
TEC-0028 AD-A282 904

Vision-Based
Navigation for
Autonomous
Ground Vehicles

Larry S. Davis - AUGO 319 '"
Daniel DeMenthon .

Computer Vision Laboratory -

Center for Automation Research
University of Maryland
College Park, MD 20742-3275

May 1992 .. ,,,24426

Approved for public release; distribution is unlimited.

Sponsored by: 19 4 ('.1
Advanced Research Projects Agency
3701 North Fairfax Drive
Arlington, VA 22201-1714

Monitored by:

U.S. Army Corps of Engineers
Topographic Engineering Center
7701 Telegraph Road
Alexandria, Virginia 22315-3864

I,

Destroy this report when no longer needed.
Do not return it to the originator.

The findings in this report are not to be construed as an of icial Department of the Army
position unless so designated by other authorized documenti.

The citation in this report of trade names of commerciaily available products does not
constitute official endorsement or approval of the use of such products.

4

REPORT DOCUMENTATION PAGE Farm Approved

j MB No. 0704-0188
Pv04 C eortng mr own rrfor) (OINS ci flM ion f mI or maillac rite I irn at" to &-'q@ I0 ,Or er 'tlootmf. r'MCIudinq tr? t Imp for review In -nrisryaciMr" Wft rhing evir..tn data %auca.ruiqte and m~aintaining %Me dfte .wqI van compl~eting ano .ev~e-9 nge ~olle~tlom of ,nfo,-~al.On $,n COrf~renti reg/arding In ýttqn b'dt, imat, ar any otheqr atota" ofothi
coll."lamo Of information. Including sgg titOns for Ieduc~nq this b.,Om. .0 Avi~s-qIom S~oaq- ervices Orenracr e fC, nWfO,-It,on Otleralont anld plM j 1215 jeftyeyja
Davismqghiav. Suite 1204. Aringtonl.VA f2222-4302 *n-Jto thOe 0ieof IvM~q~nvq anor Swdqt. PaDernrc1a fiedU onProtet (0 704.018$)w. viethnqfon OC 205O3

ri. AGENCY USE ONLY (Leav'e blank) 2. REPORT DATE ~ 3. RiPORT TYPE AND DATES COVERED

I May 19920 Final Rep~ort May 1988 - May 1992
4. TITLE AND SUBTITLE S. FUNDING NUMBERS

Vision-Based Navigation for Autonomous Ground Vehicles DACA76-88-C-M08

6. AUTHOR(S)

Larry S. Davis Daniel DeMenthion

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 6. PERFORMING ORGANIZATION
REPORT NUMBER

Computer Vision Laboratory/Center for Automation Research
University of Mary!and
College Park, MD 20742-3275

9. SPONSORING / MONITORING AGENCY NAME(S AND ADDRESS(ES) 10. SPONSORING f MONcTORING
Advanced Research Projects Agency AEC EOTNME

3701 North Fairfax Drive, Arlington, VA 22201-17 14

U.S. Army Topographic Engineering Center TC02
7701 Telegraph Rd., Alexan~dria, VA 223 15-3864

F11I. -SUPPLEMENTARY NOTES

12a. DISTRIBUTION / AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Approved for public release; distribution is unlimited.

13. ABSTRACT (Max-mum200 wordsi)

This report describes research on ground navigation, dynamic visual surveillance, parallel vision, parallel
search, and parallel matrix operations. Specific problems addressed include planning safe paths on terrain,
estimating range shadows, road reconstruction, dynamic object pose estimation and tracking; quadtree and
pyramid algorithms, border following, H-ough transformation, and graph matching.

14. SUBJECT TERMS IS. NUJMBER OF PAGES
Border following, graph matching, Hough transforms, matrix 83

operations, parallel search, path planning, pose estimation, pyramids, quadtrees, 16. PRICE CODE
range imagery, road following, terrain navigation____________

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT

UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED UNLIMITED
NSN 7540-01 -280-5500 Standard FOrm 298 (Rev 2-89)

P .r-,t.J~ IN AhdfI Std 719.tRI

Contents

1. Introduction 1

2. Ground Navigation 3

2.1. Planning a Safe Path on Digital Terrain 3

2.1.1. Introduction .. 3
2.1.2. Problem Definition 3

2.1.3. Algorithms 4

2.1.4. Extensions .. 6

2.2. Range Shadows 6

2.3. Zero-Bank Algorithm with Global Optimization 8

2.3.1. Background 8

2.3.2. The New Approach 8

2.3.3. The Algorithm 10

2.3.4. Experiments .. 12

2.3.5. Conclusions 13

3. Dynamic Visual Surveillance 15

3.1. Overview ... 15

3.2. Implementation of Vision Algorithms 16

3.2.1. Feature Detection 18

3.2.2. Initial Pose Calculations 18

3.2.3. Feedforward Tracking and Pose Calculation by Kalman Filtering 21

3.2.4. Trajectory Control 25

3.3. Visual Planning 26

4. Parallel Vision 28

4.1. Overview ... 28

4.2. Multiresolution Techniques 31
4.2.1. Pyramids and Hough Transform on the Connection Machine 31

4.2.2. Fast Addition on the Fat Pyramid 33

4.2.3. Replicated Image Processing 36

4.3. Quadtrees on the Connection Machine 37

4.4. Benchmarking Activities 39
4.4.1. Border Tracking with an Implementation on the Butterfly Parallel Pro-

cessor 39

4.4.2. Parailel Matching of Attributed Relational Graphs 42

iii

5. Parallel Iterative A* Search 46

5.1. Overview 46

5.2. The A* Algorithm ... 46

5.3. The PIA* Algorithm 47

5.3.1. Data Structures 47

5.3.2. Iteration Threshold, Mandatory Nodes and Speculative Nodes 47

5.3.3. The Node Expansion Procedure 48

5.3.4. Determining t0) 48

5.3.5. The Successor Distribution Algorithm 48

5.3.6. The Node Transfer Procedure 49

5.3.7. Termination 49

5.4. Analysis 49

6. Parallel Matrix Operations 50

6. 1. Generalized Matrix Inversion on the Connection Machine 50

6.2. Grid Evaluation-Interpolation on the Connection Machine 50

6.2.1. Grid Evaluation-Interpolation using Tensor Products and General In-
versionr .. 50

6.2.2. Grid Evaluation- Interpolation using Multivariable Spline-Blending Ap-
proximation 51

7. Conclusions 52

8. Report Abstracts and Summaries 53

iv

List of Figures

1 Schematic representation of a ID surface and its range image shadows ... 7

2 A digitized rough ID surface and its reconstruction by the local averaging and
lowering methods ... 9

3 Reconstructing a world road from an image 10

4 Results of range-video fusion 13

5 Road reconstruction results 14
6 Vision-based control loop for a robot acting on a moving body 17

7 Exact perspective and orthoperspective for a triplet of points 20

hno0es~In For I

DT1C ;'C-9
UU ',:a:n, r..'4 F]r

TI!

I .C , - , . "

V

PREFACE

This research is sponsored by the Advanced Research Projects Agency (ARPA), Arlington,
Virginia 22201-1714 and monitored by the U.S. Army Topographic Engineering Center (TEC),
Alexandria, Virginia 22315-3864, under Contract DACA76-83-C-0008, by the Center for Automation
Research, University of Maryland, College Park, Maryland 20742-3275. The Contracting Officer's
Representative at TEC is Ms. Lauretta Williams. The ARPA point of contact is Dr. Oscar Firschein.

vii

-]

1. Introduction

The research conducted under this contract focused on five main areas:

1. Applications in ground navigation. As a contributor to the ALV program during 1985-
89 we developed a navigation system that was able to navigate a laboratory robot over
a terrain board containing a simple road network. These algorithms were also brought
to Martin Marittta and used to navigate the ALV over the Denver test track. In
Section 2 we describe research on topics fundamental to cross country navigation and
road following. We first describe massively parallel algorithms for route planning in
digital terrain maps. What distinguishes this from previous route planning research in
terrain is the incorporation of models for the presence of adversaries in the environment,
and route planning criteria reflecting the need to move without being seen by these
targets, yet being able to monitor their positions from time to time during navigation.
The second part of Section 2 describes our research on the problem of filling in range
shadows. We discuss why classical interpolation methods are not appropriate for this
problem, and present new methods for fillirg in the shadows. The third part of Section
2 describes our ;esearch on 3D reconstructions of roads from images.

2. Core research on autonomous visual navigation. Section 3 of the report describes the
research we performed on a project called RAMBO (an acronym for Robot Acting on
Moving B-O(d1,,:), on which we developed, Connection "Machine algorithms for low-level
vision, intermediate level vision and visual planning to allow a mobile robot to pursue
(in simulation) a moving three dimensional target through space in order to maintain
visual contact with points on the surface of the target. The RAMBO project has led
us to consider many fundamental problems in mapping vision and planning algorithms
onto massively parallel machines, as well as develop new vision algorithms for basic
problems such as pose estimation, motion estimation and motion planning.

3. Parallel vision algorithms. If autonomous systems are to operate in real time, then
their vision problems must be solved using parallel algorithms. We have focused on
the effective utilization of the Connection Machine for solving vision problems at all
levels of analysis--low level vision (preprocessing, local feature extraction), intermedi-
ate level processing (matching, stereo, motion) and high level processing (recognition
and planning). In Section 4 we describe our research on parallel vision algorithms. This
research includes general multiresolution image processing methods for the Connection
Machine, as well as quadtree algorithms.

4. Search plays a central role in almost all artificial intelligence systems, and especially
at higher levels of analysis in vision systems. We have developed a new parallel search
algorithm for MIMD machines. Experiments with the algorithm have resulted in linear
speedups up to large numbers of processors (96) on realistic scheduling problems. The
algorithm and some representative experimental results are presented in Section 5.

5. Parallel matrix operations. Many complex image processing operations, including
restoration and reconstruction from projections, are based on common matrix opera-

1 --

tions (multiplication, inversion, etc.) We have developed several Connection Machine
matrix manipulation algorithms. They are described in Section 6.

While the research described in Sections 2 to 6 forms the greater part of the work con-
ducted under support of the contract, there were many other projects whose results were
reported under this contract during the past four years. Some of these were the Ph.D.
dissertations of students, and others were research projects conducted by visitors to the
Laboratory that we felt best fit into our research in navigation. In Section 8 we present brief
descriptions of these research projects.

2I

2. Ground Navigation

While the dominating problem in visual navigation during the 1980's was road and road
network following, the 1990's are seeing a greater emphasis on cross country navigation. In
this research program we have developed new algorithms for vision and planning specifically
designed to support applications in cross country navigation. Here we describe two such
projects. The first, initiated in mid 1.990, involves developing massively parallel algorithms
for planning routes for vehicles in natural terrain. Our research differs from most previous
research in a variety of ways. One of the most importait is that we form planls with respect
to models of adversaries moving in the environment. We can also plan routes for collections
of vehicles that must operate under specific transport protocols.

We also describe, more briefly, in this section, research on new interpolation methods for
filling in range shadows for range images taken in natural terrain. This research is relevant
to local path planning in rough terrain where one would want to make the most informed
guess about hidden parts of the environment.

2.1. Planning a Safe Path on Digital Terrain

2.1.1. Introduction

We now describe our work on planning a safe path in the presence of several moving adversary
agents. The algorithms were implemented on the Connection Machine, using a digital terrain
map. We first define the problem, then briefly present the algorithm.

2.1.2. Problem Definition

Given a digital terrain map and information about a friendly agent and adversary agents
moving on the ground, we want to find a path for the friendly agent to a final goal that
is hidden from the adversary but close to points of high visibility, taking advantage of the
terrain.

The information available for the friendly agent includes:

* its current position;

* location of the final goal;

* maximal speed of motion;

The information about each adversary agent includes:

* its current position;

* its predicted motion trajectory;

3

Although we are able to plan a complete path at once, the feasibility of such a path is
questionable due to the uncertainty of the prediction about the motion of the adversaries.
Thus our approach is to s,'t up a. time interval over which we are fairly sure of the motion
of the adversary, and make a subplan for that interval to a subgoal. The subgoal is chosen
to 'oe closer to the final gool ana to have good observability in its vicinity, from which we
can. observe the activity of the adversaries to update ou" information about their motion.
Then we iterate through this subplan process all the way to the final goal. There are two
important time factors for each subplan:

1. Subplan interval: the interval of time we are planning for in each subpla.n;

2. Thinking time: the time required to generate a subplan. In our approach, this is a
linear function of the product of the number of adversary agents and the length of the
time interval we are planning for. We assume that the thinking time is known at the
beginning of the subplan.

The criteria for a subgoal are:

1. It is safe at the end of the subplan interval (and preferably safe for a certain period);

2. It must be reachable at the end of the subplan intvrval through a safe path;

0. It is closer to th. e gudl

4. It has good observation points in its vicinity.

So the complete path planning contains the following loop:

WHILE final goal is not reached
begin

Pick a subgoal;
Plan a path to the subgoal;
Execute the subplan and update information;

end.

The first two steps in the loop, namely the subplan process, are detailed in the following
sections.

2.1.3. Algorithms

For each subplan, as a first thought, we may want to analyze the siLuationr a, the end of the
subplan interval, pick a subgoal, and plan a safe path by computing the visibility map at
each discrete time step and search through it. However, there are several serious drawbacks
to this naive approach: when we pic!: up a subgoal, there is no guarantee that there is a
path reaching that point at the end of the interval, even if the subgoal is within the mobilirl'

4

constraint. Furthermore, even if such a path exists, we may spend a lot of time trying to

find it or fail to find it.

Considering these factors, we propose a different approach by taking advantage of the

power of parallelism. Instead of first analyzing the situation at the end of the interval, we

make an incremental computation of the safely-reachable region for each time step, denoted
as- RSt, where t is the time index. Initially, t is set to the end of the thinking time, because
that is the time at which the friendly agent starts moving. RSend.of-thi.nk-itne is set to its
current location. Then for each time step, we compute RSt by first expanding JSi& accord-
ing to its maximal speed, and then curtailing it by the regions visible from the p-edicted
adversary positions at time t. After iterating this process, t is incremented to the end of the
subplan interval, and it is guaranteed that there is a safe path to any point in the region
RSe nj..•ntera. Then we evaluate each point in this region by the criteria mentioned in the
previous section and choose the best point as the subgoal.

With this method for choosing a subgoal, the exisience of a safe path to the subgoal is
guaranteed, but how can we find this path, especially without an elaborate search? This
problem can be thought of as a 3D path planning problem, with the RS's defining a corridor
along the time dimension. We want to find a path through this corridor that satisfies the
speed constraint of the agent, which is interpreted as the angle between its moving direction
and the time axis in the 3D model. The solution is to build the path backward in time. We

claim that for any point, say P, in RSt, there exists a point Q in R5"t-.1 such that the agent
is able to move from Q to P in one time step. This property comes from the way we build
up the RS structure.

Thus we start at the subgoal and dilate it according to the speed constraint. The result
defines the set of points the agent has to reach at one time step before the end of the subplan
interval if we want it to be at the subgoal at the end of the interval. Then we determine the
intersection of the set and the IRS at that time. The result is a set of points that may be
on our path. The property mentioned above guarantees that this set is non-empty. We have

to pick one of them according to some goodness measure, and we pick the point with the
least distance to the straight line between the last path point and the present location of the
friendly agent, which tends to minimize the path length. Then from the chosen path point
we repeat the dilation-intersection-selection procedure. until the time index is decremented
back to the end of the thinking time. Since the current position is the onlyf point in the first
RS region, the path muist end up at the current location.

The algorithm for the subplan process can be summarized as:

5

Algorithm Subplan
Begin

{ Step 1: finding the subgoal by forward dilation }
RSendofthintime = the current position of the friendly agent;
For t from the end of the thinking time to the end of the subplan interval
begin

RSt = dilate(JRSt.l);
Predict the adversary positions at this moment;
Analyze the visibi'ity from the adversary agents to the vicinity of the

frLencuy agent;
RSt = RSt n Nonsvisiblekregion;

end ;

Evaluate points in RSend. of-intervMa and pick the best one as the subgoal;

{ Step 2: finding the path by backward dilation }
PATHeIdenf -interval = the position of the subgoal;
For t from the end of the subplan interval back to the end of the thinking time
begin

PATIt = dilate(PATHt+•';
flArTrTT nArnrTTe p f'y

I AIl it X It t I I R.S');

PATHt = best-peint(PATHt);
end ;
return(PATH);

End

2.1.4. Extensions

We have also investigated path planning issues such as the traversability of the terrain and
the requirements for the friendly agent to observe the adversary at several points along the
path and to remain close to other friendly agents, and to take risks on limited portions of
the path in the absence of safe alternatives.

2.2. Range Shadows

In range images, there are regions behind obstructions that remain occluded (Figure 1).
The sizes of these shadows depend on the relative elevation of t'he range scanner and the
height of the obstruction. Many techniques have been developed for surface reconstruction.
Most are based on weighted local averaging. There are more elaborate techniques that also
incorporate surface slope in local height averaging. These techniques often yield an obviously
incorrect result, in the sense that the elevation of the reconstructed surface is overestimated
and it could not have been occluded in the first place. We propose an algorithm that does
not yield such incorrect results, while it preserves the statistical properties of the surface.
The method is best suited for random stationary surfaces, such as rough terrain.

6

z

SRange scanner

xs x x x2 x
£5 Al X 2 .ý3

Figure 1: Schematic representation of a ID surface and its range image shadows.

The algorithm estimates the surface elevation, z, at a given point S = (x, y). Regarding
the elevatioii of a point in the range image shadow we have only one solid piece of information,
namely, that the surface is below the shadow line, i.e., z < zs- I' -VsItanO, where 0 is the
angle of the shadow line with the x-axis, S is the point casting the shadow-how far below,
we cannot know. In the absence of any other information about the depth of the shadow,
it is reasonable to expect that the amount by which the surface lies below the shadow line
is related to the variance of the surface elevation in the neighborhood. Therefore, as the
simplest hypothesis, we take the point to lie one standard deviation below the shadow line,
that is, z -=zs - It -t rsltan - or, (1)
where a is the standard deviation obtained from the variance

TI

a2 = > wv(z,,- Y), (2)
ti1

In this equation, • and wi are defined by the following expressions

-z = Z•'i,, (3)
i=1

where n is the number of nearest neighbors, zi is the elevation of the 2'h neighbor, and the
weight w, is inversely proportional to some power of the (Euclidean) distance I-'r - "ri I of
the point from its ith neighbor

1 - n
wi -=, with IV= Z --- (4)1

N I _I

N is the normalization factor, and v is a positive integer which is usually taken to be equal
to 2. The number of neighbors, n, is usually between 3 and 8, and is often set equal to 5.

The intuitive justification for this scheme, which we refer to as the lowering method, is
that if the surface is smooth (small a) then the chances are that the shadow will not be very
deep. Obviously this scheme is well suited for reconstruction of random stationary surfaces,
such as rough terrain, where the local elevation variance is a characteristic property of the
surface and is meaningful. Nevertheless, even for reconstruction of surfaces behind obstacles
on a flat road the results are remarkably good and definitely better than the weighted
averaging technique (Figure 2).

2.3. Zero-Bank Algorithm with Global Optimizatiun

We developed a new "zero-bank" method for the reconstruction of a road in three-dimensional
space from a single image. The world road is modelled in a similar way as in our previous
"zero-bank" method, i.e., as a space ribbon generated by a centerline spine and horizontal
cross-segments of constant length (the road width) cutting the spine at their midpoint at a
normal to the spine. Because reconstructions of cross-segments are now independent of each
other, a global optimization of the road reconstruction can be used.

2.3.1. Background

Our previous zero-bank method was iterative, requiring the knowlcdge of a previous cross-
segment of the road to compute a new cross-segment. The problem was that at each iteration
step, up to three possible cross-segments were found by solving a cubic equation; each of
these three segments could be used as starting elements for up to three new cross-segments
at the next recursion step, leading to a tree of possible roads growing exponentially. To avoid
exploring all these alternatives, we chose in our previous method to keep at each step only
the most plausible cross-segment, namely the cross-segment giving the smallest changes of
road slope and turn. These are local criteria, however, whereas the goa! is to obtain the best
global road reconstruction. The images of the road edges could be locally of poor quality,
leading to the wrong branching choice at this place of the tree of possible reconstructions,
and the rest of the construction downstream could suffer or be brought to a dead end.

2.3.2. The New Approach

In the new method, tangents to the road edges at the end points of cross-segments are
assumed to be approximately parallel. Thanks to this reasonable addition to the road model,
a recursive reconstruction is not required. Cross-segments can be found from any element
of road image, independently of previous pieces of reconstruction. Several possible local
solutions of cross-segments are still found, but in this case we do not need to make choices
until all the available evidence from the image has been used. Then we can choose the best
global reconstructed three-dimensional road passing through the alternative reconstructed
cross-segments. This global optimization is not computationally expensive because we can
apply a dynamic progranmning technique minimizing local slopes and turns.

S

0.3

0.0

-0.3 Original surface; dark circles are shadows.

0.3 1.5 2.5 3.5 4.5 5.5

0.0 -j

!

-0.3 -- Reconstruction by averaging.

1.5 2.5 3.5 4.5 5.5
0.3

0.0

I!

-0.3 Reconstruction by lowering. [_-

1.5 2.5 3.5 4.5 5.5

Figure 2: A digitized rough 1D surface and its reconstruction by the local averaging and

lowering methods.

9L

2.3.3. The Algorithm

A summary of the algorithm is now given; Figure 3 illustrates the road geometry reconstruc-
tion.

V

0 elHorizon

all

Figure 3: Reconstructing a world road from an image. The cross-segment of the world road
is assumed horizontal and perpendicular to the tangents at its end points. The ta~ngents are
assumed parallel. An equation is found that must be satisfied by the matching points in the
image and also involves the image tangents and the vertical direction.

1. In a preliminary step, not detailed here, some appropriate image processing techniques
have isolated the two curves of the edges in the image, and a polygonal approximation
has been found for each edge curve.

