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Abstract

The effect of polydispersity on the width of the interphase between an end-tethered

polymer and a polymeric matrix has been investigated using a computer program which solves a

self-consistent field model of a polymer chain distributed on a cubic lattice. This model was used

to calculate an average volume fraction of each species along the axis perpendicular to the

grafting plane. A Flory-Huggins type expression, generalized to a multicomponent system, was

used to model the free energy change of mixing. The logarithmic-normal molecular weight

distribution function was employed to generate the desired molecular weight distribution for the

end-tethered polymer while the matrix was assumed to be monodisperse. Brushes having

polydispersities from 1.0 (monodisperse) to 3.0 were studied under repulsive, attractive and

athermal enthalpic brush-matrix interactions. The effect of polydispersity on the width of the

interphase was found to be dependent upon the type of enthalpic interaction. When a repulsive

brush-matrix interaction existed, the width of the interphase was not affected by brush

polydispersity, however the brush profile showed evidence of an increased stretching of the brush

into the matrix as the polydispersity was increased from 1.0 to 3.0, indicating enhanced mixing in
?'or

the interphase. The use of polydisperse brushes at solid-polymer interfaces for adhesion t

promotion is discussed by considering how enhanced brush-matrix contact and a surface exclusion on

zone affect the interfacial toughness.
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Intrdicinn

It has long been known that the configuration of a polymer near an adsorbing surface is

very different than the configuration of a free chain. One interesting and potentially useful

configuration adopted by polymers adsorbed at a solid surface is that of a polymer "brush". The

term brush describes the structure which arises when the polymer chains are tethered to a surface,

line or point by a segment (such as an endgroup) or segments (such as one block of a copolymer).

Since some segments are bound to the surface, the rest of the chain is displaced away from it into

the medium which the brush is in contact with. The average surface, or grafting density of

adsorbed segments largely determines the degree to which the chain is elongated perpendicular to

the grafting plane. Many different examples of brush structures exist. A Langmuir-Blodgett film

is a brush of oligomeric molecules at very high grafting density. A diblock copolymer which

bridges two immiscible polymer phases can be considered to be two-sided brush in which the

grafting "surface" is that region where the junction points of the blocks are located. Sterically

stabilized colloidal dispersions and micelles can also be considered to be brushes grafted to the

surface of a sphere.

While brush structures are employed in such fields as tribology, biophysics, flocculation

and colloid stabilization, the focus of this study is on their use as adhesion promoters at the

polymer-solid interface. From this point on we shall use the term "brush" to denote a structure

consisting of polymer chains which are end-tethered to a flat, smooth surface. A typical example

is a so-called silane coupling agent used to reinforce the interphase between a glass fiber and the

matrix material in a composite. Studies have demonstrated the importance of good fiber-matrix

adhesion on the performance of model composites."' In the adhesion of a polymer to a surface,
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the behavior of the solid-brush interface and interphase are both important. Here we shall refer to

the interface as the surface of the solid where the brush chains are bonded or adsorbed. The

interphase shall refer to that region in which the transition from the brush phase to the matrix

phase is gradual, occurring for the most part over a few nanometers. One would like both to

increase the ultimate strength of the interphase as well as the strain before break, so that the

toughness of the interphase in increased. Dissipation mechanisms which arise from chain pull-out

have been shown to play an important role in the strength of adhesive bonds."' Of specific

interest are recent results of several authors on the adhesion of elastomers to solids."'" Chain

pull-out can only occur if the brush and matrix polymer chains are sufficiently entangled

throughout the interphase region. The degree of entanglement should be proportional to the

width of the interphase and to the relative concentrations of brush and matrix chains across the

interphase. Thus, an increase in the width of the brush-matrix interphase will enhance chain

entanglement, increase energy dissipation during fracture and lead to a tougher interphase.

Early theoretical investigations of brushes"' 3 explored the basic shape of the

concentration profile while more recent papers have dealt with increasingly complex situations

(polymeric matrices1 4, interface geometry', behavior under shear or compression"6 ). Most have

neglected the fact that polymeric materials have a distribution of molecular weights and thus are

not "pure" materials. Only recently has research into the behavior of bidisperse or polydisperse

brushes been undertaken."'"s It has been demonstrated"7 that the properties of a bidisperse brush

may be very different from those of a monodisperse brush. Dramatic changes in the shape of the

brush concentration profile have also been observed."' A more systematic investigation of
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polydisperse brushes in terms of adhesive properties was seen as a natural extension of these

studies, and is the objective of this paper.

