
I AD-A283 071

I TEXAS A&M UNIVERSITY

Hardware implementation of a
Desktop Supercomputer for

High Performance Image Processing
ONR Grant Number N00014-94-1-0516

I DTIC
I I\UG1 111994

94-24977 -~* 1876

DEPARTMENT OF ELJECTRICAL ENGINEERING
j ~College Station, Team

94I
047.-

THIS DOCUMENT IS BEST

QUALITY AVAILABLE. THE COPY
FURNISHED TO DTIC CONTAINED
A SIGNIFICANT NUMBER OF
COLOR PAGES WHICH DO NOT
REPRODUCE LEGIBLY ON BLACK

AND WHITE MICROFICHE.

I
3
I
I

Hardware Implementation of a
Desktop Supercomputer for

High Performance image Processing

3 ONR Grant Number N00014-94-1-0516

Technical Report3 May/01/94 - Aug/01/94

I
I

u OIGC
I ~~AUG 1 1 3

COLOR IMAGE PROCESSING USING
CELLULAR NEURAL NETWORKS G

Dr. Jose Pineda de Gyvez

..Texas A&M University
Microelectronics Group
Department of Electrical Engineering

College Station, TX, 77843

Phone: (409) 8457477
FAX: (409) 8457161
Email:gyvez@ pineda.tamu.edu

.e.,

I
I TABLE OF CONTENTS

i
I. Introduction 2I2. Background Theory .. 2

2.1 Cellular Neural Networks ... 3

I 3. Color Processing ... 4

4. Image Based Behavioral Simulation .. 7

5. A CNN Post-pr r .. 9

6. Color Image Processing Using CNN .. 9

7. Conclusion .. 12

1 Acknowledgement ... 13

References ... 13I
Unanoupunced 0

by - •IOiA 1bitionI

Avjaji and I or.

Dist Special

II
I
II

!I

I

B
I I1. INTRODUCTION

The Cellular Neural Network (CNN) paradigm has rapidly evolved to cover a wide range of applica-
tions which are typically characterized by their spatial dynamics[1]. One particular area of big inter-
est is filtering for image processing. Enormous advances have been made by many researchers in this
field[2]. Among the relevant work is the creation of templates capable of several image processing3 applications and the development of special purpose algorithms such as halftoning and character
recognition, to mention some[3-6]. However, except for the fundamental work on color processing
developed by Roska et. al.[7], all of the work presented so far deals only with black and white
images. This probably stems from the fact that the CNN paradigm was created only for binary states,
giving up, somehow, the wide range that the activation energy is capable of. Yet, to handle realistic3 situations it is necessary to advance the state of the art into color image processing.

Another interesting and propitious area of research concerns multi-layer CNN[8]. Simulation strat-
egies based on CNN multi-layer architectures are an ideal vehicle for color image processing. This is
because each pixel's color can be handled as a triplet <Red Green Blue> whose combinations yield a
secondary color. It follows then that it is possible to allocate a layer of CNN cells to each primary
color component, carry out the processing independently, and then form the triplet to see the results.
We call this approach a sequential colorprocessing mode. The counterpart is a concurrent colorpro-

I cessing mode. This mode results from applications in which it is not desired to split a pixel's color
into its three basic components. In this case it would be necessary to have an output function that

I would be based on the Euclidean distance, or any other norm, of the three RGB values.

The basic structure of the simulator presented in this paper is based on a high performance software
capable of efficiently dealing with large images in the order of 105 pixels [9, 10]. The simulator oper-
ates in a sequential mode. This provides an added flexibility to create individual templates that can
be applied on single colors to obtain a full mix of applications/colors. The simulator runs in an X-
Windows environment and uses the Graphics Interface Format (GIF) format as standard input.

Although CNN is already well established in the literature, its link to cellular automata has only been
sketched. Therefore, as preliminary background, section 2 introduces the CNN paradigm based on
strict definitions of automata networks. Sections 3 and 4 address the color processing capabilities
and behavioral simulation approach of our software. Section 5 presents the software environment
and post-processing capabilities for image processing. Section 6 acquaints us with some image pro-
cessing applications of CNN in practical situations and also presents comparisons between different
color-mapping strategies implemented in the simulator.

I 2. BACKGROUND THEORY
Cellular automata was originally introduced by Ulam and von Neumann as a particular case of Au-

I tomata Networks[11]. Cellular Automata is distinguished mainly because its graph follows a reg-
lar lattice Z. Its neighborhood structure and the transition function among vertices are translationI invariant, i.e. they are the same for all vertices; additionally, the state updating rule is synchronous.

I
ILet I = Zd where d is the dimension of the lattice. If a set of connections V C Zd X Zd is translation

invariant, meaning (j, i) E V iff (j+k, i+k) E V, the graph G = (Zd, 1') is called a cellular space.
Cellular Automata are automata defined on the cellular space whose transition function is also
translation invariant: fi = f for any i e Zd with f : Q v'l -• Q. and Q the set of states.

An important class of Automata Networks are the McCulloch-Pitts Automata, also called Neural
Networks. Its graph G = (1, V) possesses a weighted structure: for every edge (j, i) E V, a real num-
ber wij EE Ris assigned to it to represent its weight. The state set is usually Q -1,1) or Q = {0,1}.

