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SThis work covers one of the basic computaticnal issues in materials science, whichIis th~at of devising algorithms for computing microstructure. Finite element dis-
cretizations are used to approyimate a standard energy density functional. Grid
effecto are found to affect the solutions in somne cases and su~itable remedies are
investigated. Covclume methods are a second topic of research. Three dimensional'error estimates are obtained. A new and optim~al Voronoi-Delaunay Mesh generator
is givz.2T1.
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-J :utat ~~[ l Methodu for Microstructure
i_ uVlOJeflolpment of numerical methods for solving problems in materials ccience is a subject which,

i.;t/ exceptions, is in its infancy. This work covers one of the basic computational problems in
Kwe fiild which is that of devising algorithms for zomputing microstructures. Our efforts have all
uin dic:&ted towards compating the particular microstructures associated with martensitic phase
rans-fiti-as. Within this framework -ae have encountered both algorithmic and analytical problems,

i number of which ha':e been satisfactorily solved.

Our work addresses static problems. We are not currently able to handle full three dimengiona time
depen'dent cases. The typical stationary problem calls for the minimization of a highly nonconvex
bulk energy functional. The extremizing functions are vector valed, representing displacement
fields. The construction of the bulk energy functionals is a specialized task, depending on a detailed
knowledge of the properties of materials. The functionals used in our work were derived by R. James,
ba &d oa ideas of J. Ericksen. The functionals contain information about the structure of the crystal
lattice and several material specific parameters. These functionals are relatively complex, being,
far instance, eighth order polynomials in the displacements.

The rczearch supported in the grant has addressed two main issues. The first issue concerns
techniques for discretization of the bulk energy functionals and the second concerns algorithmic
issues relevant to nonconvex optimization. In this we discovered some unusual and apparently
paradoxical results. We will describe these results now.

As reported in [1] the initial discretization used bilinear finite elements in a planar model. In addi-
ltinn to the finite element approximation it is necessary to use some form of numerical integration
to evaluate the energy tince, as mentioned above it is a polynomial of high degree. Following the
work of others, we used a midpoint quadrature approach combined with bilinear elements on a
uniform square mesh. Minimizing the resulting function of the mesh variables (several thousand of
them) leads in principle to the desired microstructure. Our important discovery here was that the
'microstructures' computed by others using this scheme are not microstructures at all, but are rep-
resentations of numerical instabilities of the discretization technique. This situation occurs because
both the microstructure and the numerical instability are manifested as grid scale oscillations. It
can be hard to distinguish the two in many cases, but we constructed an example where there can
be no doubt that the computed result represents the effect of numerical instability, although it has
the physical appearance of a typical microstructure. The report [1] contains an explanation of the
source of this instability and shows how to avoid it it certain cases. It seems unlikely that it can
be avoided in general. If this is true it means that the original scheme is seriously flawed and we
do, in fact, consider this to be the case.

To avoid the difficulties of the approach of the previous paragraph we decided to eliminate the
integration errors entirely by the use of linear finite elements on triangles. This introduces another

element of uncertainty in that with triangular meshes the grid orientation may play a role in the

computed microstructure. Our experiences with this are reported in [2]. The major difficulty is that
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whea the mesh diagonals are not aligned with the microstructure they nevertheless are somehow
' le -to 'captun' the microstructure and produce a result in which it is aligned with the mesh
dsb s. This can occur even when the physical microstructure is meant to lie at 90 degrees to
te mesh diagonals. The somewhat subtle reasons for the occurence of this phenomenon, explained
In (2), are to be found in the existence of near minimizers in the energy sense which are far from the

* Pbyi minimier. At present, the only available solution to this difficulty is to compute on very
_ bet meshes. Unfortunately, this is an expensive remedy. We have developed a theory to explain

quatitatively how fine the mesh needs to be in particular cases and the techniques for this are
prm ted In 12].

