
AD-A281 501

Eager Combining:
A Coherency Protocol for Increasing

Effective Network and Memory Bandwidth
in Shared-Memory Multiprocessors

Ricardo Bianchini and Thomas J. LeBlanc

Technical Report 485 DT1C
January 1994 E.CE-

ýýR94-1302
iIII tllrIII)) 1 11 111 11111111 ill lal

UNIVERSITY OF

COMPUTER
SCIENCE

.94 7 12. 053

Eager Combining: A Coherency Protocol for Increasing Effective
Network and Memory Bandwidth in Shared-Memory

Multiprocessors

Ricardo Bianchini and Thomas J. LeBlanc

ricardoQcs .rochester .edu, leblancQcs .rochester. edu

The University of Rochester
Computer Science Department
Rochester, New York 14627

Technical Report 485

January 1994

One common cause of poor performance in large-scale shared-memory multiprocessors is limited
memory or interconnection network bandwidth. Even well-designed machines can exhibit band-
width limitations when a program issues an excessive numiber of remote memory accesses or when
remote accesses are distributed non-uniformly. While techniques for improving locality of reference
are often successful at reducing the number of remote references, a non-uniform distribution of
references may still result, which can cause contention both in the interconnection network and at
remote memories.

Producer/consumer data, where one processor (the producer) writes data that many other
processors (the consumers) must read, is a common sharing pattern in parallel programs that
generates a non-uniform distribution of references. In this paper we quantify the performance
impact of producer/consumer sharing as a function of memory and network bandwidth, and argue
that the contention caused by this form of sharing can severely impact performance on large-scale
machines. We then propose a new coherency protocol, called eager combining, which is designed
to alleviate this contention. The protocol replicates the producer's data among multiple memory
modules, thereby effectively increasing both the memory and network bandwidth of the producer,
and dramatically decreasing the remote access latency of consumers. We compare eager combining
to other techniques for reducing or eliminating contention, and use execution-driven simulation
of parallel programs on a large-scale multiprocessor to show that eager combining can improve
performance by a factor of 4 or more when used for programs with producer/crinsumer data on
machines with hundreds of processors.

This research was supported under ONR Contract No. N00014-92-J-1801 (in conjunction with the ARPA HPCC
program, ARPA Order No. 8930) and NSF CISE Institutional Infrastructure Program Grant No. CDA-8822724.
Ricardo Bianchini is supported by Brazilian CAPES and NUTES/UFRJ fellowships.

REPORT DOCUMENTATION PAGE [_ _ _ -- _ _-
ailsininM iamum..lsmm ee•em .U*m - Q mm mm - ___Wm. t

1. A•GENC US5 *MlY 9Ge W ' I -EPORT oATE 1' ROW, TYPE A'0 MATES Co...

4. ATND Su1TI. SFUNDO64 MNUmIAS

Eager Combining: A Coherency Protocol for Increasing N00014-92-J-1801 //
Effective Network and Memory Bandwidth in Shared- ARPA HOCC Order 8930
!4pmnrv Mili nrnrpqnrq

&AUTNOESI

Ricardo Bianchini and Thomas J. LeBlanc

7. PIMO~ IJSG OAGANATM NAMES) AND AOIISS(ES) I . NO O= GANMAIM

Computer Science Dept. 4E00" MUNE

734 Computer Studies Bldg. TR 485
University of Rochester
Rochester, NY 14627-0226

9. SPONSORING/IMONITORING AGENCY NAME(S) AND AOORESS(IS) 14. SPONSOSI1GIMOIfflUmG

Office of Naval Research ARDA AGISKY OR' uUA t

Informatio6 Systems 3701 N. Fairfax Drive
Arlington, VA 22217 Arlington, VA 22203

11. SUPPEMENTARY NOTES

12&. OISTRIUTIONI/AVARLAIIUTY STATEMENT l2b. CISTIUTIO CoD

Distribution of this document is unlimited.

13. ASTRACT (Mafmum 200 wva•tdJ , 93oo For

Niq 0 P -&I-

(see title page) DTIC T AJ
U13 [I -,-i

i tir t- i

I I

.j

o

14. SU•ICT TEWS IS. NUMBR OF PAGES

non-uniform distribution of accesses; memory and network band- 24
width; contention; scalable multiprocessors; coherency protocols 14. PUcoot

17. SILOWITY CLASSHWIATMION 1 SECURITY CLASSIFICATION 19. _SEOJETY ASICT 2L. UTAUOU OF AMSRC
"OP REPORT OP THIS PAGE OF ABSTRACT

unclassified -unclassified unclassified UL
NSN 7540-01.260-5S00 Standerd PWM 21 ('r. 249)

• • • mm I I I I

1 Introduction

One common cause of poor performance in large-scale shared-memory multiprocessors is limited
memory or interconnection network bandwidth. Even well-designed machines can exhaust the
available bandwidth when a program issues an excessive number of remote memory accesses or when
remote accesses are distributed non-uniformly. While techniques for improving locality of reference
are often successful at reducing the number of remote references, a non-uniform distribution of
references may still result, which can cause contention both in the interconnection network and at
remote memories.

A non-uniform distribution of remote accesses can be caused by a variety of common data
sharing patterns. Centralized spin locks, for example, distort the distribution of accesses in a pro-
gram by forcing all processors to access the memory module containing the lock data structure.
In many linear algebra algorithms, including a straightforward parallelization of Gaussian elimina-
tion and the LU decomposition algorithm in [Mowry and Gupta, 1991], a single processor writes
a row of a matrix which must then be read by every other processor. Classical graph algorithms,
such as transitive closure and all-pairs shortest path, exhibit this same structure. Many optimiza-
tion algorithms, such as LocusRoute [Rose, 1988] and parallel genetic algorithms [Bianchini and
Brown, 1993], maintain the best global solution found so far in a global location, and require all
processors to access that location each time a new solution is found. These sharing patterns can
introduce enormous network and memory contention on large-scale machines, since a large number
of processors may need to access a single memory module simultaneously.

These sharing patterns are all specific instances of producer/consumer data [Bennett et al.,
1990] (or mostly-read data [Weber and Gupta, 19891), where data is written by one processor and
then read by many processors. Several techniques have been developed for reducing the contention
caused by producer/consumer sharing. Hardware combining in the NYU Ultracomputer [Gottlieb
et al., 1983] and the IBM RP3 [Pfister et al., 1985] can alleviate contention for spin locks by
combining requests to a single memory location. Alternatively, spin locks can be implemented
so as to spin on local memory only, thereby eliminating most remote references associated with
synchronization [Mellor-Crummey and Scott, 1991]. Optimization algorithms can avoid contention
by examining or updating the global solution infrequently. Linear algebra algorithms can exploit
the properties of numerical equations to improve locality of reference, and as a side-effect eliminate
most producer/consumer sharing [Gallivan et al., 1990].

Although most of these techniques reduce contention and improve locality of reference, they may
introduce significant complexity in the algorithm, and do not generalize to all producer/consumer
sharing. For example, the block algorithms used in linear algebra are quite complex (compared
to the straightforward algorithms), and do not generalize to graph algorithms. Optimization algo-
rithms that avoid using the global solution so as to improve locality of reference may adversely affect
the search [Bianchini and Brown, 1993]. Given the frequency with which producer/consumer shar-
ing arises, the performance implications for large-scale machines, and the complexity of eliminating
this sharing pattern on a case-by-case basis, a general solution is desirable.

In this paper we examine the effect of producer/consumer data on network and memory con-
tention in large-scale, direct-connect, distributed-shared-memory multiprocessors like the Stan-
ford DASH [Lenoski et al., 1993] and MIT Alewife [Agarwal et al., 1992] machines. We use
detailed execution-driven simulation of parallel programs to quantify the performance impact of

2

producer/consumer data as a function of the network and memory bandwidth and the number
of processors in the machine. Our experiments show that, over a wide range of network and
memory bandwidths (including the design space of most existing machines), contention caused
by producer/consumer data can severely degrade application performance, and the negative ef-
fects of contention increase substantially with an increase in processors. Our results also show
that, although memory bandwidth is an important resource for this class of programs, the network
bandwidth at each processing node is the limiting factor in performance when the network links
and memory have comparable bandwidth.

