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Abstract

The stated goal of High Performance Fortran (HPF) was to "address the problems
of writing data parallel programs where the distribution of data affects performance".
After examining the current version of the language we are led to the conclusion that
HPF has not fully achieved this goal. While the basic distribution functions offered
by the language - regular block, cyclic, and block cyclic distributions - can support
regular numerical algorithms, advanced applications such as particle-in-cell codes or
unstructured mesh solvers cannot be expressed adequately. We believe that this is a
major weakness of HPF, significantly reducing its chances of becoming accepted in the
numerical community. The paper discusses the data distribution and alignment issues
in detail, points out some flaws in the basic language, and outlines possible future
paths of development. Furthermore, we briefly deal with the issue of task parallelism
and its integration with the data parallel paradigm of HPF.
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1 Introduction

The High Performance Fortran Forum (HPFF), which convened during 1992, set itself the

task of defining language extensions for Fortran to facilitate data parallel programming on

a wide range of parallel architectures without sacrificing performance [8]. Much of the work

focussed on extending Fortran 90 with directives for specifying alignment and distribution of

a program's data. These enable the programmer to influence the locality of computation by

controlling the manner in which the data is mapped to processors. Other major extensions

include data parallel constructs, such as the FORALL statement and construct, and the

INDEPENDENT directive, along with a number of library routines.

A stated goal of the HPF forum was to "address the problems of writing data parallel

programs where the distribution of data affects performance" (8]. Even though the defined

extensions provide the first steps towards such a portable programming interface, it is our

contention that they fall short of the overall goal.

In this paper we show that there is some important functionality which is missing from

the current HPF language definition. We indicate how this might be added to the language,

and state why it is needed. In several places, we give examples to illustrate the use of these

additional features. The set of all features that we propose for inclusion into the current

version of HPF will be informally subsumed under the name I'PF+. We do not claim,

however, that HPF+ is in any sense complete. In particular, we refrain from discussing any

of the issues surrounding I/O and the handling of large data sets. Our prime consideration

is functionality and semantics; we do not attempt to provide a full definition of the proposed

features, and sometimes use an ad-hoc syntax. In a few places, we use syntax from Vienna

Fortran [2, 17], which already provides solutions for some of the problems discussed in this

paper.

We assume throughout that the reader is familiar with the basic mechanisms of HPF for

mapping data. The full details are to be found in the HPF Language Specification [8].

The core of this paper is Section 2, in which we identify a range of application problems

that cannot be adequately dealt with in the context of the distribution and alignment features
r

of current HPF. We propose a number of new language features that address these issues.1"

Furthermore, we also point out some difficulties with the present definition of the basic 0

language. In Section 3, we outline some of the requirements posed by multidisciplinary L ]

problems, which need a capability to express task parallelism and integrate it with data

parallelism. We propose a scheme that relies on the explicit creation of asynchronous tasks

and an object-oriented mechanism for providing these tasks with access to shared data.S. ... i Codesl
Concluding remarks are to be found in Section 4. Amrl aC•dor
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2 Generalization of Data and Work Distributions

Much of HPF consists of constructs which may be used to specify the mapping of data in

the program to an abstract set of processors. This is achieved via a two-level mapping: first,

data arrays are aligned with other objects, and then groups of objects are distributed onto

an array of abstract processors. These processors are then mapped to the physical processors

of the target machine in an implementation-dependent manner.

The ALIGN directive is used to align elements of data arrays to other data arrays or

templates. Templates are abstract index spaces which can be used as a target for alignment

and may then be distributed in the same way as arrays. The DISTRIBUTE directive is

provided to control distribution of the dimensions of arrays or templates onto an abstract

set of processors. The distribution of a dimension may be described by selecting one of

a set of predefined primitives which permit block, cyclic or block-cyclic mapping of the

elements. The rules for alignment are more flexible: a linear function may be used to specify

the relationship between the mappings of two different data arrays. Mechanisms are also

provided to enable dynamic modification of both alignment and distribution; these are the

REALIGN and REDISTRIBUTE directives, respectively.

These language constructs suffice for the expression of a range of numerical applications

operating on regular data structures. However, more complex applications pose serious

difficulties. For example, modern codes in such important application areas as aircraft

modeling and combustion engine simulation often employ multiblock grids. Even if these

grids are to be distributed by block to processors, the constructs of the current HPF language

specification do not permit an efficient data mapping for these programs; as we will show in

the next subsection, this requires distributions to sections of the processor array in general.

HPF is even less equipped to handle advanced algorithms such as particle-in-cell codes,

adaptive multigrid solvers, or sweeps over unstructured meshes. Many of these problems

need more complex data distributions if they are to be executed efficiently on a parallel

machine. Some of them may require the user to control the execution of major do loops by

specifying which processor should perform a specific iteration. These are not provided by

HPF.

Some programs will require that data be distributed onto processor arrays of different

ranks: the current language definition does not permit the user to prescribe or assume any

relationship between such processor arrays.

We discuss some of these topics in more detail in the remainder of this section, and

propose a number of language extensions which provide the required functionality, including

* distribution to processor subsets (Section 2.1 & 2.2),
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"* processor views (Section 2.3),

"* general block distributions (Section 2.4),

"* indirect distributions (Section 2.5.1),

"* user-defined distribution functions (Section 2.5.2), and

"* on-clauses for the control of the work distribution in an INDEPENDENT loop (Sec-

tion 2.5.3).

Some of these problems and their solutions were discussed during the HPFF meetings

and can be found in the Journal of Development, Section 11 of the language draft [8].

2.1 Distribution to Processor Subsets - Multiblock Grid Codes

The HPF DISTRIBUTE directive specifies the distribution of data onto a processor array

which has been declared by the user. It does not permit distribution onto a part of the

processor array. Here, we give an example of a problem which may need this capability for

efficient execution, and describe a simple extension to current HPF which would permit it.

