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1. A non-linear theory for the sea response at the bow
of ships pitching and heaving in head seas has been
systematically derived.

2. This theory has been reduced to non-linear
computations of the free surface in the transverse plane, as
a function of time (2D&T).

3. The integral equations describing the motion in the
transverse plane have been formulated.

4, The problem at the interaction of the free surface
and the ship hull was successfully dealt with (this has been
a difficulty for some other investigators).

5. A computer method for the solution of these
integral equations in time has been formulated, and a code
prepared.

6. Calculations have been successfully made, see
Enclosures A & B.

7. The method is able to predict the history of water
level along the bow, including bow emergence, slamming, and
the height of water over the deckline. These are strongly
effected by non-linear processes.
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Nonlinear Analysis of Bow Wave Breaking and Deck Wetness

Hajime Marno and Wusheng Song

1 Introduction

Among various problems of seakeeping qualities of ships, deck wetness or shipping of water becomes
important espaciaily in high speed operation in rough seas. It is a governing factor for determination of
freeboard and the design of flare at the bow in ship design practice. The existing method of theoretical
prediction of seakeeping qualities depends on the linearized theory of the fluid motion around the hull.
In practice, hydrodynamic forces on the hull are predicted by meaas of the strip theory. It is generally
accepted that the ship motion determined from the linear equation of the motion with hydrodynamic
coefficients, derived from the linearized theory in two dimensions, shows a fairly good prediction for
the ship behavior among waves, unless in very severe conditions. However it is known that some of
the prediction by means of the linearized theory is not necessarily satisfactory in several problems of
seakeeping characteristics including deck wetness and slamming impact. Deck wetness, which is the
problem of the present interest, is determined by relative height of the deck above the disturbed sea
surface. The simplest approximation by the existing practice is that the wave surface is taken as if it
were undisturbed by the existence of the ship hull. It is clear that this is a too coarse assumption, because
elevation of the sea surface changes due the disturbance by the hull to a considerable extent, so that the
interaction between the hull and the free surface should be taken into account by the prediction of free
surface elevation. The heave of the sea surface due to the disturbance by the hull is called the dynamic
swell. The existing practice employs the strip theory with the linearized theory in two dimensions applied
to each cross section of the hull. Takaishi et al(1972) calculated the relative height of the deck above the
disturbed wave surface of a container ship by the above method. Fairly good agreement was observed
between computation and experiment. Since this is the case of large container ship at forward speed
of moderate Froude number, the ship motion is comparatively mild, and the linearized theory seems to
work well. However the condition is different when the ship is operating at high speed in rough seas.
Nonlinearity hecomes remarkable in the fluid motion around the hull, and breaking wave or spray is
observed at the bow, which is likely to have a considerable effect on shipping water. These phenomena
are quite nonlinear and there has been no reliable method so far to predict deck wetness in such a severe
condition.

As the analytical solution is not applicable to the nonlinear boundary value problem, which appears
in the present case, the analysis depends on the numerical method in general. Although recent develop-
ment of the computational fluid dynamics enables the numerical solution of the fully three-dimensional
nonlinear free surface flow problem, the threc-dimensional computation in the present problem does not
seem pratical hecause of large computer time and iusufficient accuracy. The strip theory is the simplest
approximation in which nonlinear effects can be considered. However the strip theory is unable to de-
scribe the effect of forward speed to the fluid motion in rational way. Application of the slender body
technique to the ship moving through ambicut ocean waves provides a rational approach. The existing
theory of this kind is based on a series expansion of the solution with respect to two small parameters
which are mutually independent. The slenderuess ratio of the hull and the ratio of wave height to the
ship's length are takeu as the perturbation paramcters in gencral. Then the first order solution is deter-
mined from a set of linear boundary value problems in two dimensions in the plane perpendicular to the
longitudinal axis of the hull. Thus the slender ship theory formulated in this way belongs originally to
the lincarized approximation. An implication of the two paramcter expansion is the condition that the
anplitude of the vertical motiu of the hull as well as the free surface elevation is small as compared with
the dimension of the cross section of the hull, i.e. breadth and draft. However the motion amplitude is
not necessarily small in compacison with the draft, even though the amplitude of oscillation and wave
height are both small in comparison with the ship's length, which is taken as the reference length in the
pecturbation scheme, This contreadiction is the consequence of the assumption that the slendernesa ratio
and the amplitude ratio ace mutually independent. As a matter of fact, these paramcters are of the same