Theory

In order to study the effect of polydispersity on the width of the interphase a model system

must be constructed. We wish to simulate a brush of arbitrary polydispersity, grafting density and

degree of polymerization and to include enthalpic interactions between the brush and matrix. The

chains are modeled as a series of freely jointed Kuhn segments. The brush is tethered at one end

only and the adsorption energy is assumed to be infinite. We assume that the brush structures

under study have already been formed by some means and that no brush chains exist in the matrix

phase. No other interactions exist between the chain backbone and the grafting surface for both

the brush and matrix chains, however interactions may exist between brush and matrix chains. Of

primary interest are compositional changes occurring perpendicular to the grafting surface, which

is assumed to be a perfectly flat infinite plane. For this reason, the system is assumed to be

isotropic in directions parallel to the grafting plane. Furthermore, the interphase is assumed to be

diffuse such that any fluctuations are much larger than the dimensions of an unperturbed chain.

The above simplifications and restrictions result in a system in which the features of interest may

be described by a simple mathematical model.

Let us now concern ourselves wiui the numerical construction of the system just

discussed. The numerical self-consistent mean field treatment used here was pioneered by

Cosgrove et. Al.19 and closely follows the form given by Shull.14? Consider a polymer chain

distributed on a cubic lattice in space as shown in Figure 1. There are six "nearest-neighbors" for
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each coordinate of the lattice. If we are at some segment, j, along the polymer chain, the next

segment, j+l, may be located only at one of the nearest neighbor sites. These points determine

the connectivity of the chain on the lattice. Since the brush structure is assumed to be isotropic in

all directions except for the direction normal to the grafting plane, the four nearest neighbor

positions which are in the same lattice layer are equivalent as illustrated in Figure 1. In reality, a

polymer chain would have a non-uniform density profile in directions other than that

perpendicular to the grafting surface. Recent work has shown that the interphase resembles a

rippled surface rather than a purely diffuse interface." The perpendicular direction is of primary

interest, however, and-the one-dimensional lattice simplifies the system considerably.

The central quantities which describe the location of chain segments across the lattice are

the "chain probability distribution functions" (PDF), q(ijk). Within this discussion, index "i" will

always refer to the lattice layer, index "'j" the chain segment while index "k" will identify the

polymer chain. For each q(ij,k), the j index runs from 0 at one end to Nk, the degree of

polymerization in Kuhn lengths, at the other. Two PDFs are required to model the spatial

distribution of an end-tethered polymer chain since the spatial distribution of each chain end will

be different. Any arbitrary unit, j, of the chain is indexed as q,(ijk) by one PDF and as

q2(i,Nk-j,k) by the other as shown in Figure 2. The quantity q,(ij,k), where "n" is either 1 or 2,

relates the proL,'bility of segment "j" in chain "k" on lattice layer "i" to the probability of chain end

"n". The chain probability distribution functions do not give the density distributions of the

polymer, but they do contain the information necessary to calculate them. A discrete diffusion

equation may be generated which relates the probability densities of all segments to the chain end

probability densities. Since two distinct PDFs are required to describe a linear polymer chain:
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q (i,j,k) =[-LqI(i- l,j- 1,k) + fqI(i + 1,j- 1,k) +
eq 1~j 1, k) I ,xp(-#i, k)lk7) (1)

q2(i,j,k) = { +q2i- lj- Lk)+jq 2(i+ l,j- Lk) +
q2(i,j - 1, k) I exp(-w(i, k)/kT) (2)

where w(ik)/kT is the local mean field. These discrete difference formulas were shown by Shull14

to be equivalent to the diffusion theories of Edwardse, Helfand and others.24-2 Shull2 has also

shown that the solution is independent of the lattice type. In order to solve these equations, the

probability densities of the chain ends must be supplied as initial conditions for all lattice layers.

For an end-tethered brush, one end (the definition of whether end #1 or end #2 is adsorbing is

arbitrary here) has a probability of zero everywhere except at the surface (i = 1) while the free end

probability distribution is equal throughout the lattice for all chains.

