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ABSTRACT

We consider a coherent system S consisting of m independent components for

which we do not know the distributions of the components' lifelengths. If we know

the structure function of the system, then we can estimate the distribution of the

system lifelength by estimating the distributions of the lifelengths of the individual

components. Suppose that we can collect data under the 'autopsy model', wherein a

system is run until a failure occurs and then the status (functioning or dead) of each

component is obtained. This test is repeated n times. The autopsy statistics consist

of the age of the system at the time of breakdown and the set of parts that are dead

by the time of breakdown. Using the structure function and the recorded status of

the components, we then classify the failure time of each component. We develop a

nonparametric Bayesian estimate of the distributions of the component lifelengths

and then use this to obtain an estimate of the distribution of the lifelength of the

system. The procedure is applicable to machine-test settings wherein the machines

have redundant designs. A parametric procedure is also given.
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CHAPTER 1

INTRODUCTION AND SUMMARY

Consider a coherent system S consisting of m independent components for which

we do not know the distributions of the component lifelengths. Assume that each of

the m components occupies one of two sta es, functioning or failed. We consider the

statistical model in which each element of a sample of n replicates of S is observed

until it fails. The observed data consist of the set of components that are in a failed

state and the failure time of the system. The failure times of the dead components

are not directly observed. The set of dead components and the system failure time

comprise the "autopsy statistics" of the system. This model is usually called the

autopsy model.

Two statistical problems arise in considering the autopsy model-the problems

of estimating the distributions of the component lifelengths and the distribution of

the entire system's lifelength. One approach to estimating the distribution of the

system lifelength is to use only the observed system failure times. For example, we

could use the empirical distribution function. However, such an approach ignores the

(partial) information we have about the components of the system. If the structure

function of the system is known, the distribution of the lifelength of the system

can, in general, be calculated from knowledge of the distributions of the component

lifelengths. Hence, an alternative approach would be to estimate the distributions of

the lifelengths of the m components of system S and then use the structure function

of S to estimate the distribution of the system lifelength.
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Clearly, the component information provided by the autopsy model is quite lim-

ited. It is reasonable to consider alternative testing procedures which provide more

component information. However, the autopsy model is important when alternative

testing procedures such as separate testing of components are not possible or prac-

tical. For example, it may be difficult to reproduce the conditions which exist in

the functioning system when components are tested separately. For such systems,

it is important to obtain every bit of information about the components when they

are parts of a machine or other system. In these settings, as well as the case of cer-

tain biological systems, the autopsy model is natural. Probabilistic aspects of the

autopsy model were considered by Meilijson (1981), Nowick (1990), and Antoine,

Doss, and Hollander (1993). Inferential aspects of the autopsy model have been

considered only by Watelet (1990) and Meilijson (1994).

The U.S. Air Force's C-17 transport airplane's Fuel Quantity (FQ) computer

is an example of a system in which the "component" is a logical subsystem whose

status can be readily determined in the field. The FQ computer is a parallel system

of order two, consisting of an "A" bus and a "B" bus. When this system's data

were first examined by the authors, there were approximately 2440 cumulative flying

hours spread among six different prototype C-17's, each of which contained one FQ

computer. We present a data analysis using our procedure in Chapter 3.

Consider the autopsy statistics as described above. Assume that the system

we wish to study is a coherent system (see Chapters 1 and 2 of Barlow and

Proschan (1975)). We can use the structure function, the set of dead components,

and the failure time of the system to say more about the failure times of each com-
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ponent. Specifically, for each of the n replicates of S, we can classify the failure time

of each of the m components as follows:

[C1] Component failure time is greater than system failure time.

[C21 Component failure time is less than system failure time.

[C3] Component failure time is equal to system failure time.

[C4] Component failure time is either less than or exactly equal to system failure

time, but we cannot tell which.

The first two categories correspond to what are usually termed right-censored

data and left-censored data, respectively. Right-censored data occur when the com-

ponent is still alive when the system fails. Left-censored data occur when the com-

ponent is dead and information contained in the structure function, along with

information contained in the set of dead components, allow one to deduce that the

component's death occurred prior to the system failure time. Similarly, the third

category arises when a component is observed in a failed state and we deduce that

it caused the system to fail. The last category occurs whenever all the components

in a redundant system or a redundant subsystem belong to the set of dead compo-

nents. In this case, we know there is exactly one component, whose identity we do

not know, with a failure time equal to that of the system, while the failure times of

all the other components are strictly less than that of the system.

The last category above is problematic, particularly in frequentist settings, and

is at the heart of the issue of "identifiability". (General references on identifiability

are given at the end of this chapter.) For example, consider a parallel system of
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order two. Let the distributions for components 1 and 2 be F, and F2, respectively.

Both components will always be dead when the system is observed in a failed state.

Under the autopsy model, one can only observe the system failure time, which has

distribution F1F 2. This simple redundant system is not identifiable in the frequentist

sense in that it is not possible to determine F1 and F2 from a knowledge of the

distribution of the observed data.

We use a Bayesian framework because, for the applications we have in mind, we

have a small amount of data but have extensive past experience on the components

in other systems. For example, in the case of the C-17 FQ computer, similar but

not identical FQ computers exist in other aircraft for which there has been more

extensive testing. Thus, we have strong reasons to suspect the distribution of the

lifelengths of the components approximately comes from a certain parametric family,

and we have some knowledge about the parameters of this distribution. A Bayes

procedure makes sense here since we have only limited testing hours on just six

FQ systems, each within a C-17, and we wish to estimate the distribution of the

lifelength of the FQ system when it is part of the C-17.

We consider a Bayesian framework for estimation of the distributions of com-

ponent lifelengths in which the prior distributions on each of the Fi's give most of

their mass to "small neighborhoods of a parametric family". The prior distributions

which we use are derived from the Dirichlet process priors discussed by Ferguson

(1973, 1974). The Dirichlet process priors are probability measures on P parame-

terized by the set of all finite non-null measures on the real line R, where P is the

space of all probability measures on R. Let a be a finite non-null measure on the

Borel sets of R. The random distribution function F is said to have a Dirichlet
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process prior distribution with parameter a, denoted VD,, if for every measurable

partition {B 1,..., Be} of 1?, the random vector (F(B 1 ),..., F(Bt)) has the Dirich-

let distribution with parameter vector (a(B1 ),.. ., a(Bj)) (here and throughout the

rest of the paper, probability measures are identified with their r .tive distri-

bution functions, and the same symbol is used to denote both a I,. .,sure and its

distribution function whenever convenient). When a prior distribution is put on P,

then for every t E R1, the quantity F(t) is a random variable. Write H = a/a(R),

so that H is a probability measure on RZ. If F - 'D,, then EF(t) = H(t), • 1ile the

quantity a(R) indicates the degree of concentration of D,, around its "center" H.

For example, it is well known that as a(R) --+ oo, DP, converges to the point mass at

H in the weak topology. Ferguson (1973) showed that the Dirichlet priors have the

property that the support of V., is the set of all probability measures whose support

is contained in the support of H. For example, if the support of H is the positive

real axis, then the support of D,, is the set of distributions of all positive random

variables. Ferguson also showed that if F , D,, then F is a.s. discrete.

The priors on each of the Fi's, i = 1,..., m, that we use are mixtures of Dirichlet

priors. To keep the notation less cumbersome, let m = 2. For component 1, we

consider a parametric family He, 0 E (, and put a mixture of Dirichlets as the

prior on F1. That is,

F J E),,,e v(dO),

where for each 0 E (, Qo = a9(1Z)H9, 0 < aa(TZ) < 0o, and v is a probability mea-

sure on O. Similarly, for component 2 we consider the parametric family Kp, ib E 41,
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and put as prior on F2 the mixture fV) D (do,). For each V, E %P, 04, = 3,(IZ)K,

0 < 3,(R) < oo, and p is a probability measure on *.

We use a nonparametric Bayesian procedure in which we put a Dirichlet process

prior on each of the Fi's. This has two advantages. First, we protect against the

problems associated with using an incorrectly specified parametric model. such as

obtaining an inconsistent estimator. Second, we can avoid the loss of efficiency due

to ignoring partial information we may have about a parametric model, since we

use prior distributions (on each of the Fi's) that concentrate their mass around the

hypothesized parametric family.

