this case, data consists
simply of the n system failure times.) The algorithm proceeds as follows. Fix
arbitrary starting values S\”),...,S5(). Generate S ~ Lna(S: | SI7,..., SO
Next, generate Sgl) ~ Laaa(S2 | Sil),S:(,o),...,S',(P)). Continue until we generate
SM ~ Lana(Sn | Sfl),..., 1(t1_)1). We have now completed one iteraticn of the
procedure. We repeat the procedure a large number of times and use the realizations
of the chain to estimate L4ata(Si,---,5z). There are two key points that allow this

procedure to produce a Markov chain which converges to the posterior distribution.

o The distribution of the lifelength of the j** component of system S; is condi-
tional on the observed data and on the current set of lifelengths for the jt*

components of S, £ # 1.

e The joint unconditional distribution of the n lifelengths of component j can

be described in full.

The estimate of Lgaa(S1,...,S,) can be used to obtain an estimate of
Laata(F1y- .., Fm).

Note that, in contrast to Doss (1994), we deal only with the random lifelengths
(of the components) and bypass entirely the problem of generating the infinite-

dimensional F}’s.
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In Chapter 2, we explore the algorithm further. In Chapter 2.1 we give a Gibbs
sampling algorithm for our problem under parametric assumptions. In Chapter 2.2,
we present a simple extension of the procedure of Doss (1994) to our setting and show
that this leads to a reducible Markov chain. In Chapter 2.3, we describe in detail
our new algorithm for the case of parallel systems and give an heuristic argument
that the Markov chain used in the algorithm converges to the posterior distribution.
We also establish this rigorously for a parallel system and argue that the procedure
converges to the posterior distribution for a general system. In Chapter 2.4, we
discuss the implementation of the algorithm for the case of arbitrary systems. for
the case of arbitrary systems and discuss identifiability and frequentist consistency.
In Chapter 3 we illustrate our nonparametric procedure on data pertaining to the
C-17 FQ computer.

The last portion of this chapter is used to summarize other relevant research
in the statistical literature. First, we define the term identifiability. Suppose sys-
tem S has m components and the component distributions are denoted Fy, ..., F,.
If F,...,F, can be recovered from a knowledge of the true distributions of the
autopsy statistics, then we say that Fj,..., F,, are identifiable and that S is an
identifiable system. For example, any parallel system is nonidentifiable. Meilijson
(1981), Nowick (1990), and Antoine, Doss, and Hollander (1993) considered prob-
abilistic aspects of the autopsy model. In these three papers, the authors identify
conditions on the structure function of the system and on the distributions of the
component lifelengths that guarantee identifiability.

Relevant work on estimating the distribution of the system lifelength under the

autopsy model by first estimating the distributions of the component lifelengths and
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then using the structure function of the system can be found in Watelet (1990) and
Meilijson (1994). Watelet (1990) considered two estimators for the autopsy model.
He developed nonparametric estimators for the F;’s. Meilijson (1994) estimated the
parameters of these distributions from the empirical estimate of £(Z, D), where Z
is the lifetime of the machine and D is the diagnostic set of parts that had died
by time Z, by maximum likelihood from incomplete data via the EM algorithm.
Meilijson assumes the Fj’s are drawn from well-behaved parametric families.

Under the assumption that the failure times of the dead components are known,
Doss, Freitag, and Proschan (1989) also considered inferential aspects of estimating
the distribution of the lifelength of the system by first estimating the distribution
of the lifelengths of the system’s components. In their model, they have more

information than is available under the autopsy model.




CHAPTER 2
DEVELOPMENT AND CONVERGENCE OF THE ALGORITHM

As mentioned earlier, the Gibbs sampling algorithm is ideal for missing data
problems in a Bayesian model under conjugacy; see the linkage example or the
Dirichlet sampling process example in Tanner and Wong (1987), or Example 1 in
Casella and George (1992). In the present problem, we describe the Gibbs sampling
algorithm for this problem in the parametric case, applied to parallel systems. We
then show that a naive extension of the simple censored data case considered by Doss
(1994) leads to a reducible Markov chain (when applied to parallel systems). Next,
we review our procedure for the case of parallel systems and show that it produces
an irreducible Markov chain which converges to the correct stationary distribution.
We then argue that the procedure converges to the correct stationary distribution
for a general system. Lastly, we discuss the implementation of the algorithm for the
case of arbitrary systems.

In the description of the Gibbs sampler in Chapter 1, we described how to
running the chain sufficiently long. One can estimate fy,, .y, by generating G .such
chains in parallel, obtaining independent observations (Y(*V ... Y*G)) or by
running one very long chain. For a discussion of the advantages and disadvantages

of these (and other) schemes, see Geyer (1992).

11




2.1 A Gibbs Sampling Algorithm for the Autopsy Model under

Parametric Assumptions

To keep the notation as light as possible, we shall consider a parallel system
of order 2 for which we have n replicates. For the :*! replicate, 1 = 1,...,n, let
the observed data (system failure time) be m;, the maximum of the two component
lifelengths, X; and Y;. Let Z = (X,Y ), where X = (X;,...,X,),Y =(1,...,Y,).
Let X; % F; with 8 € © and suppose § ~ v, where v is a conjugate prior distribution
on §. Let Y; ~ G, with ¢ € ¥ and suppose ¢ ~ u, where g is a conjugate prior
distribution on . Assume that F' and G are absolutely continuous distribution
functions. To make the discussion as easy as possible to follow, consider the case
where Fy = £(0) (the exponential distribution with parameter ) with § ~ v =
G(a1, b ) (the Gamma distribution with shape parameter a; and scale parameter b,)
and Gy, = £(¥) with ¢ ~ u = G(az, by).

Before describing the algorithm, we introduce the following notation. If H is a
distribution function, B is a set, and X is distributed according to H, then Hg will

denote the conditional distribution function of X given that X € B; that is
Hg(A) = H(An B)/H(B) (2.1)

when H(B) > 0.

The algorithm proceeds as follows.

Give arbitrary initial values to (X, Y),(-o) such that X,-(O) % Y}(O) = m;.

Fork=1,...,K:

1. Generate (8,%)* ~ Laaa((8, %) | (X, Y )E-1),
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2. Generate (X,Y )™ ~ Lana((X,Y)i | (8,0)®), independently for each i, : =

1,...,n.