As a solution to the problem of producer/consumer data sharing, we propose a new coherency
protocol, called eager combining. This protocol replicates a producer's data among multiple memory
modules, thereby effectively increasing both the memory and network bandwidth of the producer,
and dramatically decreasing the remote access latency of consumers. We discuss the advantages
of this technique over other approaches for reducing contention for producer/consumer data, and
use simulation to show that eager combining can improve performancej(and effective bandwidth)
by a factor of 4 or more when used for programs with producer/consumer data on machines with
hundreds of processors.

The remainder of this paper is organized as follows. In Section 2 we review related work
concerned with referencing patterns and contention in multiprocessors, and place our work in
perspective. In Section 3 we describe our multiprocessor simulator and application suite. In Section
4 we quantify the effects of contention as a function of network and memory bandwidth. Sections 5
describes the protocol in detail. In Section 6 we evaluate the performance of our applications under
the eager combining protocol, and compare it to software logarithmic broadcasting. We conclude,
in Section 7, with a summary of our results.

2 Relationship to Previous Work

A uniform distribution of accesses (and therefore uniform utilization of memory modules) is a
common assumption in analytical models used to guide multiprocessor and network design. In
[Agarwal, 1992], for example, this assumption is used in the calculation of the round-trip latency
of a non-local memory reference, which is then used in the calculation of the number of processor
contexts for a multi-threaded multiprocessor. In this paper we show that this assumption is not
valid for many programs, and that non-local memory references are considerably more expensive
when a non-uniform distribution of references results in contention.

Most previous studies of non-uniform addressing and contention have focused primarily on
the effects of hot spots on multistage interconnection networks [Pfister and Norton, 1985; Patel
and Harrison, 1988]. These studies focused on eliminating tree saturation, and used synthetic
applications for experiments. Our work focuses on direct-connected, distributed-shared-memory
machines, and our experiments are based on real application programs.

Glenn et al. [Glenn et aL, 1991] studied hot-spot effects in synthetic applications in the absence
of network congestion and processor caches. They divided hot spots into three categories: 1) a read-
only memory location with a large number of readers; 2) synchronized access to memory modules
due to related strides; and 3) hot spots caused by synchronization references. This classification does
not apply directly to machines with processor caches, which do not exhibit type 1 hot spots, and

3

may not exhibit type 3 hot spots given an appropriate implementation of synchronization [Mellor-
Crummey and Scott, 1991]. In addition, type 2 hot spots are primarily an issue on machines that
use low-order interleaving of addresses. In this paper we focus on a different type of hot spot, which
is caused by producer/consumer sharing of data.

Previous studies have considered the relationship between a program's sharing patterns and
contention. Eggers and Katz [Eggers and Katz, 1988] compared the coherency overhead of write-
update and write-invalidate protocols on small-scale multiprocessors, and observed that contention
for locks and data was not significant in their applications. Gupta and Weber [Gupta and Weber,
1992] classified data objects according to their expected cache invalidation behavior, and showed
that for some objects (i.e., synchronization objects, mostly-read objects, and objects that are
frequently read or written) the average number of invalidations per shared write increases with the
number of processors. This result suggests that access to these objects may generate contention
when the program is run on a large-scale machine. Neither of these studies considered large-scale
machines however; our simulations of parallel programs on multiprocessors with hundreds of nodes
indicate that the contention associated with producer/consumer data can dramatically increase the
running time of a program.

Munin (Carter et al., 1991] is a runtime system for distributed-memory machines that sup-
ports alternative software coherence schemes for different types of shared objects, including pro-
ducer/consumer data. Munin's software coherence protocol for producer/consumer objects is based
on object replication and write-update. The Munin implementation runs on SUN workstations on
an Ethernet. By way of contrast, our eager combining protocol is an extension of the DASH write-
invalidate protocol, and is intended for use in large-scale shared-memory machines with no hardware
broadcast mechanism. Our protocol incorporates ideas from software combining trees [Yew el al.,
1987] and eager sharing [Wittie and Maples, 1989] to distribute requests for producer/consumer
data throughout the machine.

In [Bianchini et al., 1993], we addressed the problem of producer/consumer data at the appli-
cation (compiler) level through a technique called block-column allocation. Although successful at
spreading memory requests and alleviating contention, block-column allocation is only effective for
certain types of matrix computations. In this paper we explore a more widely applicable solution
that does not depend on sophisticated compilers or programmers.

3 Simulation Methodology and Workload

We are interested in exploring variations in bandwidth and cache coherency protocols in large-scale
shared-memory multiprocessors, and therefore direct experimentation is not an available option.
Thus, we use simulation for our studies.

3.1 Multiprocessor Simulation

We use an execution-driven on-line simulator that exploits a mixture of interpretation and native
execution to simulate unmodified MIPS R3000 object code. The simulator is divided into two
parts, an event generator [Veenstra, 1993] and an event executor. The event generator simulates the
processor and registers and calls the event executor on every memory reference. The event executor

4

processes each reference, returning immediately on a cache hit, or passing the reference through the
interconnection network to a remote node in the case of a cache miss. The event executor determines
which processors should be blocked awaiting remote references and which processors may continue
to execute. We simulate events at the level of processor cycles; all simulation parameters and results
are expressed in terms of processor cycles.

Our event executor deals with all the major components of a parallel computing system: caches
(including TLBs), the interconnection network, local memories, and directories.

We simulate a large-scale (up to 256 processors) direct-connected multiprocessor. Each node in
the simulated machine contains a single processor, cache memory, local memory, directory memory,
and network interface. Each processor has an infinite, write-back cache with 32-byte blocks. Caches
are kept coherent using an implementation of the DASH protocol [Lenoski et al., 1990] with release
consistency.

The simulator implements a full-map directory for controlling the state of each block of memory.
Each node contains the directory for the memory associated with that node.

Throughout this paper we refer to the ensemble of addressable local memory and directory
memory at each node as a "memory module." We simulate three types of memory systems: memory
modules that respond with a negative acknowledgement if the memory is busy; memory modules
that queue requests (coming either from the cache or network interface) when the memory is busy;
and infinitely-ported contention-free memory modules. An infinitely-ported memory module can
satisfy an arbitrary number of memory requests simultaneously, but each request is delayed by the
memory service time (latency per cache block). We vary the memory latency per block between 8
and 32 cycles. Each shared address space consists of 4KB pages. The pages of an address space
are allocated to processors in round-robin fashion.

The interconnection network is a bi-directional wormhole-routed mesh, with dimension-ordered
routing. At any node of the machine, the connection between the switch node and the processing
node's network interface has the same bandwidth as any network link. Thus, we will refer to
the the bandwidth of that connection as the network bandwidth per node. The network clock
speed is the same as the processor clock speed. Switch nodes introduce a 2-cycle delay to the
header of each message. The bandwidth of the network is a parameter in our study. In our
finite-bandwidth networks (derived from the Alewife cycle-by-cycle network simulator), contention
for network links and buffers is fully captured. The network interface has a queue for out-going
messages (triggered either by the cache or the memory module in the node). For comparison
purposes, we also implement an idealized, contention-free network, where the link width determines
the bandwidth available to an individual packet, but any number of packets can traverse the same
link or be stored in the same buffer simultaneously.

Synchronization events do not generate memory or network traffic in our machine model, al-
though they are used to maintain the relative timing of events. We ignore the traffic associated
with synchronization so as to avoid having our results dominated by a poor implementation of locks
or barriers.