ovder, awld the separation of two variables is not applicable to the present anadysis. Since the slenderness
ratio aud the amplitude ratio are of the same order, it is more ratioal that they are expressed by a
cotmon pariuncter. The perturbation expansion with respect to a single paramcter leads to another sct
of honndary value problems, which is different from the existing slender ship theory based ou the two
patiuneter expansion. A great advantage of this scheme is that the first order solution allows the large
auplitnde motion in the Jocal scale, even if a small amplitude is assumed in the global scale based ou
the ship's length. Dilferent from the existing slender ship theory, the boundary value problem becomes
nonlicar in the new approach. This may bring some complication in the solution technique. However the
remarkable progress of the compntational fiuid dynamics in recent years has enabled the solution of fully
noulinear boundary valie problem of the free surface low to be tractable at least in two dimensions.

As far as the ship has no forward speed, the principal idea of the solution is similar to the non-
linear strip theory. by which the fluid motion at each transverse plane is purely two-dimensional and
independent each other. When the finite forward speed is introduced, however, the fluid motion in a
transverse plane at one cross section is subject to the effect of the fluid motion at other cross section.
Then the fluid motion around the hull becomes substantially three-dimensional. A great advantage of
the slender body technique is that the three-dimensional fluid motion is determined by the solution
of the two-dimensional boundary value problem at each cross section even though the fluid motion is
three-dimensional. Then the numerical solution for the noulincar free surface flow is much simplified
from the fully three-dimensional solution. The numerical method for the solution of fully nonlinear free
surface problem in two dimensions, which has been developed recently, is available in the solution of the
three-dimensional problem in this manner.

In order to examine deck wetness, one must determine
1. Vertical movement of the deck.

2. Height of the free surface at the hull surface.

The vertical movement of the deck is determined from the equation of motion of the hull. Since the
fluid motion around the hull is nonlinear, the hydrodynamic forces and moments are nonlinear functions
of the ship and the incident wave. According to experimental data however, the nonlinearity of the
hydrodynamic forces and moments acting on the hull as a whole is not remarkable except in such
extreme conditions that bottom slamming takes place. It is generally accepted that the solution of
linear equations of motion predicts the ship motion fairly well, if the hydrodynamic coefficients in the
enuatons are suitably chosen. Correction may be applied to the hydrodynamic coefficients determined
by the linear strip theory in order to illustrate the nonlinear effect. The nonlinear slender ship theory
enables the nonlinear computation of hydrodynamic forces and moments. Then the ship motion may
be determined by integration of the nonlinear equation of motion, but the numerical work will become
enormous. In the present work, the ship motion is assumed to be given by a simple equation. Then the
boundary condition on the hull surface is given by known functions, and the fluid motion around the
hull is determined under given boundary conditions both on the hull surface and on the free surface.

Several problems are encountered in the development of a reliable computation scheme. The numer-
ical solution shows instability sometimes. Another problem of difficulty is treatment of the intersection of
the hull surface and the free surface, when the boundary condition takes different form on two boundaries
of different kinds. Since the level of the point of intersection is the measure of deck wetness, determina-
tion of it is very important in the present problem. Wave breaking and spray are likely to appear on the
how region. The computation scheme should be able to handle the fluid motion accompanied by wave
breaking and spray generation.

In the present work, cflort is made to overcome the above difficulties in order to find out 2 method
of dctermining the free surface clevation at the bow, which governs deck wetness, when wave breaking
or spray gencration is present. The aim of this work is to develop a method of predicting deck wetness,
which is more accurate than the existing mothed based on the lincarized strip theory.

2 Outline of the mathematical formulation

Take the cartesian coordinates z,y, z fixed in space with the origin in the still water plane, with z
and y—axes taken horizontally and z—axis taken vertically upwards.

The fluid is assumed as inviscid and incompressible. Then the fluid motion started from rest is
irrotational and is specified by the velocity potential @ which satisfies the Laplace eqution in the space
veenpicd by the fluid,




(Ll e+ 'pyy +$::=0 (1)

where sul)scriptS wean the partial derivatives. The boundary coudition for # consists of two parts. Oue
is the boundary condition on the hull surface and the other is on the [ree surface.

z |

G(Xg. 0, 2Zg)

‘Figure 1  Coordinate system

As shown in Figure 1, consider a ship moving through a regular train of waves with average forward
speed U in the direction of positive z—axis. Take another coordinate system (X, Y, Z) fixed to the ship.
with X ~axis along the longitudinal axis of the ship, ¥ —axis athwart ships and Z—-axis in the upward
direction. The incident wave is taken to propagate in the z-direction with the profile expressed by the
equation

: z=¢, = Asin(kz + wt + &) 2)
where k = 21/ = w2 /g, A is the wave length and w is the circular frequency. The ship makes oscillations
with three degrees of freedom, i.e. surge, heave and pitch. The motion of the ship is expressed by
coordinates of the center of gravity (z;,0,2;) in terms of the z,y, z—axes, and the pitching angle 4.
positive in the bow down ratation.The following transformation is valid between the coordinate system
(x,y,2) and (X,Y, 2).