Scientific and engineering codes from diverse application areas may use multiple grids

to model the underlying problem domain. For example, in computational fluid dynamics a

complex aircraft structure may be modeled using multiple structured grids [15], so that the

spacing of the grids and their shapes can be individually chosen to match the underlying

physical structure. A typical application run may use anywhere from 10 to 100 grids of

widely varying sizes and shapes.

Each sweep over the domain involves computation on the individual grids before data

is exchanged between them. Thus, these types of applications exhibit at least two levels

of parallelism. At the outer level, there is coarse grain parallelism, since the computation

can be performed on each grid simultaneously. The internal computation on each grid, on

the other hand, exhibits the typical loosely synchronous data parallelism of structured grid

codes. An efficient execution of such a code would require that the work is spread evenly

across the target machine; this means that the total number of grid points on each processor

should be roughly the same, independent of the number of grids and their shapes and sizes.

One possible way of distributing data is be to distribute the array of grids to the processors

so that each grid is mapped to exactly one processor. Along with exploiting the outer level

of parallelism, this approach has two other drawbacks. First, the number of grids is not large

in many applications, and may be significantly smaller than the number of processors of a

massively parallel machine thus restricting the amount of parallelism that can be effectively
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utilized. Secondly, the grids may vary greatly in size, resulting in an uneven workload on

those processors which are involved in the computation.

Another possible strategy is to distribute each of the grids independently onto all of the

processors of the machine, enabling the parallelism within a grid to be exploited. This will

lead to a more even workload; however, the grids may not all be large enough for this to be

a reasonable solution.

Both of the above distribution strategies are likely to be inefficient, particularly on ma-

chines with a large number of processors. A flexible alternative is to permit grids to be

separately distributed to a suitably sized subset of the available processors. This approach

allows both levels of parallelism to be exploited while providing the opportunity to balance

the workload.

The current HPF definition does not, however, permit data arrays to be distributed

directly to subsets of processors. That is, the target of a distribution directive must be a

processors-name [8, page 26]. Hence we can only achieve the desired distribution either by

aligning the data arrays representing individual grids to parts of a large template, which is

then distributed to the processors, or by aligning each grid to a template of its own, which

has been declared with exactly the size needed to ensure that, after distribution, the data for

the grid is on the desired number of processors. In the latter case, the alignments must be

carefully chosen so that the grids are mapped to different subsets of processors; otherwise,

there would be a serious imbalance of the workload. In practice, both of these solutions

are difficult to achieve, and will generally require a priori precise knowledge of the size of

both the grid and the processor array. These template constructions, and alignment and

distribution directives, are unnecessarily complicated and must be reimplemented for each

modification of the problem. A simpler solution is to adopt the direct approach of Vienna

Fortran, which permits a processor-reference [17, page 22] to be the target of a distribution.

Thus a subsection of processors may be specified in a DISTRIBUTE directive, permitting

straightforward descriptions of the desired distributions of the individual grids as shown in

the following code fragment:

!HPF$ PROCESSORS R(128)

REAL G(32,2048)

!HPF$ DISTRIBUTE (*,BLOCK) ONTO R(N:M):: G
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2.2 Distribution of Subobjects - Multigrid Codes

A further shortcoming of HPF is that it does not permit subobjects of a data object to be

distributed. We use a simple multigrid example to show the kind of restrictions that this

imposes on the choice of distribution for a problem.

Consider the following Fortran 90 program segment for a multigrid problem where the

number of grids and their sizes is not known until runtime.

TYPE subgrid

INTEGER xsize, ysize

REAL, DIMENSION(:,:), ALLOCATABLE :: grid

END subgrid

TYPE (subgrid), DIMENSION (:), ALLOCATABLE grid-structure

READ (*,*) no.of-grids

ALLOCATE (grid-structure(no-grids))

DO i = 1, no.of-grids

READ (*,*) ix, iy

grid structure(i)%xsize = ix

grid structure(i)%ysize = iy

ALLOCATE (grid structure(i)%grid(ix,iy))

END DO

In this example, each grid is declared as an allocatable array within a derived type. The

set of all grids is also an allocatable array, where each element is a grid. Thus the number of

grids and their individual sizes need not be specified until runtime. The multiblock applica-

tion described in the last subsection also requires similar data structure declarations. HPF

allows us to distribute the array of grids to the processors. However, we may not distribute

the individual grids across processors, since these are subobjects and their distribution is

explicitly prohibited [8, page 26].

But a multigrid problem does not exhibit the kind of parallelism between individual grids

that is available in multiblock applications: the refinement and interpolation steps of the

multigrid approach usually require a sequential processing of grids and it is the parallelism

within a grid which must be exploited. Since this is not possible, we cannot describe a
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satisfactory distribution for the above data structures. A more flexible approach to tile

mappings for objects and subobjects would solve this problem.

2.3 Processor Views

The shape of an abstract set of processors is defined in HPF by a PROCESSORS directive.

Given a processor array, R, of rank k onto which a data array (or a template) is to be

distributed, exactly k dimensions of the array must be distributed to tile corresponding

dimensions of R. That is, for an array with rank i" > k, 7 - k dimensions must remain

undistributed, which is indicated by the symbol "', while an array with a rank less than k

cannot be distributed to R at all [8, page 26].

In other words, there is no way to view the same set of abstract processors as a processor

array having a different shape, in particular a different rank.

Consider the following code fragment:

!HPF$ PROCESSORS P2(10,10), PI(100)

REAL A(M,N), B(L)

!HPF$ DISTRIBUTE A(BLOCK,BLOCK) ONTO P2

!HPF$ DISTRIBUTE B(BLOCK) ONTO P1

Here, A is a two dimensional array with the two dimensions distributed onto to the two

dimensional processor array P2. Meanwhile, B is a one dimensional array distributed onto

the one dimensional processor array P1. Under the HPF definition, since P1 and P2 are of

different shapes, the programmer cannot make any assumption about their relative mapping

onto the physical processor array. What the programmer may want to do in this example is

to "equivalence" P2(i,j) with P1l(i + (j - 1) * 10), according to standard Fortran conventions.