Is the course of performing the computations of the two previous paragraphs a suprising effect of
-  numerical optimization algorithms was noted. Specifically, when applied to nonconvex functionals,

the usual descent algoithms can terminate at a saddle point of the functional rather than at a local
minimum as would be expected. No warning of this situation is provided. It simply appears to the
am that a minimum (local) has been found whereas in fact the computed solution is only a saddle
point. We fonstructed a simple model to demonstrate this effect and provided some analysis of
the character of the saddle point. This work is being written up for publication [3]. We are unsure
how pervasive this phenomenon is likely to be in general, but we do have full scale microstructure
cemputtimo in which it occurred.

The dUulties of computing microstructure in the form of grid scale oscillations are sufficiently
grnt that it becomes of intere to seek alternative formulations. In one such formulation we
-. ek avermq of the oscillations rather than the oscillions themselves. A technique for this was
proposed in our work [4]. We formulated an approach which is suitable for directly computing
the Young measures which describe the mesh scale oscillations. The calculations in this case take

S .- .. pA am a fixed mob which I-not unduly fine since the objects being computed are relatively
dowly, varying. One Anwback of this approach is that since only averages are being found the

-icostructure mus somehow be obtained from the averages. For design purposes however, the
w- a-s may be sufient information. We had some success in computing with this approach in
l"wa- diftt Ituatios However, there are more variables to keep track of and the optimization

pbemis a, difficult one.
%; m thpw ,u computatioal issues, there is the question of assessing the theoretical accuracy of

e tions. The fill microstructure problem is far too difficult for existing techniques.
Ini fct, tb wndiring mathematical theory is not well developed for the particular problems of
aMt nd sd-A Isi. unwise to attempt to prove error estimates for these problems at present.
hss* , &dsd to as u~a can be said about simpler models. In one cae, reported in [5] we

4e &WI to obtain rigorous results for a conveillfed problem. Our estimates are norm estimates
*d4te b~e than. estimates in weak topologies.

~~ ~ h _Wlechnlques ofdLe.tato
'to e uses pairs of dual meshes to closely enforce physical laws

.4 ~The techniue is designed specifically around discretizing the vector field
Put', a d e ur'l their maious c biaon.One big advantage of covolumne

la hattc~. denlte~schas dlv(curl)= mad curl(grad)aO have natural discre
"OW timob, solid tb tc framework has ban built for these methods and they

le" fioi We have made a number of contributions to this effort. In the
7 7 41miM .if sith contributions which are described below.

Mmo estme fum tte covolume scheme for thre dimensional div-curl problems
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1;.: nesh dia,-,loa are iot ligned with the microstructure they nevertheless are sormchow
to 'capture' the microtructure and produce a result in which it is aligned with the mesh

.!;"." s. This can occur even when the physical microstructure is meant to lie at 90 degrees to
mt '-Th diugonala. The somewhat subtle reasons for the occurence of this phenomenon, explained

izi 211, are to be found in the existence of near minimizers in the energy sense which are far from the
1) .- A minimizeis. At prewent, the only available solution to this difficulty is to compute on very
fini meshes. Unfortunately, this is an expensive remedy. We have developed a theory to explain
qjuantitatively how fine the mesh needs to be in particular cases and the techniques for this are
prnetented in [2].
If the course of performing the computations of the two previous paragraphs a suprising effect of
numerical optimization algorithms was noted. Specifically, when applied to nonconvex functionals,
the usual descent algorithms can terminate at a saddle point of the functional rather than at a local
minimum as would be expected. No warning of this situation is provided. It simply appears to the
use- that a minimum (local) has been found whereas in fact the computed solution is only a saddle
point. We constructed a simple model to demonstrate this effect and provided some analysis of
the character of the saddle point. This work is being written up for publication [3]. We are unsure
how pervasive this- phenomenon is likely to be in general, but we do have full scale microstructure
computations in which it occurred.

The difficulties of computing microstructure in the form of grid scale oscillations are sufficiently
great that it becomes of interest to seek alternative formulations. In one such formulation we
seek averages of the oscillations rather than the oscillations themselves. A technique for this was
proposed in our work [4]. We formulated an approach which is suitable for directly computing
the Young measures which describe the mesh scale oscillations. The calculations in this case take
place on a fixed mesh which is not unduly fine since the objects being computed are relatively
slowly varying. One drawback of this approach is that since only averages are being found the
microstructure must somehow be obtained from the averages. For design purposes however, the
averages may be sufficient information. We had some success in computing with this approach in
several different situations. However, there are more variables to keep track of and the optimization
problem is a difficult one.