Our approach is based on the Gibbs sampling algorithm as discussed in Gelfand

and Smith (1990). We now review the algorithm. Let fy. ..... y' be the joint dis-

tribution of the (possibly vector-valued) random variables Y1,...,Yp. We suppose

that we do not kiow the form of fy1 ..... y,, but that we know the conditional dis-

tributions fyjiy,,j i, i = 1,... ,p or that at least we are able to generate observa-

tions from these conditional distributions. Suppose we want to sample observations

from the joint distribution of the random variables Y1,..., Yp, or simply an ob-

servation from one of the p marginals. The algorithm to generate an observation

from fy,1 ....y, proceeds as follows. We fix arbitrary starting values y0),... ,0)

and then update these values. Draw Y1(1) from fy ly,,• , (', Y(0).Y 0 ) Next,

draw YM) from fY2JY,,j$2(Y1( O) .Yy)(O)). Continue until we draw Y(

from fyp1yj*,(Y(), .Y, ,) We have now completed one iteration of the

scheme by visiting each variable. After k iterations, we have the random vari-

able (Yl(k).., yP k)). The sequence (Y(),..., YU)), j = 1,2,..., is a Markov chain

and fy1 ..... y, is the stationary distribution of the chain. If one can establish tliat the
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chain converges in distribution to fy, .....y,, then (for large k) (yk) . (k)) has a

distribution which is approximately equal to fy1 ..... y,. Such observations can be used

to estimate fy,,....

Perhaps the most natural way to implement the Gibbs sampler here is to proceed

as is normally done in a Bayesian analysis of missing data problems under conjugacy.

That is, consider the pair (parameter 0, missing data): In such a setup, if we knew

the missing data, we would easily be able to find the conditional distribution of the

parameter 0, and if we knew the parameter 0 we would be able to generate the miss-

ing data. Indeed, this is precisely the approach taken by Doss (1994), who considers

the use of Dirichlet priors for the problem of estimating an unknown distribution F

in the presence of censoring. He considers random variables X1,. .. , X,, F, but

only observes Xi E Ai, where A, is a singleton if Xi is uncensored and A, = (ci, oc)

if Xi is censored on the right by cj. His approach is based on a Gibbs sampling

algorithm of length 2 involving (X, F); that is, he generates X from £da,(X I F)

and F from £dt,(F I X), where data consists of the sets A1,..., A,,. (Here, we use

the notation Cw2(WI) or C(Wi I W2) to denote the conditional distribution of the

random variable W1 given the random variable W2.) The details of carrying out the

steps of the algorithm rely on a constructive definition of the Dirichlet prior, given

in Sethuraman (1994).

Our initial approach was simply to extend the technique of Doss (1994) to our

setting; however, the approach fails since it turns out that the procedure produces

a Markov chain which does not converge to the posterior distribution. We present

an entirely different algorithm that produces a Markov chain which we argue (in

Chapter 2) does converge to the posterior distribution.
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We now give a preliminary explanation of our procedure for the case where the

priors on each of the Fi's are single Dirichlets; i.e. Fi, - V. Let Si, i = 1,...,n,

be the vector of lifelengths of the m components (for system i) if we could see

them all. Let data be the set of autopsy statistics for the n systems. (It may

be helpful to think of the case of parallel systems. In this case, data consists

simply of the n system failure times.) The algorithm proceeds as follows. Fix
arbitrary starting values S(O),. . , S$,0). Generate S(1) ,,dt,(SI S•°).... ,

Next, generate S(1) ' £ata(S2 I SP), Z ,) S(O)). Continue until we generate

Sn($) - Cdt.(Sn I S(1),...,S (1)). We have now completed one iteratikn of the

procedure. We repeat the procedure a large number of times and use the realizations

of the chain to estimate .(S1, . .., S,). There are two key points that allow this

procedure to produce a Markov chain which converges to the posterior distribution.

"* The distribution of the lifelength of the jth component of system Si is condi-

tional on the observed data and on the current set of lifelengths for the ph

components of St, t # i.

"* The joint unconditional distribution of the n lifelengths of component j can

be described in full.

The estimate of £ ,ta(S1,. .. ,S,) can be used to obtain an estimate of

,Cdaa(FI, . . . , F.).

Note that, in contrast to Doss (1994), we deal only with the random lifelengths

(of the components) and bypass entirely the problem of generating the infinite-

dimensional Fj's.
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In Chapter 2, we explore the algorithm further. In Chapter 2.1 we give a Gibbs

sampling algorithm for our problem under parametric assumptions. In Chapter 2.2,

we present a simple extension of the procedure of Doss (1994) to our setting and show

that this leads to a reducible Markov chain. In Chapter 2.3, we describe in detail

our new algorithm for the case of parallel systems and give an heuristic argument

that the Markov chain used in the algorithm converges to the posterior distribution.

We also establish this rigorously for a parallel system and argue that the procedure

converges to the posterior distribution for a general system. In Chapter 2.4. we

discuss the implementation of the algorithm for the case of arbitrary systems. for

the case of arbitrary systems and discuss identifiability and frequentist consistency.

In Chapter 3 we illustrate our nonparametric procedure on data pertaining to the

C-17 FQ computer.

The last portion of this chapter is used to summarize other relevant research

in the statistical literature. First, we define the term identifiability. Suppose sys-

tem S has m components and the component distributions are denoted F1,..., F,,,.

If F 1,... , Fm can be recovered from a knowledge of the true distributions of the

autopsy statistics, then we say that F1,..., Fm are identifiable and that S is an

identifiable system. For example, any parallel system is nonidentifiable. Meilijson

(1981), Nowick (1990), and Antoine, Doss, and Hollander (1993) considered prob-

abilistic aspects of the autopsy model. In these three papers, the authors identify

conditions on the structure function of the system and on the distributions of the

component lifelengths that guarantee identifiability.

Relevant work on estimating the distribution of the system lifelength under the

autopsy model by first estimating the distributions of the component lifelengths and
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then using the structure function of the system can be found in Watelet (1990) and

Meilijson (1994). Watelet (1990) considered two estimators for the autopsy model.

He developed nonparametric estimators for the Fj's. Meilijson (1994) estimated the

parameters of these distributions from the empirical estimate of £(Z, D), where Z

is the lifetime of the machine and D is the diagnostic set of parts that had died

by time Z, by maximum likelihood from incomplete data via the EM algorithm.

Meilijson assumes the Fj's are drawn from well-behaved parametric families.

Under the assumption that the failure times of the dead components are known,

Doss, Freitag, and Proschan (1989) also considered inferential aspects of estimating

the distribution of the lifelength of the system by first estimating the distribution

of the lifelengths of the system's components. In their model, they have more

information than is available under the autopsy model.



CHAPTER 2

DEVELOPMENT AND CONVERGENCE OF THE ALGORITHM

As mentioned earlier, the Gibbs sampling algorithm is ideal for missing data

problems in a Bayesian model under conjugacy; see the linkage example or the

Dirichlet sampling process example in Tanner and Wong (1987), or Example 1 in

Casella and George (1992). In the present problem, we describe the Gibbs sampling

algorithm for this problem in the parametric case, applied to parallel systems. We

then show that a naive extension of the simple censored data case considered by Doss

(1994) leads to a reducible Markov chain (when applied to parallel systems). Next,

we review our procedure for the case of parallel systems and show that it produces

an irreducible Markov chain which converges to the correct stationary distribution.

We then argue that the procedure converges to the correct stationary distribution

for a general system. Lastly, we discuss the implementation of the algorithm for the

case of arbitrary systems.

In the description of the Gibbs sampler in Chapter 1, we described how to

generate an observation (Y(k),..., y(')) with distribution approximately fy. .  by

running the chain sufficiently long. One can estimate fy1 ..... y,, by generating G such

chains in parallel, obtaining independent observations (y(k,1),..., y(k,c)), or by

running one very long chain. For a discussion of the advantages and disadvantages

of these (and other) schemes, see Geyer (1992).