HPF cannot express this.

Again, Vienna Fortran provides a simple mechanism to provide "equivalenced" views of

the same processor set [17, page 20]. Thus, the above example could be specified in Vienna

Fortran as follows:

PROCESSORS P2(10,10) RESHAPE P1(100)

REAL A(M,N) DIST (BLOCK, BLOCK) TO P2

REAL B(L) DIST (BLOCK) TO P1

Using the RESHAPE clause provides a secondary (and in this case a one-dimensional) view

of the same processor set. This allows different dimensional distributions to be specified for

the same processor set.
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A more general solution would allow the specification of alignment between processor

arrays, using a linear function*:

!HPF$ PROCESSORS P2(10,10), P1(100)

!HPF$ PROCESSOR-ALIGN P2(I,J) WITH PI(F(I,J))

This means that P2(I,J) and PI(F(I,J)), where F is a linear function in I and J,

designate the same abstract processor. Equivalencing, as used in the above example, is a

special case obtained by choosing F(I, J) = I + (J - 1) * 10.

2.4 General Block Distributions - Particle-in-Cell Code

As mentioned in the introduction, dimensions of data arrays or templates are mapped in HPF

by specifying one of a small number of predefined distributions, possibly with an argument.

There are a number of problems for which these mappings are inadequate. In this section,

we consider an application for which HPF's data distributions do not permit satisfactory

load balancing. Here, a generalization of the block distribution gives the user a means to

balance the workload on the target machine during execution.

Consider a simulation code designed to study the motion of particles in a given domain,

such as plasmas for controlled nuclear fusion, or stars and galaxies. The computation at each

time step can be divided into two phases. In the first phase, a global force field is computed

using the current position of particles. In the second phase, given the new global force field,

new positions of the particles are determined. The program can be structured by dividing

the underlying domain into cells, with each cell owning a set of particles. The particles move

from one cell to another as they change positions across the domain. Since the computation

in each cell is dependent on the number of particles in the cell, the workload across the

domain changes as the computation progresses.

If the set of cells is represented by an HPF array, then we need to distribute the cells across

the processors such that the work per processor is approximately equal. This means that

the distribution of the array across the processors must reflect the distribution of particles

across cells, and thus is a function of values computed at execution time.

Two language features are required to deal with this situation: dynamic redistribu-

tion and irregular data distributions. While HPF satisfies the first requirement via the

REDISTRIBUTE directive, it lacks functionality for meeting the second requirement.

The requirements of this problem can be met if we extend the set of distributions provided

in HPF by general block distributions, as initially implemented in SUPERB [16] and

Vienna Fortran [2, 17].

*This feature has been proposed by Robert Schreiber.
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General block distributions are similar to the regular block distributions of HPF in that

tile index domain of an array dimension is partitioned into contiguous blocks which are

mapped to the processors; however, the blocks are not required to be of the same size. Thus,

general block distributions provide more generality than regular blocks while retaining the

contiguity property, which plays an important role in achieving target code efficiency.

Consider a one-dimensional array A, declared as REAL A[l : u], and assume that there

are N processors pi, 1 < I < N. If we distribute A using a general block distribution

GENERALBLOCK(B), where B is a one-dimensional integer array with N elements, and

B(i) = si (with si > 0 for all i) denotes the size of the i-th block, then processor pi owns

the local segment A[l : 1 + .s - 1], p.2 owns A[l + si : I + s5 + *52 - 1] and so on. B, together

with the index domain of A, completely determines the distribution of A and provides all

the information required to handle accesses to A, including the organization of the required

communication.

A variant of this method determines general block distributions by specifying in B the

sequence of upper bounds for the local segments - i.e., 11 +.s1 - 1,12 + 81 + 82 - 1,... - rather

than the segment lengths.

The above scheme can be readily generalized to multi-dimensional arrays, each dimension

of which is distributed by regular or general block.

The example in Figure 1 illustrates a general block distribution applied to the rows of a

two-dimensional matrix A, where the bulk of work is in the center of the region, reflected by

smaller blocks for the associated processors.

Although the representation of general block distribution requires on the order of the

number of processors to describe the entire distribution, optimization often permits a local

description of the distribution to be limited to just a few processors, with which there will be

communication. Also, the space overhead due to this representation is not l'arge in general,

since most problems do not require a large number of distinct general block di::tributions.

Arrays distributed in this way can be efficiently managed at compile time as well as

runtime, allowing the use of the overlap concept [7, 16] to optimize communication related
to regular accesses. Finally, codes can be easily parameterized with such distributions: for

example, a procedure with a transcriptive formal argumentt that is supplied with differently

distributed actual arguments can be efficiently compiled if the representation of the argu-

ment's distribution is passed along as a set of additional implicit arguments created by the

compiler [7, 16, 19].

We now show how a general block distribution may be used to implement a PIC' code

t If such an argument is passed by reference, the distribution is left intact, and thus no movement of data
will be necessary [8, page 48].
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!HPF$ PROCESSORS R(8)
INTEGER :: B(8) =(/400,400,200,100,100,100,500,800/)
REAL A(2600,100)

!HPF$ DISTRIBUTE (GENERALBLOCK(B),*) A

400 R (1)

400 R (2)

200 R (3)

ioo R (4)
1OO R (5)

100 R (6)

500 R (7)

R (8)

800

Figure 1: General Block Distribution in HPF+

as described above. The program in Figure 2 illustrates a simplified version of a PIC code

expressed in HPF, extended by general block distributions.

Details irrelevant to our discussion are omitted. The cells are represented by the array

FIELD. There are a maximum of NCELL cells and each cell is constrained to have a max-

imum of NPART particles. FIELD is declared to be DYNAMIC with the first dimension

initially distributed into regular blocks. The procedure initpoa determines the initial position
of the particles and places them in the appropriate cells. Using the number of particles in

each cell, the procedure balance computes the block sizes to be assigned to each processor

and stores these in the array BOUNDS, such that BOUNDS(p) specifies the block size for

processor p, where 1 < p < NUMBER&OFYPROCESSORS. This array is then used to

redistribute FIELD, using a general block distribution. The block sizes are selected so that
each processor has roughly the same number of particles on its local part of the domain.