3.2 Workload

Our application workload consists of five parallel programs with producer/consumer data sharing:
two linear algebra applications (Gaussian elimination and matrix inversion), two graph algorithms

5

(transitive closure and all-pairs-shortest-paths), and an optimization algorithm (simulated anneal-
ing).

Our implementation of Gaussian elimination is similar in structure to the LU-decomposition
application in [Mowry and Gupta, 1991]. The input is a 512 x 512 matrix of linear equations.
During each phase of the algorithm, processors need access to a pivot row of the matrix. This pivot
row is written by one processor and then read by every other processor. The elements of a row are
allocated to consecutive addresses in a single memory module, so all processors direct a request to
the same memory module after synchronizing. Synchronization is implemented with locks.

Our implementation of matrix inversion uses an input matrix of size 512 x 512. The first phase
of matrix inversion uses LU-decomposition, which has roughly the same structure as Gaussian
elimination. Although the second phase requires that all processors access the same row of the
matrix, most of these accesses will result in local cache hits. We use barriers for synchronization.

In our implementation of transitive closure, each process operates on a set of rows of an ad-
jacency matrix stored in row-major order. Our input graph has 768 vertices, and each vertex is
connected to each other vertex with probability 0.5. As with Gaussian elimination, the algorithm
operates in phases, where processors need access to the same row of the adjacency matrix at the
start of a phase. Unlike Gaussian elimination, not every processor needs access to the row; the
input determines how many processors must access the pivot row in a phase.

We use a straightforward parallelization of Warshall-Floyd's algorithm to compute the all-pairs
shortest paths of a graph. The input graph has 512 vertices, and each vertex is connected to each
other vertex with probability 0.5. Although this application is similar in structure to transitive
closure, the two programs differ in the amount of communication required and the style of syn-
chronization. All-pairs shortest paths represents distances using 4-byte integers, while transitive
closure uses single bytes to represent connectivity. Thus, there is more communication required in
all-pairs shortest paths, even though both programs do roughly the same amount of work. In addi-
tion, we use barriers for synchronization in all-pairs shortest paths, and locks for synchronization
in transitive closure. Barriers are much more prone to contention, since they cause processors to
access producer/consumer data in lock-step.

Our simulated annealing program finds the minimum of a complex function of 8 variables.
In this program, processors search the solution space independently, periodically examining the
current best-known solution, which is stored in a global location. The probability that a processor
examines the global solution increases with time; processors rarely read the global solution in the
beginning of the computation, and rarely write the solution near the end of the computation.

4 Effect of Network and Memory Bandwidth on Contention

In this section we quantify the effects of contention that result from producer/consumer sharing as
a function of network and memory bandwidth. We show that available bandwidth is the limiting
resource for programs with this sharing pattern, and that simply increasing absolute bandwidth is
not likely to provide a cost-effective solution to the problem.

6

1000"

SOR Cont-free -4-
SOR Contention -+--
Gauss Cont-free -S-

Gauss Contention "X---
100 x

Run Time

10

0 20 40 60 80 100 120 140
Number of Processors

Figure 1: Running time (M cycles) of SOR and Gaussian Elimination.

4.1 Effect of Non-Uniform Distribution of References

Figure 1 compares the running time of SOR and Gaussian elimination on a multiprocessor with
low memory and network bandwidth (200 MB/second, assuming a 100 MHz clock) to the running
time on an ideal contention-free multiprocessor. SOR implements successive over-relaxation of a
768 x 768 matrix. Blocks of rows of the matrix are assigned to each processor. Processors work
roughly independently of each other; communication only takes place when processors update the
elements of their boundary rows. The application is executed for 50 iterations, which are divided
into pairs of phases separated by barriers.

From the figure, we observe that the running time of SOR is not affected by contention; the
machine with limited memory and network bandwidth performs comparably to the contention-free
machine. The running time of Gaussian elimination is affected by contention however; the program
can utilize fewer than 20 processors on the limited-bandwidth machine, but can exploit over 120
processors on the contention-free machine.

Both SOR and Gaussian elimination have very low miss rates - around 2% on 128 processors.
Thus, both programs have good locality of reference. In general, we would expect programs with
very low miss rates to perform well on large-scale machines (assuming sufficient parallelism and
appropriate synchronization). The problem with Gaussian elimination is not the number of remote
references, it is the non-uniform distribution of those references. Programs with good locality and
nearest-neighbor communication, like SOR, do not saturate the network or memories. Programs
with good locality and a highly non-uniform distribution of references can saturate both the network
and memories.

This experiment shows that it may be difficult to design a multiprocessor that can run all

7

Machine Path Width Latency/Switch Latency/Link Bi-dir Link Bandwidth
"Contention-free 32/16/8 bits 2 cycles 1 cycle Infinite
High 32 bits 2 cycles I cycle 800 MB/sec
Medium 16 bits 2 cycles 1 cycle 400 MB/sec
Low 8 bits 2 cycles I cycle 200 MB/sec

Table 1: Network Bandwidth

Machine Latency/Word Queue Size Memory Bandwidth
Contention-free 1/2/4 cycles 0 entries Infinite
High 1 cycle 16 entries 400 MB/sec
Medium 2 cycles 16 entries 200 MB/sec
Low 4 cycles 16 entries 100 MB/sec

Table 2: Memory Bandwidth

classes of applications efficiently. Even well-designed machines, with seemingly sufficient network
and memory bandwidth, may perform poorly for a large class of applications due to bandwidth
limitations. To quantify the relationship between available bandwidth and contention, we will
explore the parameter space of network and memory bandwidths, and investigate how application
performance varies with bandwidth.

4.2 Isolating Memory and Network Contention

We consider three levels of finite bandwidth for the network and memories (cache bandwidth is as-
sumed higher than both memory and network bandwidth). The bandwidth and latency parameters
used in our experiments are described in Table 1 and 2. We simulate machines that represent a range
of "balanced" architectures, where the memory bandwidth is equal to the uni-directional bandwidth
of a network link. (We assume 100 MHz clocks in all machines.) Our low-bandwidth machine has
memory and (uni-directional) network bandwidth of 100 MB/second; the medium-bandwidth ma-
chine has twice as much bandwidth as the low-bandwidth machine; the high-bandwidth machine
has twice as much bandwidth as the medium-bandwidth machine. Our contention-free machine
simulates a contention-free network and contention-free memories.

Our first set of results isolates the contribution of limited memory bandwidth to performance
degradation, when the network bandwidth per node is relatively high. In these experiments, we
simulated Gaussian elimination on a machine with a contention-free network. Figure 2 plots the
running time of Gaussian elimination on 64 and 128 processors as a function of memory bandwidth. 1
We can see from this figure that, in the absence of network and memory contention, the running
time is not significantly affected by changes in the memory latency per cache block; the latency of
the memory is only a small part of the latency of a remote reference, which is dominated by the

'In these simulations we increase the memory bandwidth by decreasing memory latency.

8

45

40 128 procs + mem cont 4-
128 procs - mem cont ---

35 64 procs + mem cont 9--
64 procs - mem cont *x. -

30

25
Run Time

20

15

10

0 I a

5 10 15 20 25 30 35
Memory Latency per Cache Block

Figure 2: Running time (M cycles) of Gaussian elimination - contention-free network

round-trip time through the network. However, when we include the effects of memory contention,
we see that increasing memory latency per cache block (and therefore effectively decreasing memory

bandwidth) has an enormous effect on the running time, especially on 128 processors.

It is interesting to observe that bandwidth limitations change the relative performance of 64
and 128 processor configurations. That is, a 128-processor machine executes the program faster
than a 64-processor machine in the absence of contention. We observe speedup when moving to
the larger machine in the contention-free case, but the same move causes a massive slowdown when
bandwidth limitations are considered.