11
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2.1 A Gibbs Sampling Algorithm for the Autopsy Model under

Parametric Assumptions

To keep the notation as light as possible, we shall consider a parallel system

of order 2 for which we have n replicates. For the ?th replicate, i = 1,...,n, let

the observed data (system failure time) be m,, the maximum of the two component

lifelengths, Xi and Yi. Let Z = (X, Y), where X = (X...I , X,.), Y = (1,Y...,

Let Xi Hd Fe with 0 E E and suppose 0 - v, where v is a conjugate prior distribution

on 0. Let Yi , Go, with 1P E T and suppose 0 -, p, where p is a conjugate prior

distribution on 4. Assume that F and G are absolutely continuous distribution

functions. To make the discussion as easy as possible to follow, consider the case

where Fo = 6(0) (the exponential distribution with parameter 0) with 0 -,, v =

Q(ai, b1) (the Gamma distribution with shape parameter a, and scale parameter b1 )

and GO = E((4) with 0 -,, P = Q(a 2, b2).

Before describing the algorithm, we introduce the following notation. If H is a

distribution function, B is a set, and X is distributed according to H, then HB will

denote the conditional distribution function of X given that X E B; that is

HB(A) = H(A n B)/H(B) (2.1)

when H(B) > 0.

The algorithm proceeds as follows.

Give arbitrary initial values to (X, Y)ýO) such that XMi. V = mn.

For k = 1,..., K:

1. Generate (0,)(k) 1 £data((O, ) (X, y)(k-1)).
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2. Generate (X,Y)k) ,, C&,((X,Y)i (0,tk)(k)), independently for each i, =

1,... ,n.

We now describe these two steps in more detail.

In step 1 of the algorithm, £dta((O,') I Z(k-')) is the product of two gamma

distributions, 9(a, + n, b, + E•'= X~k-I)) and 9(a2 + n, b2 + r Yi0'-)); i.e. 0 and

? are generated independently. (Note that knowledge of X and Y make knowledge

of the observed data superfluous.) To carry out step 2, first let fo and g, be the

densities of F0 and Gp, respectively. Then, for each i, i = 1,... , n, set

(k) = fo,)(mi)G,Ok)(mi)
fogk)(mi)GOk) (mi) + g0) (mi)F(k)(mMi)'

where F,\ = G,\ = E(A). Now, generate Z(k) by setting (X, y)ak), = 1, s

follows:

(X, Y)ýk) - J (mi, V), where V ,, G(k),[O,m) with probability p Ik)
(V, mi), where V - FO(k),[0,,n,) with probability (1 - p,))

where the notation used for the conditional distribution functions is given by (2.1).

To estimate CdCt.((O, 0)), we use the sequence of generated Z's to approximate

the mixture

J Cdat.((O, 4') I complete data) d~dat,(complete data)

by, say, -L•EJkj=l £dat,((O,)(X,Y)(I)).

If v and p are not conjugate priors for F9 and Go, respectively, but they are

continuous distribution functions with univariate log-concave density functions, then

we can still apply the above algorithm by using an efficient rejection scheme of Gilks

and Wild (1992).
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2.2 A NaIve Extension of the Algorithm of Doss (1994)

Doss (1994) uses a Gibbs sampling algorithm of length 2 involving (X, F). The

prior he put on F is actually a mixture of Dirichlets, but we shall consider a sin-

gle Dirichlet prior for our naive extension, since if the procedure fails for a single

Dirichlet, it will fail a fortiori for a mixture.

Suppose we have n replicates of a parallel system of order 2. Let Z, X, and Y

jid jidbe defined as in Chapter 2.1. Suppose Xi 1 F and Yi - G, i = 1.... ,n. Suppose

F -• E). and G - DO, where D,, and DE are Dirichlet priors with parameter measures

a and /3. We observe data = (inl,.. .,mn), where mi = Xi V Yi, i = 1,. ... , n. Our

goal is to estimate Zdt,(F, G).

We kn-w that the conditional distribution of (F, G) given (X, Y) is

£d.t.((F,G) I Z) = D)+I:ff, 6 x, 0 1),+E=I y',, (2.2)

where 0 denotes product measure; i.e. F and G are independent. Also, given an

updated (F, G), we can generate a random Z conditional on the data. To run the

Gibbs sampling algorithm, we first set initial values Z(°) and (F, G)(0 ). Then, for

some large K, execute the following loop for k = 1, .... K:

1. Draw (F, G)(k) from Cda.t((F, G) I

2. Draw Z(k) from £dt.(Z I (F, G)(k)).

To carry out the second step in the above loop, we need to compute the probabil-

ity that each component's lifelength takes on the observed maximum, since one of the

values must. Consider the case where n = 1. Let the observed maximum be denoted
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by m. We assume that m > 0 and that a and /3 are continuous measures. Suppose

the initial value of Z(°) is (X 1 , Yj)(0) = (m, V), for some V < m. These initial values

give rise to (FG)(') via the first step of the algorithm. By (2.2), FM ,

but by definition of the Dirichlet prior, this implies that F(1)({m}) is distributed

as a Beta distribution with parameters (a + 5m)({In}) and (a + 6m)({m}C). and

therefore, F( 1)({ml) > 0 with probability 1. Next, recall from the previous chapter

that if F - 1, , then EF(A) = jo(A), where A is a set and "7o = -y/-y(7?). Since

G -, 1, then EG)({m}) = (m}) = 0. Thus, G(1)({m}) = 0 with proba-

bility 1. In other words, with probability 1, F(1 ) has an atom at m and G(1) does

not, from which it is clear that P{X(1 ) = m I X(°) V y(O) = m} = 1. As we continue

to run the algorithm, X(2), X(3),... will each take on the value m. The case where

(X 1 , Yj)(O) = (V, m) is handled by symmetry. Thus, we see that the stý ting point

does not get "washed out" and therefore, the algorithm produces a Markov chain

that cannot converge to the posterior distribution.

2.3 The Algorithm We Propose: Detailed Description and Proof of its

Convergence for the Case of Parallel Systems

Before introducing the setup and notation needed for the algorithm, we briefly

describe the "extended P61ya urn scheme" as given in Blackwell and MacQueen

(1973). Define a sequence {T,, T2 ,.. .} of random variables as a P6lya sequence with

parameter a if for every B C R?, we have P(T 1 E B) = a(B)/a(TZ), and for every
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n,

P(T.+1 E B I T 1,..., T.) = (a(B) + 6, (B)) /(a (1Z) +n). (2.3)

Blackwell and MacQueen proved that if {T 1, T2,. .. } is a P61ya sequence with pa-

rameter a, then the empirical distribution of {T 1,.., T,, } converges a.s. to a limiting

discrete measure H. Furthermore, H ,- D,. Also, given H, the random variables

T1, T2,... are iid ,- H. In addition, for every n,

T1,. . . , T, are exchangeable. (2.4)

Now, we consider a parallel system of order 2; the implementation of the al-

gorithm for the case of arbitrary systems is discussed in Chapter 2.4. Recall that

Xi and Y, are the lifelengths of components 1 and 2 in system i. For the Xi's, we

consider a parametric family He, 0 E E C J"d,, and put a mixture of Dirichlets as

the prior on F. That is,

F , ID. v(dO), (2.5)

where for each 0 E (, ae = ao(IZ)Ho, 0 < aa(lZ) < oo, and v is a probability

measure on e. Similarly, for the Ye's, we consider the parametric family KV1, 0 E

lI C Rad2, and put the mixture f DtO p(dOk) as the prior on G, where for each

V) E TI', #,O, = (R)KV,, 0 < fl4 (JZ) < oo, and p is a probability measure on T.

We will assume that for each 0 and 7P, He and K1, are absolutely continuous, with

continuous densities. Given F and G, X 1, X2.... are iid - F, and Y1, Y2 ,... are iid

- G. Also, for every n, X 1,. . . ,X, are exchangeable, as are Y'1, .... Y, by (2.4).

We assume that F is independent of G. It follows that (X1 ,..., X,,) is independent

of (YI,..., Y,). We observe

data= (mI,...-,m ), where Xi V j= m ,, Z' 1,...,n.
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Our goal is to estimate £Cdt.(F, G). As in Chapter 2.2, knowledge of (X, Y) makes

knowledge of data superfluous.

Recall that Si, i = 1,... ,n, is the vector of lifelengths for system i. For the case

of a parallel system of order 2, Si = (Xi, Y1). To unify the notation, let So = (0, tP)

and let S = (So, .. . , Sn).