2. Picking image points anywhere on one image edge curve, we are able to find the points
which are candidates for being matchingq points on the other image edge curve. (Two
image points are called matching points if they are imnages of the end points of cross-
segments.) We found an expression that two image points located on the faciug image

10

edge curves anO the tangents to the edge images must satisfy to be matching points. If

G1 and a2 are matching points and a' and a are the tangent directions to the image
edges in these points, the following relation holds:

IV × (a X 2] × (a a') x (``× a')] = 0 (5)

For edge curves approximated by polygonal lines, the matching point a2 can be on
a line segment, and its position between the end points of the line segment can be

expressed by a number between 0 and 1, whereas its tangent vector a' is constant;
or the matching point a2 can be at an end point of a line segment, with a constant
position but with a tangent angle which can be expressed by a number between 0 and
1 within the range of angles of the two adjacent line segments. For one point picked
on one image edge, we check for each of the line segments of the other image edge
if a matching point belongs to that line segment, i.e., if our expression gives a linear
coordinate between 0 and 1 for this line segment. Then we look for matching points at
the nodes of the poly,,enai line by checking if the expression gives a number between
0 and 1 for the tangent angle. We repeat these searches for several points a, picked on
one image edge.

3. For each point picked on one edge image, the previous step can give several matching
points on1 the other edge image. One of the reasons is that the images of the edges
can be very rough and wiggly. Another reason is that the condition used is only a
necessary condition for two points to be matching points in the image of the road
we are seeing. This condition is local and it is up to us to pick up among the found
matching points the pairs which are the most globally consistent, and discard the other
pairs. The criteria of optimization are three-dimensional criteria; thus at this step of
the algorithm, from the pairs of matching points, the corresponding three-dimensional
cross-segments must be found. This correspondence is unique if the cross-segments
are assumed horizontal and of known constant length. The constant length is the
width of the road, and cannot be defined by this method. The assunmed road width
is a scaling factor in the reconstruction, whereas the optimization is based on angular
considerations, which are independent of scaling. For driving a vehicle the road width
must eventually be obtained from other methods, such as stored data about the road,
the "Flat Earth" method, or close-range methods such as stereoscopy or time-of-flight

ranging.

4. The group of matching point pairs corresponding to a single point chosen on one edge
is the image of a group of world cross -segments obtained at the previous step, and the
world road can go through at most one of these cross-segments. If a sequence of points
along one road edge is taken, a sequence of groups of cross-segments is obtained, and
t'ie world road must go through at most one of the cross-segments of each group, in
the same order as the sequence of points chosen on the first road image edge. Each
cross-segment can be represented by a node of a graph. A path must be found in the
graph, which visits each group in the proper sequence and goes through at most one
node of each group, and which maximizes an evaluation function which characterizes

I1

a "good road". The total evaluation function is the sum of the functionz of each of
the arcs of the graph. The evaluation function for an arc is the sum of weighted cri-
teria, which grade the choices of individual cross-segments and the neighborhood of
consecutive cross-segments, based on angular considerations. It would also seem useful
to introduce constraints such as a requirement for small differences of slope between
successive patches, but this type of relation involves three successive cross-segments
and complicates the interaction graph. The previous unary and binary criteria actu-
ally appear to b,-- sufficient for discarding unwanted nodes. Dynamic programming is
appropriate for this type of path optimization, and, compared to a brute force search
for the best path, greatly reduces the complexity of the search.

2.3.4. Experiments

Two types of experiments were performed: (1) reconstruction of roads from synthetic road
images and comparison with the road models used to create the synthetic images; and (2)
reconstruction of roads at Martin Marietta, Denver, Colorado, from video data obtained
from the ALV, with comparisons of the results with the reconstructions obtained by data -

fusion between video data and ERIM scanner range data.
In tf0 e synthetic data experiments, a criterion of navigability of the reconstructed road was

defined, as the percentage of actual visible road that a vehicle half the width of the road can
follow without driving its wheels on the edge, if the vehicle were following• the reconstructed
road given by the algorithm. For all configurations of slopes and image noise tested, the
navigability of the reconstructed road is significantly better with the new zero-bank method
than with the previous method or the Flat-Earth approximation.

In the experiment with actual road images at Martin Marietta, Denver, Colorado, the
"ground truth" was given by a method combining range d&ta and video data, developed by
Morgenthaler and Hennessy. The road edges are detected in the video image. Considering
the line of sigh L of a road edge point, the world point of the edge is the point where this line
of sight intersects the ground. The line of sight has a range image (epipolar curve) which
can be calculated and superposed on the range image of the ground. The intersection of the
line of sight with the ground corresponds to a point on the epipolar curve point with the
same range as the ground point of the ground range image. From the ranges of several road
edge points a three-dimensional profile of the road edges is obtained. This is illustrated in
Figure 4.

Reconstructions were produced for around 50 road configurations including combinations
of turns and slope changes. Both methods proved quite robust, giving plausible and consis-
tent road reconstructions for all these tests; however, the ERIM laser ranger has a limited
range of action. Only the first 15 meters of the road could be reconstructed by the fusion
method. The reconstruction by the zero-bank algorithm extended at least twice as far in
most road configurations. In the short stretch where both reconstructions were available, the
agreement was considered good in top view (Figure 5). Diffexences of elevations appeared in
side view, although the difference would probably not have resulted in different steering of
the vehicle. The zero-bank algorithm used a flat earth approximation in the first segments
of the road to remove the scale-range ambiguity inherent to this algorithm. The flat-earth
plane is calculated as an extension of the plane of the points of contact of the vehicle wheels

12

- I..

Figure 4: Results of range/video fusion showing (a) the epipolar arcs drawn within the ERIM
image, (b) profiles showing the camera pixel ray and the elevation derived from the ERIM
data along an epipolar arc, and (c) a perjpective view of the resulting scene model.

with the ground. If the vehicle 'is on t local bump, the actual road will be lower than the
result of this approximation. The laser ranger will of course detect this lower profile, and
the fusion algorithm should produce a cc:rect road profile.

2.3.5. Conclusions

Experiments with synthetic data show that the new zero-bank method gives useful infor-
mation about road profiles even far away from the vehicle. Experiments with real data and
comparisons with road reconstructions obtained by fusion between video data and range
data show a good agreement in the short. range in which range data are available, provided
the scaling factor not defined by the zero-bank reconstruction is well chosen. Until range
scanners covering a field as large as the field of view of video cameras are developed, the two
methods can profitably be used together. The fusion algorithm can give the ground truth
on the first 15 meters in front of the vehicle. The zero-bank algorithm can use this ground
truth to remove its scale-range ambiguity, and extend the road reconstruction to most of the
camera field of view.

13

-A I

(a) (b)

(c)
(d)

Figure 5: Road reconstruction results on a. slightly curved, upsloping road scene. (a-c) show

the fusion algorithm compared with: (a) the flat-earth algorithm. (b) the modified zero-bank

algorithm, and (c) the hill-and-dale algorithm. An overhead view of all four approaches is

shown in (d).

14

3. Dynamic Visual Surveillance

3.1. Overview

This section describes our research in the area of visual surveillance, in the context of the
project we called RAMBO-Robot Acting on Moving BOdies. RAMBO is a framework
designed to explore issues in high level vision and visual planning for an autonomous robot
tasked to perform some visual surveillance activity on a moving object. We have developed
algorithms for object pose estimation, object motion estimation, and visual planning. Many
of these algorithms are massively parallel algorithms that have been implemented on a Con-
nection Machine CM2. We describe an overall system architecture for the types of visual
surveillance tasks that RAMBO is to perform, and then provide an overview of our research
in vision and planning.

Specifically, we assume that the environment contains an object of known three dimen-
sional structure. On the surface of this object are targets for visual surveillance. The object
is in motion, and a general model of its motion is known. RAMBO's goal is to develop
and modify a specific model for the motion of the target, and to use this motion model to
construct a sequence of trajectories that will allow it to sight some set or sequence of the
visual surveillance targets. We assume that the object will not change its motion in an effort
to evade RAMBO. Computer simulations allow us to consider a wide variety of situations in
which many parame'*rs of the system (e.g., accuracy with which RAMBO can control its own
motion, accuracy of various image analysis procedures, etc.) can be controlled and evaluated.
They also allow us to bypass many difficult iri*rinsic and extrinsic calibration problems that
would have to be solved in order to conduct meaningful quantitative experiments using real
robots.

The vision algorithms developed as part of the RAMBO project are massively parallel
algorithms designed to operate on the Connection Machine. In fact, another important goal
of our research is to better understand how to integrate visual computations at many levels
of analysis on massively parallel machines.

RAMBO's architecture has been heavily influenced by our experience with the Au-
tonomous Land Vehicle project. As part of that project, we developed a system for visual
navigation of a ground vehicle over roads and road networks. The organization of that
system had the following important characteristics:

1. It operated in one of two control modes. Ordinarily, the system operated in the feed-
forward mode of processing. Here, each control cycle included three stages of analysis:

a) Prediction, in which the current road model (constructed on the basis of previously
analyzed images) and an estimate of the vehicle's location in the model were used to
generate predictions concerning the image locations of key road features (e.g., road
boundaries and markings).

b) Item verification, in which specialized image processing algorithms were employed
to verify these predictions. These aigorithms were applied to small search windows
generated by the prediction stage.

15

c) Extension, where the road model was extended out towards the horizon using new
information provided by the current image. If the verification stage failed, then the
system switched to a bootstrap mode of processing, in which the vehicle would come
to a standstill and perform a more global and time consuming analysis of its current
image in an attempt to relocate itself relative to the road. This bootstrap mode of
processing was also used to initialize the vehicle's road model.

2. Our system navigated on the basis of a three dimensional reconstruction of relevant
parts of its environments. Its motions were planned and executed in a three dimen-
sional coordinate system. This was, to a large extent, dictated by the relatively long
time required to execute a single control loop of the system (this time was, of cour:e,
dominated by image processing), and a system with a substantially higher processing
rate might have been able to perform road navigation solely on the basis of, say, visual
directions to road boundaries.

RAMBO's organization is very similar to that of our road navigation system (see Fig-
ure 6). In a feedforward mode of processing, RAMBO first predicts, on the basis of its current
motion model for the target and its own egomotion model, which target features (polyhedron
vertices) should be visible in the image, and where they should be located. In fact, unlike
the ALV system which acquired an image as soon as a control cycle was completed, RAMBO
also needs to reason about when to a- .uire its next image, since it might not be possible
to move along a trajectory from which a sufficicnt set of target features-1u always.. t
visible. RAMBO also uses an estimate of errors in its motion models to choose appropxiate
size search windows for the verification process. These search windows are the byproduct of
a Kalman filter employed to estimate target motion and extrapolate target pose.

In the verification phase of processing, we have to perform local searches of the prediction
windows for the target features. If an insufficient number of such features were detected,
then we would regard the analysis as having failed, and would move away from the target
to a safe location from which we could attempt to reinitialize our model of its motion using
a bootstrap-like processing. Ordinarily, the locations of the detected vertices are used by a
Connection Machine pose estimation algorithm to estimate the locatica and orientation of
the target in space.

The motion model for the target is then verified and extended by a Kalman filtering
algorithm that takes the recent history of pose estimates and develops an updated model
for the relative motion of the target. Based on this new model of target motion, RAMBO's
current trajectory is modified (if necessary) by algorithms that find minimal trajectories to
target locations. A next viewing position is then chosen based on potential visibility of target
features and the estimates of errors in the motion models.

3.2. Implementation of Vision Algorithms

We briefly describe the vision algorithms developed for the RAMBO project. It should be
noted that these algorithms have not been integrated with the trajectory control algorithms
described below

16

Robots Full Simulation

Robot

)°Motion Contioller DAbsolute or.Sse

MorsecitiTanfom

Roo Mov ----- ca er
'f larget Image

Tre PoseEsiain|

RobtMl From Camera to |
Plane Absolute Reference

Predictor Tre

Figure 6: Visioa-.based control loop for a robot acting on a moving body.

17

3.2.1. Feature Detection

RAMBO's target is a simple, convex polyhedral object. The background is kept visually
simple to simplify the low level processing. The image is first processed using a sequence of
conventional image processing algorithms---a local edge detection operator is first applied,
the magnitude of the edge detector is thresholded and the binary image is thinned so that all
edges are part of simple chains or are vertices where such chains meet. RAMBO's pose and
motion estimation algorithms are based on vertex matching, so the polyhedron vertices are
detected in one of two ways. We have developed a simple corner detection algorithm that
breaks the neighborhood of each edge pixel into a small number of sectors and identifies as
corners those points that:

a) have edges in two or more noncollinear sectors, and

b) are local maxima with respect to a simple measure of curvature.

Alternatively, corners can be detected by a sequence of Hough transform, prediction of
corners from pairs of clusters in the Hough transform, and verification through some addi-
tional imiage processing. The latter approach is more sensitive and accurate in. its location
of corners, but the former is much faster.

The feature points detected in an image are grouped into triples (the image triangles).
Each image triangle can be described by one of its vertices (the reference vertex), the length
of the two adjacent sides, and the angle between them (the reference angi.). These adjac.clnt
sides do not necessarily have to correspoA to actual edges in thc image, and all QIS" L!U

triples of points could be considered, with each triple of ooints producing three such image
triangles. However, if the feature points are vertices, it is useful to only consider image
triangles in which the adjacent edges of the reference vertex are actual edges, and to only
match these image triangles to object triangles with similar chaaacteristics. This increases
the proportion of good matches over the total numb)er of possible matches.

3.2.2. Initial Pose Calculations

The detected triangles are used to estimate the instantaneous six degree-of-freedom pose
of the target. Our Connection Machine pose estimation algorithm is based on matching
triangles of image corners against triples of target junctions. F'or perspective imaging, two
possible pose estimates for an object can be recovered from a fourth degree equation do.-
termined by the correspondence between an image tria.%ngle alid a triangle of the object.

However, when RAMBO analyzes its first image, it does i.,ot have any a priori knowledge
of the correct correspondence between the detected image triangles and the actual triangles
of the object. In this case, the system uses all the possible combinations of target triangles
and image triangles and clusters the pose estimates for these combrinations.

Approximated Pose of a Knowa ft~iangle from its Image

Solving a fourth degree equation for each image triangle to object trianglc correspondence,
and picking the two correct triangles among the eight triangles given bly the quartic solu-
tions is time-consuming. Also, thc fourth degree equation is sensitive t.) roundoff error for

18

certain image parameters. For these reasons, we have developed an approximate perspective
projection, orthoperspective, which provides simpler computations and reasonably accurate
results. The idea is to project the figure onto a plane drawn through ore of the vertices of
the figure and perpendicular to the line of sight of this vertex (other approximations of this
type have used planes parallel to the image plane instead). Then the image of the figure is
approximated as the image of this projection (Figure 7).

Notice that if we rotate the camera around the center of projection to bring the optical
axis to the line of sight of the vertex we considered, the image plane becomes parallel to
the plane oii which we performed the orthogonal projection. After this camera rotation
orthoperspective is simply a scaled orthographic projection (also called weak perspective).
iherefore, orthoperspective is equivalent to the following sequence of operations:

1. A virtual rotation of the camera around the center of projection to make a chosen line
of sight coincide with the optical axis.

2. A scaled orthographic projection of the recentered image,

3. The inverse camueia rotation to bring back the camera to its original position.

The camera rotation removes the dependence of the construction on the offset of the world
object from the optical axis. For this reason orthoperspective is a better approximation to
perspective than scaled orthographic projection for image elements which are not centered
in the inage plane.

With the orthoperspective approximntion, finding the pose of a triangle from its image
when the shape (.f the triangle is known reduces to solving a second degree equation..

Before the Connection Machine had its floating point coprocessors, we solved these equa-
ticus beforehand and built leokuip tables for each triangle of the model. The final inipleinen-
ttAlon solves these equations as needed, on the assumption that routing communications to
perform table lookups might be slower than direct computations. Comparisons are difficult
because the new implementation is written in C-Paris whereas the lookup table version was
in Li.p.

Clustering of the Pose Parameters

Pose parameters for the object are obtaine" for each possible combination of image triangle
and obje.ct triangle. The combinations which correspond to correct matches will have pro-
diced similar object pose parameters, and will thus be clustered in parameter space. Our
clustering algorithm uses a virtual processor set with one processor for each data point in
the pose space. It also uses a set of virtual processors to represent an orthogonai projectionl
grid, and projections of the six dimensiona! pose space ire coniputcd using several axes. A
parallel read-back scheme provides a voting mechanism by which high-density regions in a
cloud of points can be identified. This new clustering method produces robust results, with
few misidew, ifications of pose parameters under a variety of pose conditions.

19

MAl
M 2 k

2
M1

2 2 k

2 -- a H

1z

MO HI

k7% ni

I MI,

n2r 2 2 1

0

Figure 7: Exact perspective and orthoperspective for a triplet of points.

20

Verifying the Pose Estimate of the Object

This pose estimation algorithm cannot make much use of expectations of the target's pose
that would be available during the feedforward mode of processing. We have therefore
lesigned and implemented a Connection Machine hypothesize-and-test pose estimation al-
gorithm:

Once we have generated expectations of target poses, we project visible model points
with their local features onto the image where they are compared with the image points.
The comparison is based on the locations of the image and projected points, on the number
of adjacent edges and on their angles. If the projection of the target in the hypothesized
pose passes these tests, its pose estimate is refined. We find the rotation R and translation
T which minimize the sum of the squares of distances between the actual image features
and the projections of the features of the object in its hypothesized position. We reach a
minimum by applying Newton's method, starting from the estimated R0 and To.

But even if all the correspondences between model and image points are correct, the
optimized pose can be inaccurate, due to noise in the image. Theoretically, we could calculate
the exact probability distributions of the pose parameters assuming, for example, bivariate
nor:z! location error. This would require, however, the solution of fourth degree equations,
with-, complex analytic functions as a result.

We prefer to calculate an estimate of the reliability of the pose parameters by applying
intermediary results of the pose estimate optimization. We perform one Newton itcration as-
suming bivariate normal noise added to each image of the model point. As a result we obtain
normal distributions that estimate the true probability distributions of the pose parameters.

3.2.3. Feedforward Tracking and Pose Calculation by Kalman Filtering

The object pose could be estimated independently for every image frame in the sequence
by the techniques presented in the previous paragraphs, and used to compute the motion.
However, pose estimation starting from raw image data is a computationally expensive pro-
cedure that one would prefer to avoid. This is possible once satisfactory initial estimates of
the motion parameters have been been obtained as described above. Then the future poses
and the image locations of the features that correspond to known points of the model can be
predicted, greatly reducing the computational cost. Based on the known correspondences,
straightforward pose and motion determination methods can be used.

The motion parameters may change with time and the measurements obtained from the
images are not infinitely accurate due to discretization. Knowledge of these uncertainties
must be incorporated into the estimates in order to judge the chances for successful task
execution.

Kalman filtering has been shown to be a powerful tool in similar problems, e.g., in tracking
objects in monocular image sequences and in robot navigation. In our case the camcra is
in the hand of a moving robot and an accurate geometrical model of the target object is
available, while its motion model contains uncertainties.

21

Uncertainty Regions of Feature Points

When tracking the object feature points in the image plane, it is useful to limit the search
to regions where they are most likely to occur. By assuming the measurement function F(*)
linear, the uncertainty windows of predicted feature points can be approximated using the
covariance matrix VkJk-1 modeling the prediction of the measurement uncertainty

Vkjk-1 JF(Uklk-1i)QkTk-JPUkik-i)

where Qklk-1 is the estimation covariance matrix of the Kalman filter and JF(Uklk-1) is the
Jacobian of the measurement function F(uklk-1), or the matrix of first order derivatives of
feature point coordinates in the camera frame with respect to the state variables in the
motion estimation frame. We have simply used the diagonal elements of this matrix to
determine rectangular regions of interest.

The uncertainty windows also offer a simple confusion avoidance mechanism for feature
points located close to each other in the image: points whose uncertainty regions intersect
should not be used.

Motion Model

The object tracking performance of a robot depends critically on the match between an a
priori model of motion and the actual object behavior, unless the system control delay can
be made very short. Shorter control delays decrease the relative contributions of unmodeled
changes of motion parameters per time unit. This results in smaller Kalman gains, smooth-
ing the variations due to measurement noise. However, image acquisition and mechanical
delays determine the minimum control delay of the system that cannot be shortened by
computational solutions. Therefore, we need to consider the motion modeling problem in
more detail.

When the camera sensor is mounted in the hand of a robot manipulator, the key questions
in forming the object motion model are:

1. Should the state vector be represented in a moving coordinate frame or a global sta-
tionary world coordinate system (relative or absolute object motion)?

2. What motion parameters should be included in the state vector?

Coordinate System

If the target object is not able to perform significant accelerations, its motion in a fixed
world coordinate frame can be modeled by constant rotation and translation. The possible
small accelerations can be taken into account as noise. However, with the camera in the
hand of a. robot the motion model may not be independent of the mechanical solution. The
measurements are done in a camera coordinate system and the transformation to the world
frame, or vice versa, requires knowing the robot joint angles at the time of image capture.
But the controllers of many off-the-shelf robot manipulators do not support obtaining the

22

angles of different joints simultaneously during motion. This may significantly increase the
uncertainties.

A practical compromise is to model the motion in a relatively slowly moving coordinate
frame, in which the angle and translation parameters of the camera are simple to determine.
For example, the origin of the coordinate system could coincide with the wrist joint of the
robot.

Motion Parameters

If the state vector is represented in a moving coordinate system, modeling the expected
relative accelerations as system noise may result in impractically high uncertainties. This
also increases the sensitivity to measurement noise.

The uncertainties can be reduced by including the accelerations in the state vector and
modeling the possible small changes of acceleration as noise. Unfortunately, a longer state
vector increases the computational cost and relative motion uncertainty during the timr-es
when accelerations are near zero.

We have investigated two simple compromises that limit the drawbacks of higher dimen-
sionality or higher noise level to the appropriate periods:

1. Variable-dimension state vector: If the estimation errors grow rapidly, the acceleration
components are added to the state vector. The switch back to the constant velocity
model is performed when the acceleration approache!s zero or the errors go below a
given threshold.

2. Variable system noise: A constant-velocity motion model is used, but when the estima-
tion errors grow the system noise model components attributed to motion are inflated.
When the errors decrease the noise component is returned back to the normal quiescent
level.

The exact ranking of these solutions requires knowing the lenLgth of the control loop,
including the image processing time and robot delays.

Mapping these techniques onto the system equation is straightforward. For simplicity, we
have assumed that each motion component is independent and the trajectory of the object
in the given coordinate system is straight.