From the chain probability distribution functions one can calculate the volume fraction of

interest. The volume fraction of segment "j" of chain "k" on lattice layer "'T is given as:

*k(i,• f= exp(pk) qi(i,j,k) q2(i, Nk -j, k) (3)

where pl is the chemical potential of chain "k". One obtains the total volume fraction for chain

"k" by summing the segmental volume fractions over all segments j:

N1

*k(i) = exp(p.*) 1f ql(i,j k)q2(i,Nk -j,k) } (4)
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Note that the index runs from 0 to Nk, the number of Kuhn statistical segment lengths in chain

"k", and that a degree of polymerization of zero is possible.

The equations which define the mean-field may be derived from Flory-Huggins

thermodynamic relations. Following Shull and Kramer3 , we define the free energy density for a

system of "k" distinct polymer chains as

FIT= 1±ln +I T.*mOX
kNk N2n (

The chemical potentials, p4, and the mean fields, w(ik), are derived from the free energy density

using the relations

gPk/Nk = -ý-[FITJ + FIT- D4k-w-[FfT] (6)

w(i, k) = W•kN - lIn Ok() + Aw(i) (7)
Nk

which lead to the expressions

~d~ ±+) +~XNm 2m± ~mn in (8)•dN, 1- + In* -k ý-W-) +. + ,,•,,

N Nk m Nm i 2 mn
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The Aw term is included in the mean field only to insure that all volume fractions sum to

unity on each lattice layer (incompressible lattice). Since the volume fractions, as expressed by

the equations presented here, form a monotonic function in Aw, one can use root bracketing and

interval bisection techniques to find the Aw for which Ftk = 1.0 ± e for any arbitrarily small E. In
k

this way it is easy to control the accuracy in the solution at any given time during the relaxation.

Use of a compressibility parameter to define Aw by

A%<i) = D[s(i) -1.O] (10)

was found to obscure the degree of convergence which had been achieved by causing a slow

oscillation in the total volume fraction. The probability distribution functions and mean-field

relations are used coincidentally to find a self-consistent solution for the distribution of the chain

segments across the lattice. A brief description of the method of solution used in this work is

given in the Appendix.

While the mean-fields determine how the polymer is distributed across the lattice, it is the

chemical potentials which govern the relative total amount of each component. It is difficult to

calculate a priori those chemical potentials which would give rise to the desired molecular weight

distribution. If the chemical potential of the matrix is fixed at some arbitrary value, however, the

chemical potentials of the brush chains take on definite and finite (though unknown) values. As

described by Shull and others"ý'9, the mean-fields and chemical potentials are specified only to

within a constant. Addition of a factor Ak to the mean field w(i,k) is equivalent to adding a factor

NkAk to the chemical potential pk. Since this extra term is accommodated by the Aw(i) term of
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the mean field w(ik), the chemical potential g. can be changed at will to alter the overall amount

of chain "k' in the system. Thus, the chemical potentials need not be calculated a priori and can

be solved for during the relaxation process.

Modeling a Polydisperse Brush

Modeling the molecular weight distribution of a real polydisperse brush formed by

adsorption from solution or melt is difficult. The distribution of molecular weights in the brush is

of concern only, however, since it is assumed that the brush has already been formed and that no

brush chains exist in the matrix phase. No attempt has been made to-model the adsorption

process itself. For this work, we assumed that the molecular weight distributions of the tethered

chains could be described by the logarithmic-normal (LN) distribution. The LN distribution is

mathematically convenient for modeling systems of varying polydispersity since the number

average molecular weight may be fixed while the weight average molecular weight is varied.

Since the ratio of the brush and matrix number average molecular weights has an affect on the

interfacial width14, constraining M. was an important consideration.

Once the number (M.) and weight (M.) average molecular weights were chosen and the

LN distribution generated as a continuous function, a discrete representation was needed. Since

the number of different chains (of dissimilar degrees of polymerization, adsorbing or

non-adsorbing) which could be simultaneously modeled was limited by available computational

resources, a careful discretization was critical in insuring proper representation of the LN

distribution. Furthermore, the computational requirements for modeling high molecular weight
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polymer chains made it necessary to truncate the molecular weight distribution at some maximum

molecular weight. The number of discrete chains with which the molecular weight distribution of

the brush would be modeled was chosen first. This varied from 10 chains for M,/M.=1.2 to 20

chains for M./M= 3.0. The lattice model represents polymer chains as a series of connected

Kuhn segments. For this reason, the molecular weights are given in multiples of the molecular

weight of the Kuhn segment, M0. Furthermore, polydispersity is independent of molecular weight

so that only the relative degrees of polymerization of the brush chains are important.

