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An Evaluation of the Stochastic Resonance Phenomenon
as a Potential Tool for Signal Processing

T. R. Albert, A. R. Bulsara, G. Schmera, M. Inchiosa

Naval Command, Control, and Ocean Surveillance Center, RDT&E Division
San Diego, CA 92152-5001

Abstract

Stochastic Resorance is a acniincar stociwistic phenom-

enon which can cause a transfer of energy from a random

process (noise) to a periodic signal over a certain range of
signal and system parameters. It has been observed in
many diverse natural and physical systems, and may be one
means by which biological sensor systems amplify weak
sensory signals for detection. This paper is an evaluation
of the use of the Stochastic Resonance phenomenon as a
tool for signal processing in terms of its processing gain.

1: Introduction

Stochastic Resonance is a nonlinear phenomenon which
has been shown to occur in bi-stable systems or in two state
devices. Over a certain range of signal and system parame-
ters it can cause what amounts to a transfer of energy from
a random process (noise) to a periodic process (signal).
This has the potential to dramatically improve the signal to
noise ratio at the output of the device. Use of a single non-
linear two state device will be shown to be lossy as
compared to the use of the power spectrum for detecting a
sinusoid in white noise. However, globally coupling many
two state devices appears to have the potential to overcome
these losses, and possibly exceed the gains achievable by
linear systems due to an enhancement of the Stochastic
Resonance effect over what might be expected in a single
two state device.

The “classical” description of the phenomenon is that of
a particle in a dual well potential which is excited by a
strong stochastic process and a weak periodic process.
Herz, weak means that the force applied by the periodic ex-
citation alone is not sufficient to overcome the barrier, so
no state transitions occur in the absence of stochastic forc-
ing. When noise of appropriate strength is added to the pe-
riodic forcing, state transitions which have a random com-
ponent and a periodic component occur. The periodic
component of the transitions (output} containe the funda-
menta! frcquency aind somciimes odd harmonics of the pe-
riodic excitation. As one increases the strength of the ran-

dom forcing, the component of the power spectrum of the
transitions which is at the frequency of the periodic forcing
increases to a peak value for a critical value of noise
strength, and then decreases with further increases of noise
strength until the stochastic forcing completely dominates
the state transitions. It is this peaking that inspired the term
Stochastic Resonance., There is also a peaking of the signal
to noise ratio of the periodic component of the transitions,
occurring near the amplitude peak.

The dual well model (Fig. 1) is the one most commonly
found in the literature. An equivalent description which is
better suited to the purposes of this paper is an input/output
or transfer characteristic. Figure 2 shows two examples that
should be familiar to the reader which support Stochastic
Resonance; that of a two state magnetic device, and of a
Schmitt Trigger. Here the Stochastic Resonance phenome-
non may be viewed as the response of a two state device
driven by periodic and a stochastic signal, wherein the peri-
odic signal alternately increases the probability of a transi-
tion from one state to the other, with the noise facilitating

U(x) U(x)

Wx ’ ‘ x

Figure 1. Particle in a Dual Well
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Magnetic Schmitt Trigger
Figure 2. Transfer Characteristics




2: Background

Stochastic Resonance was first reported and analyzed in
(1] as an interesting effect in nonlinear dynamics. It was
soon after proposed as a possible explanation for the ob-
served periodic occurrences of the carth’s ice ages in [2] and
[3]. For this case, the two states of the system are taken to
be the earth’s climate as it is at present and as it is during
anice age. The “noise” of the system is the variation in the
absorption or reflection of incident solar energy caused by
daily and seasonal weather pattems, cloud covez, ice cover,
etc. The weak periodic force is the variation of incident so-
lar energy caused by a small periodic eccentricity in the
earth’s orbit having a period of 100,000 years.

An experimental measurement of the behavior of a two
state electronic device, the Schmitt Trigger, driven by a
weak periodic signal in noise, was reported in [4]. The Sto-
chastic Resonance phenomenon was observed, and the
location of the resonance peak was shown to be in the vicin-
ity of where the noise intensity had a Kramers rate [5] close
to half of the frequency of the periodic signal. The Kramers
rate (in the absence of signal) is given by:

r = iJIU"(O)I U™(c) exp(— %IZ-J-) 1)

where U (0) and U™ (c) are the curvatures of the potential
at the barrier and in the wells, respectively, AU is the barrier
height, and o is the standard deviation of the noise. White
noise is assumed here, and throughout this paper.