Beyond the purely computational issues, there is the question of assessing the theoretical accuracy of
the computed solutions. The full microstructure problem is far too difficult for existing techniques.
In fact, the underlying mathematical theory is not well developed for the particular problems of
interest and so it is unwise to attempt to prove error estimates for these problems at present.
Instead, we decided to see what can be said about simpler models. In one case, reported in [5] we
were able to obtain rigorous results for a convexified problem. Our estimates are norm estimates
and thus better than estimates in weak topologies.

2. Covolume techniques of discretization
The covolume approach to discretization uses pairs of dual meshes to closely enforce physical laws
at the discrete level. The technique is designed specifically around discretizing the vector field
operators dlv, grad and curl and their various combinations. One big advantage of covolume
discretizations is that vector identities such as div(curl)=O and curl(grad)=O have natural discrete
analogs. In recent times, a solid theoretical framework has been built for these methods and they
have been applied in several fields. We have made a number of contributions to this effort. In the
current grant period we have made the contributions which are described below.

In [6] we present an error estimate for the covolume scheme for three dimensional div-curl problems

F4
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.. ttrahedral meshes in three dimensions. The three dimensional div-curl problem is a notoriously
d. cWlt one. It is overdetermined since it has four equations but only three dimensions. There are
.ew, if say, discretizations which deal with the system directly. Usually, potentials or Biot-Savart
integrals are used. Another Indirect approach can be based on least squares although not without
difficulty. On the other hand our algorithm provides a straightforward way to obtain a solution to
ncb system and the error estimate shows that the discretization is effectively optimal.

One problem with covolume methods is that unlike finite elements we do not have schemes of
arbitrary order of accuracy for general meshes. As part of an effort to provide such schemes we
have developed a higher covolume scheme for div-curl systems on regular meshes. This scheme
is bit on the standard scheme. Its accuracy is fourth order in the mesh spacing compared with
second order for the standard scheme. We have a rigorous proof of the order of the scheme. This
is reported in [7]. The algorithm is equally applicable in two and three dimensions. However, we
havee ao yet succeeded in extending it to triangular and tetrahedral meshes in any concise way. If
this wee posse, the resulting scheme would most likely be third order as opposed to first order
for the standard scheme.

As meiAoned previously, cavolume schemes use dual mesh systems. The prototypical such mesh
.ir is a Veromi-Delaunay system. These meshes have numerous applications in computational
Swaftzy and ha"e been used as Auite element meshes for a number of years. Their use in the
mveh. sdeme is assoiated with the geometrical property that the edges of the Voronoi diagram
an te -rthn '" to the faces of the Delaunay triangulation (or tessetion) and reciprocally. The usual
et,,;oa e --~v~aes a convex domain to be triangulated, but of course this is insufficient for partial

4W-mnW ,equations where restrictions on geometries cannot be tolerated. For this reason we have
'dsuhopO a new algorithm for making Voronoi-Delaunay mesh systems for arbitrary domains. Our
a algorithm is based On correlating a set of nodes to a uniform mesh. (The uniform mesh is used
A ifr * mg the VoromoiDelaunay system. It has nothing to do with the discretization

i"W'4 We Ikave been able to show that our algorithm is optimal in time and space. It i high y
*Oieft partial differential appcation hav a number of loa properties. For instance, we
kuw, w a w.f time how many and which elements have to be changed when a new point is added.

1;4 it41 reported in [8].

J"eprest td =omprehensive covolume scheme for the compressible Navier-Stokes equations.
l,[9] which we assembled and edited contains a survey article for covolume algorithms

C' ^ tLATVE PUBLICATIONS

1~~~ computstos avoiding spurious oscillations:(with D. Kinderlehrer and H.
i j.sedin of dtie 1903 North American Coaference on Smart Materials and Structures,

u" a cpturing efects in microstructure computations:(with N. Walkington and
Sbe sAitted to SIAM Journal on Scientific a#d Statistical Computing)

-7 1 oint optiier in nonconvex variational problems: (in preparation)

d c cture utilizing Young's measure representations:(with N. Walkington)
. Materials, Systems and Structures VoI4, No. 4,1 993