We now describe these two steps in more detail.
In step 1 of the algorithm, Lqaa((8,%) | Z*~1) is the product of two gamma
distributions, G(a; + n, b + ¥, X,-(k"l)) and G(az +n,b + Y1, K(k-l)); i.e. 6 and

3 are generated independently. (Note that knowledge of X and Y make knowledge

of the observed data superfluous.) To carry out step 2, first let fy and g, be the

densities of Fy and Gy, respectively. Then, for each z, : = 1,...,n, set
p® = S (M) Gy (mi)

 fana(mi) Gy (ms) + gy (mi) Fyon (i)’
where F) = G\ = £()\). Now, generate Z¥) by setting (X,Y)(k) i=1,...,n, as

E I

follows:
Xy { (m3, V), where V ~ Gy o.m) with probability p{*,
(Vim;), where V ~ Fyn (o.m,) with probability (1 — p{*!)
where the notation used for the conditional distribution functions is given by (2.1).
To estimate Lqaea((8,%)), we use the sequence of generated Z’s to approximate

the mixture
/ Laata((8,%) | complete data) dLyaia(complete data)

by, say, & Li; Laaa((6,%) | (X,Y)D).
I v and u are not conjugate priors for Fy and G, respectively, but they are
continuous distribution functions with univariate log-concave density functions, then

we can still apply the above algorithm by using an efficient rejection scheme of Gilks

and Wild (1992).
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2.2 A Naive Extension of the Algorithm of Doss (1994)

Doss (1994) uses a Gibbs sampling algorithm of length 2 involving (X, F). The
prior he put on F' is actually a mixture of Dirichlets, but we shall consider a sin-
gle Dirichlet prior for our naive extension, since if the procedure fails for a single
Dirichlet, it will fail a fortiori for a mixture.

Suppose we have n replicates of a parallel system of order 2. Let Z, X.and Y
be defined as in Chapter 2.1. Suppose X; MFandY, %G, i= 1,...,n. Suppose
F ~ D, and G ~ Dy, where D, and D are Dirichlet priors with parameter measures
a and . We observe data = (my,...,m,), where m; = X; VY, i1 =1,...,n. Our
goal is to estimate Lana(F, G).

We know that the conditional distribution of (F,G) given (X,Y) is

ﬁd“‘((F’G) | Z) = Doyyn 65, © Dpryn sy, (2.2)

where ® denotes product measure; i.e. F' and G are independent. Also, given an
updated (F,G), we can generate a random Z conditional on the data. To run the
Gibbs sampling algorithm, we first set initial values Z(® and (F,G)©. Then, for

some large K, execute the following loop for k= 1,... K:
1. Draw (F,G)® from Laawa((F,G) | Z*7Y).
2. Draw Z®) from £d,.,(Z | (F, G)(")).

To carry out the second step in the above loop, we need to compute the probabil-
ity that each component’s lifelength takes on the observed maximum, since one of the

values must. Consider the case where n = 1. Let the observed maximum be denoted
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by m. We assume that m > 0 and that a and 3 are continuous measures. Suppose
the initial value of Z'¥ is (X1, Y;)® = (m, V), for some V < m. These initial values
give rise to (F,G)(V) via the first step of the algorithm. By (2.2), FV) ~ D, s,
but by definition of the Dirichlet prior, this implies that F()({m}) is distributed
as a Beta distribution with parameters (a + é,,)({m}) and (a + 6, )'({m}c). and
therefore, F()({m}) > 0 with probability 1. Next, recall from the previous chapter
that if F' ~ D,, then EF(A) = 16(A), where A is a set and 70 = v/v(R). Since
G ~ Dg, then EGMV({m}) = ﬁ%({m}) = 0. Thus, GMV({m}) = 0 with proba-
bility 1. In other words, with probability 1, F) has an atom at m and G does
not, from which it is clear that P{X® =m | X@vY© = m} = 1. As we continue
to run the algorithm, X @) x® ... will each take on the value m. The case where
(X1,Y1)©@ = (V,m) is handled by symmetry. Thus, we see that the st: ting point
does not get “washed out” and therefore, the algorithm produces a Markov chain

that cannot converge to the posterior distribution.

2.3 The Algorithm We Propose: Detailed Description and Proof of its

Convergence for the Case of Parallel Systems

Before introducing the setup and notation needed for the algorithm, we briefly
describe the “extended Pdlya urn scheme” as given in Blackwell and MacQueen
(1973). Define a sequence {T,T3,...} of random variables as a Pélya sequence with

parameter « if for every B C R, we have P(T; € B) = a(B)/a(R), and for every
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P(Tay1 € B|Th,...,Tn) = (a(B) + 2; 51.(B)) [ (a(R) +n). (2.3)
Blackwell and MacQueen proved that if {T1,T5,...} is a Pélya sequence with pa-
rameter a, then the empirical distribution of {T,...,T,} converges a.s. to a limiting
discrete measure H. Furthermore, H ~ D,. Also, given H, the random variables

T1,T,,... are iid ~ H. In addition, for every n,
Ti,...,T, are exchangeable. (2.4)

Now, we consider a parallel system of order 2; the implementation of the al-
gorithm for the case of arbitrary systems is discussed in Chapter 2.4. Recall that
X; and Y; are the lifelengths of components 1 and 2 in system 7. For the X;’s, we
consider a parametric family Hy, § € ©® C R%, and put a mixture of Dirichlets as
the prior on F. That is,

F ~ [ Da, v(db), (2.5)
where for each 0 € O, ay = ap(R)Hy, 0 < ap(R) < o0, and v is a prohability
measure on O. Similarly, for the Y;’s, we consider the parametric family Ky, ¢ €
¥ C R*%, and put the mixture [ Dg, pu(dy) as the prior on G, where for each
Y €V, By = By(R)Ky, 0 < By(R) < o0, and g is a probability measure on V.
We will assume that for each 6 and v, H; and Ky are absolutely continuous, with
continuous densities. Given F and G, X;, X;,... areiid ~ F, and Y;,Y3,... are iid
~ G. Also, for every n, X;,..., X, are exchangeable, as are Y;,....Y;, by (2.4).
We assume that F is independent of G. It follows that (X,,..., X,) is independent

of (Y1,...,Y,). We observe

data = (m,,...,m,), where ;VY,=m; 1=1,...,n.
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Our goal is to estimate Lqaa( F, G). As in Chapter 2.2, knowledge of (X,Y ) makes
knowledge of data superfluous.
Recall that S;, i = 1,...,n, is the vector of lifelengths for system . For the case
of a parallel system of order 2, S; = (X;,Y;). To unify the notation, let Sy = (8, v’)
and let S = (So,...,Sn)-
The algorithm proceeds as follows. Fix arbitrary starting values S, ..., S().
Then, cycle through the N = n +1 elements of S in order; i.e. at time {, we update

element K = K(t) = (t — 1) mod N by generating
SK ~ Lana(Sk | SFY for j # K). (2.6)

At time jN, each component of S has been updated j times. Our algorithm gen-
erates vectors S®), ¢ =1,2,..., where S is the same as S~ except for the one
element S}? which has been updated at time ¢ according to (2.6). Note that this
notation differs slightly from that of Chapter 1, where §* was formed by updating
all the elements of S¢Y,

In our algorithm, the updating of S,w , 1=1,...,n is accomplished by the use

of the following lemma, the proof of which is a calculation.