X = (z-1z5)co88 ~(z~3;)sind
Y =y ' (3)
Z = (z-2z,)sin0+ (2~ 3,)cosd

The geometry of the hull surface is expressed by the equation

Y =F(X,2)= f(z,2t) (4)
The body boundary condition at the hull surface Sy is
(H] it Pofet B fr—@,=0 ouSy (3)
Writing

Fx =0F[0X, Fz=0F[dZ

one can express (5) in the form
(H] (=, cos0 + i, 8in§ ~ Z6)Fx + (=%, sin8 - 3, cos§ + X6)Fz
+Pefet P f:~ B =0 (6)

where dots mecan timne derivatives.
The free surface condition consists of the kinematic and the dynamic conditions. If the free surface

is expressed by = = ¢, the kinematic condition is

[I;'] (l + ﬁx(x + ﬁ.(, - ﬁ. =0 at = = (7)
The dynamic condition that the pressure is constant on the {ree surface is
(D]




«m+%(«ﬁ3+-ﬁ'j+-{»§)+y(=o at = (8)

The veloeity potential is the sum of the incident wave potential ¢ and the disturbance potential ¢,
such as & = ¢+ ¢. We have the condition at infinity & = @, at /x? + y? — oo. If the depth of
water is infinite, we have the condition ¢, = 0 at = — —co. However these couditions for water of
infinite streteh may not be convenient for numerical solution. Then the width and the depth of water

are assumed finite in the actual computation.

The solution of the boundary value problem defined above is simplified to a great extent by appli-
cation of the slender body theory. The fundamental assumption is that the breadth B and the draft d of
the ship are both wuch smaller than the length L, B/L < 1,d/L € 1. Now let us define the slenderness
ratio as £ = d/L, and assume B/d = O(1). The slender body theory is based on a singular perturbation

in the near field.

The formation is efficiently induced by the coordinate stretching technique. The governing equation
is transformcd to a system of stretched coordinate &', y', ' such as z = z’,y = £p’, z = ¢=. The solution
is expanded in ascending powers of <, the governing equation is reduced to the Laplace equation in two
dimensions in the transverse y, z—plane,

(Ll ﬁw + ’z: = 0 : (9)

In applying similar techniques to the boundary conditions, we assume the following,
(/L=0(e), 32/L=0(), 0=0()

Then the hull surface condition is transformed to
H A ; 3 21-1/2
(H] 5;=-[URY+(U0+%—70)F2] 1+ Fj] (10)

where n is the outward normal of the hull contour and we can put X = z - z,. The kinematic and
dynamic free surface conditons become

[A] G+ Py(y—8:.=0 atz=( (11)
(o} bt 7 (48 +e0=0 atz=( (12

In the derivation of the above equations, we have assumed wy+/d/g = O(1), where w; is the circular
frequency of encounter, wy = w + kU, otherwise the free surface condition is a trivial.
Since the velocity potential is decomposed as

=9, +9 _ (13)
The boundary condition for the disturbance potential ¢ becomes
a¢ —— . : H 21-1/2 o¢
[H] === [UFx+ (U0 + 5 - X6) Fo] 14 FY 7" - P (149)
If the incident wave is not steep, one can write ’
d¢, 0O ;
eotnt | s
Putting . )
V=Ul+z,-X0-¢, (16)
the hull surface condition is written as :
7] -1/2
(H] F;?:"(UFX'*VFX) (1+F}) / only (17)
The free surface clevation due to the disturbance is
G=C¢-G (18)
Then the kincinatic free surface condition can be written as .
[,\.] ' (lt+¢y<ly-’¢:=0 "tz=c=cw+(l (19)

The dynamic condition becomes on the other hand




(D] St o (B +0Y) +0.6 +961=0 A= +G (20)

¢ and @ at the free surface are determined by integration of (19) and (20) with tine with a suitable
initial condition. It is more couvenient to employ the Lagrangean time derivative in order to integrate the
above equatious with timne. The Lagrangean derivative or the material derivative in the two-dimensional

y. s=plane is defined by

d 0 )

a

It'—a+¢y5;+¢;5-: (21)

Then the kinematic condition is written as
. d
(&) 7}:— =¢. on:=G+( (22)
while the dynamic condition is written as
d 1 .

