Abstract

The construction and testing of a new stack geometry for thermoacoustic engines, called a "pin stack," has been started. The stack is at the heart of a class of heat engines that use sound to deliver refrigeration, or use a temperature difference to generate sound. Calculations show that the pin stack should make useful improvements in engine efficiency. About 2000 wires will be hand sewn in a hexagonal lattice between the hot and cold heat exchangers in a sound source using low pressure neon gas between 300 K and 77 K.
Description of Project:

The primary objective of this research is to construct and test "pin stacks." It is hoped that this new stack geometry will improve the efficiency of thermoacoustically based refrigerators, heat pumps and prime movers. Secondary objectives include the exploration of the desirability and practicality of fractal heat exchanger designs and of parametric sound sources.

Approaches Taken:

A comparison of the pin stack geometry with the conventional rolled geometry will be made in a modular prime mover test rig which uses low pressure neon gas straddling room and liquid nitrogen temperatures. The stack will be constructed by hand sewing a wire back and forth about 2000 times between the hot and cold heat exchangers. A small acoustic driver will be added to the rig to allow us to measure the quality factor Q below onset as a function of neon pressure. The performance of the pin stack will also be compared to the theory for pin stacks, developed by Greg Swift of Los Alamos National Laboratory, as incorporated in the program DeltaE.

Accomplishments Completed:

The program DeltaE has been run with the conventional rolled stack geometry used in previous experiments on this rig, in order to make sure that we can get the program to agree with experiment. Also, a series of DeltaE runs using pin stacks has been made to increase our understanding of pin stacks and to optimize the test stack's dimensions. A wire size of 75 microns with a spacing of 750 microns, in a nearly hexagonal lattice pattern fitting nicely on the heat exchangers, has been selected. Parts are now being machined in preparation for the sewing of the stack.

The secondary objectives of fractal heat exchangers and parametric drives have not been pursued extensively.

Students Associated with Grant:

LT F. Scott Nessler, USN, is conducting his MS. thesis work on this project.
Office of Naval Research

Publication/Patents/Presentation/Honors Report

For

1 June 93 through 31 May 94

R&T Number: 3126978

Contract/Grant Number: N0001493WR24062 and N0001494WR23044

Contract/Grant Title: Thermoacoustic Pin Stacks

Principal Investigator: Robert M. Keolian

Mailing Address: Physics Dept., Code/PH
Naval Postgraduate School
Monterey, CA 93943

Phone Number (with Area Code): (408) 656-2232

E-Mail Address: bonzo@physics.nps.navy.mil

a. Number of Papers Submitted to Referred Journal but not yet published: 0

b. Number of Papers Published in Referred Journals: 0
 (list attached)

c. Number of Books or Chapters Submitted but not yet Published: 0

d. Number of Books or Chapters Published: 0
 (list attached)

e. Number of Printed Technical Report & Non-Referred Papers: 0
 (list attached)

f. Number of Patents Filed: 0

g. Number of Patents Granted: 0
 (list attached)

h. Number of Invited Presentations at Workshops or Prof. Society Meetings: 0

i. Number of Presentation at Workshop or Prof. Society Meetings: 0

j. Honors/Awards/Prizes for Contract/Grant Employees:
 (list attached, this might include Scientific Soc. Awards/Offices, Promotions, Faculty Award/Offices etc.)

k. Total number of Graduate Students and Post-Docs Supported at least 25% this year on this contract/grant:
 Grad Students 1 and Post Docs 0

 How many of each are females or minorities?
 (These 6 numbers are for OMR's EEO/Minority Reports; minorities include Blacks, Aleuts, American Indians, etc. and those of Hispanic or Asian extraction/nationality. This Asian are singled out to facilitate meeting the varying report semantics re "under-represented")

 Grad Student Female 0
 Grad Student Minority 0
 Grad Student Asian e/n 0
 Post-Doc Female 0
 Post-Doc Minority 0
 Post-Doc Asian e/n 0

Accession For
MTIS GRAA]
DTIC TAB
Unannounced
Justification

By
Distribution/Avail and/or

Availability Codes
A-1 Special

Dist