The discretization was performed by a separate computer program which followed the

following scheme. An upper limit, M*/Mo, was set on the degree of polymerization (in Kuhn

lengths) under consideration such that

M./MoI PWx = 0.99 * ZPWx (11)
x=O 1,

P(x) represents the logarithmic-normal distribution, given as

P(X) = eo 2/2 -nx") 2nla2  (12)

where xo and a are adjustable parameters. Mn and M, are given by

M-I/Mo = xoeG2f2 (13)

M'JMo =xoe3a2f2 (14)
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An arbitrary set of molecular weights having M(k)/Mo between 0 and M*/Mo was generated as an

initial guess. The amount, N(k), of each chain was calculated using the logarithmic nnrmal

distribution function for each molecular weight of the set, M(k)/Mo. Finally the discrete M. and

M. were recalculated using the relationships

M,/Mo = ZI N(k) M(k)IMo } (15)INk

M,/Mo = £I{ N(k) [ M(k)/Mo]0  (
I{ N(k) M(k)/Mo }

The results were compared with the desired values of MJM0 and MJM0 to generate a

squared-error of fit. A multidimensional minimization routine was used to continually vary each

Mk until the discrete M. and M. were within one percent of the desired values. MJM0 was fixed

equal to 100 for each molecular weight distribution and MJMo was varied to give the desired

polydispersity. The matrix was modeled using one chain only, as a monodisperse brush with

MJMo equal to 100.

To reduce the degrees of freedom of the problem, two other criteria were used. With the

logarithmic normal distribution, the ratio MM,/M is identical with the ratio M./Mn, where Mf/M0 is

calculated by

MJ/Mo = 1{ N(k) [ M(k)IMo] 3 }o { N(k) [M(k) IMo]2 } (17)
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Also, it was desired to separate each M(k) as much as possible. Both additional criteria were

included in the objective function supplied to the minimization routine. In this way, it was

possible to generate an evenly distributed set of molecular weights and amounts which

represented the LN distribution in a discrete fashion and had a reasonable upper bound.

Once a set of molecular weights and their amounts were chosen to represent the brush

molecular weight distribution, they needed to be modeled in the brush simulation. The amount of

each chain in the brush, N(k), is given by

N(k) = Lk exp(-jt)- q1 (1,0,k) -q2(1,Nk, k)
a aY

where 0" is the volume fraction of the adsorbing end of chain "k" at the surface (i=l), and a is the

grafting density, equal to TZ_. The quantity q1(1,O,k) is the probability density of end #1 at the

grafting surface and the term exp(-pk) is the local mean-field for chain k. Note that here we have

assumed that end #1 is the adsorbing end. The quantity q2(1,Nkk) is the probability density of end

#1 on the grafting surface referenced to the probability density of end #2 (see Figure 2). The

probability q2(1,Nkk) has been propagated along Nk chain segments using the discrete difference

formulas given by equations (1) and (2). As mentioned earlier, the chemical potentials may be

changed during the simulation to adjust the molecular weight distribution of the brush. The value

for each g. is obtained from equation (18) since each N(k) has been determined a priori from the

discretization of the LN distribution. With everything except q2(1,Nkk) known, we obtain new

chemical potentials at each iteration by

Atk = In { qi(1,O,k)- q2(1,Nk, k) / [a. N(k)] } (19)
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as q2(1,N,,k) changes. The chemical potentials slowly cease to change as the solution evolves;

when the difference between iterations is below 10V to 10' percent we assume the solution to be

valid.