Measurement Uncertainties

Our principle in dealing with the :rieasurement noise has been to approximate the limits
of certainty by the standard deviations of Gaussian distributions. Then straightforward
methods can be used for transforming and combining the uncertainties. The feature point
locations on the image plane are not arbitrarily accurate measurements because of discretiza-
tion. As a result, the feature points in the image may deviate from their exact positions and
the same point locations in an image may correspond to a range of poses.

We have considered the 2n feature point coordinate values as independent Gaussian
distributed random vectors and denote their composite 2n..by-2n covariance matrix by 14,.

23

By assuming that the standard deviation of the feature point location coordinate error is 1
pixel, V, becomes an identity matrix.

Note that there is no physical reason why the actual locations of the featuie points would
cluster around the centers of pixels. However, simulations with uniformly and Gaussian
distributed noise showed hardly any difference in the resulting pose and motion estimates.

Pose Estimation Uncertainty

We start from known correspondences, so the pose parameter vector of a particular object
is solved from the image feature point locations by the inverse of the measurement function

u = F7'(v) = GM(v)

If the pose determination function Gk(*) was linear, the distribution of pose parameters,

V,,(u), would be Gaussian and could be obtained by

Vu,(u) = Jc(v)VvJa(v)T

where Jc(v) is the Jacobian of Gk(*) or its matrix of first partial derivatives. In the ac-
tual non-linear case this provides a lc:al approximation of the pose distribution, hence the
arguments u and v.

In this equation, the jacobian JG is obtained from the Jacobian of the measurement
function:

G'(G' (x)) 1

or equivalently

Jc(v) = J+(u)

where matrix pseudoinversion (+) is used, because JF is not a square matrix except when
n•=3.

Selection of Correspondence Points

The important problem of selecting the feature points used for estimation is now considered.
Usually several feature points are available from an image frame, but because of various real-
world constraints using only some of them is justified. With the test object that was u sed
random selection of the feature points gave good results, and when the actual computational

costs of the methods are taken into account, this approach becomes very attractive, Random
selection does not favor any particular set of correspondences so this approach works with
any number of feature points. The very low computational cost results in high speed and
minimum motion modeling uncertainties, helping to offset the possible higher measurement
uncertainty.

Note tha~t the performance of the random selection technique depends on the distribution
of the feature points on the object. In practice, it may be necessary to make the selection of
certain important feature points, such as the ends of prominent extensions, more probable
than that of the others.

24

The method of random feature selection was experimentally compared with three other
methods. The first method, the minimum uncertainty method, attempts to choose the
features which mininize the covariance matrix. It seems impractical for real time applications
because of its computational cost, but can be used as a comparison reference. The second
method, the condition method, chooses features that produce well conditioned measurement
equations that minimize the sensitivity of the relative error in the system state estimate to
the variations in the measurements. The third method, the pose information method, selects
features which give the most accurate, or most informative object pose.

Random selection performs surprisingly well against these other methods with our test
object. When compared to the minimum uncertainty method, the penalty is almost negligible
with the selection of a single feature point. With only two points the method outranks both
the condition of Jacobian and pose information approaches. The results become worse
when more points :re selected, however the low computational cobt still acts as a significant
compensating factor.

Higher sampling rates reduce the motion uncertainties and can in part be achieved by
reducing the number of feature points used. Random. selection is a promising method for
this purpose. In practice, it is necessary to find a trade-off between better measurements
and weaker motion model. In our experiments, maximization of the sampling rate has been
the most rewarding direction of development.

3.2.4. Trajectory Control

One of the subtasks assigned to RAMBO is reaching a goal point located on the periphery
of the moving target object. The autonomous system cannot just avoid the moving object
as in classical obstacle avoidance problems. It must go to the vicinity of the object to reach
the goal point without colliding with parts of the object.

What makes the problem difficult is that the motion of object is not precisely known. It
is predicted by the Kalman filtering technique described in the previous section. Only the
shape of the target object, and bounds on its speed and normal/tangential acceleration, are
precisely known to the autonomous system.

Navigation in this context is understood as finding the successive positions that carry
the robot toward the goal with an acceptable collision risk level. The method we developed
requires calculatiag the probability of collision and using it as a safety measure to produce
an optimal trajectory.

A solution to the trajectory control problem is then defined to be the solution of the
following optimization problem:

At present time t,, based on the position Dn of the robot and the estimated target
motion state, we wish to find the optimal reachable destination for the next time
instant D,+ 1 . The optimality criteria are collision safety and proximity to the
intermediate goal position.

The destination D,+ 1 is reachable if the changes in speed and direction required to get
to D,+ 1 are within the robot predefired dynamic specifications. The intermediate goal is

25

the estimated position of the goal at the next time instant if it is reachable, or the reachable
position of the robot that would bring it to the goal point in the smallest number of time
steps. We find that the proximity of a destination to the intermediate goal can be measured
probabilistically and can be integrated into a cost function.

The probability of collision of the robot with the target object when moving from D, to
D,,+ is

PC (D., D.+1) = P (DO+, E Sh(D,))

where Sh(D) characterizes the shadow of the target with respect to a point D, i.e., the
domain of space that an observer in D cannot see because it is hidden by the target (and
therefore cannot reach by a straight line displacement from D without hitting the target).
D, and D'+1 are the positions D, and D,+1 in a frame of reference of the target. In this
frame of reference, obviously, the target position is completely defined, and the positions D.,
and D,4 1 are random vectors related to the target kinematic states S,, and S,+, in the global
frame. We have access to the marginal distributions of S,, and Sn+1. However, the kinematic
state S,,+, is not independent of Sn, so that it is difficult to derive their joint distribution.
Equivalently, it is difficult to derive a joint distribution fD',Dr, (.,.) because the random
vector D,+i is not independent of Dr,. The solution is to use the motion state evolution
equation of the Kalman filter to express D" and Dr+ as functions of independent random
variables whose distributions are known. Their joint distributions are then expressed as the
product of the marginal distributions of the independent random variables. We may then
integrate to find the probability of collision.

Having defined a probabilistic measure of collision safety, we want to produce an optimal
destination D,+, for the robot at next time step t,+,. One possible approach is to define
the optimal destination as the one that minimizes the expected distance to the intermediate
goal under an acceptable probability of collision. We sample the space reachable by the
robot and find the position closest to the predicted goal position that can be reached with a
tolerable risk of collision. Alternatively, the optimal destination can be taken to minimize a
cost function that includes the probability of collision along with the probability of getting
close enough to the intermediate goal.

3.3. Visual Planning

We have conceptualized RAMBO's planning activities as occurring at four hierarchical levels
of analysis:

a Subtask sequencing-RAMBO is generally tasked to visually sight a set of locations
on the surface of the target. If the ordering of subtasks is not specified in the problem
description, then one must be chosen during task execution. While it would be possible
to identify an optimal subtask ordering once some initial target motion model is estab-
lished, we adopt instead a greedy approach since the future motion of the target is only
weakly constrained by its current motion, and the cost of solving the combinatorial
optimization problem is very high.

* Goal point identification--Once a subtask is chosen, RAMBO must determine a goal

point (or small region in space) in the target's coordinate system from which it can

26

sight the target surface location. Generally, RAMBO would like to maximize its dis-
tance from the target while sighting, but a variety of factors must be considering in
choosing a goal point. These include an estimate of the accuracy of the target motion
parameters, RAMBO's accuracy in controlling its own motion, and the amount of real-
time visual monitoring that RAMBO would need to perform in order to guarantee the
safe execution of the plan.

e Generation of approach trajectory--Once a goal point is chosen RAMBO next com-
putes a trajectory that will take it from its current trajectory to the goal point. This
so-called reaching trajectory may either bring RAMBO into zero relative rigid body
motion with respect to the target, or to a stationary position at the goal point. It
should be chosen so that the target would always be in the field of view if the target
motion model were correct.

* Monitoring and failure recovery-RAMBO must continually monitor the target to
update its motion model. If the target's motion changes then RAMBO has to decide if
a new reaching trajectory should be determined, if a new goal point should be chosen,
or if the subtask ordering should be changed. It is also possible that the target may
leave RAMBO's field of view (or RAMBO may fail to detect the target even though it
is within it-s field of view). In this case RAMBO must initiate a visual search strategy
to reacquire the target.

Our actual planning system is only able to deal with a small subset of these problems.
RAMBO makes the simplifying assumption that a complex goal can be decomposed into a
sequence of simple subgoals. All subgoal points required for each complex action on a target
can be predetermined and stored in a database of actions specific to each target. Each goal
point is defined by its pose in the object coordinate system.

As RAMBO progresses from one subgoal to another, it will generally have to change the
trajectory alcng which it moves, so that at some time we would want RAMBO to launch
from its cutrent goal trajectory and to land at some subsequent time, to + T, on a new
goal trajectory. The duration T is referred to as the reaching duration. Once to and T ar2
chosen, then a reaching trajectory that takes RAMBO from its original goal trajectory to the
new goal trajectory can be determined by using, for example, a parametric cubic spline that
ensures continuity and smoothness at both takeoff from the original trajectory and landing
on the new goal trajectory.

27

4. Parallel Vision

4.1. Overview

Massively parallel computers, such as the MPP, DAP, and Connection Machine, are ideally
suited for low level vision operations such as convolution, image arithmetic and image mor-
phology. Machines without the rich interconnection structure of the Connection Machine
are at a distinct disadvantage in supporting intermediate level vision processing. There are
two main reasons for this:

* In many intermediate level vision algorithms, data must be combined from image
regions that are physically separated. So, even an operation as simple as the Hough
transform for line detection is cumbersome on a mesh connected machine becawue the
votes from points lying along any line must be collected, eventually, at a single prncessor
in the machine.

* In other intermediate level vision algorithms, operations are performed not on the im-
age array itself, but on more general data structures. So, for example, to apply our
pose estimation algorithm using triangles (previous section), we develop a representa-
tion of the image that is structured as a set of triples of edge junctions detected in the
image by a corner detector. The junctions forming any triple may correspond to image
points that are widely separated in the image.

The additional interprocessor connections included in the Connection Machine's hyper-
cube are critical to overcoming these problems. First, the diameter of the hypercube (i.e.,
the greatest number of wires one must traverse in moving information from one processor
to another) is only the logarithm of the number of processors in the machine, as opposed
to the square root of the number of processors in a mesh. This makes operations such as
the Hough transform very efficient, and is also critical for efficient implementation of mc-e
general grouping operations.

Second, the hypercube connections support logarithmic implementations of fundamental
parallel algorithms, such as grid permutations and scan operations. These operations form
the basis for most of the grouping operations that RAMBO performs.

An interesting technical pioblem arises in focus-of-attention vision algorithms. This will
generally involve determining relatively small image windows in which specific object features
are predicted to appear, and then applying specialized image processing algorithms that are
"tuned" to the expected photometric and geometric properties of the predicted features.

This can be accomplished in a straightforward way on the Connection Machine by simply
selecting the processors associated with the window(s) to be processed, and applying the
image processing operations to those selected processors. The remaining processors would
be idle during this stage of computation. The disadvantage of this approach is that a large

part of the Connection Machine would not be utilized. Similar problems occurred with earlier
commercial-machine vision systems, which required 1/30 second to apply a basic operation
to a frame even if only a portion of the frame were of interest. Current systems have so-called
region-of-interest operators, which essentially involve some additional addressing hardware

28

that pipeline only a window of the full frame through the processing hardware. With such
region-of-interest hardware, the time that it takes to apply a basic operation to a window is
proportional to the number of pixels in the window, as opposed to being fixed.

We would like to achieve a similar economy of scale on cellular machines like the Connec-
tion Machine. There are two approaches that we can identify that could potentially lead to
more effective utilization of the massive parallelism available in today's cellular computers:

* Partition the machine into clusters of processors, and assign each cluster to a single
pixel in the window to be processed. This is the approach proposed in the so-called fat
pyramid model for image processing on hypercube connected machines (next subsec-
tion). Our software Connection Machine implementations certainly indicate that any
efficient instantiation of this concept would require extensive hardware support.

* Replicate the image window as many times as will fit into the available processor
set. This is the approach that we have employed to support basic image processing
operations including histogramming, table lookups, convolutions and morphological
operations. We have developed an implementation of replicated images on the Con-
nection Machine that is much more practical as a software solution to the problem
than partitioning.

Replication can be used to address the efficient analysis of "small" instances of important
data structurcs other than images-fo± examiple chaims (which ordinarily arise from boundary
extraction processes) and graphs (representing the geometric and topological relationships
between elements in some segmentation of an image). Generally, the following four problems
must be addressed in developing replic ted data analysis for any specific data structure:

* Embedding-An embedding of the data structure into the underlying interconnection
network of the machine must be identified that simultaneously optimizes two proximity
criteria. First, within a single copy of the data structure, nodes that are nearby in the
data structure should be mapped into processors that are nearby in the interconnection
network. Second, between copies of the data structure, processors that represent cor-
responding nodes (e.g., pixels with the same original image address) should be nearby
in the interconnection network. For images, this is easily accomplished using Gray
coding methods in hypercube connected networks.

The rationale for the first criterion is that most operations on the data structures in-
volve movement of information between nodes in the data structure, with movement
between proximate nodes more prevalent than movement between distant nodes. The
rationale for the second criterion is that partial results from the copies must eventually
be combined to generate a representation for the complete computation. This ordinar-
ily involves collecting information from corresponding nodes in all copies, usually with
a logarithmic merging process; this process is expedited by keeping such corresponding
nodes proximate in the network.

* Distribution-Given a goal embedding, algorithms must. be developed to generate the
copies from the original instance of the data structure (e.g., given an arbitrary s x s

29

window of an image, we might need to generate 16 copies of the window). Such dis-
tribution algorithms are communication intensive, and must be designed to minimize
interference in the interconnection network as the copies are distributed to their desti--
nations. Since we might want to process several replicated structures simultaneously,
the distribution algorithms should, additionally, consider the problem of multiple in-
stances and partition the machine among the instances.

"* Decomposition-Methods must be developed for decomposing a computation into
pieces that can be performed in parallel on the copies of the data structure. This
would ordinarily'be straightforward if the underlying machine architecture were MIMD.
Howevei, cellular machines are SIMD machines, and provide us with very limited flex-
ibility in decomposing operations into pieces that can be simultaneously computed on
the copies. The Connection Machine, for example, provides the capability for each
processor to access a different location in an array stored in its local memory at any
time. However, this location will have to be a simple function of the copy and loca-
tion numbers of each node in the replicated structure, since it is unfeasible to preload
the memory of the machine with a problem and data structure dependent addressing
pattern. The Connection Machine also supports arbitrary interprocessor communica-
tion patterns. In replicated image processing, for example, the copy number is used
to determine a relative address for the decomposition of a convolution operation. So,
for example, all pixels in copy one might communicate with their north neighbor; all
pzxels in copy two with their northeast neighbor, etc.

" Collection-Once the projections of the operation are completed within each copy, the
partial results must be collected into a final result. This ordinarily involves a logarith-
mic merging operation. The algorithms must be designed so that at the end of the
collection stage, each copy has a complete result, as opposed to one copy being desig-
nated as the master and the remaining copies having only partial results. The reason
for this is that it is likely that we will want to perform subsequent basic operations on
the replicated structure, and these will proceed most efficiently if all of the copies have
complete rather than partial results.

We have developed data structures and processing algorithms for two other common
image data structures-chains and graphs. Chains (linear structures) arise naturally from
edge detection and border following. Generally, edges comprise only a small percentage of the
pixels in an image (2%-5%). Therefore, if an image has been processed and its important
edges and boundaries marked, then processing them using conventionial SIMD algorithms
would be very wasteful, since most of the processors would be idle. Similarly, segmentations
of an image are naturally represented using planar graphs. These graphs have far fewer nodes
than there are pixels in the image, so they can also profitably be analyzed using replicated
data analysis algorithms.

30

4.2. Multiresolution Techniques

4.2.1. Pyramids and Hough Transform on the Connection Machine

Background

Pyramid architectures and algorithms have been demonstrated to be useful in fast compu-
tation of global properties by performing only local operations. Embedded in the rapidly-
decreasing sizes of the processor arrays is a multiresolution data structure which enables
parallel multiresolution image analyses. Since processors at different levels in a pyramid are
connected in a tree structure, the height of which is only logarithmic in the image size, global
information can be extracted in logarithmic time. Log(image diameter) time performance
can be achieved for image filtering and segmentation, among other tasks. We developed a
pyramid programming environment on the Connection Machine. Pyramid algorithms can
be implemented in this programming environment to gain more knowledge about the per-
formance of parallel pyramid algorithms. A pyramiA Hough transform program based on a
merge and select strategy among line or edge segments is presented to illustrate the capability
of our system.

In the Connection Machine, groups of 16 processors are placed on single chips and con-
nected by a 4 by 4 grid. Global communication is done via a communication network called
the router. The router is a Boolean 12-crube with every router node connected to 16 proces

sors. In addition, there is a communication mesh called the NEWS network which connects
the processors in a two-dimensional mesh. Local grid communication between processors is
expected to be faster via the NEWS network than via the router.

For applications requiring more processors than there are in the machine, the Connection
Machine provides the mechanism of virtual processors. If the machine has 2 K physical
processors while 2 N, jK < N, processors are needed for the application, a mechanism is
created so that every physical processor simulates 2 N-K virtual processors, each having
a unique virtual cube address N bits long. In this way, a maximum number of physical
processors remain active during program execution.

Design Considerations

Our system was designed so that pyramid architectures with rectangular support from chil-
dren and resolution reduction factors of 2 could be implemented easily. Children linked to a
father are not limited to be only f hose in a 2 by 2 block but can be in any rectangular block
having even sides and centered at the 2 by 2 block. Such a construct is particularly helpful
in designing pyramid structures with elongated support from children as well as for over-
lapped pyramids. Our system also provides a programming environment compatible with
other existing vision software on the Connection Machine. Users need only define the data
structure of a pyramid node and the local operations desired, both inter- and intra-level, to
develop specific systems. Configuring the Connection MachinDe into a pyramid, setting up
the necessary linkages between processors, local memory allocation, and global bottom-up
and top-down activation are all done automatically by our system.

31.

Embedding Pyramids into the Connection Machine

Several methods have been proposed to map the pyramid architecture onto a hypercube
architecture. Our mapping is based on a scheme called Shuffled 2D Gray Code. It uses
Reflexive Gray Coding. Reflexive Gray Coding has been widely used in mapping hyper-
cubes onto processor arrays as well as pyramid machines. It has the attractiveness that two
successive codes differ by only one bit.

For the computation of the Shuffled 2D Gray Code, we first compute the reflexive Gray
Code G(i) and G(j) of two integers i and j. We then interleave the bits of G(i) and G(j) to
derive SG(i,j), the Shuffled 2D Gray Code.

We identify every Connection Machine processor by its virtual hypercube address. Let
node (i,j) represent the pyramid node on level 1 (the bottom level is level 0) with grid
coordinates (i,j), 0 <= i,j < 2-, where L is the height of the pyramid. This node
is mapped to the virtual processor with cube address SG(ij) * 4'. Every pyramid level
therefore maps one to one onto the whole machine. The number of levels each virtual
processor is involved in for this simulation is one plus half the number of trailing zeroes of
its cube address. Physical processor 0 will simulate the greatest number of pyramid nodes,
13 in a 64K machine on a 512 by 512 image.

There are several advantages to using this mapping scheme. First, every pyramid level
in this mapping forms a 2D Gray Code mesh. Thus the whole pyramid architecture is
homogeneous. Inter- and intra-level communication involves the same operation for every
pyramid node and is independent of its location.

Secondly, because each row and each cohlmn in a 2D Gray Code mesh constitutes a Gray
Code sequence, each of the cube addresses of the four mesh neighbors of any pyramid node
differs from that of the given node by one bit only. This means that every 4-neighbor is
only one communication link away, while every 8-neighbor is only two cominunication links
away. The communication cost between any neighboring pair of nodes on any level is greatly
reduced.

Thirdly, determining parent/child relations is very easy. For processor SG(ij) * 41,
which is node (ij) on level 1, the cube address of its direct parent is SG(i/2,j/2) * 41+1.
Computationally, this is equivalent to setting bits 21 and 21 + 1 of its own cube address to
zero (the least significant bit is bit 0). The addresses of the four direct children, if they exist,
can be determined similarly by setting bits 21 - 2 and 21 - 1 of its own address to 00, 01, 10,
and 11, respectively. The direct parent of any pyramid node is, at most, two communication
links away.

Our mapping scheme maps each pyramid level onto the whole Connection Machine. This
is adequate for most pyramid algorithms where only one level of the pyramid is active at any
time. For algorithms requiring that more than one level be active at one time, it is possible
to map the whole pyramid onto the Connection Machine so that every neighbor is, at most,
two communication links away, provided that the number of processors in the hypercube is
at least twice the number of processors in the pyramid.

32

Pyramid Hough Z'ansform

We show that a pyramiid machine can be ustd to perform a vaxiation of the Hough transform
by implementing the fid;llowing 3Igoritb..n.

Every line in the X-Y plane can be 4epresented by a pair of coordinates, (p, 0), where p
is the distance from the origin to the line and 0 is the directed angle fromn the positive X
axis to tihe normalY of the line. Uvery point (x, y) on this line has coordinates of the form

(pcosO - -isinO, psinO +- tcosOl- The line segment from (p:os9 - t1 sinG, psinO + ticos0)
to (p cos 0 - t: sin 0, p sina + t2 cos 0) ca) be represented as (p, 0, ti, t2).

Because of the exponentially tapering structure of the pyriamid, information gathered
from children needs to be condensed so as to be stoed locally and passed up for further
processing. We assume every- pyramid node to have. a. bounded memory capacity able to
store at inoiu If 4-tuples (p.0, tit 2) represering line segments. Every node on level 1
collects from its four direct sons a maximum of 4K such tuples. It then tries to merge the
line segments ret resented by these tuples into longer segments using a distance measure
between segments. The K best segments surviving the merge are stoied at that level-i node.
This process is repeated at levels 2, 3,... until the apex of the pyramid is reached. At this
stage the apex has stored the K most prominent line segments in. the image.