In each time step (represented by one iteration of the outer loop), the procedure up-
date-field computes the new force field based on the current particle positions. Then, the

procedure update-part is called to update the positions of the particles. Based on the new
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PARAMETER (NCELL = ... , NPART =

INTEGER BOIJNDS(N UMBEROFPROCESSORSo)
REAL FIELD(NCELL,NPART,...)

!HPF$ DYNAMIC, DISTRIBUTE (BLOCK,*,*) :: FIELD

C Compute initial position of particles
CALL initpos(FIELD, NCELL, NPART, ... )

C Compute initial partition of cells
CALL balance(BOUNDS, FIELD, NCELL, NPART, ... )

!HPF$ REDISTRIBUTE FIELD(GENERAL-BLOCK(BOUNDS))

DO k = 1, MAX-TIME
C Compute new field

CALL update-field(FIELD, NCELL, NPART, ... )
C Compute new particle positions and reassign them

CALL update-part(FIELD, NCELL, NPART, ... )

C Rebalance every 10th iteration if necessary
IF (MOD(k,1O) .EQ. 0 .AND. rebalance() ) THEN

CALL balance(BOUNDS, FIELD, NCELL, NPART, ... )
!HPF$ REDISTRIBUTE FIELD(GENERALJBLOCK(BOUNDS))

ENDIF

ENDDO

Figure 2: High level PIC code in HPF+ with general block distributions

positions, the new owner cell for each particle is determined. If a particle has moved from

one cell to another, it is explicitly reassigned. This obviously requires communication if the

new cell is on a different processor. Since this communication is based on the locations of

the current and the new cell, it is highly irregular in nature. Thus, the compiler will have to

generate runtime code using the inspector/executor paradigm [9, 12] to support this particle

motion.

If the number of particles on each processor remains roughly equal for the duration of

the simulation, then load balance will be maintained. Some problems of this kind display

sufficient uniformity such that a simple block distribution will suffice to provide a reasonable

load balance. For other problems, the motion of particles during the simulation may lead to

a severe load imbalance. The code, as shown here, checks whether rebalancing 1, required (by
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calling function rebalancc), on every 10th iteration. If so, a new BOUNDS array is computed

and the cells redistributed to balance the workload.

2.5 Irregular Distributions

General block distributions provide enough flexibility to meet the demands of some irregular

computations: if, for instance, the nodes of an unstructured mesh are partitioned prior

to execution and then appropriately renumbered, then the resulting distribution can be
described in this manner. However, this approach is not appropriate for each irregular
problem. For example, a data distribution as shown in Figure :3 - which may be the outcome
of a dynamic partitioner - cannot be represented in this way. A system based on this kind

of distribution has been developed by Baden [1].

Figure 3: An example for an Irregular Block Distribution

Rather than proposing a special syntax tor this kind of distribution, we will in the follow-
ing subsections deal with a range of mechanisms, at different levels of abstraction, to handle
arbitrarily complex data distributions.

We begin with indirect distribution functions, which allow the specification of a dis-
tribution via a mapping array (Section 2.5.1), and continue with user-defined distribution

functions (Section 2.5.2). After discussing an extension of HPF's INDEPENDENT loop

concept (Section 2.5.3), we give an example of a sweep over an unstructured mesh, based on

all three extensions (Section 2.5.4). We conclude with the discussion of language features
that directly support the binding of partitioners to INDEPENDENT loops (Section 2.5.5).
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2.5.1 Indirect Distributions

Indirect distribution functions call express any distribution of an array dimension that

does not involve replication. Consider tile following program fragment in HPF+:

!HPF$ PROCESSORS R(M)

REAL A(N)

INTEGER MAP(N)

!HPF$ DYNAMIC,DISTRIBUTE (BLOCK) A

!HPF$ DISTRIBUTE (BLOCK):: MAP

Compute a new distribution for A and save it in the mapping array MAP:

The j-th element of A is mapped to the processor whose number is stored in MAP(j)

CALL PARTITIONER(MAP, A,...)

Redistribute A as specified by MAP:

!HPF$ REDISTRIBUTE A(INDIRECT(MAP))

Array A is dynamic and initially distributed by block. MAP is a statically distributed

integer array that is of the same size as A and used as a mapping array for A; we specify

a reference to an indirect distribution function in the form INDIRECT(MAP). When the

reference is evaluated, all elements of MAP must be defined and represent valid indices for

the one-dimensional processor array R, i.e., they must be numbers in the range between 1 and

M. A is then distributed such that for each j, 1 < j < N, A(j) is mapped to R(MAP(j)).

In this example, MAP is defined by a partitioner, which will compute a new distribution

for A and assign values to the elements of MAP accordingly. (This distribution will often be

used for a number of arrays in the program).

Indirect arrays were introduced in [10, 12]. They must be supported by a runtime system,

which manages the internal representation of the mapping array and handles accesses to the

indirectly distributed array. The mapping array is used to construct a translation table,

recording the owner of each datum and its local index. Note that this representation has

O(N) elements, on the same order as the size of the array. Most codes require only a very

small number of indirect mappings (this is usually between 1 and 3 distinct mappings). The

PARTI routines [12] represent a runtime library which directly supports indirect distribution

functions, and has been integrated into a number of compilers.
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2.5.2 User-Defined Distribution Functions

Indirect distribution functions incur a considerable overhead both at compile time and at

runtime. A difficulty with this approach is that when a distribution is described by means

of a mapping array, any regularity or structure that may have existed in the distribution is

lost. Thus the compiler cannot optimize the code based on this complex but possibly regular

distribution.

User-defined distribution functions (UDDFs) provide a facility for extending the

set of intrinsic mappings defined in the language in a structured way. The specification of a

distribution function introduces a class of distribution types by establishing mappings from

(data) arrays to processor arrays. Such UDDFs were first defined in Kali [10] and Vienna

Fortran [17]; the following discussion is based on the UDDFs as described in Vienna Fortran.

