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An Evaluation of the Stochastic Resonance Phenomenon

as a Potential Tool for Signal Processing

T. R. Albert, A. R. Bulsara, G. Schmera, M. Inchiosa

Naval Command, Control, and Ocean Surveillance Center, RDT&E Division
San Diego, CA 92152-5001

Abstract dom forcing, the component of the power spectrum of the
transitions which is at the frequency of the periodic forcing

Stochastic Reso.-.ance i6a3 a, uin.ar stoc,,stic phenom- increases to a peak value for a critical value of noise
enon which can cause a transfer of energy from a random strength, and then decreases with further increases of noise
process (noise) to a periodic signal over a certain range of strength until the stochastic forcing completely dominates
signal and system parameters. It has been observed in the state transitions. It is this peaking that inspired the term
many diverse natural and physical systems, and may be one Stochastic Resonance. There is also a peaking of the signal
means by which biological sensor systems amplify weak to noise ratio of the periodic component of the transitions,
sensory signals for detection. This paper is an evaluation occurring near the amplitude peak.
of the use of the Stochastic Resonance phenomenon as a
tool for signal processing in terms of its processing gain. The dual well model (Fig. 1) is the one most commonly

found in the literature. An equivalent description which is
1: Introduction better suited to the purposes of this paper is an input/output

or transfer characteristic. Figure 2 shows two examples that
Stochastic Resonance is a nonlinear phenomenon which should be familiar to the reader which support Stochastic

has been shown to occur in bi-stable systems or in two state Resonance; that of a two state magnetic device, and of a
devices. Over a certain range of signal and system parame- Schrit Trigger. Here theStochasticResonance phenome-
ters it can cause what amounts to a transfer of energy from nonmay be vewe the Spons t wo s tate device

a radomprocss noie) t a erioic rocss (ignl). non may be viewed as the response of a two state device
a random tpr (noise) to a periodic process (signal). driven by periodic and a stochastic signal, wherein the peri-
This has the potential to dramatically improve the signal to odic signal alternately increases the probability of a transi-
noise ratio at the output of the device. Use of a single non- tion from one state to the other, with the noise facilitating
linear two state device will be shown to be lossy as the transitions.
compared to the use of the power spectrum for detecting a
sinusoid in white noise. However, globally coupling many U(x) U(x)
two state devices appears to have the potential to overcome
these losses, And possibly exceed the gains achievable by
linear systems due to an enhancement of the Stochastic
Resonance effect over what might be expected in a single
two state device. 9

The "classical" description of the phenomenon is -hat of Figure 1. Particle in a Dual Well
a particle in a dual well potential which is excited by a
strong stochastic process and a weak periodic process. out
Herm, weak means that the force applied by the periodic ex- out
citation alone is not sufficient to overcome the barrier, so
no state transitions occur in the absence of stochastic forc-
ing. When noise of appropriate strength is added to the pe- in ifn

riodic forcing, state transitions which have a random com-
ponent and a periodic component occur. The periodic
component of the transitions (output) containe the funda- Magnetc Schmitt Trigger

mental frequency aiid _omeimes odd harmonics of the pe- Figure 2. Transfer Characteristics
riodic excitation. As one increases the strength of the ran-



2: Background are cooperative effects which enhance the phenomenon
[18).

Stochastic Resonance was fast reported and analyzed in Good surveys on the subject of Stochastic Resonance
[1] as an ,iteresting effect in nonlinear dynamics. It was withextensivereferencelistscanbefoundin[13)[19],and
soon after proposed as a possible explanation for the ob-
served periodic occurrences of the earth's ice ages in [2] and
[3]. For this case, the two states of the system are taken to 3: Stochastic Resonance as a Signal Proces-
be the earth's climate as it is at present and as it is during sing Tool
an ice age. The "noise" of the system is the variation in the
absorption or reflection of incident solar energy caused by The question to be addressed here is whether or not it is
daily and seasonal weather patterns, cloud cover, ice cover, useful (or desirable) to incorporate a "stociasti. resonlator"
etc. The weak periodic force is the variation of incident so- in a signal processing system to aid signal detection. It is
lar energy caused by a small periodic eccentricity in the well known that the linear filter which maximizes output
earth's orbit having a period of 100,000 years. signal to noise ratio is the "matched filter" [21], [22], [23].