Lemma 2.1 Suppose A and B are distribution functions on [0, 00) satisfying A =
A.+Aq and B = B.+ By, where A. and B, are absolutely continuous with continuous
derivatives denoted A!, and B, and A4 and B, are discrete. Let X* and Y* be
independent with distributions A and B, respectively. For m > 0, we can generate

a pair (X,Y) with

(X,Y) ~ L((X*Y*) | X*VY* =m) (2.7)
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by the mixing procedure we now describe.

Define probability distributions on [0, m) by

Afw) =20 gy =

_ B.(v) Aq(v) - By(v)
 A(m)’

Bd(v) = Bd(m—)°

If the denominator in any of the equations above is 0, then we set the correspond-
ing probability distribution to é. Let Vi, V3, Vi, V, be random variables with

distributions A., B., Aa, Ba, respectively. We now take

' M, m) with probability p,,
(m, V) with probability p,,
(X,Y) =1 (Va,m) with probability ps, (2.8)
(m, Vy) with probability p,,
l (m,m) with probability ps,
where the mixing probabilities p,, ..., ps are given by the following formulas.

If Ay({m}) + By({m}) > 0, then

_ A(m)Bs({m})  _ A{m})B.(m)  _ A«m—)Ba({m})
h= D ’ = D » P3 = D ’
ps = Ad({m}l))Ba(m—), and ps = Ad({m}i)Bd({m})’

with D such that Y3, p; = 1. If Ay({m}) = By({m}) =0, then

_ A(m)B(m) _ A (m)B.(m) _ A4(m—)B(m)
s D Y p2 - D ] - D ]
Ps = AC(m)gd(m_), and ps =0,

with D such that °_, p; = 1.
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By (2.3) and (2.4), for the t*® step of the algorithm, the conditional distribution
of X, given the other (n — 1) X,’s and 8, is given by

40 2 280t Tes O
' Qo(c)(’R,) +n-1

(2.9)

Similarly, for the t** step of the algorithm, the conditional distribution of Y;, given

the other (n — 1) Y,’s and 9, is

) By + Lz 6yl(')
LT Bun(R)y+n -1

(2.10)

Thus we ca.n. generate S,(t) = (X,-(t),Y;(t)) by using Lemma 2.1 with A = Af'), B =
B}t) and m = m;.

To update S((,t) in the above algorithm, we will need formulas for updating the
“mixing measures” v and . The formula for the conditional distribution of § given
X is well known; see e.g. Theorem 1 of Doss (1994), which is repeated as Proposition
2.1 below. The formula for the conditional distribution of ¥ given Y will be evident
by symmetry. The notation #(v) is used to denote the number of distinct values in

the vector v.

Proposition 2.1 Assume that for each § € ©, H, is absolutely continuous, with
a density hy that is continuous on R. If the prior of F is given by (2.5), then the

(marginal) posterior distribution of 8 given X = & is

(as(R))*PT(e(R))

vz (d8) = c(@)([]" ho(2:)) T(as(R) + )

v(d8), (2.11)

where the ‘*’ in the product indicates that the product is taken over distinct values

only, ' is the gamma function, and c(®) is a normalizing constant.
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From (2.11) and the independence of F and G, we can update S((," by indepen-
dently generating 0¢) and %) from v, and py, respectively.

Let 7 be the posterior distribution of S given data on the space (R*" x© x ¥, B),
where B is the collection of Borel sets on R*" x © x ¥. This  is also a stationary
distribution for the chain {SUV )};;0. We now show that, for a parallel system of
order 2, the distribution of the Markov chain {SU™} j converges to 7 at a rate that
is geometric and independent of the starting point. Convergence occurs in general,
but the difficulties in establishing it arise when considering a parallel system or
a parallel subsystem. We discuss this further in Chapter 2.4. Before stating our

theorem, we introduce some notation. Define
D={s:z,,;yi>0and z;Vy;=m, fori=1,...,n, 0 €0,y e ¥},
and let P’(s,C) be the j-step transition probabilities for the chain; i.e.
Pi(s,C) = P(SUM) € C | S© = ).

Note thét if v is absolutely continuous with respect to Lebesgue measure, then
so is vz. This implies vz has a density with respect to Lebesgue measure, which we
shall denote v. In the proof of Theorem 1, we shall need to find bounds on vz(8) for
fixed 6 as  varies over the compact set [0, m(,)]". Here, m(») = max(m;,...,m,).
This would be straightforward if v}, (6) were continuous in &, but inspection of (2.11)

clearly shows this is not the case. For this reason, we introduce functions f;(x.0)

on R' x ©, defined by

(as(R))'T(ap(R)) , . )
T(ag(R) $n) O fori=l...m

fite,0) = ee)( T hte)

J=1




where the values c;(&) are constants such that, for each &, f;(z.8) is a density in 0.

Note that

vz(0) = @) (2", 0),
where " is comprised of the distinct values of & arranged in any order.
Theorem 1 Consider the Markov chain {S“N)} ; resulting from applying the above

algorithm to a parallel system of order 2. Suppose that v and pu are absolutely

continuous with respect to Lebesgue measure and that
1. The observed maximum values m,,...,m, are distinct and positive.

2. There exists a compact set I'y C © with v(I'y) > 0 such that aj(z) exists, is
positive, and is continuous in both 0 and z for (,z) € Ty x [0, m(n)}; similarly

there exists a compact set I'; C ¥ corresponding to j,,.

3. The prior v is absolutely continuous with respect to Lebesgue measure and
foreachi,i=1,...,n, fi(-,-) is positive and continuous on [O,m(,,)]‘ x T'y; an

analogous condition holds for the prior and posterior of .