(D] -f =g (@ +6) =06 -G M:=(+G (23)

Thus the free surface from = = ¢ and value of ¢ on the free surface are determined from (22) and (23)
respectively, but we must know the values of ¢, and ¢, on the free surface before integrating the above
equations. The fluid velocities ¢, ¢, are determined by the solution of the two-dimensional Laplace
equation

[L] ¢vv +¢..=0 (24)

which satisfies both the hull surface condition (17) and the free surface condition (22)(23).

It should be noted that the condtion at infinity, ¢ — 0 as y — oo, is not applied, because the
solution is valid only in the near field. The solution of (24) is generally expressed in the form ¢, + g(z),
where ¢, satisfies the boundary conditon and vanishes at infinity and g(z) is an arbitrary function of
z only, which gives some indeterminateness to the solution. In order to make the solution definite, one
has to determine g(z) by matching with the far field solution which may be obtained in another way.
According to the linearized slender ship theory however, it id proved that g(z) becomes negligible under
the condition w+/d/g = O(1). Therefore the condition at infinity holds in the present case.

3 Solution procedure

The slender body technique reduces the problem to the two-dimensional boundary value problem
in the plane perpendicular to the longitudinal axis of the ship as explained in the previous section. One
must remember that the problem is formulated in the coordinate system fixed in space rather than the
coordinate system moving with the ship. Therefore the solution is found in the transverse plane fixed in
space, aud the hull is moving relatively to this plane as shown in Figure 2. The cross section of the hull
in the plane of solution at one instant is different from the cross section in the same plane at another
instant.

Figure 2 A transverse plane through which a ship moves




Take a teansverse plane at a certain position r = ry as the plane of solution. The dowain in this
plane oceupicd by the tluid is bounded by the hull eross section [y and the intersection of the free surface
[, The bowdary value problem is to seck the solution of the two-dimeunsional Laplace equation (24).
which satisfies the hull surface condition (17) ou Iy together with the free surface condition (22)(23)
on 1. The solution is obtained at each instant on planes at various positions & = xy,rz, r3,---. Then
the theeesdimensional flow field is determined.

The bouudary value problem described above is solved through two steps.

(Step 1]

Assume that the value of @ on [F is known at a certain instant ¢ = ¢;. The normal velocity @,, on
Iy is given by (17) if the motion of the hull is known. Now let us take a closed domain circumscribed
by [y, [r and a coutour [, taken at a great distance surrounding the fluid domain, and apply Green’s
theorem in the domain 2 inside this boundary contour. Take a ficld point P inside 2 and a source point
Q@ on the boundary coutour I' = Iy + [ + I'x. Then Green’s theorem gives

b= [ (52- %)Q tn [(5 = %) + (5 = 2,)7] ds (25)

where n is the normal to I' in the inward direction to {2, and subscripts P, Q mean the values at P and
Q respectively. If P is a point on I', the integral is taken in the sense of the Cauchy principal value, and
the equation becomes

s=n [ (5- %)Qm [Gr = 0)* + (o = )7 s (26)

where § = 7 when the contour has a continuous tangent. The normal velocity ¢,, = 8¢/8n is given on
Iy by the hull surface condition (17) while ¢ is assumed to be known on Ir. If the contour [, is taken
at an infinite distance, the conditon at infinity is valid and the integral along I3, has no contribution.
However it is found that I3, taken at a finite distance is more conveninet for numerical solution. Here
we take [, composed of two vertial lines on both sides of the hull and a horizontal line representing the
water bottom of finite depth, and impose the conditon ¢, = 0 on this boundary. The value of ¢ on Iy
and Iy is unknown, while ¢, on I'r is unknown. Then a set of simultaneous integral equations for these
unknowns is derived from (26). The integral equation is solved by a numerical method.