In our next set of results, we assume contention-free memories, so as to isolate the contribution of
network congestion to performance degradation when there is significantly more memory bandwidth
than network bandwidth. In these experiments, we simulated Gaussian elimination on a machine
with contention-free memories; the results appear in figure 3. The large gaps between the curves for
contention-free machines and the corresponding curves for bandwidth-limited machines indicates
that, in the absence of memory contention, network bandwidth represents a serious bottleneck.
Once again, limited bandwidth changes the relative performance of the 64-node and 128-node

machines in comparison to the contention-free case.

Sophisticated routing techniques, such as randomized and adaptive routing, are of no help in
reducing the network contention we observe here. Most of the overhead attributed to network
contention in figure 3 is caused by two factors: (1) long messages (i.e., read replies) leaving the
producer's memory module contend for the single link connecting the producer's network interface
to the network switch node, and (2) heavy network traffic around the producer's node results in
contention for nearby network links. Sophisticated routing schemes cannot resolve the intrinsic
problem that the path between a single memory module and the network is saturated.

"9

90
80 - 128 prtcs + let cont i

128 procs - net cont -

70 64 procs + net cont -
64 procs - net cont .

60

50
Run Time

.40

30

20 .

10 i

5 10 15 20 25 30 35
Data Path Width

Figure 3: Running Time (M cycles) of Gaussian Elimination - contention-free memories

Network I Memory Bwidth
Bwidth High Medium Low

RT CFRT RL CFRL RT CFRT RL CFRL RT CFRT RL CFRL
High 22.4 22.3 55.3 50.2 22.5 22.4 62.9 56.1 23.1 22.7 89.6 68.0
Medium 22.7 22.5 70.8 59.4 22.8 22.6 76.1 65.3 23.3 22.9 99.4 77.0
Low 23.7 22.9 119.3 80.2 23.7 23.0 125.0 85.9 23.9 23.3 137.3 97.7

Table 3: Running Times and Avg. Latencies with and without Contention of Gauss on 16 procs

4.3 Scaling the Number of Processors

In tables 3-5 we examine the aggregate effect of the two types of contention on the performance

of Gaussian elimination using more realistic scenarios of limited network and memory bandwidth.

These tables present the running time of the program on realistic machines with finite network

and memory bandwidth (RT), the running time in the absence of network and memory contention

(CFRT), the average remote access latency on the realistic machines (RL), and the average remote
access latency on the contention-free machines (CFRL). Running times are given in millions of

cycles.

It is interesting to observe the evolution of the contention problem as we increase the size of

the machine from 16 to 64 to 128 processors. On 16 processors, contention for the network and

memories is virtually nonexistent. In each case the running time under limited bandwidth is roughly
the same as the running time on a contention-free machine. In addition, the difference in running

time between the machine with high memory and network bandwidth and the machine with low

memory and network bandwidth is only about 7%. Although the average remote access latency on
these machines differs by a factor of 2-3, the miss rate is small enough that this factor does not

significantly affect running time.

10

Network Memory Bwidth
Bwidth High Medium Low

RT CFRT RL CFRL RT CFRT RL CFRL RT CFRT RL CFRL
High 9.0 6.9 181.5 66.6 13.6 7.1 438.2 74.1 26.4 7.3 1126.1 89.2
Medium 19.1 7.1 767.2 76.6 19.0 7.4 758.4 85.0 27.3 7.5 1185.0 99.4
Low 37.5 7.6 1812.5 99.1 37.6 7.7 1814.6 107.9 37.9 8.0 1828.2 122.5

Table 4: Running Times and Avg. Latencies with and without Contention of Gauss on 64 procs

Network Memory Bwidth
Bwidth High Medium Low

RT CFRT RL CFRL RT CFRT RL CFRL RT CFRT RL CFRL
High 23.8 4.8 1201 81.3 29.4 4.9 1507 88.9 54.1 5.2 2847 103.9
Medium 43.2 5.0 2366 91.7 43.4 5.1 2368 99.1 60.4 5.4 1 3233 114.1
Low 82.4 5.3 4656 114.9 81.3 55 4651 122.3 82.8 5.7 4676 137.4

Table 5: Running Times and Avg. Latencies with and without Contention of Gauss on 128 procs

On 64 processors, the running time on the limited bandwidth machines is substantially higher
than the running time on the corresponding contention-free machines, by 30% on the machine with
the highest memory and network bandwidth and 470% on the machine with the lowest memory
and network bandwidth. Whereas a factor of four increase in processors (from 16 to 64 processors)
produces a factor of 2.5 improvement in running time on the machine with high memory and network
bandwidth, the same increase in processors results in a higher running time on the machines with
low memory or network bandwidth, and no significant increase in running time on the machines
with medium network bandwidth. The effect of contention is illustrated most dramatically by the
average remote access latency, which increases from 123 cycles to over 1800 cycles on the machine
with low memory and network bandwidth.

These trends continue as we increase the number of processors from 64 to 128. In the absence of
contention, a factor of two increase in processors produces a factor of 1.4 improvement in running
time on most of the machines. When contention is included, the running time increases by a factor
of 3 or more in nearly every case. Even on the high bandwidth machines, the remote access latency
is well over 1200 cycles.

We can make a general observation from these tables: the network is the bottleneck in machines

in which the uni-directional network bandwidth is equal to or less than the memory bandwidth,
while the memories are the bottleneck in the remaining cases. As we reduce memory bandwidth
and keep the network bandwidth constant (that is, as we move across a row of the tables), running
time remains roughly constant until the memory bandwidth becomes strictly less than the network
bandwidth. At that point, the running time increases, since it is dominated by memory contention
effects. If we increase the network bandwidth while keeping the memory bandwidth fixed (that
is, as we move up a column in the tables), the running time improves greatly whenever memory

bandwidth is greater or equal to network bandwidth.

11

These results suggest that the usual notion of balanced architecture, in which memory and
(unidirectional) network bandwidth are roughly equivalent, exhibits a serious bottleneck at the
producer's network link. There are two reasons for this. First, in addition to the data produced by
the memory or cache, the network must also transfer other information, such as headers, addresses,
and operation codes. Second, both the memory and cache controller compete for access to the
network at each node of the multiprocessor.

It is apparent from these results that producer/consumer data sharing can introduce enormous
contention on large-scale machines. The problem is that only an inordinate amount of bandwidth
can eliminate the contention levels observed here. Rather than build machines with sufficient
bandwidth to handle extreme cases of non-uniform distributions of references, we should consider
ways to provide higher effective bandwidth.

4.4 Dealing with Limited Bandwidth

There are several alternatives for dealing with insufficient bandwidth caused by producer/consumer
sharing of data. The programmer can modify the application so as to reduce the frequency of
remote references, avoid producer/consumer data sharing, or efficiently copy the producer's data
throughout the machine. Alternatively, hardware designers can provide more absolute bandwidth,
longer queues at the network and memory modules, or efficient hardware replication strategies.

Reducing the frequency of remote references in the application is typically a complex and ad hoc
task, which may or may not result in a uniform distribution of references. As seen in the previous
section, even programs with a very low miss rate can suffer serious performance degradation due
to bandwidth limitations. A new algorithm may be required to avoid producer/consumer sharing,
and this could affect the application's results (as in the case of optimization algorithms that avoid
examining the global solution because of contention).

Increasing the queue size for busy memory modules reduces the need for negative acknowledge-
ments, thereby lowering the bandwidth demands of the application. In addition, longer queues
allow a memory module to be continuously utilized during periods of contention. However, our
simulation results show that the memory module is already fully utilized during periods of con-
tention when the queue holds 16 entries; longer queues would not help increase memory utilization. 2

Furthermore, negative acknowledgements have little effect on performance, unless network band-
width is extremely limited, or the queue size is so small that most requests generate a negative

acknowledgement.

Increasing the bandwidth of the machine is not a feasible option. Our simulations show that,
even at very high levels of memory and network bandwidth, it is not possible to keep up with the
bandwidth requirements of our applications on large-scale machines.