Results

By solving for the concentration profiles of an end-tethered brush in contact with a

polymeric matrix, information about the interphase is gained. The interphase plays an important

role in determining the useful properties of the brush-matrix system since adhesion between the

substrate and the matrix now occurs in this zone. Since energetic effects are important, we have

separately considered three cases in which values of X = -0.1, 0.0 and 0.1 were used to represent

systems in which attractive, neutral or repulsive brush-matrix interactions exist. The large

repulsive enthalpic interaction is meant to represent incompatible brush and matrix polymers. The

neutral enthalpic interaction represents tethered polymer in contact with a matrix of the same

molecular architecture. The effect of a large attractive enthalpic interaction on the interphase was

also examined. This represents the case where the brush differs from but is highly miscible with

the matrix polymer. The grafting density, ;, was equal for all systems to minimize the number of

variables to be explored. A value of ---0. 1 was chosen to approximate monolayer brush

thickness. Since the grafting density, equal to the total volume fraction of chain ends at the

surface, can be interpreted as an area per chain end there are an average of 10 square Kuhn

lengths (P) surface per chain end. For a random flight chain of degree of polymerization, N, equal

12



to 10O, the radius of gyration, given by Rs = J_16 P, is equal to 4.08P. The exact relation

between R. for a free chain in the bulk and that for an unstretched, end-adsorbed chain is

unknown. If, however, we assume that the surface are per chain scales as R. , we can say that the

grafting density is above the concentration for chain overlap on the surface since Rg2> lO0 2.

The concentration profile of a monodisperse brush is shown in Figure 3 for each of the

three enthalpic interactions, illustrating the effect which enthalpic interaction can have on the

width of the interphase. The repulsive interaction has caused the brush and matrix to demix,

sharpening the interfacial concentration profile ("dry" brush). The attractive interaction causes

the brush and matrix phases to maximize contact and swell into the matrix, reducing the

concentration gradient ("wet" brush). The athermal interaction concentration profile lies midway

between these two cases. Note that the composition at the surface (lattice' Ir .'r 1) decreases from

1.0 for the repulsive interaction to approximately 0.85 for the attractive interaction. The

significance of this zone of high brush concentration near the grafting surface will be discussed in

terms of the adhesive properties of the brush-matrix system in a later section.

The discrete brush molecular weight distributions generated from the LN distributions and

used to generate the polydisperse brush profiles are shown in Table 1. The corresponding brush

concentration profiles are shown as a function of polydispersity in figures 4 (X = 0. 1), 5 (Q = 0.0)

and 6 (x = -0.1). Though these figures clearly show that mixing of the brush and matrix increases

with brush polydispersity, a more objective means for comparing the extents of mixing was

desired. Since the adhesive properties were of interest and since chain entanglement is the

controlling factor at a polymer-polymer interfaces, a means for measuring the entanglement

probability was desired. It was hypothesized that local entanglements are proportional to the
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local volume fraction of both the brush and matrix. Stated mathematically, on lattice layer "i"

entanglement density - *b,&(i). .- (i). By integrating over the entire system the overall

entanglement probability can be measured. The function has the following form

EPF=J *brvh(/)(1-Obruah(i)) di (20)

This equation shall be referred to as the entanglement probability function (EPF). This fun(

form was chosen so that any arbitrary change in the shape of the concentration profile across the

interphase could be detected, however no considerations have been made of the distance between

entanglements. It is presented only as a first approximation. The entanglement probability

function was calculated for each system. The results are summarized in Table 2 and plotted as a

function of polydispersity, as shown in Figure 7. At a brush polydispersity of 3.0, an 82 percent

increase in the EPF compared to the monodisperse brush is seen for the athermal system while an

increase of 55 percent is seen for the attractive system.

Discussion

The magnitude of the change in the shape of the concentration profile with polydispersity

depended upon the enthalpic brush-matrix interaction. For the values of X studied here, the

concentration profiles and EPF values were influenced by the brush polydispersity for the

athermal (Q = 0) and attractive (X = -0.1) enthalpic interactions only (Figure 5 and 6 respectively).

The shape of the concentration profile has two distinguishing features at higher polydispersities

for these systems. The brush concentration near the grafting surface in the polydisperse brush is

14



less than in the monodisperse brush and a long "foot" extends into the matrix phase. These

features indicate an increase in mixing between the brush and matrix. More significantly, the

"foot" indicates the extension of the longer chains into the matrix. This may indicate that higher

concentrations of the longer chains will lead to ever greater EPF values.