The algorithm proceeds as follows. Fix arbitrary starting values S(°) . S)

Then, cycle through the N = n + 1 elements of S in order; i.e. at time t, we update

element K = K(t) = (t - 1) mod N by generating

') 'Ldt.(SI S(t1) for # K). (2.6)

At time jN, each component of S has been updated j times. Our algorithm gen-

erates vectors S(t), t = 1, 2,..., where S(t) is the same as S(t-1) except for the one

element Q(') which has been updated at time t according to (2.6). Note that this

notation differs slightly from that of Chapter 1, where S(t was formed by updating

all the elements of S(t-).

In our algorithm, the updating of S(), i = 1,... ,n is accomplished by the use

of the following lemma, the proof of which is a calculation.

Lemma 2.1 Suppose A and B are distribution functions on [0, oo) satisfying A =

A,+Ad and B = B,+Bd, where A, and B, are absolutely continuous with continuous

derivatives denoted A' and B', and Ad and Bd are discrete. Let X* and Y* be

independent with distributions A and B, respectively. For m > 0, we can generate

a pair (X, Y) with

(X,Y) , C((X*,Y*) I X* V Y* = m) (2.7)
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by the mixing procedure we now describe.

Define probability distributions on [0, m) by

A,(v) - B,(v) 4()-- Ad(v) Bd(v)

A-(m)' cem), AdBe) ) Ad(M-)' Bd(m-)

If the denominator in any of the equations above is 0, then we set the correspond-

ing probability distribution to bo. Let V1, V2 , V3, V4 be random variables with

distributions Ac, B•, Ad, Bd, respectively. We now take

(VI, m) with probability pi,

(in, V2) with probability p2,

(X, Y) = (V3 , m) with probability p3, (2.8)

(m, V4) with probability p4,

(M, m) with probability ps,

where the mixing probabilities pi,. . . , p5 are given by the following formulas.

If Ad({m}) + Bd({IM}) > 0, then

AC(m)Bd(I{m}) Ad( {m})B(m) Ad(M-)Bd({m})
A D , P2 = D 'P3 D

=Ad(M})Bd(M-) Ad({m} )Bd({m})A D({}B ,m- and psD

with D suc thtD i=1-I dfM dl} ,te

Ac( m) Bc'( m) A'•( m) Bc( m)A(-)B(m)with D2 suc tha d(Mp-)1BI d(m) B(ml=0mte

D D ' = D

Ac(m)Bd(m-), and P5 = 0,

D

with D such that s A 1.
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By (2.3) and (2.4), for the tth step of the algorithm, the conditional distribution

of X,, given the other (n - 1) Xt's and 0, is given by

At) = Lq(t) + Eji bx•,) (2.9)
LO(,)(7R) + n - 1

Similarly, for the tth step of the algorithm, the conditional distribution of Yj, given

the other (n - 1) Ye's and ', is

Btt) + Ei ,(2.10)
00,(,) (R) + n - 1"

Thus we can generate S~ti ) (Xit), y(t)) by using Lemma 2.1 with A = k), B

Bit) and m = Mi.

To update So(t) in the above algorithm, we will need formulas for updating the

"mixing measures" v and i. The formula for the conditional distribution of 0 given

X is well known; see e.g. Theorem 1 of Doss (1994), which is repeated as Proposition

2.1 below. The formula for the conditional distribution of 0 given Y will be evident

by symmetry. The notation #(v) is used to denote the number of distinct values in

the vector v.

Proposition 2.1 Assume that for each 0 E (, He is absolutely continuous, with

a density ho that is continuous on R. If the prior of F is given by (2.5), then the

(marginal) posterior distribution of 0 given X = z is

vz(dO) = c(z)(fl-ho(xj)) (ce9(TZ))#(')F(a°(TZ)) v(dO), (2.11)
(ae(R) + n)

where the '*' in the product indicates that the product is taken over distinct values

only, r is the gamma function, and c(z) is a normalizing constant.
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From (2.11) and the independence of F and G, we can update So(' by indepen-

dently generating 0(t) and ?P(') from v,(t) and py~t, respectively.

Let 7r be the posterior distribution of S given data on the space (lZ2" x 0 x %P, B),

where B is the collection of Borel sets on JZ2n x e x T. This ir is also a stationary

distribution for the chain {S(3N)})"o=. We now show that, for a parallel system of

order 2, the distribution of the Markov chain {S(jN) 1} converges to 7r at a rate that

is geometric and independent of the starting point. Convergence occurs in general,

but the difficulties in establishing it arise when considering a parallel system or

a parallel subsystem. We discuss this further in Chapter 2.4. Before stating our

theorem, we introduce some notation. Define

D={s:xi, y,>0andxiV y=mi fori=1,...,n, 0EE, iPE},

and let Pj(s, C) be the j-step transition probabilities for the chain; i.e.

P_(8, C) = P(S(iN) E C IS(O = 8).

Note that if v is absolutely continuous with respect to Lebesgue measure, then

so is v.. This implies vz has a density with respect to Lebesgue measure, which we

shall denote v,. In the proof of Theorem 1, we shall need to find bounds on V" (0) for

fixed 0 as z varies over the compact set [0, m(O)]. Here, m(o) = max(mi,..., ,.).

This would be straightforward if v' (0) were continuous in z, but inspection of (2.11)

clearly shows this is not the case. For this reason, we introduce functions fi(z, 0)

on V x (, defined by

( rI )~(cke(1Z))iL'(aeO(J)) v() oi l.. n
fi(w, 0) = ci(W) ho(xi)) F(0( 1O)+n) v'(0), for 1 n,

"j=1 lqR)+n



21

where the values ci(w) are constants such that, for each z, fi(z.0) is a density in 0.

Note that

L4(0) = f#()(,0),

where z" is comprised of the distinct values of z arranged in any order.

Theorem 1 Consider the Markov chain {f SN)} I resulting from applying the above

algorithm to a parallel system of order 2. Suppose that v and 1L are absolutely

continuous with respect to Lebesgue measure and that

1. The observed maximum values ml,..., m,, are distinct and positive.

2. There exists a compact set FL C 0 with v(1I) > 0 such that a'(x) exists, is

positive, and is continuous in both 0 and x for (0, x) E r[ x [0, m(,)]; similarly

there exists a compact set 172 C V corresponding to 0'.

3. The prior v is absolutely continuous with respect to Lebesgue measure and

for each i, i = 1,..., n, fi(', -) is positive and continuous on [0, m(n)]i x ri; an

analogous condition holds for the prior and posterior of ?P.

Then, there exists a value A > 0 such that

sup jPI(.,C)- ir(C)I < e-'j for allj > 2. (2.12)
CEB, BED

Recall that if {Zk}' 0 is a Markov chain on (Z, F) with n-step transition proba-

bilities Pn(z, C) which satisfy the Doeblin condition, i.e. for some probability mea-

sure p on (Z, F), some positive integer no, and some c > 0,

Pn(z,C) > fp(C) for all z E Z and all C E F', (2.13)
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then

sup I p(z,C) - ir(C)I < (1 - E)Ln/noj for all z E Z. (2.14)
CEY"

The proof of this fact involves a coupling argument which we sketch below. We

may write

P"0 (z,.) =(1 -e)Y(z,.)+Ep(.) for allz E Z, (2.15)

where tl(z,.) - (PnO(z,.)- cp(.))/(1 -E). By the Doeblin condition (2.13), q(z. .) is

a probability measure. Thus, Pn (z, .) is a convex combination of two measures, the

second of which does not involve z. Therefore, the representation in (2.15) allows

us to view each step in the evolution of the Markov chain { Zno} as a coin-tossing

experiment followed by a draw from either iq(z, .) or p(.). This is the key that makes

possible the coupling argument.

Now run two chains {We}t and {Yt}t as follows. Let W0 = wo and Y0 - ir. If the

current state of the two chains is (wn-1, Yn-i), generate W, and Y, by first tossing a

coin with probability of heads equal to e. If the toss results in a head, select V - p,

and set both W,, and Y, equal to V. If the toss results in tails, independently select

W,, from q(w,,-t,.) and Yn from '7(Yn-1, ')- It is clear that {W1 }1 and {Ye} 1 are

Markov chains with transition probabilities Pnot(z, C) and that Yt 1  7r for all L

Moreover,

P{We # Yj for some I > k} • (1 E)k.