We measured the actual spatial distances between pairs of line segments in order to merge
segments which are collinear and close to one anothe . We defined the distance between two
line segments as the maximum of the distances fvorn one of the endpoints of one segment to
the line on which the other segment lies. This distance is computed for all pairs of segments
collected at current node. The pair with the minimal distance is merged into one segment if
the distance is below a certain threshold. The process is repeated for the remaining 4K - 1
segments until either the threshold is exceeded or the number of segments remaining equals
K.

To merge two segments into one, we define the new segment as lying on the line deter-
mined by the midpoints of the two pairs of endpoints of the two segments. The endpoints of
the new segment are the two outermost projections of the original four endpoints onto this
line.

Finally, to decide which K segments to keep, a node computes for every merged segment
the sum of the line (or edge) strengths of all pixels contributing to that segment. Shorter
and weaker lines or edges will have lower strengths and will be weeded out gradually as the
process continues up the pyramid. This leaves the more salient ones at higher levels in the
pyramid, as desired in a Hough transform.

In conclusion, our results show that the performance of the pyramid Hough transform
is not much worse than that of the ordinary Hough transform except when the globally
prominent lines or edges consist of collections of collinear short segments which are not
locally salient.

4.2.2. Fast Addition on the Fat Pyramid

We developed an algorithm for fast addition on a parallel fat pyramid, i.e., a fat pyramid
in which each pyramid node has corn utationa] capabilities. A pyramid representation of a

33

2' * 2' image is a stack of successively smaller arrays of nodes; level I of the pyramid will
have a size of 21 * 2', with the root of the pyramid being level 0. In the fat pyramid, the size
of a node depends on the level of the pyramid in which it appears. A node at level I of the
fat pyramid will have four times as much storage space and processing power as a node at
level I + 1. We assume a fat pyramid in which larger processors are implemented through
the use of aggregacions of smaller processors.

Our addition algorithm is based on a carry-lookahead technique that has been proposed
in the literature. It is based on the fact that a carry does not depend explicit,"y on the
preceding one, but can be expressed as a function of the relevant augend and addend bits and
some lower-order carry. The technique defines two auxiliary functions: Gi = ajbi (the carry-
generate function) and Pj = ai+bi (the carry-propagate function); Gi gets the value of 1 when
a carry is generated at the ith stage, while Pi gets the value of I when the Zth stage propagates
the incoming carry c, to the next stage i + 1. The carry cj+i can then be expressed as:
4+= aibi + (ai + bi)ci Gi + Pici which implies c,+1 = Gi + (H,, P4G, +H .0 Pk=co+

If a single processor is allocated to a single node at level n, then 4 n-k processors will be
allocated to a single node at level k. This implies that the operands for the addition operation
at level k should be distributed throughout those 4"-k processors. For reasons of uniformity,
the same number of bits from each operand will be allocated to each of the above processors.
The addition of two N-bit operands returns an N + 1 bit result; however, N + I may not
be perfectly divided by 4'-k. This implies that sign-extension of each operand should be
performed to transform it into a number having the same value as before, but with a number
of bits equal to a multiple of 4 -k. We will be using the two's complement representation of
binary numbers, so if aN-]aN--2 ... alao and bNilbNg2 ... bibo are the binary representations
of the operands A and B respectively, we will allocate a total of 4n-k [(N + 1)/ 4n-k1 bits to
each operand and the result, where [(N + 1)/4n-"1 of those bits will be stored in each one of
the 44 -k processors. From now on, we will be using M instead of 4 n-k [(N + 1)/ 4 nk] (i.e.,
total number of bits in each extended operand) and q instead of [(N+ 1)/ 4 "k] (i.e., number
of bits from each operand stored ir a single processor). According to the above discussion, the

sign-extension of the numbers will give us new binary representations for the operands A and
B, as follows: A = aMflaM_2 ... av-jaN-2 ... alao and B = bM-IbM-2 ... bNv-1bN-2... b1bo
where aM-, = aM-2 = ... = a= aN-1 and bM_1 = bM-2 =• '- bN = bN-1.

The M bi.s of each extended operand will be divided equally among the 4 `k processors,
such that if (x, y) are the Cartesian coordinates of a processor in the 2 n-k * 2n-k grid that
corresponds to a single node at level k of the fat pyramid, then the processor will contain
the bits of the operands whose subscript s satisfies the condition s mod 4 n-k = 2n-ky + x.

The algorithm is as follows: Initially, the processor at (x, y) initializes q individual carry-
iii terms caj(x, y) to zero, for 0 < J < q; caj(x, y) will reprezent the carry-in with subscript
34n--k + 2 --k y + x. It also initializes q individual propagate terms Prj(x,y), that will cor-
respond to groups preceding the bits of the operands it deals with, to 1. Prj(x,y) will
correspond to the propagate term with subscript j 4 n-k + 2 "-ky + x, where 0 < J < q.

Then, all the processois initialize in parallel q group carry and q group propagate terms for
groups of size 2' =1 , as follows: Gca 1(z, y) - GGi,, = a,bi and GPr, (x, y) = GP,,, = ai + bi,
for 0 < 5 < q, where i.= J4 + y"- -- x. We assuime that the binary representations of
the Cartesian coordina.tes (x, y) of eachi processor, in the grid of size 2 n-k * 2 `-k it belongs

34

to, are as follows: x = X,-k-I ... xlxo and y = Yn-k-1 ... yIyo.

Let us denote by x.' the binary number that differs from the binary representation of
x only in bit position r, that is x4 = x,-k-1 xIxo where 0 < r < n - k, and af
represents the binary complement of x,. In a similar way, let yr' = Yv-k-1 .-. 4, .. - Y1YO.

Initially, pairs of processors that have the same value for the y coordinate, and whose
x coordinate differs only in x0, exchange their values of Gcaj(x,y) and GPr1 (x,y), where
j -= 0,,.. ., q - 1. We consider bidirectional communication channels in the grid of proces-
sors, which means that any two neighbor processors can send data to each other at the same
time.

So, the processor at position (x,y) receives Gcaj(x',y) and GPr3 (x',,y), for 0 < j < q.
Then, only the processors whose x0's are 1 change their individual carry and propagate terms
as follows: ca,(xy) = caj(x, y)+ Pr(x, y)Ccz(y) and Pr (x,y) = Pr(x,y)GPr(xy)
where 0 < j < q.

The above operations update the carry-in values and the corresponding propagate terms
for the bits in those processors, since for xo = 1 we have

Gcaj(x4,y) = Gcj,,j,, CPrj(x', y) = GPj,,j, ,ca3 (x, y) = cy,+I and ?rj(x,y)= &'+,

where j' = 24 -k + y + x - 1. We then have c.,,+, = c',+i -+- P,,+iGcj,j,. and P?'+i =

Pj,'+GPj,',, respectively, which give updated carry-in and propagate values for the corre-
sponding bit. positinn, after combining consecutive bits in pairs. Thenc, thLle foll • u,-

eration is performed in parallel in th,,se processors that have xo = 1, for 0 < j < q:
Gcaj(x, y) = Gcaj(z, y) + GPr,(x, y)Gca,(x', y), otherwise (i e., for processors that have
xo = 0) Gcaj(x, y) = Gcaj(x, y) + GPrj(x', y)Gcaj(x, y). Also, all the processors perform
in parallel the operation GPr1 (x, y) = GPrTj(z, y)GPrj(x", y) for 0 < i < q.

The above implies Gcj,,j,+= Gcj,+,,j,+i + GPj,+i,j,÷,Gcj,,1 , and GP1 ,,ji+l = GPj,+l,j,+l
GPj,d, respectively, where j' = j 4 n-k + 2 n-ky + 2[x/2J. The new values of Gcaj(xy)
and GPr3 (x, y) will represent the group carry and the group propagate terms for pairs of
consecutive bits.

Processing similar to the above continues rt -- k - 1 more times. During the rth execution,
where 0 < r < n - k, any two processors that have the same value for the y coordinate but
differ in the rt" bit of their x coordinate (i.e., their distance is 2' in the grid of size 2 '-k *

2 n-k) exchange their values of Gcaj(x, y) and GPr, (x, y), and then perform the following
operations in parallel:

if x, = 1, then for 0 < j < q,

{caj(x,y) = co.(xa,) + Prj(x,y)Gcaj(x',y),

Pri(x,y) = Prj(x,y)GPr3(x4,y),

Gcaj(x,y) = Gca,(x,y) + GPr,(x,y)Gca3(x;,y)}

ctherwise

{Gcaj(x,y) = Gcaj(x',y) + GPrj(x'•,y)Gcaj(x,y)}

and all the processors update the group propagate terms as follows:

GPrj(x, y) = GPr,(x, y)GPr,(x', y)-

35

Just after the rth execution of the above steps, where 0 < r < n - k, ÷he processor at
(x, y) will contain the group carry (assuming a carry-in of 0 for the group a this point) and
the group propagate terms for the q groups of 2T+1 consecutive bits each, t at are stored in
the processors with the same y coordinate and whose x coordinate in the 2" . * 2 n-k grid is
in the range from 2? Lx/2rJ to 2r [x/2"J + 2r - 1. Also, the final value of the carry-in for the
bit positions 0 through 2r - 1 will have been computed.

After those n - k "cycles", the processor at (x, y) will contain the 2q auxiliary group
terms for the q groups of bits j4'-k + 2 n-ky through j 4 n-k + 2"-k(y + 1) - 1, for 0 < j < q
(i.e., the combination of data contained in all the processors whose second coordinate is
y). Similar types of operations are then performed for the y dimension. Groups of bits are
combined using only vertical communication patterns in the grid.

So, to summarize, communications and computations occur during the first 2(n - k) =

logp "cycles" of the algorithm, where p = 4 `k is the number of processors allocated to a
single node at level k of the pyramid, while only computations occur during the remaining
q "cycles." The computation time of the algorithm is proportional to log p + q, if we assume
that the system contains m-bit processors, where m > q. If we consider 1-bit processors,
then the computation time of the algorithm will be proportional to q * logp, because each
of the operations presented before will be executed q times in each "cycle" of the algorithm.

4.2.3. Replicated Image Processing

The conventional way of mapping images onto large SIMD machines like the Connection
Machine, that of assigning a processing element per pixel, tends to let major portions of
the machine lie idle, especially when the image is relatively small, as is the case in focus-
of-attention image processing. We developed a method to remedy this situation, gaining on
the processing time as a result. We replicate the image as many times as possible, and let
each copy solve a part of the problem. The partial results from the individual copies are
then aggregated to get the solution to the problem. We call this method replicated image
processing. We developed replicated image algorithms for histogramming, table lookup.
and convolution on the Connection Machine and compared their performance with the ne"
replicated algorithms for the same.

In a replicated pyramid, the cells in the hypercube are used to replicate, as many times
as possible, the image stored at any given level of the pyramid. So, for example, if the image
at the base (the 0 th level) of the pyramid has exactly as many nodes as there are cells in
the hypercube, then only one copy of the image would be stored in the hypercube. A.t the
first level there would be sufficient cells to store four copies of the reduced resolution image.
In general, at the 1th level we would have 41 copies of the reduced resolution image. It is
straightforward to embed the replicated reduced resolution images into the hypercube using
Gray codes.

We have implemented the histogramming, table lookup, and convolution algorithms for
a replicated-pyramid architecture. A single level of the replicated pyramid was implemented
on the Connection Machine by configuring it as an n x m- x m array of processors, where
n is the number of copies of the in x m image. Communication is efficient this way, since
the Connection Machine automatically assigns subhypercubes to each copy of the image.

36

Communication within each copy remains local and is independent of the communication
within other copies. Also, the logarithmic merging step, typical of the second phase of all
three algorithms is very fast because corresponding elements of different copies of the image
are adjacent in the Connecti'm Machine hypercube.

A copy of the histogram of the image (in the case of the histogramming "Jgorithm) or
the entire table (in the case of the table lookup algorithm) was stored in each copy of the
image. Histogramming and table lookup distribute the problem among the 41 copies available
in such a way that each copy handles an equal number of gray-level values of the entire
image. The implementations of these two algorithms are very similar, so we discuss only
the histogramming algorithm. The histogramming algorithm takes advantage of the CM2
Connection Machine feature that if each processor sends a message to the processor that
counts its gray-level value, then there will be as many collisions at each counting processor
as the number of pixels with that gray-level value. Using the collision resolution strategy of
counting all the colliding values, the histogram for the entire image can be computed in a
single step. Thus, the histogramming algorithm implemented on a single level of a replicated
pyramid cannot outperform a single copy histogram algorithm on the Connection Machine.

The convolution algorithm yields more interesting results on replicated pyramids. To
compute a k x k convolution, F0 copies of the image are required. (On the Connection
Machine, the next power of 2 has to be chosen as the actual number of copies allocated,
although only V2 of them are used.) Each copy handles one of the kernel weights. In the
fii1t phase, each processor multiplies this kernel weight with its own gray-level value and
sends the product to the appropriate processor in the same copy. In the second phase, these
products are summed to obtain the final result of the convolution at every processor of every
copy. We compared the time taken by the convolution algorithm implemented on the CM
using a single copy against the replicated algorithm using V2 copies. Experiments indicate
that the utilization of the Connection Machine is much higher for the replicated algorithm
than for the single copy algorithm. This can be explained as follows. If there are a sufficient
number of physical processors to store all k2 image copies, then the replicated algorithm
performs one multiplication step (in which all V0 kernel multiplications are performed in
parallel) and 2 log k addition steps to compute the multi-copy convolution. In contrast, the
single copy convolution algorithm has to perform V2 steps of multiplications and additions,
all under direction of the host computer. Thus, the host overhead is much higher for the
single copy algorithm than for the replicated algorithm.

There are many basic image analysis algorithms to which the methods described above
can be extended in a straightforward way. For example, gray scale morphological operations
are implemented in much the same way as gray scale convolution; various types of image
statistics useful for image texture analysis, such as co-occurrence matrices or difference his-
togranis, can be computed very quickly also.

4.3. Quadtrees on the Connection Mlachine

We developed a general technique for creating SIMD parallel algorithms on pointer-based
quadtrees. It is useful for creating parallel quadtree algorithms which run in time propor-
tional to the height of the quadtrees involved but are independent of the number of objects

37

(regions, points, segments, etc.) which the quadtrees represent, as well as the total number
of nodes. The technique makes use of a dynamic relationsi ip between processors and the
elements of the space domain and object domain being proceosed.

Consider the task of constructing a quadtree for line segm.ent data (a PM quadtree). In
constructing a PM quadtree, a node should be assigned the color gray and subdivided if its
boundary contains more than one endpoint, or if its bouxidary hIss two segments which enter
it but which do not have a common endpoint within it. Initially, we have one processor
allocated for the quadtree root, and one processor for each line segment, containing the
coordinates of the segment's endpoints.

Consider creating an algorithm, to construct the PM quadtree for this segment data.
Each segment processor initially possesses a pointer to the quadtree root processor. Each
segment processor computes how many of its segment's endpoints lie within the boundary
of the node to which the segment processor points; this will be 0, 1, or 2. Each segment
then sends this value to the node it points to, and both the maximum and minimum of these
values is computed at the node. Any node which receives a maxi.mum value of 2 assigns itself
the color gray, since this means that some sinE le segment has both endpoints in the node's
boundary. Any node which receives a maximur i of 1 and a minirmum of 0 also assigns itself
the color gray, since this means that there are at least two segments in the node's boundary,
one which passes completely through it and one which terminates within it.

Each segment with exactly one endpoint in the node it points to then sends the coor-
dinates of that endpoint to the node. The node receives the minimal bounding box of the
coordinates sent to it (this, of course, amounts simply to applying min and max operations
appropriately to the coordinate components). If this minimal bounding box is larger than
a point, the node assigns itself the color gray, since this means that some two segments
entering the node have non-coincidental endpoints within the node.

Finally, each segment with no endpoints in the node it points to determines whether it
in fact passes through the interior of the node at all; if so, it sends the value "1" to the node,
where these values are summed. If the sum received by the node is greater than 1, the node
assigns itself the color gray, since this means that some two segments passing through the
node do not have any endpoints in the node, which implies that they do not have a common
endpoint in the node. Then all gray nodes allocate son processors. Any nodes which were
not given the color gray should be colored white if no segments entered their interior (the
sum is zero), and black otherwise (the sum is one).

At this point in the algorithm, we would like to have all segment processors which point
to gray nodes compute which of the node's sons they belong to, and retriee from the node
the appropriate son pointer. Of course a given segment can intersect more than one of the
node's sons, and we are left with the situation of wanting to a:.sign up to four son pointers
to the segment processor's node pointer, and processing each of the corresponding sons.
The solution to this dilemma is to allocate clones of each such segment processor, that is,
to create multiple processors which represent the same segment, and all of which contain
(almost) the same information. So for each segment processor pointing to a gray node, wt.
allocate three clone processors, all of which contain the segment's endpoints and a pointer
to the same node as the original segment processor. In addition, the original and its clones
each contain a clone index from 0 to 3, with the original containing 0 and each of the clones

38

containing a distinct index from 1 to 3. Now the original and its clones each fetch a son
pointer from the node that they all point to: each one fetching according to its clone index,
so. that each gets a different son pointer.

The rubsequent iterations of the algorithm proceed as the first, with each segment pro-
cesrr determining how many of its endpoints lie within the interior of the node it points to,
and with the eventual computation of the colors of all the nodes on each particular level.
At this pioint in each iteration, notice that any segment processors pointing to leaf nodes,
or whos,:• segments do not pass at all through the interior of the node to which they point,
will not ha;e any further effect on those nodes, and thus be de-allocated and re-used
later. This reclaiming of segment processors keeps the number of clones allocated for each
segment from growing exponentially. In fact, the number of processors required for a given
segment (at a given level in the construction o! the quadtree) will be roughly the same as
the number of nodes (at that level of the tree) through whose interiors the segment passes.

To summarize the general technique, we allow one processor per quadtree node, and
initially allow one processor per object. Each object is given access to a sequence of shrinking
nodes which contain part of it; initially all objects have access to the root node. By having
each obje•ct obtain information from its node, and by combining at each node information
from all of the objects which access that node, the objects make decision3 about descending
the quadltrae from that node. For those objects which do descend, it is desirable for their
various parts which lie in various quadrants of the node to descend in parallel. Thus, we
allow: dvplicate or 'clone' processors for each object, and have each processor handle just
that portion of the object reievant to one quadrant of the node. Duplicate processors which
determine that they can no longer affect the node to which they point, because that node
is a leaf, or because the object they represent does not overlap that node, can deactivate
themselves so that they may be used later in the computations for some other object.

We see then that this technique allows us to go beyond the level of granularity of one
processor for every element (space component or object) to a level where there are multiple
processors for certain elements and none for others; where the processors are being used and
disposed in a dynamic fashion.

The same general technique can be applied to create algorithms for several other quadtree
tasks, such as shifting, rotation, and expansion, which run in time proportional to the height
of the new quadtree, by computing in ',he parallel the rotated or expanded version of each
old black leaf node, and building the new quadtree using cloning.

4.4. Benchmarking Activities

4.4.1. Border Tracking with an Implementation on the Butterfly Parallel Pro-
cessor

Background

In digital image analysis, objects visible in an image can be recognized by describing their
borders, arid then matching the border representations to model descriptions. There are ba-
sically two ways of tracking the borders of a given object. The first is studying local gray level
values in a small neighborhood, and producing a strong response for fast gray level changes

39

II

at object edges and a low response for image locations with constant or slowly varying spatial
gray level distribution. The strongest edges are separated from the weaker ones by thresh-
olding the gradient magnitude image, exploiting for example the edge strength bistogram.
The remaining borders are finally followed to produce coordinate lists corresponding to the
4- or 8-connected edge point patterns in the image. The other alternative differs from the
first, in that the segmentation phase preceding the border following is not trying to locate
the edges of an object directly by studying local gray level changes, but by first locating the
object body and then tracing its outer border and the inner borders corresponding to the
holes in the body. In this work an algorithm based on the second approach was developed.

The real-time operation requirement of complicated vision systems necessitates the use
of fast parallel implementations of image analysis algorithms. In particular low and inter-
mediate level operations require processing of large amounts of input data, and are potential
objects for parallelization. In this study, a parallel version of the border tracking algorithm
was developed for a multiprocessor system classified as a MIMD computer. The specific com-
puter used in testing the algorithm was the Butterfly Parallel Processor with an 88 processor
configuration.

Sequential Algorithm for Border Tracking

The algorithm tracks the borders of an area-segmented binary image. The input image is
processed by one pass in a row-by-row fashion., starting on the highest row and proceeding
downwards. Instead of outputting edge point coordinates, a crack code representation of the
border shape is used. The crack code of an object border is produced in the following way:
if we follow the cracks around a border, at each move we are going either left, right, up or
down; if we denote the direction 90*i by i, these moves can be represented by a sequence of
2-bit numbers (0, 1,2, 3).

There are two kinds of borders in an image: outer and inner borders. An outer border
encloses an object, whereas an inner one surrounds a hole in an object. In this algorithm the
outer boundaries are followed in a clockwise order and the inner ones in a counterclockwise
order. The opposite directions result from the principle of tracing the edges in such a way
that the object is always kept on the right side of the trace path. The objects are taken as
4-connected and the background as 8-connected.

An image is processed by moving a 2 x 2 window through the image in a raster scan
fashion: each row from left to right, row by row from top to bottom. The actions to be
performed depend on the neighborhood visible in the window, resulting in sixteen primary
operations on the crack code strings. The primary operations resolve themselves into various
subactions, such as extending a code string head or tail, merging of two strings, and creation
of a new outer or inner string.

A 2 x 2 window doesn't always contain enough information to carry out certain string
operations. An example of such a case is the presence of neighboring runs on the previous
row, which often lead to the merging of two strings, or the creation of a new inner or outer
string. In this algorithm a knowledge of the runs yet to coma on the current row is not
necessary, even if those runs turn out to be neighbors to the current run. Every decision is
made using only the local history of the row and the contents of the current window. The

40

local history of the row contains two pieces of information. The first one is a flag which
indicates whether there is a neighboring run in the previous row which terminates before the
current position on the row. If there is, the flag points to the right end of the neighboring
run. A similar flag is maintained for the current row. Wnen the right end of the current run
is encountered, the flag is set to point to the end column if there is a neighboring run on the
previous row which still continues. The presence of a neighboring run on the previous row
sometimes results in the merging of two code strings or to the creation of a new inner string.