I When the state set Q is 1-1,1), the local functions are as follows: fi: 1-1, 1) ' - 1(0, 1), fi (.I :J e
Vi) = sign (> W, xj - b) where sign is the threshold function (or the activation function, as it is

Iknown in Neural Network literature). The weights are interpreted as synapses which are either excit-

atory if the weight w > 0, or inhibitory if w < 0. Therefore, the state of the neuron at vertex i will be

excited if the weighted sum Z w4 xj is greater than its threshold b, A bias can be included by

adding a component xo = I to the vector x, and it is treated exactly like any other weight. The well
known bipolar sigmoid function with range from -I to + I is often used as the activation function for
networks in which the desired outputs values either are-I or +1 or are in the interval between -I and
+1. Furthermore, Neural Networks are often classified as single-layer or multi-layer, and the num-

j ber of layers in the network can be defined to be the number of layers of weighted interconnection
links between the neurons. In summary, a Neural Network is characterized by its architecture, i.e. its
pattern of connections between the neurons, its training algorithm, i.e. its method of determining the
weights on the connections, and its activation function.

CNN possesses some of the key features of both Cellular Automata and Neural Networks. Like Cel-
lular Automata, it has a structure of cellular space, Zd, with the neighborhood and the transition func-
tion being translation invariant. The neighborhood is shown in Fig. Ia. Notice the full interconnec-
tion between a cell and its neighboring cells. The transition function, fi, in this case is a nonlinear
differential equation. Both CNN and Cellular Automata have parallel signal processing capability,
and their dynamics is based on the nearest neighbor interactions. There are also differences between
the two, the main one being that while CNN is a continuous time dynamical system, Cellular Autom-
ata is a discrete time system. Like Neural Networks, CNN's continuous time feature allows real-time
signal processing. Among the similarities are the concepts of weighted interconnections, wy, the
bias, b, and the activation function. The multi-layer feature is also used in CNN.

2.1. CELLULAR NEURAL NETWORKS
The basic unit of CNN is called a cell [12,13]. Any cell, C(ij), is connected only to its neighbor cells,

i.e. adjacent cells interact directly with each other. This neighborhood is denoted as N(ij). Cells not
in the immediate neighborhood have indirect effect because of the propagation effects of the dynam-
ics of the network. Each cell has a state x, input u, and output y. The state of each cell is bounded for
all time t > 0 and, after the transient has settled down, a cellular neural network always approaches

one of its stable equilibrium points. This last fact is relevant because it implies that the system will

3

I
not oscillate. The dynamics of a CNN has both output feedback (A) and input control (B) mecha-
nisms. The equivalent block diagram of a continuos-time cell is shown in Fig. lb. The first order
nonlinear differential equation defining the dynamics of a cellular neural network cell can be written
as follows

Rt .. xj# A(i~j;k, 1) y,,t) + > B(i~j;k,l1) u + 1 (1)
dt __ J- Q) M~JENij) CQMLEN,(ij)

-i) l(txp) + II - ixomt - 11) (2)

where xq is the state of cell C(ij), xqi(O) is the initial condition of the cell, C and R conform the in-
tegration time constant of the system, and I is an independent bias constant A(ij;k, 1) yj and B(ij;kj)
&W are programming templates for all cells C(k1L) in the neighborhood N(ij) of cell C(ij), and yij
represents the output equation, i.e. the activation function for the cell. This function is shown in Fig.

2.
Notice from the summation operators that each cell is affected by its neighbor cells. A(.) acts on the
output of neighboring cells and is referred to as the feedback operator. B(.) in turn affects the input
control and is referred to as the control operator. Specific entry values of matrices A(-) and B(.) are

application dependent and space invariant. The matrices are also known as cloning templates[14,

15]. A constant bias I and the cloning templates determine the transient behavior of the cellular non-
linear network.

In image processing applications the concept of locality is important. Usually, a pixel's value is cal-
culated based only on its neighbor pixels. Neural Networks like Hopfield lack this property of local-
ity making them unsuitable for image processing applications.

3. COLOR PROCESSING
To perform any kind of color image processing, a color model must be selected. With CNN, there is
no exception. The purpose of a color model is to facilitate the specification of colors in some stan-
dard manner. Basically, a color model is a specification of a 3-dimensional coordinate system and a
subspace within that system where each color is represented by a point[16, 17].

In most cases, a pixel's value is indexed into a table of colors referred to as palette. However, bitmaps
that represent a large number of colors simultaneously generally do not employ the palette scheme
because it is too costly in terms of memory. Virtually, all computer display hardware employs the
RGB (Red Green Blue) model. In this scheme a color is represented by the relative amounts of color
(intensities) of three primary colors that are required to produce the given color. The RGB model is
an additive primary system that describes a color in terms of the percentage of red, green, and blue in
the color. These three colors are called additive primaries. Mixing them is like combining colored
lights: combining 100% red, 100% green, and 100% blue creates white, i.e. <255, 255,255> in RGB
values. Conversely, combining 0% red, 0% green, and 0% blue creates black, <0, 0, 0> in RGB
values.

4

I
The model chosen for color image processing with CNN is the RGB model. Using the RGB model
has the advantage that each primary color can be represented by a CNN layer, e.g. red, green and blue
layers LR, L3, LB. Thus, a simulation approach is to have the triplet <RGB> processed by a three-
layer CNN, with each layer processing a primary color. Following this idea it is then possible to
apply distinct templates to each color layer and even to apply templates in between color layers.
Therefore, with the ability to process RGB separately, plus the interlayer template effects, more com-
plex image processing applications can be done. It is thus possible to do, say, edge detection in ZR,

and averaging in 14-, simultaneously.