This argument shows that the Markov chain {Zeo }e satisfies

sup IP{Zok E C} - 7r(C)l <_ (1 - C)k
CE si

from which (2.14) follows, since SUpCEr I pn(ZC) - ir(C)I is nonincreasing in n.
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Results of the form (2.12) are generally proved by verifying the Doeblin condi-

tion (2.13). However, we shall prove our theorem by dealing with the underlying

coupling argument directly and explicitly because our arguments are then easier to

follow.

Proof of Theorem 1 Consider starting the Gibbs sampler from two different

initial states S(°) and S(0) and producing two sequences {Sft)} and {,(t) }. We shall

"couple" these sequences by defining them on the same probability space in such a

way that

p{S( 2 N) = ý(2N)} > •, (2.16)

where e is positive and can be chosen independently of the starting states S(0 ) and

S(0). This clearly suffices to prove the theorem.

Condition (2.16) indicates that our proof requires two passes of the algorithm

(or equivalently, two "cycles" of the Gibbs sampler) to couple the two sequences. In

the first pass, we show that there is a positive lower bound not depending on the

starting states, for the probability that for each i, i = 1,... , n, the minima Xi A Yj

and Xi A i are not equal to any of the observed maxima inl,..., rm,. Then in the

second pass, we show that there is also a positive lower bound for the probability

that for each i, i = 1,. . . , n, Xi = kTi and Y, = Y; i.e. Si = 5,. The probability that

So = So is handled in a manner similar to the proof of (2.14).

A simple example may help to identify the issues involved. Suppose

that n = 2 and m, < m 2 with starting states S(O) = (5o°) ,SO),S•°)) =

((O,i¢),((1,ml),(mI,m 2)) and S 0= ((Ok),(mI,,12 ),(m 2, mI)), where il,f 2 < MI.

At time t = 1, we update 0, 0 and 6, t, but this is not important. At time t = 2, we
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update (X 1 , Y1) and (XT1, Y1), and this is where the problem arises. For the sequence

{S()}, Al 2) has an atom at in1 , but Bi2 ) does not, so I= in, 1(2) < Mi) = 1.

For the sequence {S(t)l, /2) has an atom at mi, but A(2) does not, so P(g(2) <

in1 , y7(2) = Mi) = 1. Thus, with probability 1, the two sequences are not coupled

during the first pass of the algorithm. In the proof, we will show that after one pass

of the algorithm, the atoms at mn and r,- are "out of the way" and thus, there is

a positive probability (that is independent of the starting states) that S(6) =

making (2.16) true.

The following will involve a specific implementation of the algorithm described

by (2.6) through (2.11), strictly for use in our coupling argument. Let {Ujk;j =

1, ... ,100;

k = 1, 2, 3, 4} be an array of independent U(O, 1) (the uniform distribution on (0, 1))

random variables. We shall generate 0 ), 0M(t), X*t), and y(') in terms of these

uniform random variables using certain functions P1, P2, and p3. These functions

and their properties are described in detail later in this chapter. Specifically, we

define the functions and show that using them produces the desired conditional

distribution of S() given S(t-1).

For t with (t - 1) mod N = 0, define S(t) = ((0), 0M() by

0 - p(X(t-),U 1, UA2) and 4 ,(t) = p2(Y(t-1),AU3, UA4), (2.17)

and for t with (t - 1) mod N = K 0 0, define .() - (X( t ) Y(O) by
(X~t,"V( 30( ,O ,MK (t-1, Y('-, Utl, Ut2, U6a), (.8

(X(),Y)) p3 (O-l),�,(-1 ),mK, (2(.K)1()K)

where W(-K) is used to denote the (n - 1)-tuple obtained by deleting the Kth

element of the n-tuple W.
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For the process {)} the quantities 0 (t), 4 ,(t), lit) and ]-(t) are defined in the

same way except that 8, V), X, and Y are everywhere replaced by 0, AP, X, and

Y. The same uniform variates are used in generating both S(') and ,•(O.

The essence of the proof consists of showing that there is a positive proba-

bility (which is independent of the starting states) of coupling the two processes

if we implement the algorithm using P1, P2, and p3 (i.e. (2.16) holds). To this

end, we introduce a sequence of events A,, A2,. ., A2N defined as follows. Let

M = {mlm 2 ,..., mM}. For t = 1 and t = N + 1, we define

At = {O(t) = (), 0, (t) = M', 0(t) E ri, V,(t) E r21.

(The sets rI and 172 are the compact sets given by assumption 2 of Theorem 1.) For

2 < t < N and K = (t - 1) mod N we define

At = {V()A Y(t ý M, X(") A Y-K('] ý M .

For N + 2 < t < 2N and K = (t - 1) mod N we define

At = {X - fd) V(t ) - (t ) ,(t) X A Y(t) ý M}.

Note that l2N At implies that S( 2N) = •(2N) We can write

P(fl At) =i ct,t=l Nt=,

where (I = P(Aj) and (t = P(At f l,<t Aj) for t > 1. We shall show that each of

the values t are bounded away from 0 by quantities which do not depend on S(°)

and ý(0). In the last part of this chapter, we establish these bounds in Facts 1-6.

Specifically, Fact 1 is used to bound (i and (N+l; and Facts 2 and 3 are used to bound
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(2,... ,N. Now consider N + 2 < t < 2N and K = (t - 1) mod N. Conditional on
fnl<t Aj, the vectors X(t-K), j(-h)y(t1a), a (t-l) contain no entries equal to

MK. (Here we are using assumption 1 of Theorem 1; i.e. the values M...., mn,, are

distinct.) This will allow us to use Fact 6 to bound (N+2, (N+3 ..... G2N. which will

establish (2.16) and complete the proof of Theorem 1.

Details of Proof of Theorem 1 We shall now define in detail the functions

P1,P2, and P3 and demonstrate the properties of these functions that are used in

the proof of our theorem. In this discussion we will use the following notation.

If H is a distribution function, then Ht will denote a function with the property

that Ht(U) - H, when U is a U(0, 1) random variable. Such an Ht always exists.

In the case of a distribution function on x, the function Ht may be taken to be

Ht(y) = inf{x : H(x) > y}. For economy of notation, if h is a density, then ht is

used if the distribution function associated with h has not been introduced. Finally,

let U1 , U2 , U3 , U4 be independent U(0, 1) random variables.

By (2.17), we generate 0 and 0 from uniform random variables using functions

p, and P2 defined below. Define

0k1(u) = inf i4(u),zEE

where E = 1z : 0 < xi < mi, 1 < i < n},

Tj 01 (u du,

and densities

01(u) = 01(U) and lz(u) =
7ra1-r
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Note that r, > 0. This is because by assumption 3 of Theorem 1, for each i, the

function fi is bounded away from 0 over [0, m(,)]' x Fr. Therefore, for each u E [i,

01(u) is positive. It follows that fE 01 (u)du > frp, p(u)du > 0.

Note that in the special case of the "exponential/gamma" setup, we have

01(u) = inf Q(u I a(z),b(z))ZEE

where a(z) = a, + n,, and b(z)= b + E* xi. For z with 0 < xi 5 mi, i= l,...n,

(a(z), b(z)) ranges over a compact set which excludes (0, 0). Thus, it is clear that

41(u) > 0 for all u > 0.

Now we define the function Pi. For given values z, u1, u2, we let

P1{ ( ,I(U2) if U1 S: Ir,,

u = (u2) otherwise.

It is easy to verify that p,(z, U1, U2) v- .

For generating q we define a function P2 in a similar manner. Let

0 2 (u) = inf/V,(U),
itEE

72= J 2(u) du,

and densities

-~~ -b(U 02(U)__

02(U) = 02(U) and i()=(u) ()
7r2 1 - 72

Note that 7r2 > 0. Now we define P2. For given values y, u1, u2, we let

P2 (YU1iU2) { 4(u 2 ) if u1 < r2,

,A4(u2) otherwise.