Syntactically, UDDFs are similar to Fortran functions; however, their activation results in

the computation of a distribution rather than in the computation of a value. Apart from this,

no side effects may occur as a result of executing these functions. IJDDFs have two implicit

formal arguments, representing the data array to be distributed and the processor array

to which the distribution is targeted. Specification statements for these arguments can be

given using the keywords TARGET-ARRAY and PROCESSOR-ARRAY, respectively.

Other local data structures may be declared as well. UDDFs may contain Fortran executable

statements along with at least one distribution mapping statement which maps the elements

of the target array to the processors.

UDDFs constitute the most general mechanism for specifying distributions: any arbi-

trary mapping between array indices and processors can be expressed, including partial or

total replication. We illustrate their use by two examples, representing indirect and skewed

distributions.

Example: A UDDF Specifying an Indirect Distributions

The distribution function INDIRECT, as introduced in the previous section, can be easily

expressed by a UDDF as shown below. For simplicity we assume that A and MAP have the

same shape.

!HPF$ DFUNCTION INDIRECT(MAP)

!HPF$ TARGET-ARRAY A(*)

!HPF$ PROCESSOR-ARRAY R(:)

!HPF$ INTEGER MAP(*)

!HPF$ DO I=I,SIZE(A)
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!HPF$ A(I) DISTRIBUTE TO R(MAP(1))

!HPF$ ENDDO

!HPF$ END DFUNCTION INDIRECT

Example: A UDDF for a Skewed Distribution

The UJDDF SKEW, as defined below, specifies a two-dimensional skewed block distribution,

as may sometimes be needed to satisfy the requirements for locality. We assume here that

MI divides N1, and M2 divides N2.

!HPF$ DFUNCTION SKEW

!HPF$ TARGET-ARRAY A(O:,O:)

!HPF$ PROCESSOR-ARRAY R(O:,O:)

!HPF$ INTEGER N1,N2,M1,M2

!HPF$ N1=UBOUND(A,1)+I; N2=UBOUND(A,2)+1

!HPF$ MI=UBOUND(R,1)+I; M2=UBOUND(R,2)+1

!HPF$ DO I=O,N1

!HPF$ DO J=O,N2

!HPF$ A(I,J) DISTRIBUTE TO R(I/(N1/M1), MOD(J/(N2/M2)+I,M2+1))

!HPF$ ENDDO

!HPF$ ENDDO

!HPF$ END DFUNCTION SKEW

The distribution generated for X, as declared in the program fragment below, is shown in

Figure 4.

!HPF$ PROCESSORS R2(8,8)

REAL X(0:7,0:7)

!HPF$ DISTRIBUTE (SKEW), ON TO R2(1::2,1::2):: X

A facility similar to UDDFs can be provided for user-defined alignment; the (implicitly

transferred) processor array of the UDDF must be replaced in this case by the source array

to which the target array is to be aligned [17].

14



x(0,0) x(O, 1) x(0,2) x(0,3) x(0,4) x(0,5) x(0,6) x(0,7)

x(5,6) x(5,7) x(5,0) x(5, 1) x(5,2) x(5,3) x(5,4) x(5,5)

x(6,4) x(6,5) x(6,6) x(6,7) x(6,0) x(6,1) x(6,2) x(6,3)

x(3,2) x(3,3) x(3,4) x(3,5) x(3,6) x(3,7) x(7,0) x(3, 1)

Figure 4: A Skewed Distribution

2.5.3 Extensions of the INDEPENDENT Loop Concept

Whenever a do ioop contains an assignment to an array for which there is at least one indirect

access within the loop, the compiler will not be able to determine whether the iterations of

the loop may be executed in parallel. Since such loops are common in irregular problems,

and may contain the bulk of the computation, the user must assert the independence of the

do loop's iterations.

For this, HPF provides the INDEPENDENT directive, which asserts that a subsequent

do loop does not contain any loop-carried dependences [18], allowing the loop iterations to

be executed in parallel. The INDEPENDENT directive may optionally contain a NEW

clause which introduces private, variables that are conceptually local in each iteration, and

therefore cannot cause loop-carried dependences.

There are two problems with this feature:

• There is no language support to specify the work distribution for the loop, i.e.,

the mapping of iterations to processors. This decision is left to the compiler/runtime

system.

* Reductions, which perform global operations across a set of iterations, and assign

the result to a scalar variable, violate the restriction on dependences and cannot be

used in the loop (note that HPF and Fortran 90 provide intrinsics for some important
reductions).
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The first problem can be solved by extending the INDEPENDENT directive with an

ON clause that specifies the mapping, either by naming a processor explicitly or referring

to the owner of an element. The concept of on clause was first introduced in Kali [10] and

later adopted in Fortran D [6] and Vienna Fortran [2]; a similar proposal was discussed in

the HPF Forum but not included in the language (see [8], Journal of Development, Section

11). For example, in

!HPF$ PROCESSORS R(M)

!HPF$ INDEPENDENT, ON OWNER (EDGE(II)),

DO I= 1, NEDGE

iteration I of the loop is executed on the processor that owns the array element EDGE(I, 1).

If we assume that R(F(I)) is this processor, the above example could also be written in the

form

!HPF$ PROCESSORS R(M)

!HPF$ INDEPENDENT, ON R(F(I)), ...

DO I = 1, NEDGE

The second problem can be solved by extending the language with a reduction directive

- which is to be permitted within independent loops - and imposing suitable constraints on

the statement which immediately follows it. It could be augmented by a directive specifying

the order in which values are to be accumulated. Note that simple reductions could be

detected by most compilers.

For example, in the code fragment below, the contributions INGR(I) of different iterations

are accumulated in the variables Y(EDGE(I, 1)) (where EDGE(I, 1) may yield the same value

for different values of I - see Section 2.5.4 for an example with a geometric interpretation):

!HPF$ PROCESSORS R(M)

!HPF$ INDEPENDENT, ON OWNER (EDGE(I,l)), ...

