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SLESS AND ACHEIVEMENTS
tooComputational Methods for Microstrecture
vie devilopment of numerical methods for solving problems in materials science is 2 subject which,
with fow exceptions, is in its infancy. This work covers one of the basic computationa! problems in
cie field which is that of devising algorithms for computing microstructures. Our efforts have all
Leen diseeted towards compating the particular microstructures associated with martensitic phase
rrapsittons. Within this framework ive have encountered both algorithmic and analytical problems,
« nmuber of which have been satisfactorily solved.

Our work addresses static problems. We are not currently able to handle full three dimensional time
dependent cases. The typical stationary problem calls for the minimization of a highly nonconvex
bulk energy functional. The extremizing functions are vector valued, representing displacement
sields. The construction of the bulk energy functionals is a specialized task, depending on a detailed
u*mv"]cdge of the properties of materials. The functionals used in our work were derived by R. James,

rased on ideas of J. Ericksen. The functionals contain information about the structure of the crystal
Eattice and several material specific parameters. These functionals are relatively complex, being,
for instance, eighth order polynomials in the displacements.

The research supported in the grant has addreszed two main issues. The first issue concerns
techniques for discretization of the bulk energy functionais and the second concerns algorithmic
issues relevant to noncoavex optimization. In this we discovered some unusual and apparently
paradoxical results. We will describe these results now.

As reported in [1] the initial discretization used bilinear finite elements in a planar model. In addi-
tion to the finite element approximation it is necessary to use some form of numerical integration
to evaluate the energy cince, as mentioned above it is a polynomial of high degree. Following the
work of others, we used a midpoint quadrature approach combined with bilinear elements on a
uniform square mesh. Minimizing the resulting function of the mesh variables (several thousand of
them) leads in principle to the desired microstructure. Our important discovery here was that the
‘microstructures’ computed by others using this scheme are not microstructures at all, but are rep- '
resentations of nuraerical instabilities of the discretization technique. This sitvation cccurs because

both the microstructure and the numerical instability are manifested as grid scale oscillations. It

can be hard to distinguish the two in many cases, but we constructed an example where there can

be no doubt that the computed result represents the effect of numerical instability, although it has

the physical appearance of a typical microstructure. The report [1] contains an explanation of the

source of this instability and shows how to avoid it it certain cases. It seems uniikely that it can

be avoided in general. If this is true it means that the original scheme is seriously flawed and we

do, in fact, consider this to be the case.

"To avoid the difficulties of the approach of the previous paragraph we decided to eliminate the
integration errors entirely by the use of linear finite elements on triangles. This introduces another
element of uncertainty in that with triangular meshes the grid orientation may play a role in the
computed microstructure. Our experiences with this are reported in [2]. The major difficulty is that




. whea the mesh diagonals are not aligned with the microstructure they nevertheless are somehow
able to ‘capture’ the microstructure and produce a result in which it is aligned with the mesh
- Aiagonals. This can occur even when the physical microstructure is meant to lie at 90 degrees to
the mesh diagonals. The somewhat subtle reasons for the occurence of this phenomenon, explained
in 2], are to be found in the existence of near minimizers in the energy sense which are far from the
physical minimizers. At present, the only available solution to this difficulty is to compute on very
fine meshes. Unfortunately, this is an expensive remedy. We have developed a theory to explain
quantitatively how fine the mesh needs to be in particular cases and the techniques for this are

~ presented in [2].
In the course of performing the computations of the two previous paragraphs a suprising effect of
aumerical optimization algorithms was noted. Specifically, when applied to nonconvex functionals,
the usual descent algorithms can terminate at a saddle point of the functional rather than at a local
minimum as would be expected. No warning of this situation is provided. It simply appears to the

-uper that a minimum (local) has been found whereas in fact the computed solution is only a saddle
point. We constructed a simple model to demonstrate this effect and provided some analysis of
the character of the saddle point. This work is being written up for publication [3). We are unsure
how pervasive this phenomenon is likely to be in general, but we do have full scale microstructure
computations in which it occurred.

The difficulties of computing microstructure in the form of grid scale oscillations are sufficiently

_‘great that it becomes of interest to seek alternative formulations. In one such formulation we

~ seek averages of the oscillations rather than the oscillations themselves. A technique for this was

- proposed in our work [4]. We formmulated an approach which is suitable for directly computing

" the Young measures which describe the mesh scale oscillations. The calculations in this case take

_place on a fixed mesh which is not unduly fine since the objects being computed are relatively
b ‘slowly varying. One ‘drawback of this approach is that since only averages are being found the
% microstruéture must somehow be obtained from the averages. For design purposes however, the
averages may be sufficient information. We had some success in computing with this approach in
“Habegal m situations. However, there are more variables to keep track of and the optimization
gfnbhm is ldiﬁcult one.