,stlnates for Young's variational problem:(with N. Walkington) (to appear in
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,ii tetrahedr I meshes in three dimensions. The three dimensional div-curl problem is a notoriously
diic"llt one. It is overdetermined since it has four equations but only three dimensions. There are
few, if any, dis:rctizations which deal with the system directly. Usually, potentials or Biot-Savart
integrals are used. Another indirect approach can be based on least squares although not without

difficulty. On the other hand our algorithm provides a straightforward way to obtain a solution to
such sy&tenis and the error estimate shows that the discretization is effectively optimal.

One problem with covolume methods is that unlike finite elements we do not have schemes of
arbitrary order of accuracy for general meshes. As part of an effort to provide such schemes we
have developed a higher covolume scheme for div-curl systems on regular meshes. This scheme
ir built on the standard scheme. Its accuracy is fourth order in the mesh spaciag compared with
second order for the standard scheme. We have a rigorous proof of the order of the schem . This
is reported in [7]. The algorithm is equally applicable in two and three dimensions. However, we
have no yet succeeded in extending it to triangular and tetrahedral meshes in any concise way. If
this were possible, the resulting scheme would most likely be third order as opposed to first order
for the standard scheme.

As mentioned previously, covolume schemes use dual mesh systems. The prototypical such mesh
pair is a Voronoi-Delaunay system. These meshes have numerous applications in computational
geometry and have been used as finite element meshes for a number of years. Their use in the
covolume scheme is associated with the geometrical property that the edges of the Voronoi diagram
are orthogonal to the faces of the Delaunay triangulation (or tesselation) and reciprocally. The usual
situation envisages a convex domain to be triangulated, but of course this is insufficient for partial
differential equations where restrictions on geometries cannot be tolerated. For this reason we have
developed a new algorithm for making Voronoi-Delaunay mesh systems for arbitrary domains. Our
new algorithm is based on correlating a set of modes to a uniform mesh. (The uniform mesh is used
as a tool for forming the Voronoi-Delaunay system. It has nothing to do with the discretization
itself.) We have been able to show that our algorithm is optimal in time and space. It is highly
suitable for partial differential application having a number of local properties. For instance, we
know ahead of time how many and which elements have to be changed when a new point is added.
This work is reported in [8].

In [10] we presented a comprehensive covolume scheme for the compressible Navier-Stokes equations.
The book [9] which we assembled and edited contains a survey article for covolume algorithms
generally.

CUMULATIVE PUBLICATIONS

(1] Austenlte-Martensite computations avoiding spurious oscillations:(with D. Kinderlehrer and H.
Wang) in Proceedings of the 1993 North American Conference on Smart Materials and Structures,
SPIE Publications
[2] Mesh orientation and capturing effects in microstructure computations:(with N. Walkington and
H. Wang) (will be submitted to SIAM Journal on Scientific and Statistical Computing)

[31 Spurious saddle point optimizers in nonconvex variational problems: (in preparation)

(4] Computation of microstructure utilizing Young's measure representations:(with N. Walkington)
Journal of Intelligent Materials, Systems and Structures Vo14, No. 4, 1993

,[5] Fnite element estimates for Young's variational problem:(with N. Walkington) (to appear in
Mathematics of Computation)
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'6j1 ('ov0h1u iu i -tiflates f,,three dimeensional div-curl systems:(with X. Wu) (will be submitted to
SIA,! JoUtf l'joj Numericil Analysis)

[7] A tourth order utaggered mesh technique for planar div-curl systems:(with D. Wang) (will be
submitted to Numerische Mathematik)

[8) A Voropoi Deau y..Ws gq4*rat )iiad'ts a4olicblion to nonconvex domains:(with W. Rieder)(in pre-Atatibrn) Jt 0 t .! . :

f[91, JcoRu~esijhle OCfputtaoie Fluid IDynami : (Book edited jointly with M. D. Gunzburger)

[10] Three dimensional coiolume algorithms for. viscouAtflow: Chapter 10 of Algorithmic Trends in
Computational Fluid Dynamics. . 1 Husialri et al. Springer-Verlag 1993
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