[Step 2]

The solution of the integral equation obtained in Step 1 gives the normal velocity ¢,, on I'r. Since
the velocity potential ¢.is assumed to be known on Ip, the tangential velocity on Ir is obtained by
differentiation of ¢ along [, ¢, = d¢/9s. The y and z components of the fluid velocity on the free
surface are determined by

¢, = (&, + $aCiy) [ (1+ ) (27)
¢z = (¢.Clv - ¢n)/ (1 + c?v)llz (28)

The free surface elevation and the velocity potential on the free surface at subsequent instants are
determined by the cvolution equation (22)(23) respectively. Applying the values of (27) and (28) to
(22) (23), the increment of ¢, and ¢ in a short interval At is given by

AG = At dGy /de (29)
A = Atdpfdt (30)

These valucs are calculated with respect to a definite fluid particle. The position of the particle is
determined by

d dz s ;
;i%=¢" ;l—t'=¢'+c' (31)

Thus the free surface elevation { = §, + {; and the velocity potential on the free surface at the instant
t; = t, + At are determined, and the boundary value problem in Step 1 at the time ¢ = ¢3 is fully defined.
The step by step, time marching procedure of Step 1 through Step 2 determines the evolution of the




flow field in a coutrol plane at a definite position £ = r|. say. Siuce this is an initial value problem, the
initial condition at an initial point must be defined. The initial point is at the intersection of the stem of
how with the free surface, and the computation starts at the instant when the initial point reaches the
control plane. The simplest idca for the initial condition is that ¢ = 0 on the undisturbed free surface,
while the normal velocity on the hull surface is given by the hull surface condition. However it is found
after some trial computation that difficulty appears in the numerical solution of Step 1 by this type of
initial condition because of the singularity at the intersection of the hull surface and the {ree surface.
The initial condition employed here is as follows. In the first time interval after the initial point, the
scale of the hull cross section in the control plane is very small, that means large Froude aumber of local
fuid motion and the effect of gravity does not contribute to the fluid motion much. If the ship has a
raked stem, the mocion of the hull contour in the control plane is similar to the vertical motion of a
sharp wedge, for which there is an analytical solution if gravity is not present. Here we employ Mackie's
(1969) solution for the entry of a sharp wedge into a free surface as the initial conditon. According to
this theory, the velocity potential and the free surface elevation, when a wedge of apex angle o enters
the free surface at the velocity V, are given by

1 2 .I 2
a y+(z+2) ’
= — A N o & 2
¢ 21\'/0'1“3(2-{-(:-:')2 (32)
[a 3 1 -1 1
= — — —_—f -2
z=— [ln(1+y2)+2y tan (y) -} (33)
where y and z are normalized by V¢ and ¢ is normalized by V2t
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Figure3  Computational boundary

4 Numerical method

The integral equation in Step 1 is solved by a numerical method. The boundary integral equation
is written in the form

(2
Fu+lr+lo \ I

G(PQ) -9 % (34)

0d, = O—Gg;-:g) d

where 1
2 2 -

GRA=7h[l-w) +(-%)] (35)
The numerical boundary is taken as that in Figure 3. On the hull surface contour I'y, ¢, is given by the
boundary condition, and on the free surface contour I, ¢ is given by the result of computation in Step
_ 2. On the outer boundary, we set ¢, = 0. The outer boundary is divided into the side wall iy and the
water bottom Ig. The condition of :iie horizontal water bottom is satisfied by taking the image with
respect to the bottom line at = = =h. Hereafter we define Iy and Iy by including their image contours.

The integral equation (34) is written for a point P on Iy or [iy in the form like

8, + /r o ¢Gnds — /r ] ¢,Gds = /n ’ ¢.Gds - /l: ) @G nds (36)
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where G = G(P. Q). G, = 3G(P,Q) /Ing for brevity. If the poiut P is on [, the integral equation is
written in the from

/ ¢Gnds —/ ¢,Gds = -0¢, + ¢,Gds -/ ¢Gnds (37)
Tu+lw e Tu Cr

The right hand sides of the above equatious are known quantities. The contour is divided by discrete
points with small intervals by straight line segments connecting each adjacent point. The values of ¢
and ¢, are defined at these points, and the linear variation of ¢ and ¢,, is assumed along each segment.
The integral equation is then replaced by a set of simultaneous linear algebraic equations. The value of
@ in the integral equation in this time is the angle interior to the domain 2 between each contiguous
segment.