There are two ways to increase the effective bandwidth of the machine: memory interleaving and
data replication. Interleaving shared addresses, as in the IBM RP3 [Pfister et al., 1985], improves
performance by reducing the number of memory conflicts for shared data. In [Bianchini et al., 1993],
we showed that interleaving of cache blocks across memories can significantly improve performance
in our producer/consumer programs, even when implemented at the software (compiler) level.

2 This reasoning also applies to back-off strategies, in which a processor rejected by a busy memory module waits for

a small random period of time before reissuing the request. Random back-off is likely to leave memories underutilized
during periods of contention, and, at best, will approach the performance of memory queues.

12

Data replication can be either producer-driven or consumer-driven. We refer to producer-driven
approaches as eager sharing. In eager sharing, the producer of a data block copies it to the nodes
that need it. An efficient implementation of eager sharing requires that we 1) identify the recipients
of the data to be multicast and 2) multicast the data block only when the producer is finished
modifying the entire block. Examples of eager sharing approaches include write-update protocols,
post-store (producer prefetch) instructions, delayed update protocols, and software logarithmic
broadcasting.

Write-update protocols [Archibald and Baer, 1986] can be used to provide consumers with data
before they request it, thus reducing the need for requests, and the memory and network bandwidth
they consume. However, a write-update protocol in a machine with no broadcast medium would
likely overload the home node when many processors share the data. In addition, write-update
protocols typically operate at the level of individual words, generating a network message on every
write to shared data. In many cases, this extra message traffic can become a serious problem,
outweighing the benefits of this type of protocol. For this reason, write-update protocols are most
appropriate for small data items [Lenoski et al., 1993].

Post-store instructions [Rosti et al., 1993] are similar to write-update in that they update all
cached copies of the data. The use of post-store is controlled in software however, and post-store
instructions apply to entire cache blocks. Although post-store instructions generate less traffic than
a write-update protocol they would still overload the producer's node in the absence of a broadcast
medium.

Operating system approaches to data replication, such as the delayed updates of Munin [Carter
et al., 1991], are more flexible than the hardware schemes mentioned above, but must incur the
overhead of handling sharing in software. In addition, Munin (like most other systems that support
write update) is implemented on a broadcast medium (i.e., Ethernet).

Replication can also be implemented at the application or runtime level by having the producer
broadcast the data to all consumers. There are two problems with this approach: it requires a
distributed-memory programming style in which coherency of shared data is not guaranteed by
the hardware, and the pattern of sharing between processors must be easily predictable. When
coherency is not required and applications are well behaved, software logarithmic broadcasting
performs well.

Consumer-driven data replication approaches are referred to as combining trees [Yew et al.,
1987]. In this approach, processors are organized into a tree structure, in which each processor
requests the data block from its parent node, with the producer at the root. Each parent node
combines the requests of its children into a single request to its parent.

The relative feasibility and performance of the producer and consumer-driven styles of data
replication is dependent on the communication and addressing features of the underlying archi-
tecture. Scalable distributed-shared-memory architectures can be separated into two categories,
based on whether a data block has a home. Architectures in which data has no fixed home are
referred to as COMA (Cache Only Memory Architecture), e.g., the KSR1 [Kendall Square Re-
search Corp., 1992]. Architectures in which data blocks have a home are referred to as CC-NUMA
(Cache-Coherent Non-Uniform Memory Access), e.g., DASH [Lenoski et al., 1990].

COMA machines are usually based on broadcasting media, since processors must be able to
easily locate any data blocks they access. For example, the KSR1 uses a hierarchy of rings; a

13

processor broadcasts requests for data blocks on the local ring, which are forwarded up the hierarchy
of rings if necessary to satisfy the request. Once data is brought into a local ring, subsequent
requests for the data are satisfied by the local ring. In effect, the KSR1 implements a dynamic
combining tree solution to memory contention, limiting it to at most 32 processors (the number of
processors on the local ring). Similar combining capabilities are provided by hierarchical cache/bus
architectures, such as presented in [Wilson Jr., 1987].

CC-NUMA machines, on the other hand, usually have no such broadcast medium, making it
more difficult to either locate replicated data (in a combining tree approach) or to perform dynamic
multicast (in an eager sharing approach). In the following section we describe a modification to the
DASH coherency protocol that implements data replication in a CC-NUMA machine. We show how
this protocol solves the problems associated with the lack of a broadcast medium, and then show
that the protocol greatly increases effective memory bandwidth and reduces the need for network
bandwidth in producer/consumer programs.

5 Eager Combining Coherency Protocol

In this section we dicribe a coherency protocol that implements data replication for hot spots
caused by widespread producer/consumer sharing. Our goal is to increase effective memory band-
width and decrease the need for network bandwidth in direct-connected, distributed-shared-memory
multiprocessors.

We assume certain physical address ranges are marked hot, and these addresses are treated
specially by the coherence protocol. Two ways to accomplish this are:

"* The choice of protocol could be selected on a per-page basis; an analogous feature is already
present in the MIPS R4000 cache coherence controller [MIPS Computer Systems Inc., 1991].

"* A portion of the physical address space of the machine could be permanently set aside for
hot data.

Which of these approaches is chosen depends on tradeoffs involving cache memory cost, the benefits
of dynamic protocol selection, and the ability of the compiler or programmer to precisely identify
hot data ranges. Our simulation results assume that all shared data is marked as hot.

Our basic approach is to designate a fixed number of "server nodes" for each hot physical
page, assigning to each server some subset of the remaining nodes as clients. The protocol uses
eager sharing to distribute data to servers, which then satisfy requests from multiple client nodes.
Multiple requests that cannot be satisfied immediately by a server are combined to reduce the traffic
directed to a hot spot. The protocol assumes the release consistency model. Since our approach
incorporates the properties of both eager sharing and combining trees, we call it eager combining.

We use the DASH cache coherence protocol [Lenoski et al., 1990] as a starting point for our
eager combining protocol. Each data block in DASH is assigned to a memory module, and that
module's node is referred to as the data block's home node. In the eager combining version of the
protocol, we designate a fixed number of server nodes for each hot data block, which are determined
statically from the physical page number. As with regular data blocks, hot data blocks can be in
one of three states: uncached, read-shared, and modified. We make three modifications to the DASH
protocol in order to handle hot data blocks:

14

"* Reads to a hot data block are directed to a server rather than to the home node;

"* When a hot data block makes a transition from modified to read-shared, the block's home
node multicasts the data to the block's servers;

"* When a hot data block makes a transition from read-shared to modified, the clients and the
servers must have their copies of the block invalidated.

The following sections describe each type of transaction in detail. Since our experiments assume
infinite processor caches, the following description omits the details of how to handle cache replace-
ments.

5.1 Read Requests

When a node makes a read request to a hot data block, the request goes directly to the proper
server, which is selected based on the requester's node number and the physical page number. If the
server has an unmodified copy of the block, it stores information to the effect that the requesting
processor is a new client and sends the block to the requester. If the server does not have a copy
of the block, or if the server has modified its copy of the block, the server marks the requester as
client and forwards the client's request to the home node. Subsequent requests from other clients
for the same data block are queued at the server until it receives the block from the home node.

Upon receiving a forwarded read request, the home node proceeds according to the state of the
data block. If the block is in the read-shared state, the home node sends the block to the client
directly. If the block is in the modified state, the home node forwards the request to the current
owner of the block. As in the DASH protocol, the owner transmits the data block to both the
requester and the home node. On receiving the updated contents of the block, the home node
sends a copy to each of the servers for the block, and sets the state of the block to read-shared. The
multicast from the home node to the servers can be overlapped with computation on all nodes.

It is important to note that the home node does not multicast a data block to its servers
each time the block is written. The multicast takes place only on the transition from modified to
read-shared. Thus, we avoid eager sharing of partially modified data blocks. Nonetheless, eager
combining could exacerbate any adverse performance effects caused by fine-grain sharing and false
sharing.