It is easy to verify that p2(Y, U3, U4) -t
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In the proof of our theorem, we need the following fact regarding p, and P2. Let

z, i, &, j be arbitrary fixed values in E. Define 0 = pi(z, U1, U2 ), 0 = pI( ,* I, U2),

0 = P2(1/, U3 , U4 ), and P = p2 (ý, U3,1U4 ). From the definitions of p1 and P2 it is

clear that

P{ = 0, 0 E 171 if1(u) du J 1 (u)du>O0

and similarly,

P{4' =t/,4 E L'21 7r2 1 2(U) du 0jq2(u) du > 0,
,2 '2

so that by independence we obtain the following.

Fact 1

9 E>' L2 Ž €(u)du jd 2 (u)du.

Note that this bound does not involve z, i, y, and j.

By Equation (2.18), the generation of SK = (XK, YK) will be done using a

function p3 (,iO, m,z,y,1uU, u 2,u 3), where m > 0, X = (xI,. .. x-) and y =

(y1,... ,Yn-1) are (n - 1)-tuples with x,,y: >_ 0 for all i. The function p3 will be

defined in the following discussion.

In Lemma 2.1, take

A= ae + Nz and B / , +Ny

ae(R) + n - 1 0l(-R) + n -

where Nz = b,,, , and Ny = - 6=,,. Define pi ... , p5 and the distributions

A/, B,, Ad, B/d as in Lemma 2.1. These quantities are all (implicitly) functions of

0, p? Z, and y.
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Now define P3 by

(At(u 3 ), m) if 0 < u1 • 1p1 + P2 and

0 < U2 _ PI/(P1 + P2),

(m, &,t(u 3)) if 0<ul _<pl+p 2 and

P3(,0 0, m, 0, Y, u1 , u2 , u 3 ) = /(PI + P2) < U 2 < 1,

(A'(u3 ), m) if p 1 + p2 < u1 :5-pP + p 2 + p 3 ,

(m,Bt(ud) if p1+P2+P3 < u1 ! P1 +P2±P3++P4,

(mIm) if p + P +p 3 +p 4 < u1 <- .

It is clear that the pair (X, Y) = p3(O,,m, , y, U1, U2 , U3 ) has the distribution

given in (2.7) since the function p3 merely describes a particular way to carry out

the mixing procedure in Lemma 2.1.

The function p3 has two properties which we use in the proof of our theorem.

Pick arbitrary fixed values 0 E (, V) E If, m > 0, and z, i, y, ý in Zn-'. Define

(X,Y) = p 3 (0,O,m, -, Y,U 1 ,U 2 ,U 3 ) and

(X, Y) = P3(0, ,Mi, j, U1,U2, Ua).

First note that X A Y is generated from a continuous distribution when U, <

P, + p2. Therefore we have the following fact.

Fact 2 If U, < (P1 +-p2) A (01 + ,2), then both X A Y and X" A Y5 are generated

from continuous distributions.

In conjunction with this fact, we note that p, + p2 > f/(f + 1), where

-co(m) A /3,(m)
f= n-
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To see this, we go back to the expressions for pl,...,ps given in Lemma 2.1. We

find that

Ad(m)pl = Aj(m)(p 3 + p5) and Bd(m)p2 = B,(m)(p4 + ps).

Since
n-1 n-1

Ad(m) n Bd(m) < n
ae(lz) + n - 1' ,(• + n - V'

) ao(m) 0<0Z(m)
A,(m) = ae(JR) + n -1 ' and () + II

these relations imply

(n - 1)pl Ž_ ae(m)(p3 + p5) and (n - 1)p2 >_ /3Am)(p4 + p.5).

Thus

P1 + P2 f-- f( + P4 + P5) = f" (1 - P - P2)

(see the expressions for pl,... ,ps given in Lemma 2.1) so that P1 + P2 >_ f/(1 + f)

as desired. From assumption 2 of Theorem 1, we know that f is bounded below for

0 E r1 and 0 E r 2 . Therefore, we can state the following fact.

Fact 3 For O E F1 and 4 E r2, the value (p, + p2) is bounded away from 0 by some

quantity which does not depend on 0, 0, z, or y.

Now observe that A and A have the same continuous part; that is A, = A•. This

implies that A, = A• and thus (A,)t = (A,)t. Similarly, (BP)t = (bj)t. This leads

to our next property.

Fact 4 If U1 i• (p, + p2) A (P13+ + i2) and

U2 P A or U2> PI V i_

PI + P2 PI +0"2 PI + P2 P1 + P2'

then X = f(, Y = Y, and X A Y is generated from a continuous distribution.
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Also note that when Nz({m}) = Ny({m}) = 0, we have

Pi__ ae(m)I3O,(m)

PI + P2 a8(m)/),p(M) + a'O(M)#V,,(M)

so that P,/(pi + p2) does not depend on z and V in this situation.

Now, using properties in assumption 2 of Theorem 1, we obtain Fact 5.

Fact 5 If Nz({m}) = Ny({m}) = 0, then for 0 E F, and I E 12 , the value

Pi/(p, + p2) can be bounded away from 0 and 1 by quantities which do not depend

on 0, 0, z, and y.

Combining Facts 3, 4, and 5 leads to our last property.

Fact 6 If N({m}) = NV({m})-- Ni({m}) = Ni({m}) = 0, 0 E •F•, and 0 E r2,

then the probability of the event

{X = X, Y = f, and X A Y is generated from a continuous distribution}

is bounded away from 0 by a quantity which does not depend on 0, 0, z, y, i, or

This concludes the details of the proof of Theorem 1.

Note that

12d.at(F, G) = ( + 6x ,+= ) £data(dO, diP, dX, dY).

(In particular, the marginal posterior distribution of F is a mixture of Dirichlets,

and a similar statement holds for G.) Let

(F, G)(jN) E •'r(,N)+Z= 6x(JN) ® F 6 (JN)
I~N) %= X.N S )+ Y(N
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Corollary 2.1 Let Q•N) denote the distribution of (FG)(IN) when the chain

{S(N}, is started at s. Then under the conditions of Theorem 1, we have

sup IQN){(FG)(3N) E A} - Pdt.{(FG) E A} : e-Aj for all s(O) (2.19)
AEA

where A is the same A that appears in the statement of Theorem 1.

(In (2.19), A = Ao x Ao, where A0 is the smallest a-field on the set of probability

measures on 7? such that the map P '-4 P(B) is measurable for each Borel set

BcJR.)

Proof of Corollary 2.1 Let iri.N) be the distribution of S(JN) when the Markov

chain { 5 (jN)}, is started at s. Fix A E A and let

fA(8) = V 6+E-ffi6x, 9 D,,+3E 16,.

We know that

Q(N) (A) - PdtN)(F, G) E A}= fA(s) dir (a)(8) fA(s) dlr(a)I

IfA(9) d (iN) _r)(s) (2.20)= a[ .r(0) --

- fA( •)d(•(O) - A (s)fd(rSON)

(For a signed measure A, the representation A = A+ - A- is the standard Jordan

decomposition of A.) Since fA(') is a measurable function of 8 that satisfies 0 <

fA(s) _ 1 for all 9, we see that each of the two integrals in the last line of (2.20) is

bounded by exp(-Aj), and this proves Corollary 2.1.

Thus, if for example we want to estimate, for fixed v, the density of fdata(F(v)),

we would use the mixture

1 L n
Z beta (a(,jN) + Z bXcN))(0,v], (ao(,N) + bxtN))(V, 00

Li= i=i
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where beta(a, b)(-) is the Beta density.

2.4 The Algorithm for Arbitrary Systems

In this chapter we discuss the implementation and convergence of the algorithm

in the general case and also the issues of identifiability and frequentist consistency.

2.4.1 Implementation of the Algorithm

Let the autopsy statistics for system i, i = 1,... ,n be (Ti, Di), where Ti is the

death time of the system and Di is the set of components that are dead at time T,.

Recall that after examining (Ti, D1), each component in system i is put into exactly

one of the categories C1, C2, C3, or C4 described in Chapter 1. For a component in

Category C1, one generates an observation according to the distribution (Aýt))(T.,o),

where A(') is defined in (2.9) (i.e. the distribution A(') restricted to (Ti, oo) and

renormalized to be a probability measure). Similarly, for components in Category

C2, we generate an observation from (A(t))[o,T,). For a comnponent in Category C3,

nothing needs to be done.