The repulsive interactions caused the brush to collapse and sharpened the interface,

resulting in a symmetric (about *= 0.5) concentration profile. The fact that the interphase

width was not influenced by brush polydispersity suggests that the repulsive interaction

overwhelmed other forces which encourage mixing. One should note, however, that the values

for the Flory-Huggins interaction parameter which were chosen for this study represent points

within a continuum. Therefore, one would expect that intermediate values of X would result in

EPF values which, in general, follow that same trends as the three values studied here, namely an

asymptotic increase in the EPF value with polydispersity. Similarly, the magnitude of the EPF

increase will also depend upon X, though for strongly repulsive systems (eg. c > 0.1)

polydispersity effects should be minimal since the enthalpic interactions dominate.

Since interphase broadening is observed for the athermal system, driving forces other than

enthalpic energy must be involved. Could the entropy of mixing between the brush and matrix

reduce the free energy and promote mixing at high polydispersity? To further investigate this

hypothesis, the free energy change of mixing for varying degrees of polydispersity were examined.

The free energy change for an athermal, polydisperse system is given by

AGo A -AS = (M) In[ d(M) Il M (21)
01M
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where the volume fractions are specified by the logarithmic-normal disuibution. This equation

was integrated numerically for several values of polydispersity between 1.0 and 3.0 and various

brush volume fractions. The results, shown in Figure 8, show that the free energy decreases

asymptotically as polydispersity increases. Thus, the brush becomes more "miscible" with the

matrix as polydispersity is increased. The effect is most pronounced between MJM, = 1.0 and

M,/M = 1.4. Increasing polydispersity beyond 1.5 causes little change. A similar tend is

observed for the EPF values, suggesting that entropic effects are linked to interfacial broadening.

Since interphase broadening occurs for MJM, > 1.5, entropic effects can, at best, only partially

explain the results. To include all the molecular weights which make up the brush when

calculating the overall free energy of mixing between the brush and matrix is not strictly correct,

because the compositions of the brush and matrix phases vary with distance from the surface.

However, the overall brush molecular weight distribution does approximate the distribution of

molecular weights within the proximal (near the grafting surface) region of the brush. Therefore,

while we cannot be certain that an entropically driven decrease in AG occurred in all parts of the

brush for the athermal polydisperse system, the enhanced mixing which occurs in the proximal

region may be explained by this hypothesis.

In addition to energetic considerations, one must also consider how the changing

distribution of molecular weights in the brush affects the shape of the concentration profile. At

polydispersities greater than 1.5, two changes occur in the molecular weight distribution of the

brush.

A high molecular weight tail begins to appear. Although these high molecular weight

chains are at a low overall concentration, they represent a high proportion of the total brush
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concenztraon in the region of the brush most distant from the surface. This could explain the

presence of the "foot" which appears in the brush concentration profile, seen on lattice layers

greater than 30 in Figures 5 and 6.

• As the molecular weight distribution broadens, the concentration of species having M -

is decreasing while the concentration of species in which M << M, and M >> M, is increasing.

This may contribute to the reduction in the total brush concentration in the central region of the

brush observed in Figures 5 and 6.

These effects work in tandem to extend the brush into the matrix and broaden the width of its

interphase. Thus, the shape of the concentration profile may be affected to some degree by the

shape of the distribution of molecular weights in the brush. Because entropic effects can never be

"turned off', however, this is difficult to prove. Still, since the shape of the concentration profile

directly affects the interpenetration of the brush and matrix phases, it also affects their adhesion

and response to stress. With this result in mind, it seems natural to ask the question "Can the

molecular weight distribution be specified so that the interphase width is maximized or tailored to

fit a particular need"? The impact of the answer would be far-ranging and will be left to a

forthcoming paper.

Adhesive Properties

The interfacial concentration profile of the brush can be used to infer how the adhesive

properties of the interphase are affected by polydispersity. Of particular interest is the interfacial

toughness. Several papers"'•°• on the problem of polymer-polymer adhesion have recently been

published. We are primarily concerned with the adhesion between the brush and matrix. This is
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essentially a polymer-polymer adhesion problem even though the brush is tethered to the solid.