ihd tk M computational issues, there is the question of assessing the theoretical accuracy of
: ﬁo Wﬂd solutions. The full microstructure problem is far too difficult for existing techniques.
hf&:t the un&ﬂyms mathematical theory is not well developed for the particular problems of
intesest and 80 it is unwise to attempt to prove error estimates for these problems at present.
- »MWW to see what can be said about simpler models. In one case, reported in [5) we
m a&h to obtain tms multa for a conve:nﬁed problem. Our estimates are norm estimates

' ﬁms meh as div(curl)=0 and cnrl(grad)-.o hive natural discrete
‘th_eordal frtmewort has been bnilt for these methodc and they




= the mesh dingonals ere not aligned with the microstructure they nevertheless are somchow
- to ‘capture’ the microstructure and produce a result in which it is aligned with the mesh
dogousds. This can occur even when the physical microstructure is meant to lie at 90 degrees to
the mesh dicgonals, The somewhat subtle reasons for the occurence of this phenoruenon, explained
i (2], are to be found in the existence of rear minimizers in the energy sense which are far from the
phycicel minimizeis. At presert, the only available solution to this difficulty is to compute on very
fine reshes. Unfortunately, this is an expensive remedy. We have developed a theory to explain

yucniitatively how fine the mesh needs to be in particular cases and the techniques for this are
presvented in [2].

In the course of performing the computations of the two previous paragraphs a suprising effect of
numericz! optimization algorithms was noted. Specifically, when applied to nonconvex functionals,
the usual descent algorithms can terminate at a saddle point of the functional rather than at a local
iinimum as would be expected. No warning of this situation is provided. It simply appears to the
use~ that a minimum (local) has been found whereas in fact the computed solution is only a saddle
point. We constructed a simple model to demonstrate this effect and provided some analysis of
the character of the saddle point. This work is being written up for publication [3]. We are unsure

hov, pervasive this-phenomenon is likely to be in general, but we do have full scale microstructure
computations in which it occurred.

The difficulties of computing microstructure in the form of grid scale oscillations are sufficiently
great that it becomes of interest to seek alternative formulations. In one such formulation we
seek averages of the oscillations rather than the oscillations themselves. A technique for this was
proposed in our work [4]. We formulated an approach which is suitable for directly computing
the Young measures which describe the mesh scale oscillations. The calculations ia this case take
place on a fixed mesh which is not unduly fine since the objects being computed arc relatively
slowly varying. One drawback of this approach is that since only averages are being found the
microstructure must somehow be obtained from the averages. For design purposes however, the
averages may be sufficient information. We had some success in computing with this approach in
several different situations. However, there are more variables to keep track of and the optimization
problem is a difficult one.

Beyond the purely computational issues, there is the question of assessing the theoretical accuracy of
the computed solutions. The full microstructure problem is far too difficult for existing techniques.
In fact, the underlying mathematical theory is not well developed for the particular problems of
interest and so it is unwise to atiempt to prove error estimates for these problems at present.
Instead, we decided to see what can be said about simpler models. In ore case, reported in [5] we
were able to obtain rigorous results for a convexified problem. Our estimates are norm estimates
and thus better than estimates in weak topologies.

2. Covolume techniques of discretization

The covolume approach to discretization uses pairs of dual meshes to closely enforce physical laws
at the discrete level. The technique is designed specifically around discretizing the vector field
operators div, grad and curl and their various combinations. One big advantage of covolume
discretizations is that vector identities such as div(curl)=0 and curl(grad)=0 have natural discrete
analogs. In recent times, a solid theoretical framework has been built for these methods and they
have been applied in several fields. We have made a number of contributions to this effort. In the
current grant period we have made the contributions which are described below.

In [6] we present an error estimate for the covolume scheme for three dimensional div-curl problems




on tetrahedral meshes in three dimensions. The three dimensional div-curl problem is a notoriously
difficult one. It is overdetermined since it has four equations but only three dimensions. There are
- fowr, if any, discretisations which deal with the system directly. Usually, potentials or Biot-Savart
integrals are used. Another indirect approach can be based on least squares although not without
difficulty. On the other hand our algorithm provides a straightforward way to obtain a solution to
such systems and the error estimate shows that the discretization is effectively optimal.

One problem with covolume methods is that unlike finite elements we do not have schemes of
arbitrary order of accuracy for general meshes. As part of an effort to provide such schemes we
bave developed a higher covolume scheme for div-curl systems on regular meshes. This scheme
‘is built on the standard scheme. Its accuracy is fourth order in the mesh spacing compared with
second order for the standard scheme. We have a rigorous proof of the order of the scheme. This
is reported in [7]. The algorithm is equally applicable in two and three dimensions. However, we
have no yet succeeded in extending it to triangular and tetrahedral meshes in any concise way. If
this were poesible, the resulting scheme would most likely be third order as opposed to first order
for the standard scheme.