The simultaneous algebraic equations can be written in matrix form,

[44] [Dxl]{{¢}}=[[311 (C)] {{qb..}} (38)

(42 [Do][ L {9}] = (Bl [Cal] {9}
where ¢, ¢, mean values on Iy or Liv, and &, &, on I'r. If we write the above equation in simpler form
[Aij] {;} = (Bij] {¢n,} (39)

the elements of the matrices are given by

) . j
A;j= 8+ —-1'—-/ 8Gpnds — Ll Gnds

§j = Sj-1 Jj-1 3j=3j-1Jj=1
j+1 j+1
8; 1
4 — Ghnds - ———— / 8Gpnds (40)
Sji+1 =8 J; Siv1 =8 Jj
Bij = ——— sGds - —1—— Gds
$j—38j-1Jj-1 Sj=38j~1Jj-1
41 j+1
s;. 1
4 — Gds - ————— / sGds (41)
Si+1—8j Jj Sj+1 =3 Jj

We have a system of linear algebraic equations with respect to ¢; on I'y and Iiy and &, on Ir. The
unknown values of ¢ on Iy and [iv and ¢ on [y are determined simply by the matrix inversion using
the computer. Thus the flow field in a certain transverse plane Z' at a certain instant ¢ = ¢, is completely
determined. -

Figure 4  Intersection point Figure5 Discontinuous elements

There are several points which need special treatment. Since a measure of deck wetness is relative
height of the wave surface at the hull surface, and the point of intersection of the hull surface and free
surface presents the top of the wetted region on the hull surface, it is obvious that cautious treatment
of the intersection point is very important for the prediction of deck wetness. Several researchers have
presented methods to treat this point, but some of their methods seem to be inaccurate, and some are
not suitable in the present problem. The values of ¢ and ¢, are defined at nodal points connecting
adjacent line segments which replace the boundary contour. Though the potential is unique at any nodal
point, the normal velocity ¢, does not have a unique value at nodes where the normal to the boundary
is not unique. In particular, the intersection point is a special node at which ¢ is continuous while ¢,
is different on each side because of different houndary conditions as shown in Figure 4. Write ¢ for

48_




the normal velocity to the lnll sucface and ¢ to the free surface at the intersection point. Since @)y is
Kunown and @, unknown, (39) can be transformed to

[Aijl {@;} = (Bijl {#a,} +[Cil {4.} (42)

where ¢ € @,
The unknown ¢, is detcrmined from the above equation. Another kind of nodal point which needs
special treatment is the tip of the spray jet which somctimes occurs. The potential is given at this point,
while the nnknown normal velocity at the free surface has different values on both sides of the jet. Two
unknowns at the saue nodal point require another equation. The method to solve this problem involves
discontinnons elements jutroduced by Brebbia and Domingucez (1989) as shown in Figure 5. Instead of
the nodal point B connecting segments 4B and BC, we take a point B’ on AB and B” on BC. Then
¢ and ¢, are calculated at B’ and B”. The values of ¢,, at B on both sides of the jet are obtained by
extrapolation.

The next time step is the determination of the free surface at the instant slightly later by a short
time interval At. For each time step, the main computations described below are performed for the
deformation of the free surface.

1) Determination of unknowns ¢, &, : Equation (42) is rearranged in the form

[4l{x} = {¥} (43)
=l 22l -
W=}
- B EE

where [F;] and [F,] are subvectors of [C;] in (42). The right hand side of (43) is a known vector,
and {X} is determined by the matrix inversion.

2) Time-stepping : The position of'ﬂuid particles and values of potentia.l ¢, on the free surface for
the next time at ¢ = t; + A4t, are determined by

y(+dt) =y (h)+ ¢, ()t (47)
z(b+4t) =z (h) + ¢, (1)t + & (01 +41) = G (1) (48)
Blt1+88) = $(tr) + (42 +6D) - 8.6 — 9] (49)

The fluid velocity ¢,, ¢, is calculated by (27) (28), and the ta.ngentia.l velocity ¢, is expressed by
a finite difference of ¢ using the three point Lagrange interpolation.

3) Smoothing : To depress a sawtooth instability of the wave profile, the five-point smoothing
algorithem is used to filter the points which are not equally spaced on the free surface. s; in the
following formula is the distance between two nodal points.

For the first point (edge point) :
h= % : [m(fo +h)-alfe+ )+
)tnm h) - - 11} (50)

alm

ni(n -
For the second point :
f=

2(m1- "){ ":_ o [s1(fo + f1) + 81 (fo + )] -

+ - e[ mn(fo + [<1) + 81 (fo + fa)]} (51)




For the center point :

- 1 1

fo= ?{m[ﬂ(ﬁ) +fa)+salfot+ A+
S~18

Tyt = )+ talho = 1]} (52)

whete l_a=sa+s_,{=h =1+, m=s  +s2+s3,n==5, + 33+ 85+3;.