A multicast and the corresponding transition to the read-shared state are also performed by the
home node upon receiving a forwarded read request for an uncached hot data block.

5.2 Write Requests

When a client issues a write to a hot data block, a request for ownership (and in some cases, data)
is sent directly to the home node, bypassing the server. On receiving this request, the home node
proceeds according to the current state of the data block. If the block is in the modified state,
the protocol proceeds almost exactly as in DASH: the request is forwarded to the current owner
of the block, which transfers ownership (and perhaps data) to the requesting node, and requests
that the home node update the ownership of the block. Although this latter request does not
generate an acknowledgement in the DASH protocol, the eager combining protocol does require an

15

acknowledgement from the home node to the previous owner of the block, so as to avoid sending
ownership update messages through servers to the home node. 3

We considered having both read and write requests go through servers, which would increase
the number of messages for write requests, but would result in a single path between clients and
the home node. We send write requests directly to the home node in order to reduce the traffic
directed to server nodes, and to avoid increasing the number of messages involved in requests
whenever possible.

If the write finds the data block in the read-shared state, the home node must invalidate all
copies, both in the servers and clients. To implement these invalidations, the home node sends
invalidation messages to servers, who then pass on invalidations to their clients. In this scheme, the
directory information in the home node is consistent with respect to the state of a data block and
the number of servers, but not the number of clients. When a write request reaches the home node,
the home sends the data to the new owner, and tells the new owner the number of servers caching
copies of the data block. The home node sends invalidation messages to each sever, which then
send invalidation messages to each client. When the clients have all acknowledged the invalidation
to their server, the server sends an acknowledgement to the new owner. The home node invalidates
the previous owner of the data block, which then acknowledges the new owner directly. 4

In comparison to the DASH protocol, this invalidation scheme reduces the total amount of
work required of the home node to service hot data blocks (under the assumption that servers for
a data block usually access the data block). Instead of distributing copies of a hot data block to
all processors (as in DASH), the home node need only send copies to the servers for the block.
Most read requests are satisfied by servers, and therefore never reach the home node. If a server
must forward a read request to the home node on behalf of one client, that request will generate
a single response that will satisfy requests from the other clients of the server. In general, this
scheme reduces the number of messages the home node must send, since the number of servers for
a hot block is expected to be much smaller than the number of processors using the block.

5.3 Protocol Overhead

Eager combining is not without costs. It introduces additional messages and requires extra space
in the directory. We will now consider how much overhead is associated with the protocol.

Tables 6 and 7 present a comparison between the number of messages involved in the DASH
protocol and in eager combining. In these tables, S stands for the number of servers per hot data
block, C is the total number of clients of the hot block, and SC is the number of servers that
are also clients of the hot block. The number of hops referred to in the tables is the number of

3The reason for this extra acknowledgement message is that the ownership update message and a subsequent read
request by the same processor may arrive out-of-order at the home node, due to the different paths these messages
take through the network. (The read request would go to a server first.) Requiring the previous owner to wait for an
acknowledgement before issuing any other read request to the same block guarantees correct message ordering. This
message does not have a noticeable impact on performance, since the extra acknowledgement is not in the critical
path.

"4The home node must invalidate the previous owner since the identity of this owner is unknown to the servers,
since this processor keeps a clean copy of the data on modified to read-shared transitions, instead of having to access
a server for such a copy.

16

Consistency Model Protocol Total Number of Messages Number of Hops
Sequential EC (2*S + 2 (C-SC)) + 2 (2*S+ 2 (C-SG)) + 2

DASH-like (2 * C)+ 2 (2 *C) + 2
Release EC (2* S + 2 *(C - SC)) + 2 2

DASH (2 *C) + 2 2

Table 6: Messages transferred in coherency actions (read-shared to modified)

Protocol Total Number of Messages Number of Hops

EC S+5 4
DASH 4 n 3

Table 7: Messages transferred in sharing actions (modified to read-shared)

messages in the critical path of the protocol. As observed in the tables, eager combining may
employ more messages than the DASH protocol when making a transition from read-shared to
modified or modified to read-shared, because hot data blocks are sent to servers whether or not
the servers use the data, and both the servers and clients must be kept consistent. These extra
messages are unlikely to be a serious problem however, since we expect hot data blocks to be
accessed by most processors (including the servers), and the extra messages required to replicate
data to servers can be overlapped under any consistency model. Also, it is not necessary to wait for
invalidation acknowledgements if sequential consistency is not required. Therefore, under a relaxed
consistency model, eager combining does not impose significantly greater communication latency
than the DASH protocol. As shown by the number of hops in the critical path in tables 6 and 7,
eager combining and DASH require roughly the same number of hops for each state transition,
under the assumption that each server actually requires the data it provides to its clients.

It may seem that replicating cache lines in a large number of servers consumes an excessive

amount of cache space, but this is not so. Assuming an even distribution of servers throughout the
machine, the maximum additional cache space needed per processor is HotDataSize * NumServers
/ NumProcs, where HotDataSize is the size of the hot data, NumServers is the number of servers
per hot cache block, and NumProcs is the number of processors in the machine. This is a worst-case
analysis however; in practice, a server need only store the hot data currently being referenced by
clients. In addition, under the assumption that servers are also clients for hot data, then each
server needs a copy of the data anyway. Furthermore, the extra cache space devoted to copies of
hot data in servers is a small percentage of the cache space devoted to caching application data.
In short, the space overhead of servers is not an impediment to data replication as used in eager

combining.

Eager combining also requires additional directory space for servers to keep track of clients.
This extra space amounts to a vector of NumProcs / NumServers bits per cache block, in which
each bit represents a client sharing the block. We believe that this overhead is justified by the
performance advantages of the protocol, which will be demonstrated in the next section.

17

Application Bandwidth
High Medium Low

RT ECRT CFRT RT ECRT CFRT RI' ECRT CFRT
Gauss 9.0 7.6 6.9 19.0 8.9 7.4 37.9 13.3 8.0
Hatinv 65.8 62.4 58.1 76.1 67.4 59.7 99.9 80.5 63.4
Tclosure 47.7 43.4 43.2 55.4 44.1 43.7 74.0 47.5 44.6
All-pairs 43.6 29.1 25.5 62.3 34.3 27.1 102.0 48.5 30.2
SA 12.3 1 8.9 9.6 16.3 9.2 9.8 21.5 9.7 10.3

Table 8: Application Performance on 64 processors

Application Bandwidths
High Medium Low

RT ECRT CFRT RT ECRT CFRT RT ECRT CFRT
Gauss 23.8 7.1 4.8 43.4 10.7 5.1 82.8 19.0 5.7
Katinv 64.9 62.9 50.3 86.9 76.2 53.6 138.5 109.5 61.1
Tclosure 43.2 23.8 23.6 64.6 26.0 24.0 115.2 34.3 24.9
All-pairs 66.0 47.1 34.4 103.4 60.4 37.7 182.2 91.7 45.1
SA 10.0 4.8 5.4 12.4 5.1 5.5 14.4 5.9 5.8

Table 9: Application Performance on 128 processors

6 Performance Evaluation

In this section we evaluate the eager combining protocol. In our simulations of eager combining,
requests are rejected (and must be reissued) when the producer's memory module is busy.

We first present performance results comparing eager combining to the limited bandwidth and
contention-free machines. We then compare eager combining to software logarithmic broadcasting.

6.1 Application Performance Comparison

In this section, we study the performance of our example programs under eager combining. We
consider balanced architectures, where the memory and (uni-directional) network bandwidth are
equivalent. Tables 8 and 9 present the running time of the applications (in millions of cycles)
on limited bandwidth machines (RT), eager combining (ECRT), and the idealized, contention-free
machine (CFRT) on 64 and 128 processors, respectively. We do not include the results for 16
processors, since our earlier results showed that contention for producer/consumer data does not
significantly affect performance on small machines.