To be able to work with multiple layers, the basic CNN equation (1) can rapidly be expanded to a
matricidal equation of the following form

dx!!!) = -. x) + A(i,j;k,l) y(t) + & B(ij;k,1) uld + I (3a)
dt-

yip)=lcx() + 11-Ixpt -1) (3b)

2"

where for simplicity the time integration constant has been assumed to be unity. In this last equation,
instead of only one state variable per cell there are three state variables to be able to process color. A
and B are block triangular matrices and I, x, y are vectors as follows:

[A, 0 01 [Br 0 01
A- Arg Ag 0 B - Bgb B 0 (4a)

1Ab Agb A] Brb Bg, Bb]

"X~~ -Yi

x -- I y= IY8 u - uiiI 1 g= (4b)

where subindexes rg,b have been used to refer to color layers 4R, 1O, LB, respectively. Notice that

although the state variables are independent of each other, layer interaction is permitted through the
A and B templates, see Fig. 3. For instance, template AT has effect on both red and green layers si-
multaneously.

The characteristics generally used to distinguish one color from another are brightness, hue and satu-
ration. Brightness embodies the chromatic notion of intensity. Hue is an attribute associated with the
dominant wavelength in a mixture of light waves. Thus, hue represents a dominant color as per-
ceived by the observer; when an object is called red, orange or yellow one is specifying its hue. Satu-
ration refers to the relative purity or the amount of white light mixed with a hue. The pure spectrum
of colors is fully saturated. Colors such as pink (red and white) are less saturated, with the degree of
saturation being inversely proportionals to the amount of white light added.

5

Recall now from equation (2) that the CNN's output function is binary In other words, if the color is
taken directly from the output function the color would be either fully saturated or black. Moreover,
combining the three saturated colors <RGB> would yield only a small gamut of distinct colors. To be
able to make use of a full range of hues, the color information is taken from the cell's state rather than
from the output itself. Notice however that the cell's state, x, is not bounded, and while with fully
saturated colors there is a straight mapping from CNN output values to color intensities, e.g. C :
(-1,1) -4 [0, 255, the problem here is more complex as the state x can take any value. In other
words, we need to find a function capable of mapping all real numbers to the closed interval [0..255],
e.g. C : R -4 10,1,2... 255.

We investigated two color mapping schemes: a continuos mode and a quantized mode. The latter one
is based on a linear mapping using the maximum and minimum layer colors as bounds to generate a
discrete (quantized) range of colors. The general mapping is as follows

z = (G - x[(5)

where z is the quantized color x is the current cell's state, M is the minimum layer state value, x,, is the
maximum layer state value and G the absolute quantized value obtained as 29, for 0•_ < g _• 8, with
g the number of bit levels. Recall from equation (2) that valid state values exclude the open interval
range (-1,1). This precludes the applicability of the general mapping as we have essentially negative
state values which could yield negative pixel values. Therefore. the state is mapped to a linear func-
tion in the following form:

Z = !I+ 2 lo02{(G -1) r 1x)]} forx> I (6a)

Z = ,- .Lo04(G - 1)[ro(l))]1 forx < (6b)z=2 2g I •X 15)

where J is the absolute maximum color value, i.e. J = 255. Notice that this value is split at half the
color range. This is an arbitrary cut-off which has given us good visual perceptive results. Fig. 4
shows the benchmark used to test the mapping technique. The template used for this example corre-
sponds to a non-filtering application characterized by minimum feedback and high gain feed for-
ward as follows

A = J000 B = 2] (7)
000

This template is applied to all three layers LR, 4G, and LB. A high entry value in the B template ensur-
es that the strength of the input pixel value remains unchanged. This is further balanced with I bias
whose negative value brightens every single pixel in the whole image. We found no color difference

between the benchmark and processed result.

6

For the continuos mode mapping, the bilinear transformation employed in analog to digital filter
transformations was applied. This transformation can be characterized by the function C : R -+
(-1, 1). In other words, the set of real numbers is mapped to numbers bounded between -I and 1. A
second mapping can then be applied to the bounded numbers so that their values can be scaled to the
appropriate color range values between 0 and 255. The general form of the bilinear transformation is
given by

x+l (8)
z= 1 -X

where Jis the maximum absolute color value and x is the state value. Notice that this particular func-
tion will map all states x < -I to Izi < 1. This obviously leaves positive states unbounded. To over-
come this problem the mapping is split in two transformations as follows

Z = .- 1 [+ 1 for x> I (9a)

Z=[+ for x < -1 (9b)

where x is taken as the negative of the current state value. The mapping was also tested on the bench-
mark of Fig. 4. This technique presented a small error of 2.3% on each primary color. This difference
is actually not perceived by simple visual inspection.

We can conclude that both color mapping techniques are good. From our own experience we have
noticed that for applications in which sharp color changes need to be highlighted the quantized mode
projects good visualization results. In applications for which the color change is smooth the conti-
nuos mode is very suitable. Examples of applications with sharp color changes are edge detection
and thresholding, and applications with smooth color changes are averaging and noise removal, to
just mention a few.

4. IMAGE BASED BEHAVIORAL SIMULATION
Recall that equation (1) is space invariant, which means that A(ij;kl) = A(i-kJ--) and B(ij;kl) =
B(i-kj--l) for all ijjk,l. Therefore, the solution of the system of difference equations can be seen as a
convolution process between the image and the CNN processors. The basic approach is to imagine a
square subimage area centered at (xy), with the subimage being the same size of the templates in-
volved in the simulation. The center of this subimage is then moved from pixel to pixel starting, say,
at the top left comer and applying theA and B templates at each location (xy) to solve the differential
equation. This procedure is repeated for each time step, for all the pixels. An instance of this image
scanning-processing is referred to as an "iteration". The processing stops when it is found that the
states of all CNN processors have converged to steady-state values, and the outputs of its neighbor
cells are saturated, e.g. they have a ±1 value. This whole simulating approach is referred to as raster
simulation. The raster approach implies that each pixel is mapped onto a CNN processor. That is, we

7

have an image processing function in the spatial domain that can be expressed as g(xy) = T(f(xy))
where ft-) is the input image, g(.) the processed image, and Tis an operator onf.) defined over the
neighborhood of (xy). For CNN this means that an output image pixel is only influenced by input
image pixels within some extent area r in the neighborhood of the corresponding output image pixel.
In common image processing applications T(-) is usually carried out as a convolution process be-
tween a response function array and the input image. For CNN this is a 2-D convolutional layer with
feedback. The layer extracts information from two maps, i.e. the input and the current output states,
using templates A and B to produce new output states. For image processing applications it is conve-
nient to restrict the input and output arrays to be of the same dimension. Notice that when the tem-
plates are located on the border of the input image, the convolution process of A and B does not in-
volve all of its elements. To deal with this border effect a center zero padded superposition model is
used. That is to say, a virtual set of border cells, initialized to zero state values, is created. The multi-
layer CNN raster simulation algorithm is presented in Fig. 5.