Then, there exists a value A > 0 such that

sup |Pi(s,C)—(C)|<e™ forallj>2. (2.12)
CeB, seD

Recall that if {Zi},., is a Markov chain on (Z, F) with n-step transition proba-
bilities P*(z,C) which satisfy the Doeblin condition, i.e. for some probability mea-

sure p on (Z,F), some positive integer ng, and some ¢ > 0,

P™*(z,C) > ¢€p(C) forallze ZandallC € F, (2.13)




(3™
oo

then

sup |P"(2,C) = n(C)| < (1 — &)™) forall z € Z. (2.14)
CeF

The proof of this fact involves a coupling argument which we sketch below. We

may write

P*(z,-)=(1—-¢€)n(z,-)+ep(-) forallze Z, (2.15)

where n(z,-) = (P™(z,-) —€p(-))/(1 — €). By the Doeblin condition (2.13), n(z,-) is
a probability measure. Thus, P™(z,-) is a convex combination of two measures, the
second of which does not involve z. Therefore, the representation in (2.15) allows
us to view each step in the evolution of the Markov chain {Z,,,}, as a coin-tossing
experiment followed by a draw from either (2, -) or p(-). This is the key that makes
possible the coupling argument.

Now run two chains {W,}, and {Y;}, as follows. Let Wy = wo and Y; ~ =. If the
current state of the two chains is (wn-1,Yn-1), generate W, and Y, by first tossing a
coin with probability of heads equal to ¢. If the toss results in a head, select V' ~ p,
and set both W, and Y, equal to V. If the toss results in tails, independently select
W, from n(wa-1,-) and Y, from 5(yn-1,-). It is clear that {W,}, and {Y,}, are
Markov chains with transition probabilities P™¢(z,C) and that Y; ~ = for all ¢.
Moreover,

P{W; # Y, for some £ > k} < (1 — ¢)*.

This argument shows that the Markov chain {Z,, }, satisfies
sup |P{Znx € C} — 7(C)| < (1 - €)F,
ceF

from which (2.14) follows, since supces |P"*(2,C) — m(C)| is nonincreasing in n.
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Results of the form (2.12) are generally proved by verifying the Doeblin condi-
tion (2.13). However, we shall prove our theorem by dealing with the underlying
coupling argument directly and explicitly because our arguments are then easier to

follow.

Proof of Theorem 1 Consider starting the Gibbs sampler from two different
initial states S© and §'” and producing two sequences {S"} and {5(”}. We shall
“couple” these sequences by defining them on the same probability space in such a
way that

<(2N)

P{SN) = 7"} > ¢, (2.16)

where ¢ is positive and can be chosen independently of the starting states $® and
39, This clearly suffices to prove the theorem.

Condition (2.16) indicates that our proof requires two passes of the algorithm
(or equivalently, two “cycles” of the Gibbs sampler) to couple the two sequences. In
the first pass, we show that there is a positive lower bound not depending on the
starting states, for the probability that for each ¢,z = 1,...,n, the minima X; A Y;
and X; A Y; are not equal to any of the observed maxima m,,...,m,. Then in the
second pass, we show that there is also a positive lower bound for the probability
that for each i,i = 1,...,n, X; = X; and Y; = Y; i.e. S; = S;. The probability that
So = So is handled in a manner similar to the proof of (2.14).

A simple example may help to identify the issues involved.  Suppose
that » = 2 and m; < m, with starting states §© = (S((,O), S§0), Séo)) =
((8, %), (1, m1), (m1,m2)) and §' = ((8, ), (m1, ), (ma, m1)), where £1,€, < my.

At time ¢t = 1, we update 8, v and 4, ¥, but this is not important. At timet = 2, we
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update (X, Y;) and (5(1, Y1), and this is where the problem arises. For the sequence
{S(‘)}, A?) has an atom at m,, but sz) does not, so P(le =m,, Ylm <m) =1
For the sequence {S“’}, B!? has an atom at m;, but ;1(12) does not, so P(X!? <
my, Yq‘” = m,) = 1. Thus, with probability 1, the two sequences are not coupled
during the first pass of the algorithm. In the proof, we will show that after one pass
of the algorithm, the atoms at m; and ', are “out of the way” and thus, there is

a positive probability (that is independent of the starting states) that S® = 5

making (2.16) true.

The following will involve a specific implementation of the algorithm described
by (2.6) through (2.11), strictly for use in our coupling argument. Let {Uj;j =
1,...,00;
k=1,2,3,4} be an array of independent 2/(0, 1) (the uniform distribution on (0, 1))
random variables. We shall generate 8, »®, X® and Y in terms of these
uniform random variables using certain functions p, p2, and ps. These functions
and their properties are described in detail later in this cha.,pter. Specifically, we
define the functions and show that using them produces the desired conditional
distribution of §® given S¢-V,

For t with (¢ — 1) mod N = 0, define S§" = (6®), ") by
0 = py (XY, Uy, Uyp) and 9 = pp(Y D, Uss, Una), (2.17)
and for ¢ with (¢ — 1) mod N = K # 0, define S = (X, YY) by
(XL, YY) = pa(8471, 910, my, X, YR, Unn, Ui, Uss), (2.18)

where W _g) is used to denote the (n — 1)-tuple obtained by deleting the K*h

element of the n-tuple W.
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For the process {g(t)}, the quantities 49, /() X and Y( are defined in the
same way except that 0, ¢, X, and Y are everywhere replaced by 6, v, X , and
Y. The same uniform variates are used in generating both S and s
The essence of the proof consists of showing that there is a positive proba-
bility (which is independent of the starting states) of coupling the two processes
if we implement the algorithm using py, p2, and p; (i.e. (2.16) holds). To this
end, we introduce a sequence of events Ay, Ay,...,Ayn defined as follows. Let

M ={my,my,...,m,}. For t =1 and t = N + 1, we define
A, = {69 = §0O, p0 = O 60 1, p € Ty},

(The sets I'y and I'; are the compact sets given by assumption 2 of Theorem 1.) For

2<t< Nand K =(t-1) mod N we define
A= {XOAYV g M, XOATY ¢ M).
For N+2<t<2N and K = (t — 1) mod N we define
A={XP=XP v¥P=v xOrvlP ¢ Mm}.

Note that (?¥| A, implies that S@V) = 5" We can write
2N 2N
P(NA) =116
t=1 t=1
where (; = P(A;) and ¢ = P(A: | Nj<: 4;) for t > 1. We shall show that each of
the values (; are bounded away from 0 by quantities which do not depend on S®

and g(o). In the last part of this chapter, we establish these bounds in Facts 1-6.

Specifically, Fact 1 is used to bound (; and (n+;; and Facts 2 and 3 are used to bound
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¢2y.--,(n. Now consider N +2 <t < 2N and K = (¢t — 1) mod N. Conditional on
_1) =(t=1) _ ~(t-1) . .