The algorithm contains two important data structures. The first is called an 'active string
list' and the other one is called a 'modified string list'. While scanning a row, the active
string list contains the addresses of the active strings for the current row, i.e., strings which
have not yet been updated on this row. After updating a string it is moved to the modified
string list. The modified string list becomes the active string list on the next row and a new
empty modified list is then created. As a string becomes closed, it is removed from the lists
and output.

Parallel Algorithm for Border Tracking

Parallelization of this kind of sequential algorithm seems quite straightforward. The input
image is divided into a given number of equal sized blocks overlapping each other by one
row, each of them is processed senarate'l and fin!ly. the partial results are combined. This
leads to a two-stage algorithm where the second stage- annot be started before the first one
is completed. The parallelization of the first part is obvious, but the necessity for parallelism
in the second stage depends on the amount of partially completed data produced in the first
stage. In this application the input aggregate for the merging process depends on input
image size and its contents and especially on the number of image blocks. The second stage
was found to be the bottleneck for the performance in several experimenis, which motivated
us to design a parallel algorithm for merging of partial code strings, too.

There is an important point to be considered with the partition of image data, though.
The easiest way of doing the partitioning is to assign an equal number of rows to each
processor. This is the first approximation of equal work load for the processors. But a
simple principle like this often leads to improper balancing among the processors if the
contents of the image is not evenly distributed. Because the execution time of a parallel
program step is dominated by the slowest parallel subtask, it is important to do the division
of input data by exploiting a better estimation for the quantity of work.

The main modification to the sequential algorithm is due to the possibility that an object
border may traverse several image blocks. For this reason, the top row and bottom row
of a block contribute to extra actions in many of the primary cases. To overcome these
implications a few additional members must be included in the code string data structure.
The most important of these are binary flags to indicate lower or higher border crossings for
string head and tail components. Also, the intersection coordinates must be recorded in the
structure. These additional data are used in the merging stage for deciding on connectedness
of partial strings in neighboring image blocks.

Classification of strings into outer and inner borders becomes somewhat meaningless
within an image block if they traverse two or more partitions, because just by looking at

41

a partial string it is not possible to make the distinction. These attributes are useless in
the merging stage, too. If a string can be completed in a block, though, its classification
holds. There is a simple way to determine reliably whether a completed string is an outer
one or an inner one. This can be carried out by studying the local neighborhood of the
highest border point of the string, called the reference point of the string. It is the first point
of the associated border that is found during scanning the image. The special meaning of
reference point is due to the action of creating a new partial string at this location. Because
borders are always followed in the same direction (keeping the object on the right), the
crack codes emanating from the reference point are different for an outer string and an inner
string. The crack code sequence for an outer string in the vicinity of the reference point,
coming along the head and continuing along the tail, is '... 1-0... '. The sequence for an
inner string is respectively '... 2-3... '. During the border tracking stage, each processor
assigns a reference point to every string in its block. If a string crosses the upper limit of
the block, the intersection point is also the local reference point of the partial string. After
the merging step, the global reference point is searched for along the combined string chain
and the classification is finally done.

Conclusions I
A gener-n algorithm for extracting object borders was developed. The binary image is
processed in a raster scan fashion in one pass, producing crack code strings describing the
borders. The objects are rqgarded as 4-connected, but an 8-connected version is ea& ily
achieved. The algorithm can be generalized to process gray level images, too.

A two-stage parallel version of the algorithm was developed, where the input image
is partitioned into partially overlapping equal-sized blocks, each of which is processed by
a separate processor. The first step produces crack code descriptions of the object borders
hitting the blocks, in parallel. The second step is required for merging the ncomplete border
strings traversing more than one image block.

Our experiments on the Butterfly Parallel Processor reveal that wiUt anl image size of 512
by 512, the speedup increases nearly linearly up to the point where about twenty processors
are in use. After that, the contention for shared memory resources starts leveling off the
performance growth severely. One important source for the increa3e in execution time after
this critical point is the merging step which is more and more heavily loaded as the number
of incomplete border descriptions increases with the increased number of image partitions.
The merging step can be omitted from the algorithm.

4.4.2. Parallel Matching of Attributed Relational Graphs

Background

In many computer vision applications, it is necessary to utilize structural analysis in pattern
classification. To facilitate this, an appropriate structural description of objects and their
mutual relations is required. In addition, a fast classifier for these descriptions should be
available.

42

Attributed relational graph description has been found to be very suitable for computer
vision. There are several approaches to match the graphs. These algorithms vary from
complex syntactic methods to simple matching techniques. Unfortunately, the optimal com-
parison of two graphs is inherently an NP-complete problem. Tberefore, the computational
efforts required increase exponentially with the number of nodes in the graphs. For example,
the matching of two k-node graphs using conventional algorithms may require the construc-
tion and evaluation of k! * k! solution candidates in the worst case. This means that when
using conventional computers and algorithms the optimal comparison of graphs with more
than a few nodes may take too long for practical applications.

In most applications, however, some physical and heuristic constraints can be applied
to slow down the exponential explosion. Furthermore, the matching can be parallelized
to achieve almost a linear speedup in a multi-processor environment. Finally, the entire
structural classifier, based on graph matching, can be parallelized to match the graph to all
the models simultaneously.

We describe a fast graph matching algorithm and its parallel implementation on two
MIMD computers: a Butterfly Parallel Processor, and a Transputer system.

A Fast Graph Matching Algorithm

In our earlier work, a fast matching algorithm was developed for structural classification.
The algorithm can be used to solve both isomorphic and monomorphic problems. The
resulting numeric value describes the edit distance between the graphs. The algorithm has
been proved to be useful for defect classification in visual inspection applications.

The edit distance is defined as the minimum number of changes to make the graphs
similar to each other. The changes allowed are the deletion and the addition of a node, a
link, or an attribute. The structural classifier calculates the edit distance between the graph
to be classified and the model graphs representing different classes. The graph is classified
in the class for which the minimum distance was found.

The basic problem is to find the best possible mapping between the nodes of the graphs
to be matched. To accomplish this, a depth-first search is used to build a state space tree of
solution candidates. When the search terminates, the resulting candidates are described by
paths from the root to the leaves. In the worst case, the tree contains all the combinations
of the two sets of nodes corresponding to the graphs. For this reason, heuristic constraints
are applied to pruning the tree in order to achieve sufficient speed.

The first heuristic for limiting the size of the tree is using a certain predetermined model
node to align the matching process. This base node represents the most important object or
part of the object in the model description. .f the problem graph contains the base node, a
partial match of the graphs has been found, and only one out of k main branches of the tree
remains for further study. The second heuristic exploits the local structural similarities of
the graphs. The remaining k - 1 nodes are matched level by level in the graphs starting on
the successor levels of the base nodes. The resulting state space tree often consists of only a
few paths.-.

This ordered matching enables a speedup of several orders of magnitude without sacri-
ficing recognition accuracy, because all feasible mappings between the graphs are still con-

43

sidered. -

The best match is found by evaluating each candidate and choosing the one which rep-
resents the minimum edit distance. In the case of monomorphism, empty (NIL) nodes are
ignored in the evaluation. The evaluation time is minimized by using lookup tables for edit
distances between node and link pairs.

Implemented Algorithm

The original algorithm was implemented on a Symbolics 3645 which supports list processing
by hardware. MIMD-classified multiprocessing systems usually have no special processors
tailored for symbolic data processing but are rather designed for numerical calculations.
To better utilize the computational power of our target computers, all the symbols (node
attributes, link attributes etc.) are hashed into integer values. The method for constructing
the state space in a depth-first manner is changed to a breadth-first type algorithm, and the
evaluation process is sped up by including several auxiliary tables in the algorithm.

A Parallel Algorithm

For a given number of processors in a MIMD computer, the most effective parallelization is
reached by parallelizing the outermost loop in the program. In this way, the speedup is nearly
a linear function of the number of processors if there is no interaction between tbM loops. The
degree of sublinearity of a speedup curve is directly affected by the communic tion overhead
between parallel processes. The generation of a state space can be distributed effectively to
processors in such a way that every processor constructs its own main branch of the tree,
which is the outermost loop in the sequential program. This gives an asymptotic speedup
of O(k), where k stands for the size of the model graph counted in nodes. More speed can
be achieved by parallelizing the process deeper in the tree. For example, if parallelization is
done ,ne level deeper there will be k - 1 processors for each main branch. Thus the speedup
is O(k * (k - 1)) = O(k * k). This has the side effect that the number of processors increases
very quickly as the graph size is increased.

For practical applications, a compromise between speed and system size has to be made.
In this work, the process of state space generation is parallelized on the highest level of the
tree, which yields a speedup of O(k). Identification of the base node in the problem graph
reduces the size of the tree to one main branch, in which case the parallelization is carried out
on the next highest level. The speedup here is O(k - 1) = O(k) compared to the respective
sequential version.

Parallelization of the state space evaluation is done in the same way by dividing the tree
into a given number of equal-sized subtrees.

Results

The parallelization of the algorithm was designed especially to suit MIMD computers, like
the Butterfly Parallel Processor and the Transputer network used in our experiments. The
Transputer-based multiprocessor system was used to study the properties of our algorithm.

44

Butterfly experiments were also performed to compare the performance of our system to a
commercially available multiprocessor. The results show that the program runs two to three
times faster in the Transputer system than in the BPP. The performance ratio, however,
strongly depends on the system clock frequencies and the speed of the IC components se-
lected for the hardware implementation of these target computers. Programming languages
were also different (C with the BPP and Occam with Transputers), which contributes to
comparison difficulties.

With the graph sizes of three to seven, the speedup of the parallel algorithm is nearly
linear. The increasing deviation from a linear speedup with increasing graph size results from
the more extensive communication overhead, due to longer messages describing the properties
of the graphs. With larger graph sizes, our Transputer system runs out of processors if no
modifications to the algorithm are done. If there are M branches to be processed with the
maximum of N processors, the generation and the evaluation of the state space must be
done in L = IMINI consecutive steps. The execution time will thus be L * T, where T is the
processing time for N branches.

45

5. Parallel Iterative A* Search

5.1. Overview

We have developed a distributed best-first heuristic search algorithm, Parallel Iterative A*
(PIA'). We have shown that the algorithm is admissible, and have given an informal analysis
of its load balancing, scalability and speedup. To empirically test the PIA' algorithm, a flow-
shop scheduling problem has been implemented on the BBN Butterfly Multicomputer using
up to 80 processors. From our experiments, the algorithm is capable of achieving almost
linear speedup on a large number of processors with relatively small problem size.

5.2. The A' Algorithm

The A* search procedure can be described using graph-theoretical terms. For any problem
instance, a state-space graph is implicitly defined. Each node in the state-space graph
represents a state. As A* proceeds from a start node s, nodes in the state-space graph are
gradually expanded by a node expansion operator.

A* finds an optimal cost path from the start node, s, to a set of goal nodes. In A*, a
node n is assigned an additive cost, f(n) = g(n) + h(n), where g(n) is the actual cost of
reaching node n from s, and h(n) is the heuristic or estimated cost of reaching a goal node
from node n. A variant of thc,•A5 search procedure whichid" does not test for duplicate nodes
is provided below:

1. Put the start node s on a list called OPEN.

2. If OPEN is empty, exit with failure.

3. Remove from OPEN a node n whose f value is minimum.

4. If n is a goal node, exit successfully with a solution.

5. Expand node n, generating all successors that are not ancestors of n and adding them
to OPEN.

6. Go to step 2.

The omission of the check for duplicate nodes is appropriate if the state-space graph is
a tree. For a graph search, there is a tradeoff between the computational cost of testing for
duplicate nodes and that of generating a larger scaich tree. The computation required for
identifying duplicate nodes can be quite substantial, especially in a distributed computational
environment. In the following discussion, we assume it is worthwhile to omit the test for
duplicate nodes.

46

5.3. The PIA* Algorithm

PIA* proceeds by repetitive synchronized iterations. At each iteration, processors are syn-
chronized twice to carry out two different procedures: the node expansion procedure and the
node transfer procedure. Operations are largely local to the processor in the node expansion
procedure and are completely local in the node transfer procedure. Data structures in PIA'
are distributed to avoid bottlenecks. Node selection, node expansion, node ordering and suc-
cessor distribution operations are fully parallelized. Processors performing searches which
are not following the current best heuristics are synchronized to stop as soon as possible to
reduce search overhead (the increase in the number of nodes that must be expanded owing to
the introduction of parallelism). During processor synchronization, speculative computations
are contingently performed at each processor, trying to keep processors always productively
busy, to reduce synchronization overhead. Unnecessary communications are avoided as long
as processors are performing worthwhile search to reduce communication overhead. A sym-
metric successor node distribution method is used to control load balancing. Finally, the
correct termination of PIA is established by its iterative structure.

The parallel architecture model we assume consists of a set of processor-memory pairs
which communicate through an unspecified communication channel. The communication
channel can be realized using a shared memory or by message passing. Memory referencing
through local memory is completed in constant unit time. A remote reference through the
communication channel, however, requires O(log P) time in the worst ca-se with no conflicts,
where P is the number of processors. Note that this architecture model is general enough
to subsume most scalable multicomputers which are currently available commercially.

5.3.1. Data Structures

In each processor .j, two lists are maintained in its local memory: the work list (WLj) and
the reception list (RLj). WLj is a priority queue and RLj is a simple list. At the beginning
of each iteration, WLj contains the sorted nodes awaiting expansion by processor j, and
RL, = 0. During the node expansion procedure, successor nodes generated are distributed
to RLj, j = 0... P - 1, using a successor distribution algorithm to be described below.

Henceforth, we will use WL. to denote the set of nodes in the work list of processor
j at the beginning of iteration i. If the subscript is omitted, it means the union of all P
processors' work lists. That is,

WL'= U WL'*
j=..,...,P-1

If the superscript is omitted, it means for all iterations. Similar notation will be used
throughout this section.

Initially, WL0 -= s and RL = 0. As P1A* proceeds, WL' is similar to a snapshot of the
OPEN list in A*, but distributed.

5.3.2. Iteration Threshold, Mandatory Nodes and Speculative Nodes

A threshold t' is associated with each iteration i, with t' = h(s). At each iteration, all nodes

in WLV with f(n) < tP will be expanded, and some nodes with f(n) > ti' will be expanded.

47

A node n (WLV is thus called a mandan'nr.y node if f(n) < t'. Let M', which is a subset
of WLV, be the set of all mandatory nodes. As we shall see. later, all mandatory nodes will
eventually be selected for expansion by either A- or PIA' in the worst case.

A node n E WLI is defined to be a speculative node if f(n) > tt. Let S• be the 3et of all
speculative nodes. Then, WV) = M' U S0.

lniti.Jly, M' = s and S3 =

5.3.3. The Node Expansion Procedure

The noe expansion procedure at each iteration i operates as follows. A processor j first
expands a)1 the nodes from MJ and, by an algorithm to be described below, puts all the
successor n-odes generated into the reception lists (RL). Then, as long as any other processor
is expanding a mandatory node, this processor cortinA,es to expand the best speculative node
from S . Wh.>.n all the nodes from MA have been expanded, all processors synchronize for
the node transfer procedure which is described below.

In P14, successors generate3 by a node expansiorn are not considered for expausion until
t;e next iteration; they ere added to RL i'r. nediately after they are generated.

5.3.4. Determininn t6 i

The threshold for the discrimination of mandatory nodes and speculative nodes at iteration
I+ 1. t(i + 1), is detfined as the maximum of:

(a) VP, and

(b) the minimum cost of:

(bi) all successors generated from nodes in M', and

(bij) the nodes in S.

I'here is a simple, efficient parallel method for computing t'+'. For each processor j, a
local constant cj, which is the minimum cost of (a.) all successors generated from nodes in
Mj. and (b) the best node in S, can be computed during the node expansion procedure.
Then, the minimum of cj, j = 0.. P - 1, can be computed in parallel in time O(log P) while
processors are synchronized; t"' is then the rmaximnm of t' and the computed minimum.

5.3.K. Tlhe Successor Distribution Algorithma

Successor nodes generated by a processor are put into RLj, j = 0"-. P - 1, i: a multiplex
round-robbi fishion. Morw precisely, suppose that the most recent successor node generated
by processor j is added to RLi. Then the next successor node generated by prucessor j will
be added to RL, where k = (i + 1 (mcd P)). At each iteration, processor j sends its first
generated successor to Rfj.

The advantage of this approach is Lhat it is simple to, implement ar;.d its symmetric
structure helps /A* attain the desired load baiancing. Since the •uccessors generated ace

48

not considered for expansion until the next iteration, some optimization can be made for
message-passing architectures. Messages for successor distribution can be asynchronous so
that computation and communication can be overlapped. For architectures which require
large communication setup time, successor nodes generated can be distributed and cached
in local memory and not sent until an efficient message size for the underlying architecture
is reached.

5.3.6. The Node Transfer Procedure

After the node expansion procedure, each processor j empties the nodes from RLj and
inserus them into WLj to form a new priority queue for the next iteration. Note that
the node transfer procedure is completely local; no communications between processors are
required.

5.3.7. Termination

When a mandatory node is found to be a goal node by a processor, a message can be
broadcast to inform all processors to terminate. If a speculative node is found to be a goal
node, this node is simply added to RL because it may not be an optimal goal node.

PIA* can terminate, failing to reach a goal node, when WLI = W. V= 0 if and only if
'Li = 0, for all j = . P- 1. This state can be recognized and broadcast to all processors

at the end of the node transfer procedure.

5.4. Analysis

The algorithm can be proven to be admissible, meaning that if a goal state is reachable then
an optimal goal will be reached. Informal analyses and experiments have shown that the
algorithm maintains good load balancing among the processors and can achieve a nearly
linear parallel spcedup.

49

6. Parallel Matrix Operations

6.1. Generalized Matrix Inversion on the Connection Machine

We have also investigated the practical implenmentation of algorithms for generalized inversion
(g-inversion) of a matrix on the Connection Machine.

The Connection Machine is extremely well suited to data level parallelism. Accordingly
the suitable algorithms are those which are deterministic and exhibit massive data par-
allelism. While there are several numerical algorithms available for matrix inversion, we
recommend the Ben-Israel-Greville algorithm as it has the following distinct advantages:

i. Deterministic
The procedure involves only matrix multiplications and the initial approximation can
be chosen to ensure convergence deterministically.

ii. Reliable
If the matrix is singular or rectangular, the least-squares or Moore-Penrose inverse is
obtained, so the process does not fail.

iii. 5La.l~e

The algorithm is self-correcting and stable, and permits the use of coarse precision at
eazhli stages adl finer precision towards the end.

iv. Linear time
Since the algorithm is entirely based upon repetitive parallel matrix multiplication
(which takes linear time), it generates the inverse in linear time.

v. SI_.L&___fe
The basic steps. in th.s algorithm allow extension to larger matrices by using the virtual
processor ,;onfigurat~ow ci the Connection Machine. Here each physical processor can
simulate a two- dimenw-ional grid of virtual processors. In such a case, the speed of each
procesfBo: i13 redu,ced by z. faccv.r of V/P, where

V t'otal ni mbaer of virtual processors
and P total number of physical processors.

The complenity of matrix-partitioning , chemes for the g-inversion on the Connection ma-
chine b.as also been analyzed. It turns ou,. that the use of the virtual processor configuration
on the Connfb:ti:, Machine is of con)a.rabie efficiency to using any partitioning scheme,
when the multipiilcatve iterative scbeme is used for g-inversion.

t6.2. Grid E~zh.ation-In\,erpolatiorn on the Connection Machine

6&2,1. G(id Evaluation-lb-te pnlatior using Tensor Products and General Inver-

'The interpol.Aiorj ana approxilflatio,) o[functions of two or more independent variables have
receatly becoimn importa.at because of ttheir extensive technical applications in a wide range of

50

fields-digital image processing, digital filter design, topography, photogrammetry, geodesy,
and optical flow, to mention only a few. In all these applications it is required to construct
formulae that can be efficiently evaluated.

Tensor products are widely used in the evaluation and interpretation of functions as well
as 2D and 3D image blocks. We implemented a tensor product on the Connection Machine.
We have developed a set of ready to use tensor product approximation schemes for data
arrays of size (2 x 2), (3 x 3) and (4 x 4) in 2D and 3D. We use bilinear, trilinear and higher
order forms for this purpose. These schemes can be used recursively for larger array sizes on
the Connection Machine. The tensor product approximation is computationacly economical
to implement. For instance, in the 3D case for the (n x n) grid, we need to precompute and
store only the inverses of three matrices of size (n x n) rather than one of size (n 3 x ni3).

Obviously, error is introduced in such an approximation; Gordon and Schumaker provide
explicit error bounds for this, as well as other related approximation schemes.

6.2.2. Grid Evaluation-Interpolation using Multivariable Spline-Blending Ap-
proximation

Instead of using polynomials (1, x, x',...), one can use Lagrange or spline functions for inter-
polation and use blending approximation that combines the approximations obtained using
coarse and fine grids. Computationally, one of the most convenient classes of methods for
this Purpose is the "pru• dct-operatr method," where the approximating function is calcu-
lated by treating the individual variables separately. A particular scheme is the projection
operator technique of Gordon, which uses the cardinal splines, and provides a substantial
saving in the number of function values that are required to approximate a function to a
prescribed accuracy.

We have developed a Connection Machine implementation of the projection operator
technique for multivariable cardinal spline interpolation. For this purpose we have imple-
mented several data-parallel operations such as inner product and tensor product of vectors
(whose components are single variable polynomials). These give rise to the functional form
of approximation; hence we can perform symbolic differentiation and integration of the ap-
proximating functions directly. The technique uses orthogonal polynomial basis functions
and their tensor products without requiring matrix inversion.

51

7. Conclusions

Our research program has focused on two inter-related goals:

1. The identification of new representations and algorithms for autonomous navigation
that address fundamental problems in both vision and planning.

2. The development and integration of these algorithms on mr -y parallel computers.

Our research on navigation has focused on problems relating t 3 th. aetection, pursuit and
interaction with a three dimensional model of known geomesry. Specific vision problems
addressed included parallel algorithms for contour analysis for the purpose of identifying
feature points in images of the target, parallel algorithms for instantaneous pose estimation
of the target, and Kalman filtering algorithms for developing models for the motion of the
target through space and for generating trajectories toward the target that minimize the
risks of collision with the target.