For the purpose of solving the initial-value problem, well established single-step methods of nu-
merical integration techniques are used[18]. Three of the most widely used single-step algorithms
are applied in the CNN behavioral simulator described here. They are the Euler's algorithm, the Im-
proved Euler Predictor-Corrector algorithm and the Fourth-Order (quartic) Runge-Kutta algo-
rithm. Euler's method is the simplest of all algorithms for solving ODEs. It is an explicit formula
which uses the Taylor-series expansion to calculate the approximation. The Improved Euler Predic-
tor-Corrector method uses both explicit (predictor) and implicit (corrector) formulae. The integral
is calculated by multiplying a step size t with the averaged sum of both the derivative of the discre-
tized state, x(nr), and the derivative of the predicted state, xp((n+l)t), at the next time step. The 4th
order Runge-Kutta method is the most costly among the three methods in terms of computation
time, as it requires four derivative evaluations per time step. However, its high cost is compensated
by its accuracy in transient behavior analysis.

Since speed is one of the main concerns in the simulation, finding the maximum step size that still
yields convergence for a template can be helpful in speeding up the system. The speed-up can be
achieved by selecting an appropriate step size r for that particular template, See Fig. 6a. The impor-
tance of selecting an appropriate r can be easily visualized in Fig. 6b. If the step size chosen is too
small, the simulation might take many iterations, hence longer time to achieve convergence. On the
other hand, if the step size taken is too large, the simulation might not converge at all or it would
converge to erroneous steady state values; the latter remark can be observed for the Euler integration
method in the plots of Fig. 6b. The past results were obtained by simulating a small image of size
16x16 (256 pixels) using an Edge Detection template on a diamond figure on only one layer. In Fig.
7, simulation time computations using an averaging template for images of sizes to about 250,000
pixels are shown.

8

5. A CNN POST-PROCESSOR
The simulator was built using many of the features of the public domain software XPaint[19]. The
environment is menu driven and allows to create color palletes. new canvas, in addition to the stan-
dard graphics features such as brushes, lines, circles, etc.

The intrinsic features of CNN were grouped under one single menu. Among the features of the CNN
software are capabilities for single layer, multi-layer and time multiplexing simulations, control of
the numerical integration, control over the initial conditions of the process and the color mode in
which the system operates. Templates can also be edited on-line making out of this a very useful
feature especially during the development of new applications.

Doing image processing with CNN may not always yield the desired results and post-processing
becomes then necessary. The CNN post-processor consists of a compiler capable of handling logical
pixelwise operations among distinct color layers. This compiler follows the trends of having CNN as
an analogic microprocessor[201. The added capability allows to create new processed images with
say, one layer processed by CNN and the remaining layers logically manipulated between CNN re-
sults and the original image. Detailed examples of this extended processing capability are given in
the next section. Fig. 8 shows the syntax of the post-processing language using a Backus Naur Form
notation; keywords and variables are identified as boldface and italic words, respectively.

All the files to be processed by this CNN pot-processor must be specified at the beginning of the
program as indicated in statement 1. When a file is read, the program splits the pixel information into
its basic RGB components. This strategy is used to create three unique layers that contain the color
coded information of the image. Statement 3 shows the logical pixelwise operations among layers.
These operations include the conventional NOT, OR, AND, XOR, shift-left, and shift-right func-
tioTis indicated in statement 6. Operations can be performed on the layers of a file or a variable but
must always be stored in a variable. The only three valid layers are assigned to the triplet <RGB>
and are specified by means of keywords, see statement 8. Every variable's layer is initialized to
"black" when first used. Finally, the new processed image is spooled out in statement 9 in which it is
required to specify the name of the output file and the variable containing the image to be printed.

6. COLOR IMAGE PROCESSING USING CNN
This section of the paper will try to demonstrate the capabilities of our software and the enormous
potential that CNN has on a wide variety of applications. For this purpose, we will present five exam-
ples with applications in medical image processing, weather forecast, image restoration and simple
color manipulation.

The first example deals with color contrasting. Let us bring your attention to the top region of Fig. 9a
(160,590 pixels) at the height of the austronaut's helmet. Here, it is very difficult to perceive a set of
clouds hidden in the blue background. This image was processed with the following templates[2I]

9

I0.01 -0.075 0.01 1 -0.13 -0.
A - 0.075 1.28 -0.075 0.12 0.71 -0.1 3 = -0.365 (10)

0.01 -0.075 0.01 0.04 - 0.13 - 0.04'

The purpose of this template combination is to do a soft edge detection on all three color layers. The
simulator was set to operate in a quantized color mode and was stopped after 3 iterations. The result-
ing proces& .I image with the clouds uncovered is shown in Fig. 9b. Fig. 9c shows the same image
after the edge detection process was completed in 21 iterations. Edging and contrasting operations
performed by CNN are quite obvious. This particular example raises the following interesting re-
mark. Notice that although CNN is searching for the steady state solution of a partial differential
equation, in image processing applications intermediate or partial solutions may be sufficient to
visualize the results.