Nj<t A;j, the vectors xf‘_,ﬁ{,x(_,,,),yf‘_,g, and Y:_K) contain no entries equal to

mpg. (Here we are using assumption 1 of Theorem 1; i.e. the values m,,..., m, are

distinct.) This will allow us to use Fact 6 to bound (n4+2,(N+3,...,{2n. Which will

establish (2.16) and complete the proof of Theorem 1.

Details of Proof of Theorem 1 We shall now define in detail the functions
p1, P2, and p3 and demonstrate the properties of these functions that are used in
the proof of our theorem. In this discussion we will use the following notation.
If H is a distribution function, then H' will denote a function with the property
that HY(U) ~ H, when U is a U(0,1) random variable. Such an H' always exists.
In the case of a distribution function on R!, the function H' may be taken to be
HY(y) = inf{z : H(z) > y}. For economy of notation, if h is a density, then A! is
used if the distribution function associated with A has not been introduced. Finally,
let Uy, Uz, Us, Uy be independent 4(0, 1) random variables.

By (2.17), we generate § and v from uniform random variables using functions

p1 and p, defined below. Define

é1(u) = jnf v (),

where E={z:0<z; <m;, 1 <i<n},

m= [ 4i(w)dy,

and densities

fw) = 21 g gy = W = A

T l1—-m
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Note that 7, > 0. This is because by assumption 3 of Theorem 1, for each :. the
function f; is bounded away from 0 over [0, m(,,)]i x I';. Therefore, for each u € 'y,
¢1(u) is positive. It follows that fg ¢1(u)du > fr o1(u)du > 0.

Note that in the special case of the “exponential/gamma” setup, we have

#i(w) = inf G(u | a(2), b))

where a(®) =a; +nj,and d(2) = by + X" z;. Fore with 0 < z; <m,, i = 1,...n,
(a(x), b(x)) ranges over a compact set which excludes (0,0). Thus, it is clear that

é1(u) > 0 for all u > 0.

Now we define the function p;. For given values &, u,, us, we let

Fl(uz)  ifu <y,
pr(®,uy,ug) =

7(u;)  otherwise.

It is easy to verify that pi(«, Uy, U;) ~ va.

For generating 1 we define a function p, in a similar manner. Let

#2(w) = jnf uy(w),

= [ Gwdu,

and densities

buw) = 2 and gy = B0

Note that 72 > 0. Now we define p,. For given values y, uy, ua, we let

b5 (u2) if uy <y,

ﬂL(U2) otherwise.

p2(ya Uy, u?) = {

It is easy to verify that pa(y, Us, Us) ~ vy.
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In the proof of our theorem, we need the following fact regarding p, and p,. Let

z,%,y,y be arbitrary fixed values in E. Define 8 = py(z, Uy, U,). 8 = py(Z, Uy, Us),

¥ = p2(y,Us, Uy), and v = p2(9,Us, Uy). From the definitions of p; and p; it is
clear that

p{e=é,oer‘}zﬁfr q_h(u)duzfr $y(u)du > 0,

and similarly,

Pl =4, v €} > 7r2/r $a(u) du = /r da(u) du > 0,

so that by independence we obtain the following.
Fact 1

P{0=5,¢=¢,0€P1,¢EI‘2}2/F qsl(u)alu/r éo(u) du.

Note that this bound does not involve &,2,y, and ¥.

By Equation (2.18), the generation of Sk = (Xk,Yk) will be done using a
function p3(8,%,m,z,y,u;,us,u3), where m > 0, € = (ry,...,2,-1) and ¥y =
(y1,---»Yn-1) are (n — 1)-tuples with z,,y; > 0 for all . The function p; will be
defined in the following discussion.

In Lemma 2.1, take

ag+ Nz

a(R)+n—1

T AR +n-1

and B

where Ny = Yo' 6;, and Ny = Y77' é,,. Define p; ...,ps and the distributions
A., B., Ag, By as in Lemma 2.1. These quantities are all (implicitly) functions of

0,v,x, and y.
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Now define p3 by

r (Al(uz),m) if 0 <wu; <p;+p; and
0 <u; <prf(pr + p2),

(m, Bcf(u;,)) if 0<u; <p1+p2 and

p3(0,t/),m, z,y,U1,U2,U3) = { Pl/(Pl +P2) < up <1,

(Al(us),m)  if p1+ps <wr < p1+p2 + P,

(m, BI(U:%) if pr+p2+ps < uy < pr+pa+pstps,

| (m,m) ifpr+p2+ps+ps<us <L

It is clear that the pair (X,Y) = ps3(0,¢,m,2,y,U;,U;,Us) has the distribution
given in (2.7) since the function p; merely describes a particular way to carry out
the mixing procedure in Lemma 2.1.

The function p; has two properties which we use in the proof of our theorem.

Pick arbitrary fixed values § € ©, ¢ € ¥, m > 0, and #,%,y,¥% in R""'. Define

(X,Y) = p3(07¢am,zayaUl7U2aU3) and
(X’f/) = p3(0’l/}amaiag’UlaU2’U3)-

First note that X AY is generated from a continuous distribution when U; <

p1 + p2. Therefore we have the following fact.

Fact 2 If Uy < (py + p2) A (1 + P2), then both X AY and X A'Y are generated

from continuous distributions.

In conjunction with this fact, we note that p; + p; > f/(f + 1), where

as(m) A By(m)
n-—1

f=
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To see this, we go back to the expressions for py,...,ps given in Lemma 2.1. We

find that

Ag(m)py = Ac(m)(ps + ps) and By(m)p; = B.(m)(ps + ps).

Since
n—1 n-—1
Adm) < SRy e B S gmyrasT
_ ag(m) By(m)
Ac(m) - ao(R) +n- 1? and Bc(m) S ﬂw(R) +n— 1a

these relations imply

(n —1)p1 2 ag(m)(ps +ps) and (n—1)pz > By(m)(ps + ps).
Thus
Prt+p22f-(ps+patps)=f-(1—p1—p2)
(see the expressions for py,...,ps given in Lemma 2.1) so that p; + p; > f/(1 + f)

as desired. From assumption 2 of Theorem 1, we know that f is bounded below for

0 € T, and ¢ € T';. Therefore, we can state the following fact.

Fact 3 For 0 € T'y and ¢ € Ty, the value (p; + p2) is bounded away from 0 by some

quantity which does not depend on 8,v¢,, or y.

Now observe that A and A have the same continuous part; that is A. = A.. This
implies that A, = A, and thus (4,)! = (A.)!. Similarly, (B.)! = (B.)!. This leads

to our next property.