On the 64-processor machine we use 4 servers per cache block; we use 8 servers per cache block
on the 128-processor machine. All the simulations assume release consistency.

18

Table 8 shows that eager combining significantly improves the performance of all the applications
on the low-bandwidth machine with 64 processors. The running time of Gaussian elimination, all-
pairs, and simulated annealing is improved by a factor of 2-3. Transitive closure and matrix inversion
also exhibit improved performance, although the gains are not as substantial. Transitive closure
has less contention than the other applications, since only half the processors (on average) require
access to a producer's data. Matrix inversion suffers contention only during the LU-decomposition
phase of the algorithm, so any improvements in performance are limited to that phase.

Substantial improvements are also possible on the medium-bandwidth machine for these ap-
plications. The improvements are not as great on the high-bandwidth machine, but the running
time under eager combining is close to that of the contention-free machine in most cases. In
particular, transitive closure performs close to the optimal under eager combining on high- and
medium-bandwidth machines, and is within 7% of optimal on the low-bandwidth machine.

Simulated annealing exhibits an anomaly: the running time under eager combining is better
than the running time on the idealized, contention-free machine. Under eager combining, writes
(including invalidations) take longer to perform. Thus, processors incur many fewer misses on
accesses to the global solution under eager combining. Since the program executes for a fixed
number of iterations, the change in the number of misses produces an improvement in running
time, even though it may adversely affect the search.

The performance improvement under eager combining is even greater on 128 processors, as
shown in table 9. Eager combining improves the running time of Gaussian elimination by a factor
of 4 on all the machines. Other applications are improved by a factor of 2-3 in most cases. Once
again, the running time of transitive closure under eager combining is very close to the optimal
running time on an idealized, contention-free machine.

The performance improvements under eager combining are due to an increase in the effec-
tive network and memory bandwidth of the machine. Without eager combining, long queues can
develop both at the network interface and at the memory. These queues result in an enormous
increase in remote access latency. For example, consider all-pairs on a 128-processor machine
with low network and memory bandwidth. This program represents an extreme case, since it uses
barriers, which cause processors to execute in lock-step, thereby increasing contention. Without
eager combining, the average queue size at the network interface is 44, for an average delay of 1773
cycles. Under eager combining, the average network interface queue size is reduced to 3.4, for a
total delay of 115 cycles. The running time under eager combining on a low-bandwidth machine
(91.7M cycles) is less than the running time without eager combining on the medium-bandwidth
machine (103.4M cycles). The other applications based on locks (Gaussian elimination, transitive
closure, and simulated annealing) all run faster under eager combining and low bandwidth than on
a machine with high bandwidth and no eager combining. In effect, eager combining multiplies the
bandwidth of the multiprocessor by a factor of 2-4 by distributing requests more uniformly in the
machine.

Some observations are common to the two tables. For example, the relative performance of
eager combining improves in comparison to the limited bandwidth configurations as we decrease
bandwidth. However, decreasing bandwidth also causes the performance of eager combining to
worsen relative to the optimal running time on an idealized, contention-free machine. This trend
simply indicates that the protocol has intrinsic coherency maintenance costs, and that bandwidth
is a scarce resource even under eager combining.

19

By comparing the results in the two tables, we see that eager combining does not always improve
performance as we increase the number of processors. Even when speedup can be achieved in the
absence of contention, as in the case of Gaussian elimination, eager combining may require more
bandwidth than is available. On low-bandwidth machines with a large number of processors, both
the producer's node and the servers may lack sufficient bandwidth to satisfy all requests. Adding
more servers relieves the problem at the server nodes, but creates the need for more network
bandwidth at the home node. These results suggest that eager combining on large-scale machines
may require multi-level trees in order to reduce contention at the servers and home node, although
doing so would increase the number of hops for references by clients.

6.2 Comparison with Software Broadcasting

In this section we compare the performance of software broadcasting against eager combining. As
mentioned earlier, software broadcasting usually performs well, but coherency is not guaranteed by
the hardware, and the pattern of sharing between processors must be easily predictable.

We implemented consumer-driven software broadcasting, wherein the producer sets a flag in-
dicating when data is ready, and the consumers copy the data. In this implementation multiple
consumers can overlap time spent in the network, so many copy operations can proceed in parallel.
Each tree node contains several broadcast buffers, which allows a parent node to continue producing
data before its children consume the data.

Our software broadcasting tree implements the same degree of fan-out at all levels in the tree,
since the traffic generated at each level is the same. This is not true of eager combining, where
the root node in the tree (the home node) must broadcast the data to the servers and satisfy
any requests from clients that were forwarded by servers before they received the data. For this
reason, the number of servers per block under eager combining is chosen so that each server has
more clients than the home node has servers. Thus, for software broadcasting on a 64-processor
machine, we use a two-level tree with a fan-out of 8; under eager combining we use 4 servers, each
with 16 clients. For software broadcasting on a 128-processor machine, we use a two-level tree with
a fan-out of 12; under eager combining we use 8 servers, each with 16 clients.

We compared the running time of Gaussian elimination under eager combining and software
broadcasting, while varying the network and memory bandwidth of the machine. We simulated a
machine with high network and memory bandwidth, and a machine with low network and memory
bandwidth, since these machines represent the best and worst case for eager combining. Under
software broadcasting we assume each memory module has a 16-entry queue; under eager combining,
requests are rejected when the memory module is busy. The results of these experiments are
presented in table 10.

The table presents the running time of the application (in millions of cycles) on a limited-
bandwidth machine (RT), under eager combining (ECRT), under software broadcasting (BRT),
and on an idealized, contention-free machine (CFRT). As seen in the table, eager combining per-
forms better than software broadcasting in these experiments. There are several reasons for this.
Software broadcasting requires more computation, since processors must explicitly perform data
copying. In addition, there is more synchronization overhead under software broadcasting, which
must synchronize access to the buffers. Most importantly, in a broadcasting tree, a processor at
the bottom of the tree cannot trigger a copy operation higher up in the tree; it must wait for its

20

Bandwidth Num Procs RT ECRT BRT CFRT
High 64 9.0 7.6 10.4 6.9

128 23.8 7.1 10.0 4.8
Low 64 37.9 13.3 18.1 8.0

1 128 82.8 19.0 21.8 5.7

Table 10: Broadcasting vs Eager Combining for Gaussian Elimination

ancestor to copy the data, before it can copy the data. Under eager combining, a read operation
by any client causes the data to be multicast to the servers, and also forwarded to the client; no
processor is forced to wait for an ancestor in the tree.

7 Conclusion

In this paper, we examined the performance implications of a non-uniform distribution of mem-
ory accesses caused by producer/consumer sharing of data. Using execution-driven simulation, we
observed the effect of variations in memory and network bandwidth on performance. At all levels
of bandwidth we considered, our application suite exhibited massive performance degradation on
large-scale multiprocessors. Both memory and link bandwidth are limiting factors for our applica-
tions. We observed that when memory bandwidth and the unidirectional network bandwidth are
comparable (as in most "balanced architectures"), a serious bottleneck may develop at the network
interface of the nodes.

To address these bandwidth problems, we proposed the eager combining coherency protocol,
which is designed to increase effective memory and network bandwidth. Our experimental results
show that this protocol can achieve significant improvements in running time performance (as
much as a 4-fold improvement), as a result of the increase in effective bandwidth. In some cases,
programs running under eager combining achieve better performance than the same program on a
machine with 4 times more absolute bandwidth. We also compared eager combining to software
broadcasting, and showed that eager combining consistently outperforms software broadcasting on
our application programs.