Stochastic Resonance has been observed in other physi-
cal systems such as ring lasers [6], bi-stable electron para-
magnetic resonance systems [7], magnetoelastic ribbons
[8], and simulated in bi-stable Superconducting Quantum
Interference Devices (SQUIDs) [9]). References (10} and
(11] contain a theoretical treatment of the Stochastic Reso-
nance phenomenon based on the so-called adiabatic as-
sumption, and [7] reported the observation of a phase shift
occurring in the output of the periodic component as it
passed through the output signal to noise ratio peak that is
characteristic of Stochastic Resonance. This gives added
validity to the use of the term resonance, as similar phase
shifts are observed in systemr- with deterministic reso-
nances. A treatment based on linear response theory is giv-
enin [12].

It has been speculated that Stochastic Resonance may be
exploited by biological sensor systems as a means of in-
creasing the signal 10 noise ratio of sensory inputs [13].
Though it has yet to be demonstrated in any known biologi-
cal system, the elements are there for this to be possible.
Scnsory ncurons are viewed as two state systems (firing or
not firing), and noise induced switching has been observed
in biological systems: [14], [15], and [16). Stochastic Reso-
nance can be induced in artificial neural networks [17], and
if arrays of bi-stable elements are giobally coupled, there

are cooperative effects which enhance the phenomenon
[18]).

Good surveys on the subject of Stochastic Resonance
with extensive reference lists can be found in [13], [19], and
[20).

3: Stochastic Resonance as a Signal Proces-
sing Tool

The question to be addressed here is whether or not it is
useful (or desirable) to incorporate a “‘stochasti. resonator”
in a signal processing system to aid signal detection. It is
well known that the linear filter which maximizes output
signal to noise ratio is the “matched filter” [21], [22], [23].
There is no such generalized theory for the class of nonlin-
ear filters so it is possible (though not yet proven or dis-
proved) that a nonlinear filter or operation could create a
greater output signal to noise ratio.

The Schmitt Trigger is the “stochastic resonator™ device
chosen for the evaluation here. It is simple to implement
in hardware or software, it reduces dynamics to just switch-
ing events, and is a constant output energy device. Thue it
is easy to show that if the output signal to noise ratio in-
creases with increasing input noise intensity, the increase in
output signal power is at the expense of noise power. A
computer simulation consisting of a sinusoid in “white™
noise driving a Schmitt Trigger was used for the evaluation.
Adjustable parameters were signal amplitude, noise vari-
ance, and threshold of the Schmitt Trigger. The power
spectra of the Schmitt Trigger input and output were used
to measure the input and output signal to noise ratios. Pow-
er spectral estimation via Fourier methods is commonly
used for detecting sinusoids of unknown frequency and
phase in noise, and is the closest approximation to the
matched filter achievable for that case with Gaussian noise
[22], [23], when the binwidth [24] is matched to the band-
width of the unknown signal. For these reasons the power
spectral estimate was chosen to be the baseline for compari-
son in this paper.

Figure 3 is a plot of typical input and output power spec-
tra for the simulations. Figures 4 and S are averages of the
signal to noise ratios at the input and output of the Schmitt
Trigger measured from many power spectra for a variety of
cases with different signal amplitudes ana input noise pow-
er. Note that for a single Schmitt Trigger, output signal to
noise ratio was always less thar that of the input, but was
within 2 dB for large noise variance. Thus the Stochastic
Resonance process of a single device is lossy as compared
to standard spectral estimation techniques.

4: Output Statistics, Non-Poissonian Behav-
ior at High Noise Levels

A Schmitt Trigger driven by zero mean noise will have,
under appropriate conditions, switching events that are
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Poisson distributed (25). That is, the probability of k
switching events over some time interval t will be:

k
Pk:t) = e““[—(%)—] 2
where A is the “rate” of the Poisson process. Then the auto-

correlation function of the Schmitt Trigger output will be
(25]:

R() = exp[-2\] €))
and its power spectrum will be:

Note that the rate, A , can be estimated from the power spec-
tral estimate of the Schmitt Trigger output since (from (4)):

A =me = nfsm (5)

It is noted here that the Poisson Distribution is in fact a lim-
iting case of Bemoulli Trials:

n
P(A occurs k times) = [k]p“q""‘ ©)

where n is the number of trials, p is the probability of occur-
rence of event A, and q = 1 — p. Following the Poisson
Theorem, one can approximate (6) by (2) for a continuous
time processasn— o, t— 0, andasn/t —\ . Fora discrete
time process one can approximate (6) by:
k
P(A occurs k times) = c‘“"[%] @)

asn— «,and p—0. Using (5), (7), and (2), one can check
the validity of simulation results, or as will be shown, iden-
tify the point where there is a departure from Poisson be-
havior due to a violation of the assumptions of the Poisson

‘Theorem.

If the noise driving the Schmitt Trigger is zero mean and
Gaussian, the probability, p, of a switching event occurring
at any instant in time is:

p = erfc(Th/o) @®
where Th is the switching thresiwld of the Schmitt Trigger,

and o is the standard deviation of the noise, with erfc(x) de-
fined as in [22).