The second example deals with the X-rays image of a chest cage (148,370 pixels) displayed in Fig.
I Oa. The objective is to color-code the black and white image and to highlight hidden features in the
esternun. The image was treated two times with distinct templates. First, a "pixel peeler" template5 was used to widen visual and hidden contours in the ima,;e. The resulting image is displayed in Fig.
I Ob. Observe the black dots along the contour of the ribs. This template was chosen instead of a com-
mon edge detector because the latter leaves only the contours and darkens the body of the image.
This would actually alter the information contained in the image as our goal was to only highlight the
edges. The template "peels" the rightmost pixel from any two or more adjacent pixeis; this action is
executed through the B template. Both templates are as follows

SA'[20] B = [330] =-0 (lla)0] 0 0]

5 The resulting image was further processed by a "filler template". The template was applied only to
the red layer; the other two remaining layers were processed with the unity template described by
equation (7). These templates are as follows

i A2=[l1 B ==[040] 1=-1 (lib)

Basically, the function of the A template is to feed the pixel values of the neighboring pixels into the
current pixel. A negative bias is used to avoid having an excessively dark image. The result of this
operation is shown in Fig. lOc. The CNN processor undoubtedly did its work. Unfortunately, the3 visualization of the results is not optimal as the image has still many gray tones. Hence, the image
was post-processed to achieve an optimal color manipulation. The post-processing program is listed
below

(main original.gif edge.gif edge2.gif
(xx->red, edge.gif->red 11 edge2.gif->red)

10

I
(xx->green, original.gif->green II edge.gif->green)
(xx->blue, original .gif->blue)
(output (outxx)))

The files original.gif, edge.gif, and edge2.gif correspond to the original black and

white image, the image processed in the continuos color mode, and the image processed in the quan-
tized mode, respectively. The program does the following. i) The red layer of both edge detection
operations is ORed to obtain soft and hard tone contours, H) the green layer of the original image is
ORed with the green layer of the edge detection obtained using the quantized color mode, and iW) the
blue layer is left intact. The result of this post processing is shown in Fig. 10d. It is quite obvious that
CNN was able to detect the hidden features in the esternun which otherwise are impossible to per-
ceive from the original black and white image.

Our next example concerns image restoration. Fig. 11 a displays the famous Monalisa (196,312 pix-
els) with a white scratch along the eyes. The restored image is displayed in Fig. 1 lb. This particular
image is very difficult to restore because the background in the neighborhood of the scratch is not
made of a solid color. The background presents a very irregular and granular surface which cannot be
restored using only and Average Template. The use of such a template would tend to smooth out the
granular structures leading to an incorrect restoration. Instead, a sequence of vertical and horizontal
pixel peeling templates in addition to the standard averaging template were used.

5 This forthcoming example demonstrates CNN's ability to color-code a black and white image. The
image presented in Fig. 12a corresponds to an actual satellite weather map (200,984 pixels) taken on
May 25 1994 (the reader can see that we had a very cloudy weather). The goal was to obtain a result
as close as possible to the standard color-coded maps used in weather forecasts. These maps use
bright tones of green to show light clouds up to red tones to show strong rain intensities. The image5 was treated with color thresholding techniques using intensively the bias factor 1. The result of this
operation is displayed in Fig. 12b. The templates are as follows

Ared = 2.0 Agrer, = 01 =

0 0 = 010

=B I 4r] d = -0.25 Igreen = -5.9 Ibl,• = -0.55

I The A template is used basically to operate on the quality of the colors. A large value in the center of
this template helps to obtain a brighter color on the result. This explains the very high value for the3 green layer. A large value in the center of the B template is used to reinforce the effect of the input
image on the final result. The thresholding function of I bias works as follows. Negative values,
force the color of the layer to dominate on the final image. In other words, if we make I bias very

I 11

U
negative, a weaker degree of gray will be enough to make the corresponding color appear on the
resulting image. This explains the different values adopted for L The result was further processed by
the following program

(main map.gif
(w->red, map.gif->blue II map.gif->red)5 (w->green, map.gif->green ^ map.gif->blue)
(output (outw)))

This program changes the white color into red, allowing us to obtain the result that we were looking
for, see Fig. 12c.

I Thelast example is again in the area of medical image processing. In this case CNN is used to high-
light the extraction of blood vessels in a cross section from a cardiac image (68,040 pixels), see Fig.
i13a. The procedure consisted in applying a strong edge detection template with the simulator work-
ing in the quantized color mode. The templates used in this operations look as follows

r 0 0] - .25 - 0.25 - 0.2
A__0A0] B=[- 0.25 2 -0.25 1 = 3.5 (12)

S00.25 -0.25 -0.25

5Ile B template resembles more the Laplacian operation commonly performed in digital image pro-
cessing operations[7]. A large value in the A template reinforces only the output pixel value. A posi-
tive I bias leaves the areas outside the detected contour in a dark color. The result of applying these
templates is displayed in Fig. 13b. Notice that the contour is perfectly detected. The post processor
was used with this image together with the original image. The program used is as follows

I (main edge.gif original.gif
(xx->red, -edge. gif->red)
(xx->red, xx->red && original.gif->red)
(xx->green, original.gif->green)
(xx->blue, edge.gif->blue A original.gif->blue)
(output (out,xx)))

The files edge. gi f and original .gi f contain the processed and original images, respective-
ly. The post processing objective is to delete the red color from the white areas of Fig. 13b and to
highlight them in a color-coded fashion as these are the areas that contain the blood vessels. The
blood vessels will be highlighted using green and blue tones. To do this, the red color layer is in-
verted to delete the color from the edge detected white area and the green and blue layers are pro-3 cessed with the original image. The result of this operation is shown in Fig. 13c.