Turning to parallel processing, our research has uncovered several fundamental problems
in the effective application of massively parallel computing to vision and planning. First, the
importance of both multiresolution image analysis and focus-of-attention vision has led us to
consider various methods for efficiently processing small images and other data structures on
massively Ir- ll I-comp-ruters. Our research has addressd tnl m . .e_ __eOu..serc.h...dr .-dtC c.-IfrC.Icnt, procesasing Ofu i1i-1-age

arrays and contours. Second, the need to plan effectively in dynamic environments has led us
to develop trajectory planning algorithms both for RAMBO and for ground vehicles moving
over terrain modeled by digital terrain models.

52

8. Report Abstracts and Summaries

This section presents the abstracts of the 45 research reports published under the contract.
For many of these reports, details have been given in the previous sections. However, over
the course of the project, Ph.D. students and visiting researchers have also written reports
which explore many other facets of the subject, and it was difficult to group the account
of their work into a few stand-alone sections, because of the lack of a common theme in
the research directions. In these cases we have supplemented the abstracts of the reports
with extended summaries when the abstracts did not adequately describe the scope of the
research.

1. D. DeMenthon, "Reconstruction of a Road by Matching Edge Points in the Road Image",
CAR-TR-368, CS-TR-2055, June 1988

ABSTRACT: A method for the reconstruction of a road in 3D space from a single image
is presented. The world road is modelled as a space ribbon generated by a centerline spine
and horizontal cross-segments of constant length (the road width) cutting the spine at their
midpoints and normal to the spine. The tangents to the road edges at the end points of
cross-segments are also assumed to be approximately parallel. These added constraints axe
used to find pairs of points (matching poiats) which are images of the end points of world
cross-segments. %Given a pointon o-e load imgte edge, the proposed method finds the
matching point(s) on the other road image edge. Surprisingly, for images of road turns, a
point on one road image edge has generally more than one matching point on the other edge.
The extra points belong to "ghost roads" whose images are tangent to the given road image
at these matching points.

Once pairs of matching points are found in the image, the reconstruction of the corre-
sponding world cross-segments is straightforward since cross-segments are assumed to be
horizontal and to have a known length. Ghost road cross-segments are discarded by a
dynamic programming technique. A benchmark using synthetic roads is applied, and the
sensitivity of the road reconstraction to variations in width and bank of the actual world
road is evaluated and compared to the sensitivity of two other algorithms. Experiments
with a sequence of actual road images as the Autonomous Land Vehicle (ALV) moves down
a road are also presented.

2. T. Seppiinen, T. Westman and M. Pietikiinen, "Parallel Matching of Attributed Rela-
tional Graphs", CAR-TR-376, CS-TR-2073, July 1988

ABSTRACT: This report presents experiments with a parallel algorithm for matching at-
tributed relational graphs. The algorithm generates a state space tree in a breadth-first
manner and then evaluates the tree by computing the edit distance for each candidate so-
lution. The parallelization method used is best suited for MIMD-type computers. The first
target machine is the Butterfly Parallel Processor, in which the programs were developed
on UniforniSystem software supporting a shared memory model of computation. The sec-
ond multiprocessor is a link-oriented Transputer-bazed system. In this system, concurrent
processes communicate through message channels. The experiments show that nearly linear
speedup can be achieved by parallelizing the algorithm in the outermost loop.

53

3. S. Ziavras and L.S. Davis, "Fast Addition on the Fat Pyramid and its Simulation on the
Connection Machine", CAR-TR-383, CS-TR-2093, August 1988

ABSTRACT: This paper presents an algorithm for fast addition on the fat pyramid. The
fat pyramid is a pyramid in which the storage space and the processing power allocated to
a single node increase as the root of the pyramid is approached. The addition algorithm is
based on a carry-lookahead technique. The computation time of the algorithm is proportional
to log p+ q for operands of size p* q bits, when p processors are used to deal with the numbers.
The addition algorithm was simulated on the Connection Machine; some performance results
are presented in this paper.

4. T. Seppiinen and K. Pehkonen, "A Generalized Algorithm for Border Tracking with an
Implementation on the Butterfly Parallel Processor", CAR-TR-388, CS-TR-2099, August
1988

ABSTRACT: This report describes a generalized one-pass algorithm for border tracking of
objects in thresholded binary images. The input image is scanned from top to bottom,
from left to right. On each row, partial border descriptions produced on previous rows
are updated according to run ends on the current row. Borders are represented by crack
code strings following the outer borders in a clockwise direction, and the inner borders in a
counterclockwise direction.

Secondly, a parallelized version of the algorithm is presented with an implementation
on a Butterfly Parallel Processor. The program was developed based on the Uniform Sys-
tem approach which supports a shared memory model of computation. The iriput image
is paxtitioned into equal sized blocks, and each partition is assigned to a separate proces-
sor. Partially completed border descriptions gathered from the blocks are finally merged in
parallel.

5. E.V. Krishnamurthy and S.G. Ziavras, "Matrix 9-Inversion on the Connection Machine",
CAR-TR-399, CS-TR-2125, October 1988

ABSTRACT: The generalized inversion of a matrix has many applications. This report con-
siders the implementation of the Ben-Israel-Greville algorithm for finding the Moore-Penrose
inverse of a matrix. This algorithm is highly suitable for data-level parallelism and has several
advantages: linearity, stability, reliability, determinism and scalability. Connection Machine
experiments with ranjdom matrices of different dimensions are reported.

6. E.V. Krishnamurthy and S.G. Ziavras, "Complexity of Matrix Partitioning Schemes for
g-Inversion on the Connection Machine", CAR-TR-400, CS-TR-2126, October 1988

ABSTRACT: Theoretical results concerning partitioning of large matrices for g-inversion
are outlined. The complexzity and performance analysis of these methods on the Connection
Machine are described. It turns out that the use of the virtual processor configuration on
the Connection Machine is of comparable efficiency to using any partitioning scheme, when
the multiplicative iterative scheme is used foi g-iiversion.

54

7. E.V. Krishnamurthy and S.G. Ziavras, "Grid Evaluation-Interpolation on the Connection
Machine using Tensor Products and g-Inversion", CAR-TR-401, CS-TR-2127, October 1988

ABSTRACT: Tensor products are widely used in the evaluation and interpolation of func-
tions as well as 2D and 3D image blocks. This report describes the implementation of the
tensor product method on the Connection Machine and its applications.

8. E.V. Krishnamurthy and S.G. Ziavras, "Multivariate Spline-Blending Approximation on
the Connection Machine", CAR-TR-402, CS-TR-2132, October 1988

ABSTRACT: This report describes the principles of the projection operator technique for
multivariable cardinal spline-blending approximation on the Connection Machine. This tech-
nique requires data-parallel operations for polynomial (single and multivariable) evaluation
and hence is best suited for implementation on the Connection Machine. The basic oper-
ations needed are the inner product and the tensor product of vectors whose components
are polynomials or their evaluated values. The spline-blending approximation has several
applications: finite-element methods, digital image processing, optical flow and topography.

9. K. Kanatani and D. DeMenthon, "Reconstruction of a Road Shape from Images: A Com-

putational Challenge", CAR-TR-413, CS-TR-2167, December 1988

ABSTRACT: A new scheme is presented for reconstructing the 3D shape of roads from cam-
era images for the purpose of navigating autonomous land vehicles (ALVs). The formulation
is based on the local flatness approximation. All equations are written in terms of it NHC
vectors defined by quantities directly observable on the image plane. Hence, analysis is done
solely in the image domain: No 3D solution is constructed in the scene. Much consideration
is given to computational stability with regard to possible inaccuracy of image data. We
propose a relaxation scheme which gradually guarantees the global consistency of the coin-
puted solution, and discuss its computational aspects. We also analyze the singularities of
the constraint resulting from the local flatness approximation.

10. T. Bestul, "A General Technique for Creating SIMD Algorithms on Parallel Pointer-
Based Quadtrees", CAR-TR-420, CS-TR-2181, January 1989

ABSTRACT: This paper presents a general technique for creating SIMD parallel algorithms
on pointer-based quadtrees. It is useful for creating parallel quadtree algorithms that run
in time proportional to the height of the quadtrees involved but that are indejp:endent of
the number of objects (regions, points, segments, etc.) which the quadtrees re present. The
technique makes use of a dynamic relationship between processors and the elements of the
space and object domains being processed.

11. C.A. Sher and A. Rosenfeld, "A Pyramid Hough Transform on the Connection Machine",
CAR-TR-421, CS-TR-2182, January 1989

ABSTRACT: A pyramid programming .nviropment on the Connection Machine is presented.
The mapping between the Connection machine and pyramid structures is based oln a scheme
called Shuffled 2D Gray Codes. A pyramid Hotugh transform, based on computing the
distances between line or edge segmen'ts and enforcing merge and select strategies among
them, is implemented using this programming environment.

55

12. K. Pehkonen, "The Implementation of the Linnainmaa and Harwood's Pose Determi-
nation Algorithm on Shared and Distributed Memory Parallel Computers", CAR-TR-423,
CS-TR-2191, February 1989

ABSTRACT: This report describes the implementation of Linnainmaa and Harwood's pose
determination algorithm on the Butterfly Parallel Processor (BPP) and Hathi 2 parallel com-
puters. The architecture of the BPP is based on a shared memory model, whereas the Hathi
2 is ba-ed on a distributed memory model. The algorithm is computationally very intensive,
which makes it suitable for parallel processing. The program is parallelizable using the pro-
cessor farm technique, thus enabling automatic load balancing. The experiments show that
the algorithm is very easy to parallelize. Furthermore, comparison of the two architectures
show that the Hathi 2 is much more powerful than the BPP. Due to different implementation
techDologies, however, it is not possible to say whether one of the architectures is better than
the o'thet%

13. L.S. Davis and P.J. Narayanan, "Efficient Multiresolution Image Processing on Hyper-
cube Connected SIMD Machines", CAR-TR-430, CS-TR-2227, April 1989

ABSTRACT: We describe two approaches to efficiently processing small images on hypercube
connected SIMD machines. The first approach, called fat images, is based on distributing
the bits representing the gray level (or other feature) from each p;xel across the processors of
a sub-hyppercube, using Gray coding techniques to obtain a good mapping of the fat image
into the hypercube. The second method, called replicated images, involves generating as
many copies of the small image as will fit into the machine, and then distributing the com-
putation of basic image processing operations across the copies. For the replicated images,
we present algorithms for histogramming, table lookup and convolution, and describe the
results of implementing the convolution algorithm on a 16K processor Connection Machine
II.

14. S. Huang and L.S. Davis, "Parallel Iterative A* Search: An Admissible Distributed
Heuristic Search Algorithm", CAR-TR-434, CS-TR-2233, April 1989

ABSTRACT: In this paper, a distributed heuristic search algorithm is presented. We prove
that the algorithm is admissible and give an informal analysis of its load balancing, scalabil-
ity, and speedup. A flow-shop scheduling problem has been implemented on a BBN Butterfly
Multicomputer using up to 80 processors to empirically test this algorithm. From our ex-
periments, this algorithm is capable of achieving almost lineaz speedup on a large number
of processors with relatively small problem size.

15. E.V. Krishnamurthy, "What Can the Petri Net Model Offer to Neural Network Stud-
ies?", CAR-TR-446, CS-TR-2257, June 1989

ALSTRACT: This paper explores the possible application of a Petri net-like device as a node
in neural network models. Such a model called a Petri neural net can be of great value in
modelling neural processes exhibiting concurrency, asynchrony, intentional~ty and execution,
nondeterministic choices (influenced by environment and learning, and independent of en-
vironment), inhibition, livelocks, deadlocks and divergence. This is illustrated by examples
of Petri net modelling of multistable phenomena in vision. Specific analysis methods are

56

described to understand the behavior of Petri neural nets. It is shown how properties such
as categorization and content addressability exhibited by neural nets respectively correspond
to the problems of reachability and controllability in Petri nets. We also study some prop-
erties and limitations of existing neural nets and show how their computing power can be
improved by including Petri net-like devices. The concept of Petri neural net can further be
exteDded to include probabilistic concepts and this will lead to adaptive Petri neural nets
which can be subjected to maximum entropy analysis. However, this analysis could become
computationally intractable and even undecidable.

SUMMARY: Petri nets play a very important role in understanding the behavior of complex
asynchronous concurrent and distributed computing systems. However the potentialities of
the Petri net and related parallel computational models have not been explored in the study
of neural networks and their modelling. We have shown how some of the salient aspects of
Petri net and other models can possibly be combined with the existing neural network models
to improve the modelling power of the latter and facilitate their simulation in concurrent
asynchronous and parallel synchronous machines using concurrent programming languages
such as Ada, CSP and Occam 2. We illustrated the use of the Petri net model for multistable
phenomena in vision. We suggested using a Petri net-like device as a node in a neural net. We
also discussed how Petri neural nets may be analyzed using linear algebraic techniques based
on consistency checks. The use of consistency checks in Petri nets, as well as in Hopfield
neural nets, wa-s illustrated by examples. This study showed that Hopfield and other related
neural nets essentially model proof by refutation in propositional logic by linear algebraic
methods. In this sense they are no more powerful than a subclass of Petri nets called "marked
graphs" and deterministic context-free production systems. We also dealt with stochastic
Petri net-like devices and their learning behavior. In conclusion we indicated how Petri
net-like devices can play an important role in the design of neural networks although their
analysis could lead to computationally intractable and undecidable issues.

The examples on multistable phenomena in vision clearly demonstrate the potential of
Petri neural nets. Presently, neural net models do not deal with asynchrony, concurreacy,
nondeterminism, intentionality and execution; Petri neural nets would permit inclusion of
all these aspects thereby enlarging their scope to hybrid (digital and analog) neural nets.
Also existing neural nets essentially model propositional logic via linear algebraic systems
which are no more powerful than context-free production systems; unless the neural nets
include facilities that can model predicate logic involving binding, unification, substitution
and resolution their decision power cannot be increased. However this may result in corn-
putationally complex and undecidable issues. The Petri net model can be fitted together
with the concept of tensor-product networks. This should enable us to understand coor-
dination and motor learning behavior. Further research in this direction would permit the
cross-fertilization of ideas from formal language theory, logic, computability and complexity
theory, thereby improving our understanding of the immensely complex domain of neural
nets.

16. E.V. Krishnamurthy, "Semantic Petri Nets-Applications to Multiple Inheritance and
Knowledge Acquisition Systems", CAR-TR-447, CS-TR-2258, June 1989

ABSTRACT: This paper demonstrates the use of inhibitory Semantic Petri Nets (SPIN) for

57

a topological network-oriented approach to default reasoning in multiple inheritance systems
having exceptions. The basic principles of this approach are explained and illustrated by
examples. The superiority of SPIN over the Touretzky graph model is demonstrated.

SPIN can be extended to include probabilities, priorities, delays and time-outs. Hence
it will be extremely useful for applications in semantic information based on coDnectionist
model and intelligent decision support systems. Also its logical structure permits its imple-
mentation in concurrent programming languages such as Ada and Occam. We also briefly
explain the relationship between SPIN and temporal logic. Also we indicate its applica-
bility to the cover and differentiate and propose and revise heuristic classification used in
knowledge acquisition, diagnostic, and other related expert systems.

SUMMARY: Inhibitory Petri nets can be used for parallel knowledge representation. We
have found that they are superior to NETL, marker propagation machines, and the directed
graph model of inheritance system described by Touretzky.

An inheritance system is a representation system founded on the hierarchical structuring
of knowledge. In these inheritance systems, knowledge is organized by first creating abstrac-
tions. By abstraction, we mean a collection of properties shared by members of a set. For
example, sheep and humans share the properties of being mammals. When abstraction is
organized by inclusion relations such as the one described above we can represent this by a
directed tree; this tree is known as a "taxonomic hierarchy" or "inheritance hierarchy", The
t-axnomic hierarchy provides an efficient method of representati nid iu akes search very
efficient in knowledge-based systems. When several properties are orthogonal or overlapping,
we get the situation of multiple inheritance where we have an abstraction that holds for most
members but with certain exceptions. In such complex situations the tree representation is
usually inadequate and there is a need for the use of a more general directed graph. We have
found that the use of inhibitory Petri nets provides a very clean semantics in this situation
and permits efficient parallel representation of knowledge and its retrieval. This is due to
the powerful property of inhibitory Petri nets which can represent first order predicate logic
efficiently and also generate and recognize context-sensitive and type-0 languages. We have
also briefly explored the relationship between SPIN and temporal logic.

Knowledge representation and the associated control strategy play a key role in the design
of expert systems. In particular, matching task requirements with the knowledge represen-
tation and control strategy is the key issue in knowledge en-;neering. SPIN is a good step in
this direction, since (1) it is based on a very fundamentai model of concurrent computation
that pervades concurrent computer architectural and language design along with the asso-
ciated interwoven pattern of data and control flow, ind (2) it works on the intention-action
mode that can take into account the inhibitory, nondeterministic and probabilistic behaviors
which are essential to intuition and creative reasoning in human expert systems.

17- R. Waltzman, "Geometric Problem Solving by Machine Visualization", CAR-TR-454,

CS-TR-2291, July 1989

ABSTRACT: The goal of this research was to investigate automatic non-logical reason-
ing techniques based on principles of visualization in geometrical domains and to develop
a methodology for implementing these techniques in computer programs. At the heart of
the methodology that I developed is the idea of a representi ion formalism for geometric

58

objects that is both isomorphic and canonical and completely integrates metrical and topo-
logical information. Next there is a defined set of problem-solving operations for storing,
retrieving, and manipulating objects represented in this formalism. These operations are
unified by the fact that they each entail some type of search or construction process that is
highly constrained by the structure inherent in the formalism and, "via isomorphism" by the
geometrical structure of the objects involved. I refer to these operations collectively as ma-
chine visualization techniques. Finally, there is a programmable problem-solving system in
which various functional components are implemented using these visualization techniques.
While the problem-solving system interpreter directs the actions of the system's functional
components, the behavior of the interpreter itself is controlled by the programmer through
problem-solving heuristics written in a pattern matching language that is a direct exten-
sion of the basic representation formalism. This language allows the programmer to express
constraints on problem-solving activity directly in terms of the geometrical structure of the
problem. Thus, both low level and high level problem-solving activities of the system are
highly constrained by problem structure. As a concrete illustration of this methodology, I
have implemented a geometric problem-solving system for solving a subclass of three dimen-
sional packing problems and have successfully applied the system to solving two non-trivial
three dimensional jigsaw puzzles (formulated as packing problems).

SUMMARY: Our methodology is based on a representation formalism for geometric objects
that integrates metric and topologic information. We define problern-solving onerat"ons
for storing, retrieving and manipulating objects. These operations are constrained by the
structure of the formalism and by the geometric structure of the objects. We call these
operations machine visualization techniques. The behavior of the interpreter which controls
the operations can be controlled by the programmer through problem-solving heuristics
written in a pattern-matching language. As a demonstration of the power of this approach
we solved two non-trivial three dimensional jigsaw puzzles.

Human reasoning can be broadly divided into two categories: logical and non-logical.
Until now, research in artificial intelligence has concentrated almost exclusively on logical
reasoning. However, human problem-solvers use powerful reasoning techniques other than
logic that are rooted in fundamental visualization capabilities. We constructed a model of
such reasoning that consists of several components. The essence of this model is a formal-
ism which expresses the geometric constraints of the problem in a way which makes them.
available to the set of problem-solving operations. The formalism applies specifically to
convex or concave polyhedra and is isomorphic to the actual structure of the polyhedra,
in the sense that there is a one-to-one mapping between the formal representation and the
actual structure of the polyhedra. Consequently, the formalism totally integrates the metric
and topologic informatitons of the objects. Another powerful feature of the representation is
that it is intrinsic, i.e., independent of any frame of reference. Therefore the operations can
manipulate objects without any consideration of their location or orientation in space.

More specifically, polyhedra are thought of as being composed of polygonal faces joined
together by. surface edges to form specific dihedral angles. Polygonal faces are circular
ordered sequences of edges of specific lengths joined together at particular angles. The
ordering of face edges, the signs of the angles at which they are connected, and the signs
of the dihedral angles connecting the faces serve to define the orientation of the polyhedral

59

surfaces. This results in a two-layered structural organization that is implemented as a
planar graph whose nodes and arcs themselves have structured values. Polyhedra are also
thought of as being composed of three dimensional vertices which are joined together by
surface edges of specified lengths. Vertices are thought of as circular ordered sequences of
face angles of specified sizes joined at particular dihedral angles. Analogous with the face-
centered decomposition, the ordering of the face angles and the signs of the dihedral angles
connecting them determine the orientation of the polyhedral surfaces. The face centered
and the vertex centered decompositions of a given polyhedron are dual to each other in the
sense that one can be unambiguously and automatically derived from the other. Therefore
the same data structure can be used for both decompositions. This offers many advantages
in terms of the problem-solving operations that can be defined.

In practical terms the expression machine visualization refers to the collection of opera-
tions used to store, retrieve and manipulate the representation described above. For example
we discuss the importance of being able to "see" when two different pieces are identical in
shape and size. The system does this by comparing the representation of the two polyhedra,
exploiting the two layered structural composition of the representation. It takes one of the
nodes of the face-centered graph representation of the first polyhedron and checks to see if it
matches one of the nodes of the graph representation of the second polyhedron. If no match
is found then the two polyhedra are different. However, if a match is found, the match acts as
an anchor point from which to do the remaining comparisons. Thus comparing the remain-
ing nodes is ,xv longer a case of comparing circular lists. Each attempted match is a simple
list comparison. The two graphs are then jointly traversed using a breadth first search with
appropriate second layer comparisons (dihedral angles for arcs and faces for nodes) made at
each step.

The method described above is effective when we want to compare only two polyhedra.
However, to determine whether one polyhedron is identical to any number of other polyhedra,
we introduce a method that uses an additional data structure called an overlay graph, that
stores structural information regarding a set of polyhedra. The representation is unique.
Common pieces of geometric structures share common corresponding parts of the storage
data structure. Only local structure information is stored for recognition purposes. Overlay
graphs are used to sort a set of polyhedra into groups of identical objects. We begin with an
empty overlay graph. For each polyhedron in the set we first check to see if the structural
information for that object is contained in the graph. If it is, then we take the name of the
polyhedron associated with the structure and add the current object to the corresponding
group. Otherwise we add the structural information for the current object to the overlay
graph. The same technique is used to store old search states. We create an overlay graph
that we use to store the structural information for the containers associated with each state.
Then, for each new state we determine whether the containers associated with that state
appeared in a previous state by checking that overlay graph.