Table 1 is a comparison of theoretical vs. experimental
(simulated) determination of the Poisson rate, A , for a
Schmitt Trigger with switching thresh-'ds at +/~ I, aud th~
input noise variances shown. Note that the expesimental
rate is higher than the predicted value for input noise vari-
ance greater than 2, or for probability of a switching event
greater than .2, due, no doubt, to a violation of Poisson
Theorem assumptions.




Theoretical Experimental
ert o A 1
Variance c(Th/c) np 348
0.25 023 47 45 14
0.5 08 163 151 48
1.0 .159 327 332 105
20 24 491 622 198
4.0 39 634 854 272

Table 1. Theoretical vs. Experimental Determination of A
(note: Th=1, n=2048)

5: Dithering, Stochastic resonance, Coarse
Quantization

Dithering is a technique used to ameliorate undesirable
nonlinearities in a system. It consists of adding a small
amount of (white) noise to a system. In digital signal pro-
cessing, adding noise to the least significant bit of a quan-
tized signal is often used to reduce the nonlinear affects of
the quantization. It has been reported that dithering can al-
low the detection of signals smaller in amplitude than the
least significant bit [26], or, for image processing, allow the
detection of image features less intense than the lowest
quantization level.

It was suggested in [26] that the ability to detect these un-
der-resolved signals was due to a “rounding” of the comers
of the quantization steps which would create a linearization
of the stepped transfer characteristic from input to output of
the quantization process. This could be the case if the noise
were multiplicative, however this is not possible with a lin-
car summation of noise. A much more plausible explana-
tion is that there is a mechanism similar to Stochastic reso-
nance which allows this detection of under-resolved
signals., The diagram in Figure 6 illustrates this mecha-
nism: an under-resolved sinusoid added to noise of ap-
propriate intensity will altemately increase the probability
of transition to a higher or lower quantization state at its
high and low peaks, and otherwise tend to stay in the current
quantization state.

Continuing this line of reasoning, a few simulations were
run to compare the processing gain (loss) of coarse quanti-
zation to that of a Schmitt Trigger. Note that the key differ-
ence between the transfer characieristics of the two is that
the Schmitt Trigger has hysterecic while the “staircase”
characteristic o1 the quantizer is closer to being linear. The
results of this cursory test indicated that the coarse quantiz-
er outperformed the Schmitt Trigger, and matched the per-
formance of a finely quantized simulation until a point just

above the threshold of detection for the fine case. An ex-
haustive study or analysis of this was not done.
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Figure 6. Quantization and Dithering

6: Coupled Bi-Stable Devices

A study of the influence of a “bath” of overdamped bi-
stable oscillators coupled to a single bi-stable oscillator can
be found in [18], with a more detailed analysis forthcoming
in {27). Equation (9) is the model for the oscillators, cou-
pling, and periodic plus noisy forcing that was considered:

N
Ca; = j-zllitanhu,- - ;‘ + F() + qsinot  (9)

where the summation term defines the coupling, and the
last two terms are the noisy and periodic forcing respective-
ly. The variables u; denote the state variables (analogous to
the membrane potentials in a biological neuron applica-
tion) of each element, and R; and C; represent the input ca-
pacitance and transmembrane resistance of each.

If one assumes the time constant of the element of inter-
est to be much longer than that of the others, ie.:

R,C, >> RL, for i> 1 10)

and if the frequency of the periodic forcing, w, is
constrained to be less than the Kramers rate of the system
when driven only by the noise, then one can adiabatically
eliminate the “bath™ variables (u; , for i > 1) from Equation
(9) to yield a reduced model of the following form [18],
[28]:

4, = -au, + Btanhu, + dsinwt + o F(t) (11)

Simulations of this reduced model have been done, and en-
hancements of output signal to noise ratio (as compared to
what is observed with a single oscillator) have been
achieved. The behavior of the system is very sensitive to
the choice of system parameters (coupling, time constants,
etc.) and signal parameters (input noise, bath noise, efc.).
Investigations into the applicability of this phenomenon to
signal processing are continuing, including the generation




of a simulation of the full dynamics represented by Equa-
tion (9).

7: Conclusion

Compared to standard power spectral estimation tech-
niques, the use of a single “stochastic resonator” device will
result in a processing loss of at least 2 dB in the region of
signal to noise ratio where the “resonator” performs best.
In addition, there does not appear to be any advantage to uti-
lizing a single “resonator” device where signals are under-
resolved due to coarse quantization. There is, however, evi-
dence which suggests that use of an array of globally
coupled devices may be able (o overcome the processing
loss of a single device, and perhaps exceed the gains achiev-
able with linear signal processing systems.
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