DO I= 1, NEDGE

!HPF$ REDUCTION

Y(EDGE(I,I)) = Y(EDGE(I,l)) + INCR(I)
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Vienna Fortran provides a language extension for reduction operations which is more

general, but which is not a directive.

2.5.4 Sweep Over An Unstructured Mesh

We now illustrate some of the language features introduced above by reproducing a section

of code from a two-dimensional unstructured mesh Euler solver.

The mesh for this code consists of triangles; values for the flow variables are stored at

their vertices. The computation is implemented as a loop over the edges: the contribution

of each edge is subtracted from the value at one node and added to the value at the other

node.

Figure 5 illustrates one solution to this problem. The !nesh is represented by the array

EDGE, where EDGE(!, 1) and EDGE(I, 2) are the node numbers at the two ends of the

Ith edge. The arrays X and Y represent the flow variables, which associate a value with

each of the NNODE nodes.

(Consider the distribution of the data across the one-dimensional array of processors,

R(M). Each of the arra iA,, to be dynamically distributed, since the mesh is to be dis-

tributed at runtinie, in or( ,dance the computational load across the processors.

The array X is declare 3Iynamically distributed with an initial block distribution.

Later in the code, this array .,i distributed indirectly, using the mapping array MAP. The

user-specified routine PARTITIONER, whose code has been omitted from the example, will

generate a mesh partition and store it in MAP.

Y is also declared with the keyword DYNAMIC and is aligned to X. Whenever X is

redistributed, Y is automatically redistributed with exactly the same distribution function.

Consider now how the array EDGE is used in the algorithm. Since the elements of

EDGE are pointers to flow variables - in iteration I, X(EDGE(I, 1)), X(EDGE(I,2))

and the corresponding components of X and Y are accessed - we relate the distribution of

EDGE to the distribution of X and Y in such a way that EDGE(I,:) is mapped to the same

processor as X(EDGE(I, 1)).

This kind of relationship between data structures occurs in many codes, since a mesh is

frequently described in terms of elements, whereas values are likely to be accumulated at the

vertices. It can be simply expressed if we extend the REDISTRIBUTE directive as shown

in the example.

The computation is specified using an extended INDEPENDENT loop. The work

distribution is specified by the ON clause: the Ith iteration is to be performed on the

processor that owns EDGE(I, 1).
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PARAMETER (NNODE =
PARAMETER (NEDGE =

!HPF$ PROCESSORS R(M)

REAL X(NNODE), Y(NNODE)
INTEGER MAP(NNODE)
REAL EDGE(NEDGE,2)

,2)
INTEGER Ni, N2
REAL DELTAX

!HPF$ DYNAMIC ::X,Y,EDGE
!HPF$ DISTRIBUTE (BLOCK): X, MAP
!HPF$ ALIGN WITH X: Y
!HPF$ DISTRIBUTE (BLOCK,*): EDGE

CALL PARTITION ER(MAP,EDGE)

!HPF$ REDISTRIBUTE X(INDIRECT(MAP))
!HPF$ REDISTRIBUTE EDGE(I,:) ONTO R(MAP(EDGE(I,i)))

!HPF$ INDEPENDENT, ON OWNER (EDGE(I,1)), NEW (NI, N2, DELTAX)
DO I= 1, NEDGE

NI = EDGE(I,1)
N2 = EDGE(I,2)

DELTAX = F(X(N 1), X(N2))

!HPF$ REDUCTION
Y(NI) = Y(N1) - DELTAX

!HPF$ REDUCTION
Y(N2) = Y(N2) + DELTAX

END DO

END

Figure 5: Code for Unstructured Mesh in HPF+
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The variables Ni, N2 and DELTAX are private, so conceptually each iteration is al-

located a private copy of each of them. Hence assignments to these variables do not cause

flow dependencies between iterations of the loop.

For each edge, the X values at the two incident nodes are read and used to compute

the contribution DELTAX for the edge. This contribution is then accumulated into the

values of Y for the two nodes. But since multiple iterations will accumulate Y values at each

node, different iterations may write to the same array elements. As a consequence, we have

indicated that these are reductions.

The dominating characteristic of this code, from the point of view of compilation, is that

the values of X and Y are accessed via the edges, hence a level of indirection is involved.

In such situations, either the mesh partition must be available to and exploitable by the

compiler, or runtime techniques such as those developed in the framework of the inspector-

exccutor paradigm [9, 12] are needed to generate and exploit the communication pattern.

2.5.5 Sweep Over Unstructured Mesh: Revisited

The code for the unstructured Euler solver discussed in the previous section represents a low-

level approach to parallelization, in which the programmer assumes full control of data and

work distributions, using the ON clause, and indirect distribution functions; a user-defined

partitioning routine explicitly constructs a mapping array which can then be referred to.

This process may be further automated. Recent developments in runtime support tools

and compiler technology, such as the CHAOS system developed at the University of Maryland

[11] and integrated in the Vienna Fortran Compilation System, show how a higher level

language interface may be provided in which control over the data and work distributions

in an INDEPENDENT loop can be delegated to a combination of compiler and runtime

system. We illustrate this approach by the example in Figure 6 which uses an ad hoc

notation.

The use-clause of the INDEPENDENT loop enables the programmer to select a parti-

tioner from those provided in the environment (in the example, this is SPECTRAL-PART)

and the arrays (in the example, X) to which it is to be applied. SPECTRAL-PART is called

with implicit arguments specifying the iteration space of the INDEPENDENT loop and

the data flow pattern associated with the use of X in the loop. The call has two effects:

First, a new distribution is computed for X, and X along with its associated secondary ar-

ray, Y, is redistributed accordingly. Secondly, a new work distribution is determined for the

INDEPENDENT loop, based on the combined objectives of minimizing load imbalances

and maximizing locality.
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PARAMETER (NNODE =
PARAMETER (NEDGE =...)