7. CONCLUSION
A Cellular Neural Network environment for color image processing was presented in this paper. The
work hereby introduced advanced the state of the art into processing of color images. It was demon-

12I

3 strated that by collecting results from the cell's state rather than from its soft limited output, it is
possible to obtain a full gamut of color tones. It was observed that this mapping of cell states to color
values is not straightforward because the states are not bounded. To overcome this limitation two
color mapping schemes were introduced that effectively assign states to distinct color hues. The er-
ror produced by these schemes is minimum. Therefore they are deemed to be very suitable for CNN

5 color simulations.

Finally, from the examples presented in the last section, one can see the unquestionable potential of5 CNN in image processing applications.

I ACKNOWLEDGEMENT
The author thank Mr. Maurizio Basso for developing the templates to process the weather map3image.

I REFERENCES
[I] L.O. Chua and T. Roska, "The CNN Paradigm," IEEE Trans. on Circuits and Systems -].:Funda-

mental Theory and Applications, vol 40, no. 3, pp. 147-156, March 1993.

[2] T. Matsumoto, T. Yokohama, H. Suzuki, and R. Furukawa, "Several image processing examples
by CNN, " Proc. IEEE Int. Workshop on Cellular Neural Networks and Their Applications,
pplOO-I1, 1990.

[3] T. Matsumoto, L.O. Chua, and H. Suzuki, "CNN clonning template: Shadow detector, " IEEE
Trans. Circuits Syst., vol 37, pp. 1070-1073, Aug. 1990.

[4] T. Matsumoto, L.O. Chua, and H. Suzuki, "CNN clonning template: Connected Component De-
tector, "IEEE Trans. Circuits Syst., vol 37, pp. 633-635, May. 1990.

[5] T. Matsumoto, L.O. Chua and T. Yokohama, "Image Thining with a Cellular Neural Network,"

IEEE Trans. on Cricuits Syst., vol 37, pp. 633-635, May 1990.

[6] K.R. Crounse, T. Roska, and L.O. Chua, "Image Halftoning with Cellular Neural Networks,"
IEEE Trans. Ciruits & Syst., vol. 40, pp. 267-283, April 1993.

[7] T. Roska, A. Zarfndy, L.O. Chua, "Color Image Processing using Multi-layer CNN Structure,"
H Didiev (ed), Circuit Theory and Design 93, Elsevier, Amsterdam, 1993.

3 [8] L.O. Chua and B.E. Shi, "Multiple Layer Cellular Neural Networks: A tutorial," Algorithms and
Parallel VLSlArchitectures, E.F Deprettere and A. van der Veen, Eds., vol. A: Tutorials, New
York: Elsevier, 1991, pp. 137-168.

[9] C.C. Lee and J. Pineda de Gyvez, "Single-Layer CNN Simulator," Proc. IEEE Int. Symposium
on Circuits and Syst., 1994

13

I
I [10] C.C. Lee and J. Pineda de Gyvez, "Tune-Multiplexing CNN Simulator", Proc. IEEE lnt. Sym-

posium on Circuits and Syst., 1994

U [11] L. Fausett, "Fundamentals of Neural Networks, Architectures, Algorithms and Applications,"
Prentice Hall, Englewood Cliffs, 1994

I [12] L 0. Chua and L. Yang, "Cellular Neural Networks: Theory," IEEE Trans. Circuits and Sys-
tems, Vol. CAS-35, pp. 1257-1272, 1988.

[13] L 0. Chua and L. Yang, "Cellular Neural Networks: Applications," IEEE Trans. Circuits and
Systems, Vol. CAS-35, pp. 1273-1290, 1988.

I 14] K. Slot, Determination of cellular neural network parameters for feature deter= of two dimen-
sional images," Proc. IEEE Int. Workshop on Cellular Neural Networks and Their Applications,

I pp. 82-91, 1990.

[15] L.O. Chua and P. Thiran, "An anlytic method for designing simple cellular neural networks,"5 IEEE Trans. Circuits & Systs., vol 38, pp. 1332-1341, 1991.

[16] W. K. Pratt, "Digital Imge Processing, 2nd edition," John Wiley &Sons, Inc., New York, 1991

I [17] R.C. Gonzales and R.E. Woods, "Digital Image Processing,"Addison Wesley Publishing Co.,
Reading Massachusetts, 1992

U [18] W. H. Press, B. P. Flannery, S.A. Teukolsky, and W.T. Vetterling, "Numerical Recipes. The Art
of Scientific Computing", Cambridge University Press, New York, 1986

I [19] D. Koblas, "XPaint" public domain software.

[20] L.O. Chua and T. Roska, "The CNN Universal Machine Part 1: The Architecture", in nt. Work-
shop on Cellular Neural Networks and their Applications (CNNA), pp. 1-10, 1992.

[21] F. Zou, S. Schwarz, and J. A. Nossek, "Cellular Neural Network Design Using a Learning Algo-
rithm," Proc. IEEE Int. Workshop on Cellular Neural Networks and their Applications, pp.
73-81, 1990.

1I
I
U

14

I
LIST OF FIGURES

Fig. 1. Cellular Neural Networks. (a) Array structu. (b) Block diagram of one cell

I Fig. 2. CNN's Output function
Fig. 3. Organization of templates in the multi-layer structure.

I Fig. 4. Benchmark used to measure the effectiveness of the color mapping techniques. All colors
are fully saturated.U Fig. 5. Behavioral level algorithm for raster Image processing using CNN

Fig. 6. Performance of the CNN software. (a) Number of iterations versus integration time steps.
(b) CPU times (SPARC-2) for distinct time steps.3 Fig. 7. CPU performance (SPARC-2) for distinct image sizes in number of pixels.