Eager combining does not always help improve performance; in some cases, a program running
on 128 processors runs slower than the same program on 64 processors. This is due to the fact
that eager combining may still suffer from a lack of bandwidth in extreme cases of contention,
especially when memory and network bandwidths are comparable. One way to further increase
effective bandwidth for our applications is by using multi-level trees in the protocol. Multi-level
trees introduce new complexities in the protocol, and require a delicate balance between increased
latency and decreased contention. We intend to investigate these issues in detail, and extend our
analysis of the protocol under these new assumptions.

21

References

[Agarwal, 1992] A. Agarwal. "Performance Tradeoffs in Multithreaded Processors," IEEE Trans-
actions on Parallel and Distributed Systems, 3(5):525-539, Sept 1992.

[Agarwal et al.. 1992] A. Agarwal, D. Chaiken, K. Johnson. D. Kranz. J. Kubiatowicz, K. Kurihara,
B.-H. Lim, G. Maa, and D. Nussbaum, "The MIT Alewife Machine: A Large-Scale Distributed-
Memory Multiprocessor," In M. Dubois and S. S. Thakkar, editors, Scalable Shared Memory
Multiprocessors. Kluwer Academic Publishers, 1992.

[Archibald and Baer, 19861 J. Archibald and J.-L. Baer, "Cache Coherence Protocols: Evaluation
Using a Multiprocessor Simulation Model," ACM Transactions on Computer Systems, 4(4):273-
298, Nov 1986.

[Bennett et al., 1990] J. K. Bennett, J. B. Carter, and W. Zwaenepoel, "Munin: Distributed
Shared Memory Based on Type-Specific Memory Coherence," In Proceedings of the 2nd ACM
Symposium on Principles and Practice of Parallel Programming (PPoPP), pages 168-176, March
1990.

[Bianchini and Brown, 1993] R. Bianchini and C. M. Brown, "Parallel Genetic Algorithms on
Distributed-Memory Architectures," In Transputer: Research and Applications. NATUG-6,
pages 67-82, May 1993.

[Bianchini et al., 1993] R. Bianchini, M. E. Crovella, L. Kontothanasis, and T. J. LeBlanc, "Alle-
viating Memory Contention in Matrix Computations on Large-Scale Shared-Memory Multipro-
cessors," Technical Report 449, Department of Computer Science, University of Rochester, April
1993.

[Carter et al., 1991] J. B. Carter, J. K. Bennett, and W. Zwaenepoel, "Implementation and Perfor-
mance of Munin," In Proceedings of the 13th ACM Symposium on Operating System Principles,
pages 152-164, Oct 1991.

[Eggers and Katz, 1988] S. J. Eggers and R. H. Katz, "A Characterization of Sharing in Parallel
Programs and its Application to Coherency Protocol Evaluation," In Proceedings of the 15th
International Symposium on Computer Architecture, pages 373-383, May 1988.

[Gallivan et al., 1990] K. A. Gallivan, R. J. Plemmons, and A. H. Sameh, "Parallel Algorithms for
Dense Linear Algebra Computations," SIAM Review, 32(1):54-135, March 1990.

[Glenn et al., 1991] R. R. Glenn, D. V. Pryor, J. M. Conroy, and T. Johnson, "Characterizing
Memory Hot Spots in a Shared-Memory MIMD Machine," Proceedings of Supercomputing'91,
pages 554-566, November 1991.

[Gottlieb et al., 1983] A. Gottlieb, R. Grishman, C. P. Kruskal, K. P. McAuliffe, L. Rudolph, and
M. Snir, "The NYU Ultracomputer - Designing an MIMD Shared Memory Parallel Computer,"
IEEE Transactions on Computers, C-32(2):175-189, Feb 1983.

[Gupta and Weber, 1992] A. Gupta and W.-D. Weber, "Cache Invalidation Patterns in Shared-
Memory Multiprocessors," IEEE Transaction on Computers, 41(7):794-810, July 1992.

22

[Kendall Square Research Corp., 1992] Kendall Square Research Corp., KSRJ Principles of Oper-
ation, Kendall Square Research Corporation, 170 Tracer Lane, Waltham, MA, 1992.

[Lenoski et al., 1990] D. Lenoski, J. Laudon, K. Gharachorloo, A. Gupta, and J. Hennessy, "The
Directory-Based Cache Coherence Protocol for the DASH Multiprocessor," Proceedings of the
17th International Symposium on Computer Architecture, pages 148-159, May 1990.

[Lenoski et al., 1993] D. Lenoski, J. Laudon, T. Joe, D. Nakahira, L. Stevens, A. Gupta, and
J. Hennessy, "The DASH Prototype: Logic Overhead and Performance," IEEE Transactions on
Parallel and Distributed Systems, 4(1):41-61, Jan 1993.

[Mellor-Crummey and Scott, 1991] J. M. Mellor-Crummey and M. L. Scott, "Synchronization
Without Contention," Proceedings of the 4th International Conference on Architectural Sup-
port for Programming Languages and Operating Systems, pages 269-278, April 1991.

[MIPS Computer Systems Inc., 1991] MIPS Computer Systems Inc., MIPS R4000 Microprocessor
User's Manual, Integrated Device Technology, Inc., 1991.

[Mowry and Gupta, 1991] T. Mowry and A. Gupta, "Tolerating Latency Through Software-
Controlled Prefetching in Shared-Memory Multiprocessors," Journal of Parallel and Distributed
Computing, 12(2):87-106, June 1991.

[Patel and Harrison, 1988] N. M. Patel and P. G. Harrison, "On Hot-Spot Contention in Inter-
connection Networks," Performance Evaluation Review, 16(1):114-123, May 1988, Originally
published at SIGMETRICS '88.

[Pfister et al., 1985] G. F. Pfister, W. C. Brantley, D. A. George, S. L. Harvey, W. J. Kleinfelder,
K. P. McAuliffe, E. A. Melton, V. A. Norton, and J. Weiss, "The IBM Research Parallel Processor
Prototype (RP3): Introduction and Architecture," In Proceedings of the 1985 International
Conference on Parallel Processing, pages 764-771, Aug 1985.

[Pfister and Norton, 1985] G. F. Pfister and V. Alan Norton, "'Hot Spot' Contention and Combin-
ing in Multistage Interconnection Networks," IEEE Transactions on Computers, C-34(10):943-
948, October 1985.

[Rose, 1988] J. Rose, "LocusRoute: A Parallel Global Router for Standard Cells," In Proceedings
of the 25th Design and Automation Conference, pages 189-195, June 1988.

[Rosti et al., 1993] E. Rosti, E. Smirni, T.D. Wagner, A.W. Apon, and L.W. Dowdy, "The KSR1:
Experience and Modelling of Poststore," In Proceedings of the 1991 A CM Sigmetrics Conference
on Measurement and Modeling of Computer Systems, 1993.

[Veenstra, 1993] J. E. Veenstra, "Mint Tutorial and User Manual," Technical Report 452, Depart-
ment of Computer Science, University of Rochester, July 1993.

[Weber and Gupta, 1989] W.-D. Weber and A. Gupta, "Analysis of Cache Invalidation Patterns
in Multiprocessors," In Proceedings of the Srd Conference on Architectural Support for Program-
ming Languages and Operating Systems, pages 243-256, Apr 1989.

23

[Wilson Jr., 1987] Andrew W. Wilson Jr., "Hierarchical ('ache/flus Architecture for Shared Mein-
ory Multiprocessors," In Proceedings of the 14th International SYgmposium on Computer Arc/i-
tecture, pages 244-252, 1987.

[Wittie and Maples, 1.989] Larry Wittie and Creve Maples, "MERLIN: Massively Parallel Hetero-
geneous Computing." In Proceedings of the 1989 Internationnl Conference on Parallel Processing.
pages 1-142 - 1-150, August 1989.

[Yew et al., 1987] Pen-Chung Yew, Nian-Feng Tzeng, and Duncan H. Lawrie, "Distributing
Hot-Spot Addressing in Large-Scale Multiprocessors," IEEE Transactions on Computers, C-
36(4):388-395, April 1987.

24