!HPF$ PROCESSORS R(M)

REAL X(NNODE), Y(NNODE)
REAL EDGE(NEDGE,2)
INTEGER NI, N2
REAL DELTAX

!HPF$ DYNAMIC :: X,Y,EDGE
!HPF$ DISTRIBUTE (BLOCK):: X
!HPF$ ALIGN WITH X:: Y
!HPF$ DISTRIBUTE (BLOCK,*):: EDGE

!HPF$ INDEPENDENT, NEW (NI, N2, DELTAX), USE (SPECTRALPART(X))
!HPF$ DO I = 1, NEDGE

NI = EDGE(I,1)
N2 = EDGE(I,2)

DELTAX = F(X(N1), X(N2))

!HPF$ REDUCTION

Y(N1) = Y(NI) - DELTAX
!HPF$ REDUCTION

Y(N2) = Y(N2) + DELTAX
END DO

END

Figure 6: Code for Unstructured Mesh: Version 2
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The actions described above represent an extension of the inspector in tile inspector-

executor paradigm [9, 12] and are performed before the actual execution of the loop. Note

that the execution of the INDEPENDENT loop implicitly redistributes X and V and that

the arrays retain their new distributions after the loop has completed execution.

Other constructs may be useful in conjunction with the specification of a partitioner:

for example, the user may wish to specify the array whose usage within the loop should

form the basis of the loop's work distribution. It may sometimes be desirable to restore the

distribution of one or more of the newly partitioned arrays after the loop has executed. If

the partitioner is to be invoked at intervals throughout the program's execution, a condition

for its invocation may be needed; this may depend on the value of the loop variable or some

other program variable. Finally, it may be be necessary to combine this approach with low-

level control, in which case some means of accessing the map array implicitly constructed

for irregularly partitioned arrays such as X should be provided.

Note that rather than attaching such attributes to a number of INDEPENDENT loops

individually, language features can be defined that associate a partitioner with the whole

program or a set of loops. We do not discuss their syntax here.

2.6 Libraries

Control of Dynamic Data Distributions One of the features that HPF has in common

with some of its predecessors (in particular, Kali [10], Fortran D [6], and Vienna Fortran

[2]) are dynamic data distributions. However, compared with Vienna Fortran, HPF has only

rudimentary facilities for controlling this powerful feature - with significant consequences for

the compiler as well as for the target code efficiency. It is possible to provide constructs for

obtaining more precise information on distributions at compile time. Vienna Fortran provides

the RANGE attribute and the DCASE statement, a generalization of the Fortran 90 case

statement that allows the association of blocks of code with, a combination of distribution

types of a selected set of arrays. We show by means of an example below how these constructs

can provide the compiler and/or runtime system with valuable information regarding the

distributions of dynamic or inherited arrays.

If a formal array argument inherits its distribution from the actual argument associated

with it at runtime (via a transcriptive dist-format-clause), then the compiler may not have

any information on the distributions which it will assume. This has consequences for the
efficiency of the code it generates.

Simple language extensions may alleviate this problem. If the user knows that only a few

distributions will occur for a specific set of formal arguments, an additional directive would
enable this information to be provided to the compiler. Vienna Fortran has this feature in
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the form of the RANGE clause. The example below follows the Vienna Fortran syntax, iII

which inheritance of a distribution is specified by an asterisk. Only the specified distributions

may actually occur for the array A at runtime.

SUBROUTINE RANEEG ( A,...)

REAL A(N,M) DIST(*) RANGE( (BLOCK,BLOCK), (BLOCK,CYC'LIC(l(00))

Further, the efficiency of the computation within the subroutine may depend very heavily

on the actual distributions of the arguments, thus yielding good performance in some cases

and very poor performance in others.

There is a specific difficulty in resolving two legitimate demands of a general purpose

subroutine: it should handle a variety of different arguments, which may be differently

distributed, and it should handle them efficiently. Redistribution at procedure boundaries

may be costly, and hence should be avoided if possible. Vienna Fortran provides a construct

which may be used in this situation: the DCASE construct, which is modeled along the

lines of the CASE construct in Fortran 90. It enables the selection of a block of statements

according to the actual distribution of one or more arrays. In particular, this also gives the

compiler knowledge of the distribution which will reach the encapsulated segment of code.

SUBROUTINE MMUL (A,B,C,N,M,L)

REAL A(N,M), B(M,L), C(N,L) DIST(*)

INTEGER LEN, LSUB

SELECT DCASE (C,A):

CASE ((BLOCK,:),(BLOCK,:)):

IF (M*L .LE. MAXSIZE) THEN
CALL MATMUL(A,B,C,N,M,L)

ELSE LEN = L / $NP

DO J =1, $NP

CALL MATMUL1 (A,B,C,N,M,L,LEN,J)

END DO

ENDIF

CASE ((BLOCK,BLOCK),(BLOCK,*)):

CASE DEFAULT: ....

END SELECT
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In the above code, the matrix operation is handled in a specific way depending onl how

the actual argument arrays are distributedt. In this way, we can insert appropriate code or

call further subroutines as required. The compiler has precise information on the distribution
functions of the selected arrays for the block of statements within the cases. Only one of the

case alternatives is executed; if none of the other specifications match, then the default (if

present) is selected. The cases are examined in the order in which they occur textually. The
first distribution expression is compared with the actual distribution of C, and the second

with that of A. If C is distributed by block in the first dimension and not at all in the

second, and A likewise, then the first case is selected and its code executed. Otherwise, the

distribution of C is then compared with the next case: if it is distributed by block in both

dimensions, then if A is distributed by block in the first dimension, this case is selected.

An "'" matches any distribution whatsoever. A test may be associated with a side effect.

If an array distribution is compared with (CYCLIC(K)), for example, then if the actual

distribution is indeed cyclic, the variable K is set to the value of its width.

2.7 Data Distribution and Alignment - Other Issues

There are a number of other issues with the specification of data distribution and alignment

in current HPF which we have not discussed in this paper. In the following, we point out

some flaws and gaps in the basic language definition. This relates specifically to processor

declarations, templates, and the procedure interface.