Al mentioned pmmmly covolume schemes use dual mesh systems. The prototypical such mesh
ﬂr is a Voronoi-Delaunay system. These meshes have numerous applications in computational
- geomnetry and have been used as finite element meshes for a number of years. Their use in the
:govoltme schieme is associated with the geometrical property that the edges of the Voronoi diagram
,mmmmo the faces of the Delaunay triangulation (or tesselation) and reciprocally. The usual
. "situstion envisages & convex domain to be triangulated, but of course this is insufficient for partial
. differénsial equations where restrictions on geometries cannot be tolerated. For this reason we have

; dwdupd a new awthm for making Voronoi-Delaunay mesh systems for arbxtra.ry domuns Our

] far partial differential application ha.vmg a number of local properties. For instance, we
_ahoaddftxme how many and which elements have to be changed when a new point is added.




v fctra?;edral meshes in three dimensions. The three dimensional div-curl problem is a notoriously
u‘l‘:‘}i{:?llt one. It is overdetermined since it has four equations but only three dimensions. There are
{ew, if any, discretizations which deal with the system directly. Usually, potentials or Biot-Savart
integrals are ased. Another indirect approach can be based on least squares although not without
difficulty. On the other hand our algorithm provides a straightforward way to obtain a solution to
such systems and the error estimate shows that the discretization is effectively optimal.

One problem with covolume methods is that unlike finite elements we do not have schemes of
arbitrary order of accuracy for general meshes. As part of an effort to provide such schemes we
have daveloped a higher covolume scheme for div-curl systems on regular meshes. This scheme
is built on the standard scheme. Its accuracy is fourth order in the mesh spacing compared with
second order for the standard scheme. We have a rigorous proof of the order of the schemc. This
is reported in [7]. The algorithm is equally applicable in two and three dimensions. However, we
have no yet succeeded in extending it to triangular and tetrahedral meshes in any concise way. If

this were possible, the resulting scheme would most likely be third order as opposed to first order
for the standard scheme.

As mentioned previously, covolume schemes use dual mesh systems. The prototypical such mesh
pair is a Voronoi-Delaunay system. These meshes have numerous applications in computational
geometry and have been used as finite element meshes for a number of years. Their use in the
covolnme scheme is associated with the geometrical property that the edges of the Vorenoi diagram
are orthogonal to the faces of the Delaunay triangulation (or tesselation) and reciprocally. The usual
situation envisages a convex domain to be triangulated, but of course *his is insufficient for partial
differential equations where restrictions on geometries cannot be tolerated. For this reason we have

" developed a new algorithm for making Voronoi-Delaunay mesh systems for arbitrary domains. Our

new algorithm is based on correlating a set of nodes to a uniform mesh. (The uniform mesh is used
28 a tool for forming the Voronoi-Delaunay system. It has nothing to do with the discretization
itself.) We have been able to show that our algorithm is optimal in time and space. It is highly
suitable for partial differential application having a number of local properties. For instance, we
know ahead of time how many and which elements have to be changed when a new point is added.
This work is reported in [8].

In {10] we presented a comprehensive covolume scheme for the compressible Navier-Stokes equations.
The book [9] which we assembled and edited contains a survey article for covolume algorithms
generaliy.

CUMULATIVE PUBLICATIONS

(1) Austenite-Martensite computations avoiding spurious oscillations:(with D. Kinderlehrer and H.
Wang) in Proceedings of the 1993 North American Conference on Smart Materials and Structures,
SPIE Publications

[2] Mesh orientation and capturing effects in microstructure computations:(with N. Walkington and
H. Wang) (will be submitted to SIAM Journal on Scientific and Statistical Computing)

{3) Spurious saddle point optimizers in nonconvex variational problems: (in preparation)

{4] Computation of microstructure utilizing Young’s measure representations:(with N. Walkington)
Journal of Intelligent Materials, Systems and Structures Vol4, No. 4, 1993

] Finite element estimates for Young's vasiational problem:(with N. Walkington) (to appear in
Mathematics of Computation)
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‘b] Covolume estimates for, three ditcensional div-curl systems:{with X. Wu) (will be submitted to
SIAM Journal'of Numerical Analysis)

[7} A ‘fourth crder staggered mesh technique for planar div-curl systems:(with D. Wang) (will be
submitted to Numerische Mathematik)

ESI A ng,(;.."‘-;’i? ‘D)EI,";“_‘,!?%WB’B Eﬁndl‘-ahdx))i:}d"gis i]i}fﬂl"ctltion to nonconvex domains:(with W. Rieder)
in prepatation) Seog) g GETRART da o
Jire

?[91‘ Incompresgible Com Putht}d‘aﬂ Fluid ‘Dypnm1cs (’Bclxok edited jointly with M. D. Gunzburger)
Cambritige Uniseptity Press, 1993 el |

(10] Three dimensional coifolﬁfﬁé'algorithms' fon_;viscouéfﬂqw: Chapter 10 of Algorithmic Trends in
Computational Fiuid Dynamigp‘,veg,,M, Hussaini et al. Springer-Verlag 1993
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William Rleder, a graduate student in the Department of Mathematics, Carnegie Mellon University
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1994.

Christopher Dalton, a graduate student in the Department of Mathematics, Carnegie Mellon Uni-
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