(AR Sy . SV /AP < SV 4
Pr+p2 p1+p2 m+p p1+p2

then X=X,Y =Y,and X \Y is generated from a continuous distribution.




31
Also note that when Nz({m}) = Ny({m}) =0, we have

no_ ag(m)By(m)
n+p2 ag(m)By(m) + ag(m)By(m)

so that p,/(p1 + p2) does not depend on  and y in this situation.

Now, using properties in assumption 2 of Theorem 1, we obtain Fact 5.

Fact 5 If Nz({m}) = Ny({m}) = 0, then for 8 € Ty and ¥ € T, the value
p1/(p1 + p2) can be bounded away from 0 and 1 by quantities which do not depend
on 0,¢,x, and y.

Combining Facts 3, 4, and 5 leads to our last property.

Fact 6 If Nz({m}) = Ny({m}) = Nz({m}) = Nyg({m}) = 0,0 €Ty, and ¢ € I,

then the probability of the event
{X=X,Y=Y, and X AY is generated from a continuous distribution}
is bounded away from 0 by a quantity which does not depend on 0,v,z,y,Z, or .

This concludes the details of the proof of Theorem 1.

Note that

LasalF,G) = [(Payysr 50, ® Diyrss, o) Caniald8, o, X Y ).

(In particular, the marginal posterior distribution of F' is a mixture of Dirichlets,

and a similar statement holds for G.) Let

(F,G)"" ~ D

D .
N+ iy 8 (GN) ® B,om+2 6,N)
1 1]
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Corollary 2.1 Let Qf,jN) denote the distribution of (F,G)UN) when the chain
(SN )}, is started at 8. Then under the conditions of Theorem 1, we have

sup IQUN{(F,G)9™ € A} — Poa{(F,G) € A} S ™ forall s  (2.19)
where ) is the same )\ that appears in the statement of Theorem 1.
(In (2.19), A = Ap x Ao, wheré Ao is the smallest o-field on the set of probability

measures on R such that the map P — P(B) is measurable for each Borel set

BCR.)

Proof of Corollary 2.1 Let 7" be the distribution of $Y~) when the Markov

chain {S(jN)}j is started at 8. Fix A € A and let

Fa(8) = Dopyyr 5x, ® Dpyayr oy,

We know that

IQUA(A) — Pasal(F, G) € 4} = | [ fa(8)dnis)(s) — [ fu(s) dn(s)
= / fa(s) d(xliay) — 7)(s)] (2.20)

= | [ a0 d(xls) = )" (8) - [ fa(a)d(xis) =) (s)]

(For a signed measure ), the representation A = A* —~ A~ is the standard Jordan
decomposition of \.) Since fa(-) is a measurable function of s that satisfies 0 <
fa(8) <1 for all s, we see that each of the two integrals in the last line of (2.20) is

bounded by exp(—Aj), and this proves Corollary 2.1.

Thus, if for example we want to estimate, for fixed v, the density of Lgaa( F'(v)),

we would use the mixture

_Zbeta((ao(,m +Z5X(JN)) 0, v] (ag(,N) +Z6X(]N)) (v, OO))

=1
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where beta(a, b)(-) is the Beta density.

2.4 The Algorithm for Arbitrary Systems

In this chapter we discuss the implementation and convergence of the algorithm

in the general case and also the issues of identifiability and frequentist consistency.

2.4.1 Implementation of the Algorithm

Let the autopsy statistics for system ¢, : = 1,...,n be (T}, D;), where T; is the
death time of the system and D; is the set of components that are dead at time T;.
Recall that after examining (T}, D;), each component in system : is put into exactly
one of the categories C1, C2, C3, or C4 described in Chapter 1. For a component in
Category C1, one generates an observation according to the distribution (Aft))(r.,oo),
where A{") is defined in (2.9) (i.e. the distribution A restricted to (T}, 00) and
renormalized to be a probability measure). Similarly, for components in Category
C2, we generate an observation from (Aft))[o,T,.). For a component in Category C3,
nothing needs to be done.

Suppose there are k components that fall in Category C4. We then use an
extension of Lemma 2.1 describing the conditional distribution of k independent
random variables (k > 2), whose distributions have both absolutely continuous and
discrete components, given the value of their maximum. The necessary formulas are
easy to derive but require elaborate notation to write down explicitly, and so are
not given here. We note however, that the needed computer algorithm is relatively

easy to implement.
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We remark that the case of an arbitrary coherent system is no more difficult than
that for a general parallel system if we note that the set of components in Category

C4 changes from system to system.

2.4.2 Convergence of the Algorithm

When considering the case of an arbitrary system, it is helpful to first look
at the situation when the prior distribution on each F; is a single Dirichlet, i.e.
there is no mixing. In this case, the updating of the lifelength of component j in
system 17 is based on (2.9), where ay. is replaced simply by a. When updating a
component in Category C1, the probability of drawing from the fixed probability
measure proportional to a(- N(T;, 00)) is bounded below by a((T;, 00))/(a({T;, 00))+
n — 1), independently of the current state of the chain. A similar statement holds
for the lifelengths of components in Category C2. We have already explained how
to deal with the lifelengths for components in Category C4 in Section 2.3. Thus a
coupling argument along the lines of the proof of Theorem 1 gives convergénce at a
uniform geometric rate.

When the priors on the F;’s are mixtures of Dirichlets, a difficulty arises in that
the distributions ay.) in general need not have a uniform lower bound. For parallel
systems we were able to find a uniform lower bound for the posterior distribution of
0 given the lifelengths X only because X is known to lie in a compact set. Since the
lifelengths of components in Category C1 do not lie in a compact set, this argument
no longer applies. For general systems convergence of the Markov chain can be

established using the lower bounds established in Theorem 1 in conjunction with
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Theorem 1 of Athreya, Doss, and Sethuraman (1992), which gives simple ergodicity

(i.e. convergence, but not at a geometric rate).

2.4.3 Identifiability and Frequentist Consistency

We begin by giving a precise definition of “consistency of the posterior distri-
bution of F = (Fy,...,Fn)". Let X;; be the lifelength of component j in system
t () =1,...,m; i = 1,2,...), and assume that for each j, the random variables
Xij, X2j,... form an iid sequence from FJ-(O). Let data(n) be the set of autopsy
statistics for the first n systems. We say that the posterior distribution of F is
consistent at F© = (Fl(o), ..., F9) if with probability one, Lgaan)(F) converges
in distribution to the point mass at F®), in the weak topology on P™. We shall say
that the posterior is consistent if it is consistent for every F(® € P™. This notion
of consistency refers to the posterior and not to estimators.