Suppose there are k components that fall in Category C4. We then use an

extension of Lemma 2.1 describing the conditional distribution of k independent

random variables (k > 2), whose distributions have both absolutely continuous and

discrete components, given the value of their maximum. The necessary formulas are

easy to derive but require elaborate notation to write down explicitly, and so are

not given here. We note however, that the needed computer algorithm is relatively

easy to implement.
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We remark that the case of an arbitrary coherent system is no more difficult than

that for a general parallel system if we note that the set of components in Category

C4 changes from system to system.

2.4.2 Convergence of the Algorithm

When considering the case of an arbitrary system, it is helpful to first look

at the situation when the prior distribution on each Fj is a single Dirichlet, i.e.

there is no mixing. In this case, the updating of the lifelength of component J in

system i is based on (2.9), where ac(,) is replaced simply by a. When updating a

component in Category C1, the probability of drawing from the fixed probability

measure proportional to a(. n (Ti, oo)) is bounded below by a((Ti, oo)) / (a((Ti, oo))+

n - 1), independently of the current state of the chain. A similar statement holds

for the lifelengths of components in Category C2. We have already explained how

to deal with the lifelengths for components in Category C4 in Section 2.3. Thus a

coupling argument along the lines of the proof of Theorem I gives convergence at a

uniform geometric rate.

When the priors on the Fj's are mixtures of Dirichlets, a difficulty arises in that

the distributions %9 (,) in general need not have a uniform lower bound. For parallel

systems we were able to find a uniform lower bound for the posterior distribution of

O given the lifelengths X only because X is known to lie in a compact set. Since the

lifelengths of components in Category C1 do not lie in a compact set, this argument

no longer applies. For general systems convergence of the Markov chain can be

established using the lower bounds established in Theorem 1 in conjunction with
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Theorem 1 of Athreya, Doss, and Sethuraman (1992), which gives simple ergodicity

(i.e. convergence, but not at a geometric rate).

2.4.3 Identifiability and Frequentist Consistency

We begin by giving a precise definition of "consistency of the posterior distri-

bution of F = (F1,..., F)"'. Let Xij be the lifelength of component j in system

i (j = 1,... ,m; Z = 1,2,...), and assume that for each j, the random variables

X l j ,X 2j,... form an iid sequence from FM°0 . Let data(n) be the set of autopsy

statistics for the first n systems. We say that the posterior distribution of F is

consistent at F(°) = (F°)F,...(,F,°)) if with probability one, £dat•,)(F) converges

in distribution to the point mass at F(O), in the weak topology on Prn. We shall say

that the posterior is consistent if it is consistent for every F(O) E Ptm . This notion

of consistency refers to the posterior and not to estimators.

The Dirichlet priors on the positive integers were originally introduced by Freed-

man (1963) as a prior with good consistency properties: He proved that under

standard iid sampling, a Dirichlet prior is consistent for all parameter points in the

topological support of the prior. His results were generalized to the continuous case

by Fabius (1964). Diaconis and Freedman (1983) showed that mixtures of Dirichlet

priors are consistent if

sup a0e(7R) < (2.21)

(in the notation of (2.5)). Note that this result pertains to the parameter F and

not to the mixture parameter 0; see p. 1117 of Diaconis and Freedman (1983).

It is easy to see that the posterior is not consistent for parallel systems, since

it is easy to construct two distinct m-tuples (F(°),. .. , FM()) and (FM',...,F¶.') for
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which the autopsy statistics have identical distributions. Of course, as mentioned

earlier, such systems are not identifiable.

In a recent paper, Lo (1991) showed that for the random censorship model of

survival analysis (which corresponds precisely to the autopsy model for a two com-

ponent series system), the posterior is consistent for any pair (FP°, F(°0 ) such that

F(°' and F(0) have the same essential maxima. A condition analogous to (2.21) is

required on the priors on F, and F2 . We note that the consistency results for the

Kaplan-Meier estimator imply that series systems are identifiable for pairs F(0) and

F(°0 having the same essential maxima.

Since series and parallel systems are often considered extreme cases in coherent

structure theory it is natural to conjecture that under condition (2.21) for each

component, the posterior is consistent at (F(0),..., F()) if the system is identifiable

at (F(°) F(°)).



CHAPTER 3

ANALYSIS OF U.S. AIR FORCE C-17 FUEL QUANTITY

COMPUTER DATA

We illustrate our algorithm on data involving survival times of the Fuel Quantity

(FQ) Computer system of the C-17 transport aircraft. The test program will eventu-

ally involve six aircraft being flown for approximately 10000 cumulative hours. Our

data set is taken relatively early in the test program, since only 2440 flight hours

had been accumulated at the time of this writing. The data, listed below in Table

3.1, fall into one of three categories (we denote the failure times of the "A-bus" and

"B-bus" as X and Y, respectively):

"* The FQ computer fails (both buses are dead) and the maximum survival time,

say to, of the two buses is observed; i.e. we have the usual autopsy statistics

(system failure time and set of dead components). This type of observation

has the form "Max=t0 ".

"* The two components are checked at time ti and time t2 . Both buses are alive

at tj, but one of the buses, say "B", is in a failed state at t2. Even though the

"A-bus" is alive at t2, the FQ computer is replaced. This situation generates

two observations, which have the form Y E (tl, t2] and X E (t 2, 0c).

"* Both components of the FQ computer are alive when the data are taken, but

the aircraft had flown for t 3 hours. The failure times for both buses lie in

37
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the interval [t3 , oo). Thus, two observations are generated: X E (t3 , o0) and

Y E (t 3 , OO).

Note that this data structure is a bit more complex than the data structure in the

autopsy model; however, the required modifications to the algorithm involve no real

difficulties.

The reader may wonder why there is a need for a computer, as opposed to a

simple analogue gauge, to deal with fuel quantity. Indeed, this is not a frivolous

issue. There is actually a need for a computer even during level flight, since the

aircraft maintains its desired center of gravity via fuel transfer from one wing to

another. This task is further complicated as the aircraft flies at different angles or

possibly under turbulence. The FQ computer receives the current angle of flight

from another computer and uses this information, along with readings from a series

of probes in each fuel tank, to make accurate fuel quantity calculations. Also, the

Mission Computer requires input from the FQ computer to make range calculations.

We analyzed the C-17 data using our proposed algorithm. We took our prior on

both F and G to be (2.5), where He is the exponential distribution with parameter

8 (the mean is 1/0). We assumed ae(R1) to be constant in 0 and considered three

cases: ae(R1) = 1, ae(R.) = 10, and ae(RZ) = 100. We took v = g(a, b) (the Gamma

distribution with shape parameter a and scale parameter b), since we wished to

center the prior around the family of exponential distributions, and the Gamma is

conjugate for this family. From (2.11), vx = 9(a + n*, b + F*Xi), where n* is the

number of distinct observations in X and EL*Xi is the sum of the distinct Xi's; Vy

is similarly defined.
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We elicited the prior of a computer systems engineer from the C-17 Special

Programs Office by asking his opinion about the FQ computer Mean Time Before

Failure (MTBF) with respect to two reports. The first report, supplied by the

C-17 manufacturer, provides target numbers for each "Logical Replaceable Unit"

(LRU), including the FQ computer. The manufacturer guarantees that the MTBF

for each LRU, computed at the end of the acceptance testing period, will exceed that

LRU's target number. The C-17 engineer thought it was highly likely (probability

of .9) that the FQ Computer MTBF would exceed the target number (which was

1300 hours). The second report, supplied to the C-17 Special Programs Office

by the manufacturer's design group, contains a list of "mature" MTBF numbers

for each LRU being evaluated. These numbers represent an average of MTBF's,

by LRU, across many different aircraft which have similar LRUs. The data come

from maintenance data accumulated following the acceptance testing periods for

each aircraft (hence the word "mature"). Since these numbers come from mature

aircraft, the C-17 engineer thought it was quite unlikely (probability of .1) that the

FQ Computer MTBF for the acceptance testing period would exceed the mature

MTBF number (which was 3167 hours). Thus, we took 1300 hours and 3167 hours

to be the .1 and .9 quantiles of the distribution of the MTBF for the FQ Computer.