Fig. 8. Syntax of the CNN post-processor

I Fig. 9. (a) Image "Iceworld". (b) Constrasting effect (c) Edge detection

Fig. 10. (a) Chest Cage X-Rays image. (b) After a pixel peeling operation. (c) After a filler operation.5 (d) After using the CNN post-processor
Fig. 11. (a) Deteriorated image. (b) Restored Image

Fig. 12. (a) Satellite weather map. (b) After thresholding operations with CNN. (c) After using the
CNN post-processor.

Fig. 13. (a) Cross section of a heart. (b) Detection of blood vessels using edge detection templates.
(c) After using the CNN post-processor

1I
I
I
I
I
I

15

I

I
iU)PI

IxUvts
Iu

NOU) G
Inus

Fi.I

Iy
I1

I- /
I' . " -

IFg

IA

...................
IbA

Fi.I

I
I
I
i
I

II
I/

Fi.I

Algerthi.: (Mubi -Layer Raster CINN hmuWdati)

Obtain the input image, initial conditions and temlates from user;
/*MN = #of rows/columns of the hnage /
while (converged-cells < total # of cells)4

for (layer=O; layer < 3; layer+.-.){
for (1=1; i<=M; i++.)

for U=l; i<=N; j++) II If (convergenicejfagI~ayer][iJUJ)
continue; /* current cell already converged

P* calculation of the next state/

xla('t~ +) = Xx + J f(4t1)) dt

/* convergence rifteria */

convergencejfiagriJlJ=1
converged-cefs++;

I I
) P end for *

/* upat the state values of the whole image*/

I for (Q7-l; i<=M; i++)
for 0j=1; j=-N; j++i)4

if (convergence-flagllayerJ[iJ [i) continue;

Zkty-nrftot = XTIayrjitn + 1);

I #_-ofiteration++;

I~~ / * end while *

I Fig. 5

of Iterations
100 X Euler's

I
I

0 Pred.-Corr.

40 lu I Runge-Kutta

0 1 2 3
Step Size (At)

Simulation time (sec)

25
I

15!

10

0 1 2 3
Step Size (At)

Fig. 6

Simulation time (log sec)

1000

100.

10O

1.
0 50 100 150 200 250

Number of Pixels (103)

Fig. 7

1: mainfile :: "(MAIN (files)+ (process)+ (output)+ ')'

2: files NAME .
3: process ::= C (process-descr) ")a
4: processOdescr ::= (var) 0-0>1 (layer) °, (var) 9-.9>N (layer)

(operand) (var) a-">' layer .
(var) '-'°>' (layer) N,' (var) a-°'>" (layer)
(var) 9-9>1 (layer) °," (var) "-0>9 (layer)
(operand) NUMBER.

I (var) N-00>" (layer) 9,1 NUMBER (operand) (var)
"a-& w>u (layer).

I (var) -&a>, (layer) 1,1 (negation) (var)
"-" >• (layer)

5: var ::NAME.
6: operand :: (AND &&)

(OR AVI')

(XOR ")

(SL
(SR ~"

7: negation -:= OT.
8: layer :: RED

m.
BLUE

9: output : (" OUTPUT '(C (files) ," (var) •) 5)5

Fig. 8

I
I
I
I
I
I
U
I
I
I
I
I
I
I
I

Fig. 9 (a)

I
I
I
I

I
I
I
I
I
I

.I•o:•.:.;- .. .--. .••.
I ..•.

..I.- .-,

I. . ., . .~o.,•. -,

I
I
I

Ii.9 bI!_ _ __ _ _ _ _

I
1I
I
I
I

I

I-

. -!... t j*

I,.. - .: ,.** .. ,

II
U
I Fig. 9 (c)

U
i
U
I

II
II

II
II
II
II
II
I

I.

I !:

I
Fig. 10 (a)

II
II
II

I
I
I
I
U

I
I
I
I

I

I
I
I
U

I
I
I
3

I

I
I

I

I
U i.1 c

I
I
Ia
I
I
I
I

mS

I -
I
I

mI
I

3 Fig. 10 (d)

I

m
I
I
I
I
I
I]

ii

ii

I
l
l
l
I
i

I Fig. 11 (a)

I•mm mmm m m m (

I
I
I
U
I
U
U
U
U
I
I
I
U
U
I
I
I
3 Fig. 11 (b)

I

i

II
I

I

Im

I

I
I

II

I
I

IB

I
I
I
I
I
I
I
I
I
I
I

I
I
I
I

Fig. 12 (b)

I
I
I

I
I
I

I
I
I
I
I
I
I
I
I Fig. 12 (c)

I
I
I

Flg. 13(a

Fig. 13 (b)

I
I
I
I
I
I
I
I
I
I
I
I
I
I
3 Fig. 13 (c)

I
I
I
I _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

REPORT DOCUMENTATION PAGE form Approved

0,,bC, b,-d-, #0I 0, IAI 3 ,t , . 4lo -.,, -i d In I h• ,a . .-, C ,w.. fnq to , M,. for . f4-v1 t q ftS,.1fWkn. f.mong de. Ias, •,ou .