There is no such generalized theory for the class of nonlin-
An experimental measurement of the behavior of a two ear filters so it is possible (though not yet proven or dis-

state electronic device, the Schmitt Trigger, driven by a proved) that a nonlinear filter or operation could create a
weak periodic signal in noise, was reported in [4]. The Sto-
chastic Resonance phenomenon was observed, and the
location of the resonance peak was shown to be in the vicin- The Schmitt Trigger is the "stochastic resonator" device
ity of where the noise intensity had a Kramers rate [5] close chosen for the evaluation here. It is simple to implement
to half of the frequency of the periodic signal. The Kramers in hardware or software, it reduces dynamics to just switch-
rate (in the absence of signal) is given by: ing events, and is a constant output energy device. Thus it

is easy to show that if the output signal to noise ratio in-
r =--L U"(0)A (1) creases with increasing input noise intensity, the increase in

27ar o t output signal power is at the expense of noise power. A
where U"(0) and U"(c) are the curvatures of the potential computer simulation consisting of a sinusoid in "white"
at the barrier and in the wells, respectively, AU is the barrier noise driving a Schmitt Trigger was used for the evaluation.
height, and a is the standard deviation of the noise. White Adjustable parameters were signal amplitude, noise vari-
noise is assumed here, and throughout this paper. ance, and threshold of the Schmitt Trigger. The power

Stochastic Resonance has been observed in other physi- spectra of the Schmitt Trigger input and output were used

cal systems such as ring lasers [6], bi-stable electron para- to measure the input and output signal to noise ratios. Pow-

magnetic resonance systems [71, magnetoelastic ribbons er spectral estimation via Fourier methods is commonly

[8], and simulated in bi-stable Superconducting Quantum used for detecting sinusoids of unknown frequency and
Interference Devices (SQUIDs) [9]. References (101 and phase in noise, and is the closest approxirmtion to the
[111 contain a theoretical treatment of the Stochastic Reso- matched filter achievable for that case with Gaussian noise
nance phenomenon based on the so-called adiabatic as- [22], [23], when the binwidth [24] is matched to the band-

sumption, and (7] reported the observation of a phase shift width of the unknown signal. For these reasons the power

occurring in the output of the periodic component as it spectral estimate was chosen to be the baseline for compari-

passed through the output signal to noise ratio peak that is son in this paper.
characteristic of Stochastic Resonance. This gives added Figure 3 is a plot of typical input and output power spec-
validity to the use of the term resonance, as similar phase tra for the simulations. Figures 4 and 5 are averages of the
shifts are observed in syste- with deterministic reso- signal to noise ratios at the input and output of the Schmitt
nances. A treatment based on linear response theory is giv- Trigger measured from many power spectra for a variety of
en in [!2]. cases with different signal amplitudes ana input noise pow-

er. Note that for a single Schmitt Trigger, output signal to
It has been speculated that Stochastic Resonance oay bn noise ratio was always le- thap that of the input, but was

exploited by biological sensor systems as a means of in- within 2 dB for large noise variance. Thus the Stochastic
creasing the signal to noise ratio of sensory inputs [131. Resonance process of a single device is lossy as compared

Though it has yet to be demonstrated in any known biologi- Rosandr pecestimatin tecenis

cal system, the elements are there for this to be p-,,sible. to standard spectral estimation tehniques.

Sensory ncurons are viewed as two state systems (firing or 4: Output Statistics, Non-Poissonian Behav-
not firing), and noise induced switching has been observed ior at High Noise Levels
in biological systems: [14], [15], and [16). Stochastic Reso-
nance can be induced in artificial neural networks [ 17], and A Schmitt Trigger driven by zero mean noise will have.
if arrays of bi-stable elements are giobally coupled, there under appropriate conditions, switching events that are

2



0.0 Poisson distributed [25]. That is, the probability of k
Sjjswitching events over some time interval t will be:_-I0.0F

""'-20.0 P(k : t) = ej-)'l$--.] (2)

>o- . [ where X is the"rate" of the Poisson process. Th-,en the auto-
Sin correlation function of the Schmitt Trigger output will be

-40.0.. [25]:

-50.0 out R(r) = exp[-2kX] (3)

0 256 512 768 102Z and its power spectnum will be:
Frequency 4X

Figure 3. Input (black) and Output Powcr Spectra S(O) = 4X2 + (0 (4)

Note that the rate, Xcan be estimated from the power spec-
30- tral estimate of the Schmitt Trigger output since (from (4)):

-.in =- = if', (5)

"It is noted here that the Poisson Distribution is in fact a lim-
!9 20- iting case of Bernoulli Trials:

1, 1 P(Aoccurs k times) =[nlp~q__ (6)CO• o u tk

1 where n is the number of trials. p is the probability of occur-
rence of event A. and q = 1 - p. Following the Poisson

5- Theorem, one can approximate (6) by (2) for a continuous
time process as n-, -, t-- 0.andasn/t -- X. Fora discrete

0_0 _, _,, time process one can approximate (6) by:
01 4 3( ocusktms4PLn ~ 7

Noise Variance k!occurs k times) = -,p)](

Figure 4. Input and Output Signal to Noise Ratio as n- ,and p-0O. Using (5), (7), and (2), one can check
with Signal Amplitude .5, Threshold 1 the validity of simulation results, or as will be shown, iden-

tify the point where there is a departure from Poisson be-
havior due to a violation of the assumptions of the Poisson

16- Theorem.