4) Regridding : Iu some cases, node points on the free surface, especially near the hull, are either tao
close to or too far from each other, leading to numerical difficulties. The regridding technique is a
useful way to keep the computation accurate. If the computed distance is less than dmin or greater
than dymg: which are the input control parameters, the points only near the hull are redistributed
by cubic spline or linear interpolation.

Thus the computation at the next time step is repeated by the above procedure 1) through 4).
Since the ship is moving with forward speed U, the hull section moves astern in each time interval, and
reaches the stern at the time L/U after the beginning of the above procedure at the bow. Therefore the
result of computation in one round dose not express the time evolution of the free surface at a definite
section of the ship nor the free surface elevation in different sections at the same instant. In order to
complete the computation to obtain the result for every section throughout the length of the ship, the
same computation procedures starting from the bow should be repeated by shifting the initial instant
by the time interval 4t = Az /U, where Az is the interval of the section for which the result is required.
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Figure 6  Body plan (L=4.5m,B8=0.496m,d=0.163m)

5 Numerical Examples

A frigate model shown in Figure 6 is employed for the nuinerical example. The computation of ship
motion in regular waves by means of the strip method and results of towing tank experiment of this
modecl have been published by O’dea and Walden(1984).

Numerical computatious are carried out in two conditions. The first is the steady forward motion
in still water. The Froude number varies from 0.10 to 0.60. \We take W = 60B and A = 1.2L as the
computatioul domain. The number and intervals of the nodal points distributed on three boundaries
Iy, By and Tp are as follows.

(1) On Iy : The number of nodes depends on the wetted depth of the hull contour, such as As = d/20
near the keel and As = d/40 near the point of intersection with [,

(2) On Ly : 13 points are distributed with an equal interval,
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(3) Ou I 1 150 poiuts are distributed from the intersection with [y in an equal interval 4s = B/100,
amd other 50 points are distributed along the remaining part of the boundary with arithmetic
intervals,

The mnnerical cesults at the time interval At give the free surface profile in the transverse sections
with intervals A.r = U"4t. The time step is chosen iu such a way that the nunerical results are obtained
at the hull sections with the interval Ar = L/800. The reliability of the numerial results is comfirmed
by changing the interval A and the grid density on the free surface.

The results of computation arc illustrated in Figure 7 thronugh Figure 13. At low Froude numbers
less than (.2, generation of spray is uot observed, but diverging waves generated at the bow are gradually
steepened and eventually break at the pointed crest. suggesting the white cap. At Froude number 0.2,
overturning of the wave crest is obscrved, but the spray is not developed yet. At Froude number 0.3,
genceration of spray by the overturning free surface is clearly observed. At Froude number 0.4, some
instability appears on the free surface underneath the spray root, which may suggest the spilling type
of wave breaking instead of the plunging type. At Froude number 0.5, some undulation appears on the
free surface under the spray sheet, and this undulation grows up further at Froude number 0.6. This
phienomenon suggests another type of wave breaking.

The second case is the same ship making heaving and pitching oscillation in sinusoidal head sea
waves as expressed by eq.(2) at uniform forward speed of Froude number 0.3. The length of the incident
wave is so chosen as A/L = 1.2, at which the maximum amplitude of the oscillations is observed in
experiment. The ship motion is given by

Z = Z, sin(wt + kzg +69+61)
0 = 8, sin{wt + kz, + €9 +€2)

where w; = w + kU and z, is the z—coordinate of the center of gravity referred to the origin at F.P..
Values of Z,, 6,, €, and &; are taken from experimental data of O’dea et al.

The position of the control plane is defined by the phase angle of the incident wave on the control
plane at the instant when the foremost point of the bowarrives at this control plane as shown in Figure
14, and the numerical procedure starts at this instant. If the control plane fixed in space is arranged
with the interval Azg, the phase difference between adjacent planes is Aeg = (wy /U)Azg. The numerical
results for the free surface profile are obtained at hull sections with the interval Az = L/1000, so the
time interval of the computation is chosen as At = 0.002256 seconds. The reliability of the numerical
results is checked by changing the interval Az and the grid density as before.