Another important visualization technique is that of adjoinment, i.e., putting two pieces
together to form a new piece. When two pieces are brought into contact, certain faces
remain unaltered while others either disappear entirely because they are completely covered
by the faces of the other polyhedron or are modified because they are only partially covered.
Because the representation is isomorphic and intrinsic to the actual geometric structure,

60

it is possible to implement adjoinment as a straightforward splicing operation between the
representations of the objects being adjoined independently of location or orientation.

Another operation that is important to problem-solving is recognizing equivalent orien-
tations of a given object. This operation uses a rotational symmetry detection algorithm.
Piece placement instructions often have the form: Place piece A in container B so that vertex
a of A coincides with vertex b of B. If vertex a' of A is equivalent to a under a rotational
symmetry, then looks exactly the same from the viewpoint of a as it does from a'. This means
that placing piece A in container B so that a" is coincident with b will result in placing A
in an orientation and location equivalent to that resulting from the placement specified in
the original instruction. The two-layered structure of the representation admits the use of
a generate and test algorithm where both the generate and test parts of the algorithm are
simple searches that are highly constrained by the structure of the representation.

Tentative piece placement decisions are heuristically made on the basis of structural
features of the pieces to be placed, as well as the container into which they are to be placed.
However the final decision to place a piece depends on whether it actually fits into the desired
location. To answer these question we have introduced a specialized containment algorithm
that is based on a spatial localization process. The result of this process is to distribute the
surface boundaries of the polyhedra in question into volume sectors so that surface boundary
comparisons (checks for intersection) can be done simply and need be done only within each
sector. Once containment is established, the piece is placed by subtracting its volume from
that of the container. This subtraction process is similar to the adjoinment operation in that
it is only a question of splicing together the representations of the piece and the container.

The system performed very well on two jigsaw puzzle examples. The first puzzle had
six pieces. The possible number of state computations required to solve the puzzle without
making any use of the problem structure is probably more than 27,000. The system was able
to solve this puzzle in roughly 10 state computations. The second puzzle was much harder
and had 12 pieces. A naive approach would require more than 3 x 1029 state computations.
The system was able to solve the puzzle in roughly 200 state computations.

This work is perhaps the first demonstration of a problem-solving system that solves
non-trivial problems using isomorphic representations and non-logic based reasoning tech-
niques. The pattern matching language for expressing problem-solving heuristics makes the
system general and applicable to a broad class of problems. More importantly, it concretely
illustrates the potential of a new methodology for constructing reasoning systems.

18. E.V. Krishnamurthy, "Modelling Dynamically Constrained Distributed Programs", CAR-
TR-455, CS-TR-2292, July 1989

ABSTRACT: Semantic Petri Net (SPIN) modelling of dynamically constrained distributed
programs is discussed. Unlike Leler's constraint graph and Numao's cell-relation model,
SPIN can be automated for consistency checking based on T-invariants during the update
propagation. Hence it is useful for the design of robust distributed programs in declarative
languages..

SPIN can also model data- structure-resident parallel processes having different granular-
ities.

61

Further :.tudies on temporal logic based Petri nets are needed to understand dynamically
czmuntrained distributed systems.

SUMMARY- Constraint programming is a new paradigm in which the programmer states a
set of reiktions (including exceptions and constraints) among a set of well-defined objects.
The systea then finds a solution that satisfies these relations together with exceptions and
constraints. The constraint programming system has applications in areas such as CAD,
CAM, graphics and AI, to mention only a few. Leler defines a general purpose specification
language based on a constraint graph model, that allows a user to describe a constrained sat-
isfaction system using rules. However, this approach does not provide a systematic reasoning
procedure for answer extraction and consistency checking. Also the constraint graph is not
a suitable model when the objects themselves are processes defined on data types among
which relations are spec~fiea, e.g., concu.,rent programs arising in robotics, service and proto-
col specification in asynchronous distributed systems. We have showr how a, Semantic Petri
Net (SPIN) can model constraints, as well as data-strut; ure-resident processes. Reformulat-
ing a constraint program as SPIN rather than a& a constraint graph has seve-al Advantages:
(1) The constraint graph model is a passive network; hence, it cannot 4:xpress intentions
and actions. SPIN, however, provides the intention-actiin mode that can be converted to
guarded Horn clauses for constraint satisfaction. (2) The constraint satisfaction during an
update propagation in a Petri ne- corresponds to thz firing of the different transitions; this
amounts to computing a non-zero 7'-invariant for the incidence matrix of the Petri net. '1. his
is equivalent to using resolution to prove that a set of clauses contains a contradiction, hence
it is an algorithmically superior model in comparison to the constraint graph of Leler for the
representation as well as analysis of constraint programs. (3) SPIN can model distributed
programs that include data-structure-resident processes, such as qu4ues, arrays, etc.

19. A. Basu and J.(Y.) Aloimonos, "An Efficient Algorithm for Motion Planning of Multiple
Moving Robots"', CAR-TR-457, CS-TR-2297, August 1989

ABSTRACT: The problem of coordinating the motion of multiple robots of the same size
translating in the plane is examined. First the complexity of the decision problem is shown to
be polynomial. Then the complexity of the problem of obtaining the final configuration from
the initial one with the minimum number of moves is determined to be NP-complcte Finally,
we present an efficient algorithm for solving the problem with expected time 0(n2 v 7n-),
provided the distance between the initial and final configurations is at most of the same order.
This complexity can be further improved since the proposed algorithm is paralielizable.

SUMMARY: We have addressed the problem of efficiently coordinating the motion 'f mut-
tiple objects in a discretized environment when there is sufficient space to guarantee that a
solution to the problem exists. Here, as in several previous papers, we considered a special.]
case of the problem. In particular we considered a rectangular workspace area and all el-
ements as squares. This subcase of tb'e problem has applications in assembly of electronic
circuits where the components are laid out on a grid, memory management in distributed
systems, mobile robots in a structured workspace.

Consider the problem of 2D memo'.y management. The programs can be thought of as
rectangles in a 2D workspace (memo-y). One may encounter the problem of reamraniging

62

the programs so as to collect the free memory space from time to time (this problem is also
known as compaction). The problem would then be to devise efficient algorithms to perform
this task.

Another problem of interest is rearrangement of goods in an automated warehouse. It
is easy to design simple robots which are capable of pushing the boxes (containing goods)
around. Goods may be used up over time in a warehouse and replacement usually occurs
in bulk. To help in efficiently retrieving items one may be interested in rearranging the
warehouse at certain times depending on changing demand patterns. If multiple robots
capable of pushing boxe. exist, then one would be interested in efficient parallel algorithms
for warehouse rearrangement.

In some factory environments robots can be made to follow certain paths on a grid.
Usually the grids are laid out below the factory floor and each robot is programmed to pick
up some specific signals. The problem here is how to efficiently coordinate the movement of
many robots in a cluttered environment.

The difficulty in the problem is inherently due to the shortage of free space. The algo-
rithm works as follows. In the first step the original rearrangement problem is divided into
smaller problems. These subproblems are solved locally, eliminating the need for priority
graphs. Elements are then exchanged across the boundaries. The process of solving sub-
problems locally and exchanging across boundaries continues until some intermediate final
configuration is obtained. Space is rearranged from the intermediate final configuration to
obtain the final arrangement. The crucial step in the process is how to divide the orig-
inal problem into subproblems. For this an iterative scheme and a recursive scheme are
described. The recursive procedure is shown to have a better average case performance. We
have implemented a distributed and parallel version of our algorithm.

20. B. Kamgar-Parsi, P.J. Narayanan and L.S. Davis, "Reconstruction (of Rough Terrain)
in Range Image Shadows", CAR-TR-458, CS-TR-2298, August 1989

ABSTRACT: The common approach to estimating the surface elevation at a given point
is based on weighted averaging of the elevations of the neighboring points. This approach
often yields incorrect results for surface reconstruction in range image shadows; the elevation
of the shadow region is often overestimated such that it could not have been occluded in
the first. place. In this paper we propose an algorithm that does not yield such incorrect
results, and preserves the statistical properties of the surface. The method is best suited for
reconstructior, of random stationary surfaces, such as rough terrain. It has applications in
off-road autonomous land navigation.

21. T. Seppaneii, "Speed-up Analysis of Parallel Programs with an Image Analysis Program
as a Case Study", CAR-TR-459, CS-TR-2302, August 1989

ABSTiIACT: In this report we preliminarily introduce a method for efficiency analysis of
parallel systems. The method is constructed on the concept of critical paths of concurrent
programs. Utilizing timing profiles of a piogram running on the desired target computer,
a model explaining the speed1-up behavior of the program is constructed. The model will
be),ater used for pointing out those factors that seem to affect the speed-up behavior of

63

the program. An image analysis algorithm is implemented on the Butterfly Parallel Pro-
cessor (BPP) and the experiment is used as a testbed for the method. 'Ihe image analysis
progra.m performs a gray-level connected components analysis and feature extraction for
area-segmented images. A gray-level connected components analysis is first carried out to
generate an area-segmented labelled image. Then intra-area and inter-area features are coin-
puted for the area segments, including adjacency graphs. Parallel computation is achieved
by dividing the input image in equal sized blocks and assigning each block to a different
processor of the BPP, according to the principles of data parallelism. An asynchronous
slave process is attached to each image block, and an asynchronous master process controls
the slaves via synchronizing barrier variables. Mutual exclusion among the slaves is imple-
mented with locking primitives. Both of the main stages of the program contain three steps:
first, image blocks are processed locally as long as possible; second, a description of block
interfaces is created to be utilized in the third step, in which the partial results are merged.

SUMMARY: The good match of our model to the timing measurements indicates that the
essential features of our concurrent program influencing its speedup behavior have been
grasped. The program described above includes several parallelizable loops and hence pro-
vides a good vehicle for the development of analysis methods. We demonstrate that if
a concurrent program can be di-!ided into consecutive, separately parallelizable segments,
which are synchronized to each other by appropriate techniques, the speedup analysis of the
resulting concurrent system can be carried out by analyzing the segments separately with
the proposed critical path analysis approach, and then combining the subresults to achieve
the properties of the whole system.

22. B. Kamugar-Parsi and B. Kamgar-Parsi,"On Problem Solving with Hopfield Neural Net-
works", CAR-TR-462, CS-TR-2310, August 1989

ABSTRACT: Hopfieid and Tank have shown that neural networks can be used to solve
certain computationally hard problems; in particular, they studied the Traveling Salesman
Problem (TSP). Based on network simulation results they conclude that analog VLSI neural
nets can be promising in salving these problems. Recently, Wilson arnd Pawley presented
the results of their simulations which contradict the original results and cast doubts on the
usefulness of neural nets. In this paper we give the results of our simulations that clarify
some of the discrepancies. We also investigate the scaln•g of TSP solutions found by neural
nets as the size of the problem iiicreases. Further, we consider the neural net solution of the
Clustering Problem, also a computationally hard problem, and discuss thie types of problem~as
tlat appear to be well suited for a neural net approach.

SUMMARY: In a seminal paper, Hopfield and Tank showed that neural networks can be
used to solve computacionally hard problems such as the Traveling Salesman Problem (TSP).
To investigate 1ow well the network performs they sm4ulated its behavior and found very
encouraging resuics, ia that the network fr,±qucntly finds valid solutions of high quality.
RPecently, Wilson and Pawley i-eported the results of their simulations of the Hopfield and
Tank solution i._ the TSP. Their results differ from those presented by Hopfield and Tanlk
in two respect s: (i) the number of trials yielding valid solutions is considerably less; and (ii)
the solutions found by the network a.re not much better than randomly selected tours.

64

We have performed simulations of the Hopfield and Tank solution of the TSP. We found
that, indeed, the number of times the network succeeds in finding valid solutions is con-
siderably less than that found by Hopfield and Tank. However, we found that when the
neural net finds a valid solution it is of remarkably good quality. Further, we showed how
the success rate of the network in finding valid solutions can be markedly improved.

We also investigated how the neural net solution of the TSP scales with the. size of the
problem. The results are not encouraging, in that the scaling is poor. Although the quality
of solutions that are found by the network remain good, finding valid solutions becomes
increasingly difficult as the size of the problem increases. This suggests that neural nets may
not be suitable for solvinig computationally hard problems. However, there does not appear
to be a universal answer to this question, because there are other computationally hard
problems, such as clustering, that appear to be well suited for the neural network approach
and have good scaling properties.

In deciding whether the Hopfield model of neural networks is suitable for solving a corn-
putationally hard problem, one has to consider two factors: (i) how good are the solutions;
and (ii) what is the success rate for finding valid solutious.

It appears that when the analog network finds a solution, its quality is generally very
good. A specific solution, of course, depends on the chosen initial state. There is overwhelm-
ins empirical evidence (based on Monte Carlo estimates) that deeper minima of the energy
function of an analog network have generally larger basins of attraction; thus a randomly
select~ed initial state has a higher chance of falling inside the basin of a deep minimum and
finding a very good solution. Hophield neural nets are complicated dj namical systems, and
as yet., there are no theoretical estimates for the sizes of these basins. Therefore, one cannot
give the probability of finding the best solution. However, one can claim that analog net-
works greatly enhance the probability of finding very good solutions. This is true for both
problems---TSP and clustering-we have investigated in this work.

The success rate appears to be dependent on the problem. For TSP the success rate
is rather modest,; in particular, it scales poorly as the size of the problem increases, which
suggests that neural nets may not be suitable for solving TSP. For the clustering problein,
on the other hand, the success rate is very high, nearly 100%, and its scaling as the number
of points increases is excellent. The main difference between these two problems is in their
miatrix representations of valid solutions. A given tour in t ie N-city TSP problem is repre-
sented by a N x N permutation matrix with constraints on both the rows and the columns,
which is a hard syntax to satisfy. A given partitioning of N points among K clusters in the
clustering problem is represented by a K x N matrix with constraints only on the columns,
which is a much easier syntax to satisfy. This appears to be the reason for the much higher
success rate of the clustering problem in finding valid solutions. Furthermore, the scaling
of the success rate with problem size may be related to the density of "on" neurons in. the
syntax matrix, i.e., the ratio of I's to the total number of elements in the syntax matrix. For
TSP this ratio is N/N2 = iL/N, which scales inversely with the size of tht problem N. For
the clustering problem this ratio is N/KN = 1/1K, which scales inversely with the number of
clusters K. (Since in most problems K is small and mnuch less than N, increasing the number
of points should not adversely affect the scaling, which is confirmned by our results.

Based on these observations, it appears that prublems that are suitable for a neural

615

net approach are those whose valid solutions can be represented with few constraints, i.e.,
easy syntax. From simulations, we find that neural nets converge to solutions very rapidly,
within a few r. The simulations, however, require a great deal of computer time as the
network must be updated thousands of times. The real benefit of neural nets, however, may
lie in the future when they can be mapped on analog chips. Analog VLSI neural nets are
being developed; these devices have very fast processing times in the micro to millisecond
range, thus making their use in solving suitably chosen computationally hard problems very
attractive.

23. S. Chandran, "Merging in Parallel Computational Geometry", CAR-TR-468, CS-TR-
2333, October 1989

ABSTRACT: In this report we consider problems in parallel computation and computational
geometry. The goal is to come up with a solution that is as fast as possible by using a
large number of processors, without being too inefficient in the total number of operations
performed by the processors. For a problem of size n we will typically employ n processors,
and will accept 0(log n) time algorithms as fast. If we perform about the same number of
operations as the sequential algorithm, the algorithm will be deemed cost-optimal.

We provide a cost-optimal parallel solution to the problem of computing the area of
a union of rectangles that runs in logarithmic time. The previously best known parallel
algorithm runs in 0(n) time, and the parallel lower bound for this problem using n processors
is 0(log n). We are able to do this by constructing an efficient parallel data structure using
the parallel pianc-,zweep technique and pipelined merge sort-

The same technique can be used to solve other problems in VLSI and computer vision
cost-optimally. Problems in dynamic computational geometry, for instance, demand a vari-
ation on the above scheme. These are rather straightforward to tackle in the uniprozessor
version: we introduce the dynamic merging technique to solve. these problems in the parallel
context. The algorithm is cost-optimal and runs fast. Sometimes parallel solutions can be ob-
tained by finding new geometric insights rather than developing new algorithmic techniques.
We are able to unify the solution to the problem of computing inscribed and circumscribed
approximations to a large sided convex polygon by one such characterization. Previous algo-
rithms for the two problems were different and had more complex correctness proofs. We also
substantially improve the time complexity to 0(log log n) using log log n processors. This is
one of the first few examples of a non-trivial parallel algorithm in computational geometry
that runs in sublogarithmic time.

An orthogonal issue is that of characterizing parallel algorithms. Theories for sequential
computing developed over the years cannot be readily adopted for parallel computation.
Cost-optimality is one indication of a good parallel algorithm. We suggest that the number
of processors times the squaxe of the time (i.e., pt') is another indication. The analogy to the
quantity "area-time-squared product" (i.e., at2) in VLSI is obvious. Our models essentially
emphasize to 'he user of parallel machines that different paralIel algorithms may need to be
employed depending upon the problem size and multiprocessor size.

66

24. S. Kambbampati, "Flexible Reuse and Modification in Hierarchical Planning: A Valida-
tion Structure Based Approach", CAR-TR-469, CS-TR-2334, October 1989

ABSTRACT: Generating plans from scratch is a computationally expensive process. A gen-
eral framework for minimal modification and reuse of existing plans in new problem situations
can significantly improve the efficiency of this process. Although some past planning systems
addressed this problem, their methods did not pay adequate attention to the flexibility and
minimality of modification.

This report provides an integrated framework for flexible reuse and modification in hier-
archical nonlinear planning. The framework, implemented in the PRIAR system, is based
on the validation structure of the plans. The validation structure is a formal representation
of the internal dependencies of the plan. It is annotated on the plan by the planner to make
later reuse more effective.

Reuse of a plan is formally characterized as the process of repairing the inconsistencies
that arise in its validation structure when it is used in a new problem situation. The repair
process is domain-independent and exploits the validation structure to remove any inap-
plicable parts of the plan and to suggest additional high level refit tasks to be achieved.
The planner is then invoked to reduce these refit tasks, and is guided in this process by a
heuristic control strategy which utilizes the validation structure of the plan. The heuristic
strategy localizes the refitting by minimizing the disturbance to the applicable parts of the
plan. The validation structure is also used to judge the utility of reusing the plan in a given
new problem situation, forming the basis for plan retrieval.

The flexibility and the efficiency .f plan modification in the PRIAR framework are eval-
uated both through empirical studies and through formal characterization of the reuse pro-
cesses. The coverage of its modification techniques for hierarchical nonlinear planning is
formally characterized in terms of the plan validation structure.

25. D. DeMenthon and L.S. Davis,"New Exact and Approximate Solutions of the Three-
Point Perspective Problem", CAR-TR-471, CS-TR-2351, November 1989

ABSTRACT: Model-based pose estimation techniques which match image and model trian-
gles require large numbers of matching operations in real world applications. We show that
by using approximations to perspective, lookup tables ca.n be built for each of the triangles of
the models. Weak perspective approximations have been applied previously to this problem;
we consider two other perspective approximations, paraperspective and orthoperspective.
We obtain analytical expressions which are as simple as those obtained by weak perspective.
These approximations have much lower errors for off-center images than weak perspective.
The errors of these approximations are evaluated by comparison with exact solutions. The
error estimates show the relative combinations of image and triangle characteristics which
are likely to generate the largest errors. The corresponding cells of the lookup tables can
be flagged, so that object pose calculations would disregard image and model triangle pair
combinations when their characteristics correspond to the flagged cells.

26. Z. ChexQ"A Flexible Parallel Architecture for Relaxation Labeling Algorithms", CAR-
TR-474, CS-TR-2355, November 1989

ABSTRACT: The design of a flexible parallel architecture for both the discrete relaxation

67

EMI

labeling (DRL) algorithm and the probabilistic relaxation labeling (PRL) algorithm is ad-
dressed. Through proper space-time arrangement of the computation steps involved, the
relaxation labeling processes can be run on a systolic-array like architecture in linear time
for each iteration. Thus a high degree of computation parallelism is obtained. The arrays use
one-dimensional, one-way communication lines between adjacent PEs and interface with the
external environment through only a single I/O port. Because of the hardware simplicity
and programmability features of the PEs, the architecture is well suited for VLSI imple-
mentation and is flexible enough to execute different relaxation algorithms. An illustrative
example of running a region color labeling problem on the proposed architecture is described
and a general running procedure is also given. Finally, performance comparison between the
proposed architecture and other existing ones is presented in some detail.

SUMMARY: Relaxation labeling algorithms have been applied successfully in a number of
fields, for instance, signal restoration and identification analysis, language identification,
graph or subgraph homomorphism, image segmentation and pattern recognition, scene in-
terpretation and understanding problems. One of the major issues of the labeling algo-
rithm is that it is computationally intensive and typically requires exponential time with a
single-processor architecture. Many researchers have presented multiprocessor approaches
and tried to build fast architectures to support relaxation labeling algorithms because the
problem can be divided into mutually exclusive subproblems and is well suited for parallel
processing. These techniques are often faced with difficulties in task partitioning, scheduling
aind y ,ch-,(a1oi4ion for relaxation operations among multiprocessors. Or they may have
an appealing run time performanct: from a theoretical viewpoint, but suffer from physical
realization problems such as data coarmunication congestion and I/O routing complexities.
Most of these approaches remain in the phase of virtual software. Lately, there is an in-
creasing interest in implementing relaxation operations by using dedicated VLSI hardware
architecture that can be built in a modular fashion, for instance, in the form of systolic
z rays. Several preferential factors of the systolic approach, such as the feasibility of pipelin-
ing, high degree of parallelism, and avoidance of global communication, make the arrays
suitable for VLSI fabrication. The underlying idea behind these methods is the applica-
tion of suitable transformations to the relaxation algorithms to obtain a representation that
can be easily mapped onto their proposed architecture. Thus, different relaxation labeling
algorithms give rise to different array designs. However, the function of the resultant sys-
tolic array is somewhat restricted simply because the applied architecture is too fixed to
cover different applications. In our work, we considered the relaxation labeling algorithms in
two different forms: discrete relaxation labeling (DRL) and probabilistic relaxation labeling
(PRL). Both of them are solvable on our proposed systolic architecture. The arrays use
one-dimensional and one-way communication lines between adjacent PEs and interface with
the external environment through a single I/O port. Because of the hardware simplicity and
programmability features of the PEs, the architecture is well suited for VLSI implementation
and is flexible enough to be adaptable to a number of applications, without compromising
both speed arid hardware complexity. Moreover, the proposed architecture runs in linear
time for each iteration of the labeling process, and is also able to detect the consistency
status of DRL as well as the convergence condition of PRL at the hardware level without
host involvement. On the other hand, the use of one-way flow between the arrays simplifics

68

the circuit design and the system can be converted to self-timed arrays to avoid the clock
skew problem for large labeiing processes.