(40,,"to ')I I .,5 l•, l.t. n wdlo .2" -omgo tdnq it%*% I to .. i9-- o I 0 ,MK.. 0160CIOm f t g .fr.."• , • -, •. u-1,u.I•%T ~-t•. 1t.. vjn

0...i II"qh lV. $u,f. 1104. AdAn9M. V# 11)02 2 J102. &-d t O I .t Off , I - -90 4 lad,1 01 0`dud'1 .! ,°.pwffOr r , .kufwl '.,, l I14-01.66, 'h. A too. DC • -O03

T. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

I August 3, 1994 | Technical Report 05/01/94-08/01/94

4. TITLE AND SUBTITLE S. FUNDING NUMBERS

COLOR IMAGE PROCESSING USING CELLULAR NEURAL NETWORKS G
N00014-94-1-0516

I,. AUTHORIS)

Jose Pineda de Gyvez

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) S. PERFORMING ORGANIZATION

REPORT NUMBER

U Texas Engineering Experiment Station
Texas A&M University 93-549/#2

1 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORINGI MONITORING

Office of Naval Research AGENCY REPORT NUMBER

Code 215: JWK
Ballston Tower One
800 North Quincy Street
Arlington, Virginia 22217-5660 ,-

I1. SUPPLEMENTARY NOTES

Results submitted for publication to IEEE Trans. on Neural Networks

I 12a. DISTRIBUTION /AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

I A: Approved for public release: distribution unlimited

I 13. ABSTRACT (Maximum 200 words)

This report presents a software prototype capable of performing image processing applications using

I Cellular Neural Networks (CNN). The software is based on a CNN multi-layer structure in which

each primary color is assigned to a unique layer. This allows an added flexibility as different

processing applications can be performed in parallel. To be able to handle a full range of color tones,

two novel color mapping schemes were derived. In the proposed schemes the color information is

obtained from the cell's state rather than from its output This modification is necessary because

CNN has binary outputs from which only either a fully saturated or a black color can be obtained.

Additionally, a post processor capable of performing pixelwise logical operations among color

layers was developed to enhance the results obtained from CNN. Examples in the areas of medical

image processing, image restoration and weather forecasting are provided to demonstrate the

robustness of the software and the vast potential of CNN.

14. SUBJECT TERMS 15. NUMBER OF PAGES

Color Image Processing using Cellular Neural Networks 40
11. PIECE CODE

1 17. SECURITY CLASSIFICATION 1S. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT

OF REPORT Of THIS PAGE OF ABSTRACT

Unclassified Unclassified Unclassified

NSN 7540-.01 280.5500 Standard Form 298 (Rev 2-89)
- ~Pit~uvb-d bw 401% %1d 73,16

GENERAL INSTRUCTIONS FOR COMPLETING SF 298

The Report Documentation Page (RDP) is used in announcing and cataloging reports. It is important
that this information be consistent with the rest of the report, particularly the cover and title page.
Instructions for filling in each block of the form follow It is important to stay within the lines to meet
optical scanning requirements. 3
Block 1. Agency Use Only (Leave blanki. Block 12a. Distribution/Availability Statement.

Denotes public availability or limitations. Cite any

Block 2. Remort Date. Full publication date availability to the public. Enter additional I
including day, month, and year. if available (e.g. 1 limitations or special markings in all capitals (e.g.
Jan 88). Must cite at least the year. NOFORN, REL. ITAR).

Block 3. Type of Report and Dates Covered. DOD See DoDD 5230.24, Distribution
State whether report is interim, final. etc. If Statements on Technical
applicable, enter inclusive report dates (e.g. 10 Documentso.
Jun 87 - 30 Jun 88). DOE See authorities.

Block 4. Title and Subtitle. A title is taken from NASA - See Handbook NHB 2200.2.,

the part of the report that provides the most NTIS - Leave blank.

meaningful and complete information. When a I
report is prepared in more than one volume, Block 12b. Distribution Code.
repeat the primary title, add volume number, and Bt
include subtitle for the specific volume. On OD - Leave blank.
classified documents enter the title classification DOE - Enter DOE distribution categories
in parentheses. from the Standard Distribution for

Block S. Funding Numbers. To include contract Unclassified Scientific and Technical

and grant numbers; may include program Reports.

element numl:r(s), project number(s), task NASA - Leave blank.

number(s), and work unit number(s). Use the NTIS - Leave blank.

following labels:

C - Contract PR - Project Block 13. Abstract. Include a brief (Maximum

G Grant TA - Task 200 words) factual summary of the most
PE - Program WU - Work Unit significant information contained in the report.

Element Accession No.

Block 6. Author(s). Name(s) of person(s) Block 14. Subiect Terms. Keywords or phrases3

responsible for writing the report, performing identifying major subjects in the report.
the research, or credited with the content of the
report. If editor or compiler, this should follow I
the name(s). Block IS. Number of Pages. Enter the total

number of pages.

Block 7. Performing Organization Name(s) and n

Address(es). Self-explanatory. Block 16. Price Code Enter appropriate price I
Block B. Performing Organization Report code (NTIS only).
Number. Enter the unique alphanumeric report
number(s) assigned by the organization B
performing the report. Blocks 17.-19. Security Classifications. Self-

explanatory. Enter U.S. Security Classification in

Block 9. Sponsoring/Monitoring Aaencv Name(s) accordance with U.S. Security Regulations (i.e.,
and Address(es). Self-explanatory. UNCLASSIFIED). If form contains classified

information, stamp classification on the top and

Block 10. SponsorinQ/Monitoring Agency bottom of the page.
Report Number. (If known)

Block 11. Supplementary Notes. Enter Block 20. Limitation of Abstract. This block must

information not included elsewhere such as: be completed to assign a limitation to the

Prepared in cooperation with...; Trans. of...; To be abstract. Enter either UL (unlimited) or SAR (same
published in.... When a report is revised, include as report). An entry in this block is necessary if
a statement whether the new report supersedes the abstract is to be limited. If blank, the abstract
or supplements the older report. is assumed to be unlimited.

Stahdard Form 298 Back (Rev 2-89)

S_ I