Raphael and deGennes"' considered the fracture of the "weak mechanical junction" consisting of

two rubber phases which are joined essentially by a polymer brush which is grafted to the surface

of one rubber phase and which penetrates into the other phase only. The geometry of our model

is similar to that used in their paper in the sense that one phase is impenetrable by the polymer

brush chains. The authors found that the interfacial toughness, G, scales as the degree of

polymerization, Nk. This relationship was predicted to occur in the limit of very small grafting

density, where the chains were isolated from each other. Brown' and Creton and Brown'° studied

the chain pullout of the elastomeric segment of a diblock copolymer from a crosslinked rubber

lens, analogous to the geometry of the Raphael and deGennes model. Their results confirmed a

first order dependence of 0 on N at low crack velocities (-10mn/s), however, the exponent was

found to decrease slightly as the degree of polymerization of the elastic segment increased.10 One

explanation given by the authors for this observation considered the miscibility between the rubber

lens and the penetrating copolymer block. They suggested that, as the molecular weight of the

block increased, entropy favored demixing much that the monomeric friction factor was effectively

reduced.

We would like to postulate that a consideration of the brush structure gives rise to an

alternate explanation for the observed less than linear dependence of G on N. Consider a planar

surface which has a brush at low grafting density in contact with a polymeric matrix. For low N

of the brush, the chains would be isolated from each other and the number of matrix-surface

contacts would be of the same order as brush-surface contacts. As N increases, the brush chains

would begin to touch each other and cover the surface. At still higher N, the matrix would be
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excluded from a zone near the surface. The near-surface brush chain segments would have little

contact with the matrix polymer and could not contribute to the total resistance of the brush to

stress. This reduces the effective molecular weight of the brush which is available for chain

pullout or other energy dissipation mechanisms which contribute to the overall toughness, causing

the N dependence to be weaker than that predicted by the model of Raphael and deGennes. This

effect has been considered previouslyr where an effective entanglement density was calculated for

a diblock copolymer at the interface between two immiscible polymer phases. We maintain that,

when an exclusion zone is present, the effective number of chain segments which can contribute

to G is limited to those segments which actually penetrate the matrix phase (eg., the lens). In light

of this result, we conclude that a consideration of the brush-matrix interphase is important when

estimating the contribution of chain pullout to the interfacial toughness.

This consideration is naturally included in the mathematical form of the EPF which

essentially qualitatively measures the degree of mixing between the brush and matrix. We

postulate that one brush segment must contact one matrix segment to create an effective contact

which will contribute to chain pullout and that the EPF essentially measures an overall

segi tent-segment contact probability. The toughness of each system can then be ranked

according to its EPF (Figure 7 and Table 2). It is important to note that we have assumed that

the interface is purely diffuse. This is consistent with the initial assumption that the system was

isotropic in all directions except that perpendicular to the interface. Thus we have shown that

increasing the polydispersity of an end-tethered brush increases the adhesion between it and a

polymeric matrix with which it is in contact, at least in the limit of low crack speeds. In any case,

for systems in which the strength of the interphase is weak and adhesive failure dominates, we
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expect adhesion to increase with polydispersity in general. Experiments to verify these results are

currently underway.

The adhesive bond will fail at its weakest point. If the goal is simply to maximize the EPF

value this can easily be achieved by using a high molecular weight brush at low grafting density.

If the brush molecular weight is continually increased and the grafting density is restricted to

sufficiently small values such that the brush is always "wet" then the EPF value should also

increase continually. There is a price to be paid, however, since the weakest point has now

shifted from the brush-matrix interphase to the substrate-brush interface causing the overall

adhesive strength to be low. One must balance the strength of the interphase (controlled primarily

by entanglements) and the strength of the interface (controlled by the surface density of

brush-substrate bonds) so that neither is a "weak link". Thus, the problem becomes finding a

suitable molecular weight distribution (MK, M. and shape) which will simultaneously allow

sufficiently high grafting densities and broad interphases. In order to correctly model this

problem, a means for calculating the actual strengths or toughnesses for the interface and

interphase must be incorporated into the SCF framework. Only then can the relationship between

brush polydispersity and adhesion in substrate-brush-matrix systems be properly addressed.