The Dirichlet priors on the positive integers were originally introduced by Freed-
man (1963) as a prior with good consistency properties: He proved that under
standard iid sampling, a Dirichlet prior is consistent for all parameter points in the
topological support of the prior. His results were generalized to the continuous case
by Fabius (1964). Diaconis and Freedman (1983) showed that mixtures of Dirichlet
priors are consistent if

sup ag(R) < oo (2.21)
0

(in the notation of (2.5)). Note that this result pertains to the parameter F' and
not to the mixture parameter ; see p. 1117 of Diaconis and Freedman (1983).
It is easy to see that the posterior is not consistent for parallel systems, since

it is easy to construct two distinct m-tuples (F\”, ..., F©®) and (F",..., F1) for
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which the autopsy statistics have ideatical distributions. Of course, as mentioned
earlier, such systems are not identifiable.

In a recent paper, Lo (1991) showed that for the random censorship model of
survival analysis (which corresponds precisely to the autopsy model for a two com-
ponent series system), the posterior is consistent for any pair (F, 1(0), F2(0)) such that
Fl(o) and F2(0) have the same essential maxima. A condition analogous to (2.21) is
required on the priors on F; and F,. We note that the consistency results for the
Kaplan-Meier estimator imply that series systems are identifiable for pairs F; 1(0) and
Fz(o) having the same essential maxima.

Since series and parallel systems are often considered extreme cases in coherent
structure theory it is natural to conjecture that under condition (2.21) for each
component, the posterior is consistent at (Fl(o), ..., FOY if the system is identifiable

at (FO,...,FO).




CHAPTER 3
ANALYSIS OF U.S. AIR FORCE C-17 FUEL QUANTITY
COMPUTER DATA

We illustrate our algorithm on data involving survival times of the Fuel Quantity
(FQ) Computer system of the C-17 transport aircraft. The test program will eventu-
ally involve six aircraft being flown for approximately 10000 cumulative hours. Qur
data set is taken relatively early in the test program, since only 2440 flight hours
had been accumulated at the time of this writing. The data, listed below in Table
3.1, fall into one of three categories (we denote the failure times of the “A-bus” and

“B-bus” as X and Y, respectively):

¢ The FQ computer fails (both buses are dead) and the maximum survival time,
say to, of the two buses is observed; i.e. we have the usual autopsy statistics
(system failure time and set of dead components). This type of observation

has the form “Max=t,”.

e The two components are checked at time ¢, and time ¢,. Both buses are alive
at t;, but one of the buses, say “B”, is in a failed state at ¢;. Even though the
“A-bus” is alive at t5, the FQ computer is replaced. This situation generates

two observations, which have the form Y € (¢;,¢;] and X € (¢;,00).

e Both components of the FQ computer are alive when the data are taken. but

the aircraft had flown for t3 hours. The failure times for both buses lie in

37
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the interval [t3,00). Thus, two observations are generated: X € (t3,00) and

Y € (t3, 00)

Note that this data structure is a bit more complex than the data structure in the
autopsy model; however, the required modifications to the algorithm involve no real
difficulties.

The reader may wonder why there is a need for a computer, as opposed to a
simple analogue gauge, to deal with fuel quantity. Indeed. this is not a frivolous
issue. There is actually a need for a computer even during level flight, since the
aircraft maintains its desired center of gravity via fuel transfer from one wing to
another. This task is further complicated as the aircraft flies at different angles or
possibly under turbulence. The FQ computer receives the current angle of flight
from another computer and uses this information, along with readings from a series
of probes in each fuel tank, to make accurate fuel quantity calculations. Also, the
Mission Computer requires input from the FQ computer to make range calculations.

We analyzed the C-17 data using our proposed algorithm. We took our prior on
both F and G to be (2.5), where Hj is the exponential distribution with parameter
0 (the mean is 1/0). We assumed ag(R) to be constant in 6 and considered three
cases: ag(R) =1, ag(R) = 10, and ap(R) = 100. We took v = G(a,bd) (the Gamma
distribution with shape parameter a and scale parameter b), since we wished to
center the prior around the family of exponential distributions, and the Gamma is
conjugate for this family. From (2.11), vx = G(a + n*,b+ Y_*X,), where n” is the
number of distinct observations in X and }_*X; is the sum of the distinct X;'s; vy

is similarly defined.
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We elicited the prior of a computer systems engineer from the C-17 Special
Programs Office by asking his opinion about the FQ computer Mean Time Before |
Failure (MTBF) with respect to two reports. The first report, supplied by the
C-17 manufacturer, provides target numbers for each “Logical Replaceable Unit”
(LRU), including the FQ computer. The manufacturer guarantees that the MTBF
for each LRU, computed at the end of the acceptance testing period, will exceed that
LRU’s target number. The C-17 engineer thought it was highly likely (probability
of .9) that the FQ Computer MTBF would exceed the target number (which was
1300 hours). The second report, supplied to the C-17 Special Programs Office
by the manufacturer’s design group, contains a list of “mature” MTBF numbers
for each LRU being evaluated. These numbers represent an average of MTBF’s,
by LRU, across many different aircraft which have similar LRUs. The data come
from maintenance data accumulated following the acceptance testing periods for
each aircraft (hence the word “mature”). Since these numbers come from mature
aircraft, the C-17 engineer thought it was quite unlikely (probability of .1) that the
FQ Computer MTBF for the acceptance testing period would exceed the mature
MTBF number (which was 3167 hours). Thus, we took 1300 hours and 3167 hours
to be the .1 and .9 quantiles of the distribution of the MTBF for the FQ Computer.
If X ~ £(9) (the exponential distribution with parameter 8) and ¥ ~ £(),
then MTBF = E(X VY) = (1/(0 + 9))[1 + 8/¢ + ¥/8]. If 8,9 are iid ~ G(a,b).
then the .1 and .9 quantiles of the distribution of the MTBF are equal to 1300 and
3167, respectively, when a = 6.04424 and b = 6835.32. Note that if the conditional
distribution of X given 6 is £(8) and 0 is distributed as G(a, b), then the uncondi-