As already mentioned earlier in Section 2.3, different processor arrangements intro-

duced in a PROCESSORS directive are not related to each other, except for the case where

identical shapes are used [8, page 40]. As a consequence, the semantics of examples such as

the one on top of page 49 of the HPF language draft:

!HPF$ DISTRIBUTE POLYHYMNIA * ONTO ELVIS

may not be well defin, 1, if the size of ELVIS is different from the size of the processors

arrangement to which the corresponding actual argument is distributed.

The use of the TEMPLATE directive for declaring templates to which data may be

aligned introduces several additional problems. The size of templates is determined by a

specification expression, and hence templates cannot be used for describing the alignment of

allocatable arrays. Furthermore, since templates are not first class objects in the language,

they cannot be passed across procedure '.,oundaries, and thus do not provide sufficient gen-

erality to describe the distributions and alignments of procedure arguments. HPF tries to

tin Vienna Fortran SNP is an intrinsic function which returns the number of processors executing the
program
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alleviate this problem by introducing the INHERIT directive, which is supposed to align

a dunmmy argument "to a copy of the template of the corresponding actual argument in

the same way that the actual argument is aligned" [8, page 44]. This makes things even

worse, since there are a number of important cases - including actual arguments that are

array expressions - where the language does not specify the meaning of this directive; fur-

thermore, there is no conceivable Fortran 90-oriented syntax that allows the specification of

a descriptive dist-format-clause in a situationi where actual argument templates of different

dimensions are mapped at different call sites to a given dummy argument.

A more detailed discussion of the problems associated with the TEMPLATE directive,

along with a proposal for an alternative mapping scheme without templates is given in [3].

Procedure boundaries pose other problems as well, such as the restriction of not

allowing array reshaping for distributed arguments. This causes severe problems in porting

sequential Fortran codes which often use reshaping. Also, data arrays when passed as actual

arguments are always remapped back to their original distribution on returning from a

procedure call. Thus, any redistribution of data in a procedure cannot affect the distribution

of the actual argument. This provides a clean interface between procedure calls; however,

there are situations (such as unstructured grids), where it is more convenient to write a

separate routine which computes the new distribution of an array argument and redistributes

it.

3 Integration of Task With Data Parallelism

With the rapidly growing computing power of parallel architectures, the complexity of simu-

lations developed by scientists and engineers is increasing fast. Many advanced applications

-tre of a multidisciplinary and heterogeneous nature and thus do not fit into the data parallel

paradigm represented by HPF, Vienna Fortran and similar languages.

Multidisciplinary programs are formed by pasting together modules from a 'Variety of

related scientific disciplines. For example, the design of a modern aircraft involves a variety of

interacting disciplines such as aerodynamics, structural analysis and design, propulsion, and

control. These disciplines, each of which is initially represented by a separate program, must

be interconnected to form a single multidisciplinary model subsuming the original models

and their interactions. The parallelism both within and between the discipline models needs

to be exposed and effectively exploited.

In this section, we outline the salient features of the language OPUS, an extension of

Fortran 90, which addresses this issue [4]. OPUS provides a software layer on top of data

parallel languages, designed to address the "programming in the large" issues as well as the
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parallel performance issues arising in complex multidisciplinary applications. A program

executes as a system of tasks which interact by sharing access to a set of Shared Data

Abstractions (SDAs). SDAs generalize Fortran 90 modules by including features from object-

oriented data bases and monitors in shared-memory languages. They can be used to create

persistent shared "objects" for communication and synchronization between coarse-grained

parallel tasks, at a much higher level than simple communication channels transferring bytes

between tasks.

A task is spawned by activating a subroutine with a list of arguments all of which must be

of intent IN. Tasks are asynchronously executing autonomous activities to which resources

of the system may be allocated. For example, the physical machine on which a task is to be

executed, along with additional requirements pertaining to this machine, may be specified

at the time a task is created.

Tasks may embody nested parallelism, for example by executing a data parallel HPF

program, or by coordinating a set of threads performing different functions on a shared data

set.

An SDA consists of a set of data structures along with the methods (procedures) which

manipulate this data. A set of tasks may share data by creating an SDA instance of appro-

priate type, and making it accessible to all tasks in the set. Tasks may then asynchronously

call the methods of the SDA, with each call providing exclusive access. Condition clauses

associated with methods and synchronization facilities embodied in the methods allow the

formulation of a range of coordination strategies for tasks.

The state of an SDA can be saved on external storage for later reuse. This facility can be

seen as providing an I/O capability for SDAs, where in contrast to conventional byte-oriented

I/O the structure of the object is preserved.

Other Fortran-based approaches to the problem of combining task with data parallelism

include the programming languages Fortran M [5], which provides a message-passing facility

in the context of a discipline enforcing determinism, and Fx [14], which allows the creation

of parallel tasks that can communicate at the time of task creation and task termination by

sharing arguments. DPC [13], based on C, uses a mechanism modeled on C file structures

to support message passing between data parallel tasks.

4 Conclusion

In this paper, we have evaluated the capabilities of High Performance Fortran for express-

ing data parallel programs in an efficient manner. Based on the analysis of a number of

advanced applications - including multiblock codes, particle-in-cell codes, and sweeps over
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unstructured meshes - it was shown that HPF in the current form does not provide ,uffi-

cient functionality to implement these problems in an efficient manner. The paper proposes

a range of language features, with a particular emphasis on the problem of distributing data

and work to the processors of a machine. These features span a broad spectrum, ranging

from well-understood and efficient constructs such as data distribution to processor sub-

sets and general block distributions to powerful facilities for binding dynamic partitioners

to INDEPENDENT loops, which automatically distribute data and work. Furthermore,

features for task parallelism and its integration with data parallelism were also discussed.

If HPF's functionality is to be successfully extended in the directions needed to support

these advanced applications, it will be necessary to revise the basic language and clarify the

semantics of a number of crucial features, in particular processor arrays, templates, and the

procedure interface.
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