Three kinds of the wave steepness (the ratio of wave height to wave length) i.e. H/A = 0.02, 0.03
and 0.04 are chosen for the numerical examples. Computations are carried out at control planes at
z0 = 0.0. 7/4, n/2, 31 /4, © and Tx/4. However the preliminary computation has shown that there is no
possibility of deck wetness at €o greater than x/2, so that results with €9 = 0.0, x/4 and /2 will given
here.

1) Results of H/A =0.02

The evolution of the free surface profile in the bow region at the control plane g = 0.0 is shown
in Figure 15. At Section 133(X/L = -0.058) of the hull, the level of the free surface exceeds the deck
height, but water is pushed aside by the hull at the deck side. The overturning of the free surface results
the sheet of spray jet directed outward, so that there is no shipping water on board as far as the vertical
movement of the free surface relative to the deck is upward. At Section 201(X/L = —-0.126) however,
the relative mnotion of the free surface turns to downward. Then water once lifted above the deck level
is scooped up at the deck side, and a small amount of shipping water enters on deck as shown in Figure
16.

The result at the control plane g9 = 7/4 is shown in Figure 17. The overturning free surface and the
ontward spray shect are similar to the former case, but shipping water resulted by the relative movement
of the free surface as shown in Figure 16 in the formner case does not take place in this case. Another
difference is the appearance of nndulation of the free surface bencath the spray sheet, which may cause
the breaking of free surface behind this position.

The result at the control plane £9 = x/2 is shown in Figure 18. The behavior of the free surface is
different from the [ormer cases. As the heave of free surface exceeds the deck level at Section 58 much
closer to the stem than in the former cases due to deep immergence of the bow, the spray appears at the
tip of heaved water and turns inward over the deck due to outward movement of the deck side. Then
shipping water on board is resulted,
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Computations at the control plane 5y = 3n /4, 7 and 7x/4 show no shipping water. As a consequence,
one can conclude that deck wetness begins to take place in the wave height H/A = 0.02 at ¢g = 0.0 and
x/2. This result is in agreement with experimental data.

2) Results of H/\ =0.03

The behavior of the free surface is quite differcnt from the former case, because of the greater motion
of the hmll. Heavy deck wetness is reported in experiment. The numerical result at g9 = 0.0 is shown in
Figure 19. As the bow plunges iuto the wave surface, a mass of water is raised up on both sides of the
deck in thick spray like liguid walls. Water at the top of the wall spreads in both directions, forming
spray sheets directing inward and outward to the hull. The inward spray falls on deck, resulting heavy
deck wetness, This phenomenon is similar to the collapse of a liquid column.

The result at 59 = x/4 is shown in Figure 20. After the heaviug frce surface exceeds the deck side,
spray directing inward similar to the casc of Figure 18 appears at the tip, bringing shipping water. A
similar behavior of the free surface is observed at the hull section closer to the stem at gp = #/2 as
shown in Figure 21.

According to the experimmental observation, the bow of the ship is lifted above the wave surface
almost clear of water at the phase angle greater than €9 = x/2. Then slamming is likely to take place
at the how region. The present computation scheme is not application to this situation.

3) Results of H/A =0.04

The result at g = 0.0 is shown in Figure 22. The free surface phenomenon hLe the collapse of a
liqquid column is similar to that in Figure 19, but in a much exaggerated form. The spray sheet at the
top of lifted water is stronger, resulting heavy deck wetness.

Figure 23 shows the result at ¢gp = /4. The heaved free surface turns inboard as exceeding the
deck side and brings heavy shipping water in the bow region.

A similar phenomenon appears at the hull section closer to the stem at g9 = x/2 as shown in Figure
24.

6 Conclusions

Nonlinear computations of the free surface elevation at the bow region of a frigate model in the
steady forward motion as well as in the heaving and pitching Watxons are carried out under the
slender body approximation.

The computation for the steady forward motion well simulates the generation of spray and the
breaking of bow waves. It is found that the pattern of breaking wave changes according to increase of
forward speed.

The computation for the oscillating ship at forward speed of Froude number 0.30 shows the effect
of the incident wave height. At the wave height of H/A = 0.02, a mass of water is raised above the deck
and pushed aside forming spray like the plunging breaker. However only a small amount of shipping
water is observed. At greater wave height H/) = 0.03 and 0.04, heavy deck wetness is resulted by falling
water from the thick spray sheet at the lifted free surface over the deck. Deck wetness begins at the
wave height H/A = 0.02, and the result is in good agreement with the experimental observation.
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Figure 14 The position of the No.1 control plan'e (a) and
the expresstion of the initial phase of wave (b)
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