tional cumulative distribution function of X is F(t) =1 — (b/(b + t))%, which is a
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“shifted Pareto” distribution with parameters a and b. The prior distributions of .X
and Y are each shifted Pareto distributions with parameters 6.04424 and 6835.32.
The prior distribution of X V Y is the product of two such distributions.
Of particular interest to the C-17 engineers is the question of how the lifelength of
a future FQ computer, as well as the lifelengths of a future A-bus and B-bus, would
be distributed. The Bayes approach is especially well-suited to answer such a ques-
tion. Figures 3.1, 3.2, and 3.3 give the prior and posterior cumulative distribution
functions for the lifelengths of the C-17 FQ computer (maximum lifelength of the
A-bus and B-bus), the A-bus, and the B-bus, for the cases ag(R) = 1, ay(R) = 10,
and ap(R) = 100. Note that for each posterior distribution, the prior distribu-
tion is a shifted Pareto distribution with parameters 6.04424 and 6835.32 (or the
product of two such distributions in the case of Figure 3.1). Recall from Table 3.1
that three real deaths were observed (at times 43.4, 236.8, 244.0), and each one
generates a death for X, Y, and X VY. Thus, all the posterior distributions have
atoms at these three failure times. Figures 3.4, 3.5, and 3.6 give the prior density
and a représenta.tion of the posterior distribution for the future lifelengths of the
maximum, A-bus, and B-bus. The masses at these three failure times have been
removed and plotted as distinct spikes, with their masses labeled separately. The
reader will notice that, even after removing these three atoms, all the posterior dis-
tributions have large “local peaks” just to the left of the removed atoms. These
peaks are not surprising, since the algorithm first determines which component will
be assigned the maximum value, and then assigns a failure time that is less than
the maximum failure time to the other component’s lifelength. The atoms assigned

to the lifelength of the “non-maximum” component will tend to be relatively close
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to the observed maximum values whenever those maximum values are small, which
is the case for this data set. It is interesting to note that the distribution of the
lifelength of the B-bus has much more mass to the left of 236.8 hours than the other
two distributions, making it necessary to use a larger scale for the vertical axis in
Figure 3.6. This can be attributed to the two pairs of observations (Xj.Yy) and
(X5,Ys) (see Table 3.1), which were generated due to a failure in the B-bus while
the A-bus was still functioning. For low values of ag(R) (the cases ap(R) = 1 and
ag(R) = 10), these two observations cause the algorithm to assign a fairly high value
to the conditional probability that the lifelength of the A-bus is set to the observed
maximum and the lifelength of the B-bus is set to a value less than the observed
maximum. Figures 3.7, 3.8, and 3.9 give the density estimates for the lifelengths of
a future maximum, A-bus, and B-bus, with the spikes smoothed. In these figures,
it can be seen that the masses at the three observed FQ computer failure times
account for much of the mass in the posterior distributions for the cases ap(R) = 1
and ay(R) = 10.

Due to the small sample size of our data set, we were able to run the Gibbs
sampler with one long chain of length 500000, skipping every tenth value. We used
the output of of the algorithm to generate 50000 lifelengths of a future maximum,
A-bus, and B-bus.

The means of the posterior distributions of the lifelengths of the FQ computer,
for the cases ap(R) = 1, ap(R) = 10, and ay(R) = 100, are 1254, 1230, and 1230
hours, respectively. At this relatively early stage of the study, we conclude that the
performance of the FQ computer is not as good as the Air Force would like to see,

as the means are just below the minimum acceptable MTBF. However, we caution
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that the study will continue for an additional two years beyond the close of our data
set, and that some of the early failures experienced can be directly attributed to
ougoing design changes. It will be interesting to rerun the algorithm on the updated

data set at the close of the acceptance testing period.
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Figure 3.1. Prior and Posterior Cumulative Distribution Functions for the life-
length of C-17 FQ Computer (Maximum of A-bus and B-bus), a(R) = 1, a(R) = 10,

and o R) = 100.
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Figure 3.2. Prior and Posterior Cumulative Distribution Functions for the life-
length of the FQ Computer’s A-bus, a(R) = 1, a(R) = 10, and a(R) = 100.
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Figure 3.3. Prior and Posterior Cumulative Distribution Functions for the life-
length of the FQ Computer’s B-bus, a(R) = 1, a(R) = 10, and o R) = 100.
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Table 3.1. C-17 Fuel Quantity Computer Data. The first three lines contain
observed FQ Computer failure times. The next two categories (four observations)
occurred when the FQ computer was replaced due to a failure in one bus. The

remaining observations occurred because no more data is available.

Aircraft Id | Event hours | Observation
P-1 FQ Computer failed 434 | X;VvY, =434
P-1 FQ Computer failed 236.8 | X, vY; =236.8
P-2 FQ Computer failed 2440 | X3V Y;3=244.0
T-1 A-bus and B-bus alive 11.9
B-bus dead 154 | ¥y € (11.9,15.4]
FQ Computer replaced 154 | X4 € (15.4,00)
P-4 A-bus and B-bus alive 174.4
B-bus dead 181.8 | Y5 € (174.4,181.8]
FQ Computer replaced 181.8 | X5 € (181.8,00)
T-1 A-bus and B-bus alive 819.6 | X¢ € (819.6,00)
no more data available Ye € (819.6,00)
P-1 A-bus and B-bus alive 85.0 | X7 € (85.0,00)
no more data available 7 € (85.0,00)
P-2 A-bus and B-bus alive 476.4 | Xs € (476.4, )
no more data available Ys € (476.4, 00)
P-3 A-bus and B-bus alive 245 | X9 € (24.5,00)
independent software failure Y5 € (24.5, 00)
P-3 A-bus and B-bus alive 1.7 | Xyo € (71.7,00)
no more data available Y0 € (71.7, 20)
P-4 A-bus and B-bus alive 68.4 | X;; € (68.4,00)
no more data available Y1 € (68.4, )
P-5 A-bus and B-bus alive 1734 | X5 € (173.4.00)
no more data available Yi; € (173.4,00)
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Figure 3.4. Prior and Posterior Density Estimates for the lifelength of the FQ
Computer (Maximum of A-bus and B-bus), a(R) =1, a(R) = 10, and a(R) = 100.
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Figure 3.5. Prior and Posterior Density Estimates for the lifelength of the FQ
Computer’s A-bus, a(R) =1, a(R) = 10, and a(R) = 100.
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Figure 3.6. Prior and Posterior Density Estimates for the lifelength of the FQ
Computer’s B-bus, a(R) = 1, a(R) = 10, and o R) = 100.
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Figure 3.7. Prior and Posterior Density Estimates for the lifelength of the FQ
Computer (Maximum of A-bus and B-bus), a(R) = 1, a(R) = 10, and a(R) = 100.
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Figure 3.8. Prior and Posterior Density Estimates for the lifelength of the FQ
Computer’s A-bus, a(R) = 1, a(R) = 10, and a(R) = 100.
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Figure 3.9. Prior and Posterior Density Estimates for the lifelength of the FQ
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