We have introduced a flexible parallel architecture for relaxation labeling algorithms. A
transformation scheme is used for parallel computation of the supporting evidence so that
a high degree of parallelism is feasible. We simplify the control structure of the ielaxation
operations to clear away the difficulty of complicated data communication between objects
and their neighbors. We preload the compatibility coefficients which will reside in each PE so
that only the object data need to be circulated among the PEs. This speeds up the process.
The one-dimensional and one-way layout of systolic arrays is suitable for fault tolerant and
se'f-timed circuit design; thus it increases reliability and avoids the clock skew problem, Our
perfornmance evaluations show that the proposed architecture is generally superior to existing
system,,.

In order to verify the design of the proposed systolic array and the combiner module, a
simulation software package called the DAISY system has been used to check the specifica-
tion. We have finished the logic simulation to check the timing sequence for the architecture
operation and the alphanumeric simulation of signals to verify the intermediate processing
results. The experiments show that the proposed architecture is working properly. Future
research includes the development of the VLSI custom chip and proper modification for
covering a wide spectrum of related algorithms.

27. S. Ifuang and L.S. Davis, "Speed-Quality Tradeoffs in Heuristic Search", CAR-TR-486,
CS-TR-2396, February 1990

ABSTRACT: In this paper, we study speed-quality tradeoffs in heuristic search both theoret-
ically and empirically. We start by analyzing a heuristic search algorithm which is equivalent
to the weighted heuristik search algorithm originally suggested by Pohl. We show that this
algorithm, when using a heuristic with "constant relative error", can find an optimal solu-
tion with linear complexity, as opposed to A* which has exponential complexity. We then
prove some theorems to illustrate that the performance of this algorithm is determined by
the relative accuracy of heuristics which ma3 in some cases improve with increasing distance
from the goal, in contrast to that of A* w'ich is determined by the absolute accuracy of
heuristics which almost always deteriorate with increasing distance from the goal. New dy-
namic weighting schemes which are to some extent opposite to what Pohl had suggested are
proposed. Finally, a new heuristic search algorithm which attempts to exploit speed-quality
tradeoffs is presented. This algorithm was tested on the Flow-Shop Scheduling Problem and
detailed experimental results are provided.

SUMMARY: We present a new heuristic search algorithm which exploits speed-quality trade-
offs. It describes the notion of "constant relative error" of a heuristic function, in which the
ratio of the difference of the estimated error and the actual error to the estimated error is
constant for all nodes. We show that a particular existing beuristic search algorithm cau
produce an optimal solution in linear time provided that the heuristic function used has
constant relative error. We prove various theorems relating the relative accuracy of heuristic
functions to the performance of the heuristic search algorithms. The new heuristic search
algorithm presented has the property that it computes ever-improving solutions as it pro-
gresses to the ih al optimal solution. Thus, it could be used in a speed-quality tradeoff scheme

69

in which sub-optimal solutions could be provided in situations where time was critical, and
better solutions could be provided where time constraints were more relaxed but solution
quality was important. The new algorithm has the flavor of simulated annealing, in that it
begins by quickly finding a solution of unknown quality, and then incrementally improves
the solution as computation progresses. However, unlike simulated annealing which relies on
random processes to improve the solution quality, the new algorithm relies on the heuristic
function itself. The algorithm is based on an evaluation function which is a weighted sum
of the cost found to reach a node and the estimated cost remaining to a goal node, i.e., the
heuristic function. However, through successive iterations improving the solution, the values
of the weighting factors are adjusted based on the cost of the best solution found so far.
With each iteration tht adjustment of weighting factors tends to favor the cost-to-node sum-
mand over the estimated-remaining-cost summand in the evaluation function. This process
is shown to eventually produce the optimal solution to the search problem. Detailed results
of experiments with the flow-shop scheduling problem are given.

28. S. Huang and L.S. Davis, "Sequential and Parallel Heuristic Search under Space Con-
straints", CAR-TR-497, CS-TR-2438, March 1990

ABSTRACT: Practical applications of heuristic search algorithms, such as ,1, are often
thwarted by memory limitations. The memory limitation of A* is overcome by the Iterative-
Deepening-A,.t a •la it.ililni. itliS ben (IciiiiId anld is widely beleved that IDA is
asymptotic time optimal. We argue in this paper that this claim is only true for some lim-
ited problems such as the 15-Puzzle but is not true generally. A sequential and a parallel
heuristic search algorithm which not only overcomes memory limitations, but also makes
effective use of available memory to better exploit space-time tradeoffs are then presented.
These algorithms have been tested on the Flow-Shop Scheduling Problem and experimental
results are provided.

SUMMARY: We analyze an existing, linear-space variation on A*, called IDA*, which is
widely believed to be asymptotic time optimal, and presented evidence which contradicts this
belief. Through careful argumentation we demonstrate that the asymptotic time optimality
of IDA* depends on the existence of a negative correlation between the number of "ties" of
values of the evaluation function, taken over the set of state-space nodes, and the magnitudes
of the node values themselves. We argue that this correlation holds for the particular search
problems and heuristics discussed by the proponents of IDA* but does not hold for some
other interesting search problems and heuristic functions. The existence of this correlation
was embodied in a particular assumption of the proponents of IDA*, specifically that the
algorithm searches deeper in the search tree with each new iteration. Besides this analytical
evidence, we describe experimental evidence of the non asymptotic time optimality of IDA*
obtained from experiments with the flow-shop scheduling algorithm.

We then describe and analyze a new tree search algorithm, AD', which is a hybrid of the
A* and IDA* algorithms, and which operates by alternating between two modes: the A*
mode is used until a preset limit M on the number of nodes on the OPEN list is reached, and
the IDA*-like mode is used where this limit is exceeded. The difference between the IDA*-
like mode of AD* and IDA* itself is that with each iteration, after updating its threshold
value, IDA* performs a depth-first search from the start node of the search tree, whereas the

70

IDA*-like mode of AD* performs a depth-first search from one of the nodes on the OPEN
list. By changing the value of M appropriately, the algorithm can provide a desired space-
time tradeoff. We analyze results of experiments performed using AD*. We also analyze a
parallel version of AD*, called PAD*, which was based on our own earlier PIA* algorithm,
and we obtain experimental results for PAD*.

29. L.T. Chen and L.S. Davis, "A Parallel Algorithm for List Ranking Image Curves in
O(log N) Time", CAR-TR-501, CS-TR-2458, April 1990

ABSTRACT: This paper describes an algorithm for ranking the pixels on a curve in O(log N)
time using a CRCW PRAM model. The algorithm accomplishes this with N2 processors
for an N x N image. After applying such an algorithm to an image, we are able to move
the pixels from a curve into processors having consecutive addresses. This is important on
hypercube-connected machines like the Connection Machine because we can subsequently
apply many algorithms to the curve (such as piecewise linear approximation algorithms)
using powerful segmented scan operations (i.e., parallel prefix operations). The algorithm
was implemented on the Connection Machine, and various performance tests were conducted.

30. K. Pehkonen, D. Harwood and L.S. Davis, "Parallel Calculation of 3D Pose of a Known
Object in a Single View", CAR-TR-502, CS-TR-2459, April 1990
ABSTRACT: This paper describes a selective generate-and-test algorithm for SIMD-parallel
calculation of the 3D pose of a known object from a single perspective view. The algorithm
consists of three main stages: object pose estimation, optimization, and reliability analysis.
The first stage involves parallel generate-and-test of candidate pose solutions obtained by
selectively matching model and image point triples, testing their correspondence by parallel
transformation of all visible model points and comparison of their features with the image.
Instead of exact algebraic calculations, the three point perspective pose estimation problem
is solved numerically. In the second stage, the initial pose estimate is optimized using a least-
squares method. In the final stage, the reliability of the optimized pose is estimated using
covariance analysis. The simulations showed that the approximate initial pose estimates
are sufficiently good to obtain very accurate optimized results. Furthermore, the processing
times for an object with 12 vertices were on the order of a few hundreds of milliseconds on
a Connection Machine-2 with 512 floating point units.

31. 0. Silv6n, "Estimating the Pose and Motion of a Known Object for Real-Time Robotic

Tracking", CAR-TR-503, CS-TR-2461, April 1990

ABSTRACT: This report deals with the problem of estimating the pose and motion of a
known object in three dimensions by using an initial estimate and a sequence of monocular
images. The camera is assumed to be attached to a robot arm used for vision-controlled
tracking of the object. The finite image resolution, robot errors, and changes of object motion
during the non-zero delays for image acquisition and analysis introduce uncertainties into
the measurements and estimation process. The uncertainties are handled by an extended
Kalnan filtering technique that produces object pose and motion estimates from feature
point measurements in the images. The important problem of selecting the feature points
used for estimation is also considered. Usually several feature points are available from

71

an image frame, but because of various real-world constraints, using only some of them
is justified. We present four methods for selecting a given number of feature points and
compare them experimentally. With the test object that was used, random selection gave
good results, and when the actual computational costs of the methods are taken into account,
this approach becomes very attractive.

32. E. Puppo and L.S. Davis, "Surface Fitting of Range Images using a Directional Ap-
proach", CAR-TR-504, CS-TR-2477, May 1990

ABSTRACT: Range images can be represented as piecewise-smooth 21D surfaces. The seg-
mentation of a range image requires low-level processing which filters the noise and estimates
the surface normal at every pixel. Robust algorithms are needed which are able to perform
the above tasks while preserving the image structure (surface discontinuities). Algorithms
based on robust statistics often suffer from high computational complexity and low efficiency
in the presence of high-variance noise. In the paper we propose a new method for processing
images of polyhedra. The method is based on the application of a one-dimensional algo-
rithm to slices of the image taken along several directions. Results obtained through the
one-dimensional processing are subsequently integrated to produce two-dimensional results.
The algorithm exhibits low complexity, high efficiency and high parallelism. Moreover, the
method can be adapted to any kind of noise by modular substitution of the basic one-
dimensional ai vorithm.

33. L.T. Chen and L.S. Davis, "Parallel Algorithms for Testing if a Point is Inside a Closed
Curve", CAR-TR-511, CS-TR-2513, July 1990

ABSTRACT: This paper describes two parallel algorithms to test whether a point is inside
a digitizec' closed curve. The first algorithm assumes the curve is stored in a linear array of
processors. The second algorithm assumes the digital image containing the curve is stored
in a 2D array of processors and that a clockwise (or counterclockwise) trace of the curve
is available (i.e., each point on the curve has a pointer to the next clockwise point). Both
algorithms assume that scan instructions are available on the processor array. The algorithms
take constant numbers of scan instructions.

34. T. Sepplinen and V. Vuohtoniemi, "Speedup Analysis of a Program for the Generalized
Hough Transform on Two Different Multiprocessors", CAR-TR-517, CS-TR-2551, October
1990

ABSTRACT: A theory of performance analysis of parallel systems was introduced in an
earlier report. Here it is demonstrated how the theory works in practice by applying it
to a parallel program for a generalized Hough transform (GHT). Two parallel computers
were used in the experiments, a Butterfly Parallel Processor (BPP) at the University of
Maryland and a HATHI multiprocessor at Abo Akademi, Finland. The architectures of
thc'ie computers differ in their communication network: the BPP has a distributed shared
memory for lata exch ange, whereas in the HATHI, the processors communicate by sending
messages via serial links.

We analyze timing profiles of parallel execution, or lists of timing measurements achieved
in each active processor of a parallel system executing the selected application program. TI,:

72

modeling of a parallel program starts by the segmentation of the program into virtual actions
at the selected level of abstraction and then proceeds by aggregating the virtual actions to
construct the descriptions of higher levels of abstraction until the desired level is achieved.
The execution time of each virtual action is modeled to be a function of the system size
or the number of active processors. In this way a separate analysis can be applied to each
virtual action at a given level of abstraction to compare the performance differences of the
computers or two slightly different versions of the same program in one computer. The
hierarchical structure of the model enables fast location of those program segments which
act as bottlenecks for performance.

After our successful experiments, we believe that the speedup analyzer introduced here
is a useful tool in the final steps of parallel system development in which the execution
performance is enhanced and the system size (number of processors) is minimized.

35. S. Arya, D. DeMenthon, P. Meer and L.S. Davis, "Textural Analysis of Range Images",
CAR-TR-518, CS TR-2552, October 1990

ABSTRACT: This paper addresses the problem of texture discrimination in range images.
The range data is transformed to a common coordinate system, and then resampled to gen-
erate a regular grid of points in order to eliminate the effect of different sampling rates. Ten
statistical textural features based on co-occurrence matrices are computed on the resam-
pled data, and are used to discriminatc betwccn two classes of natural surfaces L_ ontg
of pebbles of different sizes lying on a plane. Seven of the ten textural features are found
to be useful in discriminating between these two classes. The experiments also confirm the
importance of resampling the data before computing the textural features.

36. Z. Pizlo and A. Rosenfeld, "Recognition of Planar Shapes from Perspective Images Using
Contour-Based Invariants", CAR-TR-528, CS-TR-25 17, December 1990

ABSTRACT: This paper presents a new method of recognizing a two-dimensional shape from
a single perspective projection image taken from an unknown (three-dimensional) viewpoint.
The metd. "d is based on quadratic approximations to the effect of the slant of an inverse
perspective £ransformation on angles and lengths. These approximations allow us to define
contour-based properties that are invariant under perspective transformation. The method
can be used to recognize partially occluded shapes, as well as shapes that are not exactly re-
lated by perspective transformation,;. When a shape is recognized, the method also provides
estimates of its tilt and slant.

37. J.(Y.) Aloimonos and A. Rosenfeld, "Visual Recovery", CAR-TR-531, CS-TR-2580,
January 1991

ABSTRACT: A large part of computer vision research treats image understanding as a
recovery problem, i.e., as the problem of estimating properties of the scene from images.
This was viewed, during the 1980s, as a necessary first step before attempting to perform
visual tasks. We describe this approach from a unified perspective, emphasizing recovery
of shape (i.e., of scene geometry). We also discuss the limitations of the approach, possible
directions for future research, and possible alternative approaches.

73

38. Y.A. Teng, D. DeMenthon and L.S. Davis, "Stealth Terrain Navigation", CAR-TR-532,
CS-TR-2586, January 1991

ABSTRACT: In this paper, we propose a framework for solving visibility-based terrain path
planning problems on massively parallel hypercube machines. A typical example is to find a
path that is hidden from moving adversaries. This kind of problem can be generalized as a
time-varying constrained path planning problem, and is proven to be computationally hard.
The framework we propose is an approximation based on both temporal and spatial sampling.
Since a 2D grid-cell representation of terrain can be embedded into a hypercube with extra
links for fast communication, our frsmework can be very efficient when implemented on
hypercube machines. The time complexity is in general O(T x E x log N) using O(N)
processors, where T is the number of temporal samples, E is the number of adversary agents,
and N is the number of grid cells on the terrain. We also show that our framework can be
applied to several realistic problems with a variety of path optimizations. All algorithms
have been implemented on the Connection Machine CM-2 and results of experiments are
presented.

39. P.J. Narayanan and L.S. Davis, "Replicated Data Algorithms in Image Processing",
CAR-TR-536, CS-TR-2614, February 1991

ABSTRACT: Data parallel processing on processor array architectures has gained consider-
able popularity in data i.riteinsve ppllcaos -iui;ni as image processing and scientific com-
puting as massively parallel processor array machines became feasible commercially. The
data parallel paradigm of assigning one processing element to each data element results in
an inefficient utilization of a large processor array when a relatively small data structure is
processed on it. Popular algorithmic techniques such as the divide-and-conquer technique
reduce problems involving large data structures to those involving smaller ones. The large
degree of parallelism of a massively parallel processor array machine does not result in a
faster solution to a problem involving relatively small data structures than the modest de-
gree of parallelism of a machine that is just as large as the data structure. In this paper,
we present an algorithmic technique, called "replicated data algorithms", that uses more
processors than the number of data elements and achieves considerable improvement in per-
formance over conventional data pa: xllel algorithms both analytically and in practice. The
technique combines the traditional paradigms of data parallelism and operation parallelism
using multiple copies of the data structure. In this paper, we demonstrate the technique for
two image processing operations, namely, image histogram computation and image convo-
lution, and present the results of implementing them on the Connection Machine. In each
case, we also compare the replicated data algorithm with the conventional data parallel al-
gorithm on three common interconnection networks, namely, the 2D mesh, the 3D mesh and
the hypercube, to determine the conditions under which the technique of data replication
speeds up the computation. Finally, we demonstrate the generality of the data replication
technique in image processing by showing how replicated data algorithms can be developed
automatically for any operation that can be described as an image to template operation
using image algebra.

74

40. J. Ohya, L.S. Davis and D. DeMenthon, "Recognizing 3D Objects from Range Images
and Finding Their Six Pose Parameters", CAR-.TR-538, CS-TR-2616, February 1991

ABSTRACT: A method for recognizing polyhedral objects from range images and for finding
their six pose parameters is studied. The approach consists of building an object library; pre-
processing; hypothesis generation for the six pose parameters; and hypothesis verification. In
the object library, information necessary for hypothesis generation and verification is stored
for each object. The pre-processing steps calculate image features at each pixel in a range
image. In hypothesis generation, image features are chosen at random from range images
and matched to object model features. The rotation and translation required for the match
are computed to yield data points in parameter spaces. The LMS (Least Median of Squares)
method, a robust clustering method, generates hypotheses for object pose from the data
points. The generated pose is verified by a similarity measure which evaluates how well a
model with the generated pose would fit the original range image. Hypothesis generation
and verification are performed for all models in the library, and object recognition and pose
estimation discussions are based on choosing the most similar result. Experiments using
synthetic range images have provided insights into the problems that caU arise with this
approach.

41. P. David, D. Ifarwood and L. Davis, "A Probabilistic, Local Feature, St*ereo Correspon-
dence Algorithm", CAR-TR-540, CS-IrR-2628, March 1991

ABSTRACT: Stereo vision is a technique where, by matching points in two images of the
same scene, the depths to these points may be computed. The hardest part of this process is
usually considered to be that of determining the point correspondences. This paper describes
a technique for computing stereo correspondences of the edges in two images. The goodness
of a particular correspondence of two edge points is based on the probability that a set of
local properties of each edge point was generated by imaging the same scene point. This
probability incorporates information about the different types of edges that may be found
in an image. Edge correspondences for the two images are determined by optimizing the
goodness over the entire image, subject to left-to-right and edge-continuity constraints. We
use a dynamic programming technique developed by Ohta and Kanade to perform this op-
timization. The algorithm is tested on a variety of images, and its performance is compared
to that of several other algorithms.

42. L.T. Chen and C.P. Kruskal, "EREW Parallel Algorithm for List Ranking Image Curves
in O(log N) Time", CAR-TR-541, CS-TR-2629, March 1991

ABSTRACT: This paper describes an algorithm for ranking the pixels on an image curve ini
O(log N) time using an EREW PRAM model. The algorithm accomplishes this with N pro-
cessors for a v/N x -K/N image, although it could be done optimally with N log N processors
if we are willing to use a more complicated list ranking algorithm such as that of Anderson
and Miller. Several comp)lications that arise due to the restriction to exclusive read are
discussed. problems that arise when implementing the algorithm on a distributed memory
parallel machine instead of a shared memory PRAM are also discussed. The algorithm was
implemented on the Connection Machine, and various performance tests were conducted.

75

43. P. Bur!ina, D. DeMenthon, and L.S. Davis, "Navigation with Uncertainty: I. Reacing
a Goal in a High Collision Ris!" Region', CAR-TR-565, CS-TR-2717, June 1991

ABSTRACT: We present a piooabilistic method for noisy sensor based robotic navigation
in dynamic environments. The method generates an optimal trejectory by considering as
optirnality :aiteria the probability of not colliding with the obstacles and the probability of
accessing an operational position with respect to a moving target object.

Estimates of the obstacle's kinematic parameters and measures of confidence in these
estimates are used to produce the probability of collision associated with any robot displace-
myDt.. The piobability of collision is derived in two steps: a stochastic model is defined in
the kinematc Rtate spare of the obstacles, and collision events are given simple geometric
chaxacterizations "n this state space.

44. P. Burlina, D. DeMenthon, and L.S. Davis, "Navigation with Uncertainty: H. Avoiding
High Collision Risk Regions, CAR-TR-568, CS-TK-2724, July 1991

ABSTRACT: We present a probabilistic method for sensor based tobotic navigat.ion in dy-
namic and noisy environments. The method generates a trajectozy that gu-cautee, a tolera-
ble associated collision risk. Estimrates of the obstacle's kinemati, pzwamicters and measures
of confidence in) these estimates are used to produce regions whete the probability of encoun-
tering any obstacle is bounded by a predcfined value.

45. PR.. N.ruyanan and L.S. Davis, "Ranlk Order Filtering on Processor Array Machines",
CAR.TR-587, CS-TR-.2770, October 1991

ABSTRACT: Rank ordex illters torm an important class of low ievel image operations that
have widespread applications in image smoothirg, textdre analysis, etc. Processor arrzy
machines are popular in I ractical parallel processing, particularly in data intensive areas
such as image procecslug. In this paper, we study several ways of computing rank order
filters on processor array aichit.ctures, in the traditional data parallel framnework of the
machines. We alto develop a replicated data algorithm for efficient computation of rank
order ftltei-3 of sinall images (.n rela'ively large processor ar,:ays. Theoretical analyses, of

all algorithims are prese:ited in the paper. We have implemented these algorithms on a
Connection Macline and a MasPar MP-1. The implementation results are presented for
all aigorithmis. We alsa make comparibAons between theoretical and experimental result,
wherever relevant.

7 6