If X ,- (•) (the exponential distribution with parameter 0) and Y

then MTBF = E(X V Y) = (1/(0 + tk))[1 + 0/i/ + 0k/0]. If 0,0' are iid -, g(a, b).

then the .1 and .9 quantiles of the distribution of the MTBF are equal to 1300 and

3167, respectively, when a = 6.04424 and b = 6835.32. Note that if the conditional

distribution of X given 0 is E(0) and 0 is distributed as g(a, b), then the uncondi-

tional cumulative distribution function of X is F(t) = 1 - (b/(b + t))a, which is a
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"shifted Pareto" distribution with parameters a and b. The prior distributions of X

and Y are each shifted Pareto distributions with parameters 6.04424 and 6835.32.

The prior distribution of X V Y is the product of two such distributions.

Of particular interest to the C-17 engineers is the question of how the lifelength of

a future FQ computer, as well as the lifelengths of a future A-bus and B-bus, would

be distributed. The Bayes approach is especially well-suited to answer such a ques-

tion. Figures 3.1, 3.2, and 3.3 give the prior and posterior cumulative distribution

functions for the lifelengths of the C-17 FQ computer (maximum lifelength of the

A-bus and B-bus), the A-bus, and the B-bus, for the cases ag(IZ) = 1, ae(l?) = 10,

and ac(IZ) = 100. Note that for each posterior distribution, the prior distribu-

tion is a shifted Pareto distribution with parameters 6.04424 and 6835.32 (or the

product of two such distributions in the case of Figure 3.1). Recall from Table 3.1

that three real deaths were observed (at times 43.4, 236.8, 244.0), and each one

generates a death for X, Y, and X V Y. Thus, all the posterior distributions have

atoms at these three failure times. Figures 3.4, 3.5, and 3.6 give the prior density

and a representation of the posterior distribution for the future lifelengths of the

maximum, A-bus, and B-bus. The masses at these three failure times have been

removed and plotted as distinct spikes, with their masses labeled separately. The

reader will notice that, even after removing these three atoms, all the posterior dis-

tributions have large "local peaks" just to the left of the removed atoms. These

peaks are not surprising, since the algorithm first determines which component will

be assigned the maximum value, and then assigns a failure time that is less than

the maximum failure time to the other component's lifelength. The atoms assigned

to the lifelength of the "non-maximum" component will tend to be relatively close
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to the observed maximum values whenever those maximum values are small, which

is the case for this data set. It is interesting to note that the distribution of the

lifelength of the B-bus has much more mass to the left of 236.8 hours than the other

two distributions, making it necessary to use a larger scale for the vertical axis in

Figure 3.6. This can be attributed to the two pairs of observations (X 4. Y4) and

(X5 , Ys) (see Table 3.1), which were generated due to a failure in the B-bus while

the A-bus was still functioning. For low values of aq(R) (the cases ao(R) = 1 and

ae(R) = 10), these two observations cause the algorithm to assign a fairly high value

to the conditional probability that the lifelength of the A-bus is set to the observed

maximum and the lifelength of the B-bus is set to a value less than the observed

maximum. Figures 3.7, 3.8, and 3.9 give the density estimates for the lifelengths of

a future maximum, A-bus, and B-bus, with the spikes smoothed. In these figures,

it can be seen that the masses at the three observed FQ computer failure times

account for much of the mass in the posterior distributions for the cases a((R) = 1

and ae(7Z) = 10.

Due to the small sample size of our data set, we were able to run the Gibbs

sampler with one long chain of length 500000, skipping every tenth value. We used

the output of of the algorithm to generate 50000 lifelengths of a future maximum,

A-bus, and B-bus.

The means of the posterior distributions of the lifelengths of the FQ computer,

for the cases ae(RT) = 1, ao(R) = 10, and aeo(R) = 100, are 1254, 1230, and 1230

hours, respectively. At this relatively early stage of the study, we conclude that the

performance of the FQ computer is not as good as the Air Force would like to see,

as the means are just below the minimum acceptable MTBF. However, we caution
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that the study will continue for an additional two years beyond the close of our data

set, and that some of the early failures experienced can be directly attributed to

oihgoing design changes. It will be interesting to rerun the algorithm on the updated

data set at the close of the acceptance testing period.
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Prior Distribution Function for Lifelength of Maximum
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Posterior Distribution Function for Lifelength of Maximum, alpha(R)-1
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hoW

Posterior Distribution Function for Ufelength of Maximum, alpha(R)-l .0

0 1000 00 00 40 00

Posterior Distribution Function for Lifelengtth of Maximum, aiphalR)-1 00

Figure 3.1. Prior and Posterior Cumulative Dist-ibution Functions for the life-
length of C-17 FQ Computer (Maximum of A-bus and B-bus), a(R) = 1, a(R) = 10,
and a(R) = 100.
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Prior Distribution Function for Lifelength of A-bus
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Posterior Distribution Function for Lifelength of A-bus, alpha(R)-1
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Posterior Distribution Function for Uifelength of A-bus, alpha(R)-100
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howl

Posterior Distribution Function for Ufelength of A-bus, alpha(R)-1IO

6

0

0 low0 O0w 300 4M0 500

Figure 3.2. Prior and Posterior Cumulative Distribution Functions for the life-

length of the FQ Computer's A-bus, ce(R) = 1, a(R) = 10, and a(R) = 100.
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Prior Distribution Function for Lifelength of B-bus

Posterior Distribution Function for Lifalength of B-bus, alphalR)-lO

CY

aC,!:
0 1000 2000 300 400 500

hms:

Posterior Distribution Function for Lifelength of B-bus, alpha(R)-l01

0 lowo 200 3000 400 50M

lMM
Figure 3.3. Prior and Posterior Cumulative, Distribution Functions for the life-
length of the FQ Computer's B-bus, a(R) = 1, n(R) = 10, and a(R) = 100.
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Table 3.1. C-17 Fuel Quantity Computer Data. The first three lines contain
observed FQ Computer failure times. The next two categories (four observations)
occurred when the FQ computer was replaced due to a failure in one bus. The
remaining observations occurred because no more data is available.

Aircraft Id Event hours Observation

P-1 FQ Computer failed 43.4 XI V Y1 = 43.4

P-1 FQ Computer failed 236.8 X2 V V2 = 236.8

P-2 FQ Computer failed 244.0 X3 V Y3 = 244.0

T-1 A-bus and B-bus alive 11.9

B-bus dead 15.4 Y4 E (11.9, 15.41

FQ Computer replaced 15.4 X 4 E (15.4, oo)

P-4 A-bus and B-bus alive 174.4

B-bus dead 181.8 Y5 E (174.4,181.8]

FQ Computer replaced 181.8 X5 E (181.8, oo)

T-1 A-bus and B-bus alive 819.6 X 6 E (819.6, cc)

no more data available Y6 E (819.6, cc)

P-1 A-bus and B-bus alive 85.0 X 7 E (85.0, cc)

no more data available Y7 E (85.0, cc)

P-2 A-bus and B-bus alive 476.4 X8 E (476.4, oo)

no more data available Y8 E (476.4, oo)

P-3 A-bus and B-bus alive 24.5 Xg E (24.5, oo)

independent software failure Y9 E (24.5, oo)

P-3 A-bus and B-bus alive 71.7 X10 E (71.7, oc)

no more data available Yio E (71.7, :o)

P-4 A-bus and B-bus alive 68.4 X 11 E (68.4, cc)
no more data available E (68.4, cc)

P-5 A-bus and B-bus alive 173.4 X12 E (173.4. o)

no more data available Y12 E (173.4, oo)
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Figure 3.4. Prior and Posterior Density Estimates for the Iifelength of the FQ
Computer (Maximum of A-bus and B-bus), a(R) =1, a(R) =10. and a(R) = 100.
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Figure 3.6. Prior and Posterior Density Estimates for the Iifelength of the FQ
Computer's B-bus, a(R) = 1, a(R) = 10, and a(R) = 100.
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Figure 3.7. Prior and Posterior Density Estimates for the lifelength of the FQ
Computer (Maximum of A-bus and B-bus), a(R) = 1, a(R) = 10, and a(R) = 100.
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Figure 3.9. Prior and Posterior Density Estimates for the lifelength of the FQ
Computer's B-bus, a(R) = 1, a(R) = 10, and a(R) = 100.
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