14- If the noise driving the Schmitt Trigger is zero mean and
12" in Gaussian, the probability, p. of a switching event occurring

at any instant in time is:

910 p = erfc('h/o) (8)

8- where Th is the switching threfaold of the Schmitt Trigger,
and a is the standard deviation of the noise, with erfc(x) de-

-6 fined as in [22].

4 / out -_Table I is a comparison of theoretical vs. experimental

2 /(simulated) determination of the Poisson rate, X , for a
SI A Schmitt Tigger with switching thresh-'is at VL , a.d "

0i inpu! noise variances shown. Note that the experimental
0 1 2 rate is higher than the predicted value for input noise vari-

Noise Variance ance greater than 2, or for probability of a switching event
Figure 5. Input and Output Signal to Noise Ratio greater than .2, due, no doubt, to a violation of Poisson

with Signal Amplitude. 1, Threshold 1 Theorem assumptions.
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Theoretical Experimental above the threshold of detection for the fine case. An ex-
haustive study or analysis of this was not done.p=

Variance erfc(Th/o) np X 3 out011 Oi

0.25 .023 47 45 14 010

0.5 .08 163 151 48

1.0 .159 327 332 105 001

2.0 .24 491 622 198

4.0 .39 634 272 in

Table 1. Theoretical vs. Experimental Determination of X
(note: Th = 1, n = 2048) -010

-011
5: Dithering, Stochastic resonance, Coarse
Quantization Figure 6. Quantization and Dithering

Dithering is a technique used to ameliorate undesirable 6: Coupled Bi-Stable Devices
nonlinearities in a system. It consists of adding a small A study of the influence of a "bath" of overdamped bi-
amount of (white) noise to a system. In digital signal pro- stable oscillators coupled to a single bi-stable oscillator can
cessing, adding noise to the least significant bit of a quan- be foundlato[ 18 upledth a more de tai lysis fortcan
tized signal is often used to reduce the nonlinear affects of be found in [218], with a more detailed analysis forthcoming
the quantization. It has been reported that dithering can al- in [2] eiuaic (9) ist for the oscors, cou-
low the detection of signals smaller in amplitude than ping, and peiodic plus noisy forcing that was considered:
least significant bit [26], or, for image processing, allow the N
detection of image features less intense than the lowest Ci'i Z J' tanh ui - -I + Ft) + q 3in ox (9)
quantization level. 

j-1

where the summation term defines the coupling, and the
It was suggested in [26] that the ability to detect these un- last two terms are the noisy and periodic forcing respective-

der-resolved signals was due to a "rounding" of the comers ly. The variables ui denote the state variables (analogous to
of the quantization steps which would create a linearization the membrane potentials in a biological neuron applica-
of the stepped transfer characteristic from input to output of tion) of each element, and Ri and Ci represent the input ca-
the quantization process. This could be the case if the noise pacitance and transmembrane resistance of each.
were multiplicative, however this is not possible with a tin- If one assumes the time constant of the element of inter-
ear summation of noise. A much more plausible explana- est to be much longer ta that of the others, ie.:
tion is that there is a mechanism similar to Stochastic reso-
nance which allows this detection of under-resolved RIC, > > R~i for i > 1 (10)
signals. The diagram in Figure 6 illustrates this mecha- and if the frequency of the periodic forcing, w, is
nism: an under-resolved sinusoid added to noise of ap- constrained to be less than the Kramers rate of the system
propriate intensity will alternately increase the probability when driven only by the noise, then one can adiabatically
of transition to a higher or lower quantization state at its eliminate the "bath" variables (ui, for i > 1) from Equation
high and low peaks, and otherwise tend to stay in the current (9) to yield a reduced model of the following form [18],
quantization state. [28]:

Continuing this line ofreasoning, a few simulations were 6, = -au, + P3tanhu, + 8sintwt + o,.F(t) (11)

run to compare the processing gain (loss) of coarse quanti- Simulations of this reduced model have been done, and en-
zation to that of a Schmitt Trigger. Note that the key differ- hancements of output signal to noise ratio (as compared to
ence between the transfer characteristics of the two is that what is observed with a single oscillator) have been
the Schmitt Trigger has hystere-i. while the "staircase" achieved. The behavior of the system is very sensitive to
characteristic of the quantizer is closer to being linear. The the choice of system parameters (coupling, time constants,
results of this cursory test indicated that the coarse quantiz- etc.) and signal parameters (input noise, bath noise, etc.).
er outperformed the Schmitt Trigger, and matched the per- Investigations into the applicability of this phenomenon to
formance of a finely quantized simulation until a point just signal processing are continuing, including the generation
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