Conclusions

A self-consistent field computer simulation has been used to calculate the concentration

profile of an end-tethered polymer chain in a polymer matrix in order to investigate the influence

of brush polydispersity on the width of the interphase. Systems having athermal, attractive and

repulsive brush-matrix enthalpic interactions were investigated separately. It was found that
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increasing the degree of polydispersity of the brush increased the width of the interphase between

the brush and matrix. Enthalpic effects largely governed the degree of interfacial broadening

brought on by an increase in polydispersity such that no significant broadening was observed for a

repulsive interaction. Interphase broadening was thought to arise from two forces which acted

independently on near surface (proximal), central and distal (exterior) regions of the brush. The

enhanced mixing in the proximal region was attributed to entropic effects by showing that the free

energy of mixing decreased in an asymptotic fashion as polydispersity increased. The extension of

the distal portion of the brush into the matrix in the form of a "foot" of low concentration was

thought to arise from the presence of long chains in the brush molecular weight distribution. The

reduction of the concentration gradient in the central region of the brush was also attributed to a

redistribution of the chain lengths away from MK as polydispersity increased.

The implications of the simulation results on the adhesive properties of the brush-matrix

interphase were also discussed. It was observed that an exclusion zone in the proximal region of

the brush may arise under certain conditions, reducing the effective molecular weight of the brush

and, therefore, the toughness of the interphase. It was also determined that the number of

brush-matrix contacts increases in the same manner as the interphase width given by the

entanglement probability function. An increase in the toughness of the brush-matrix interphase of

50 percent (attractive), 82 percent (athermal) and 3 percent (repulsive) for was predicted for a

polydispersity of 3.0 as compared to the monodisperse brush. This demonstrates that highly

polydisperse brush architectures can be used to enhance the adhesion of a substrate to a polymeric

matrix provided that the enthalpic interactions are not highly repulsive in nature.
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Appendix I: Method of Solution

An iterative relaxation scheme was followed to find a self-consistent solution to the PDFs.

An arbitrary initial gues. was made for the probability distribution functions and mean fields

across the entire lattice. The recursion relations (eqns. 1, 2) were then used to recalculate the

PDF's for the first lattice layer. The chemical potentials were then recalculated to insure the

correct amount of each chain in the brush (N(k)). Next, the volume fractions were made to sum

to unity by adjusting the Aw term of the mean-fields as explained in the text. Finally the mean

fields were recalculated using the normalized volume fractions. The PDFs for the remaining

lattice layers could then be recalculated using equations (1) and (2), the volume fractions

normalized and the mean fields recalculated as on the first lattice layer.

Recalculating the PDF's for all lattice layers constituted one iteration. The changes in the

volume fractions and chemical p.-tentials on each lattice layer with respect to the values held at

the end of the previous iteration were evaluated and the maximum change in each was found.

These values were compared with the tolerances set at the beginning of the program to see if

convergence had been achieved. Typically, when the maximum change per iteration was less than

10s percent for the chemical potentials and 10' for the volume fractions, it was assumed that the

self-consistent solution had been reached.

The number of iterations required before the convergence criteria were met varied from

approximately 500 iterations for a monodisperse, athermal system to 10,000 to 20,000 iterations

for a non-athermal system having a polydispersity index of 3.0 (20 chains, maximum value for

M/M0 = 2000). The largest simulations required approximately 20 hours on an Stardent Systems

Model 1500 computer using 4 MIPS 3000 CPU chips operating in parallel.
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Figure and Table Captions:

Table I - The discrete molecular weight distributions obtained from the logarithmic-normal

distribution function.

Table IU - Summary of EPF values, showing the percent increase over the monodisperse value.

Figure 1 - Cubic lattice arrangement showing the six nearest neighbor positions. Note all five

atoms lying in the solid plane are within the same lattice layer and considered equivalent.

Figure 2 - Illustration of the indexing scheme for the probability distribution functions. The

index j denotes the distance along the backbone, away from a particular chain end, that a

segment is located. Note that two probability density functions are used to model one

chain.

Figure 3 - Brush profiles for a monodisperse brush having an attractive, neutral or repulsive

brush-matrix enthalpic interaction.

Figure 4 - Brush profiles for the case of repulsive interaction. Note that polydispersity shows no

influence on the width of the interphase.

Figure 5 - Brush profiles for for the case of neutral interaction. The arrows indicate the direction

of increasing polydispersity.



Figure 6 - Brush profiles for for the case of attractive ineraction. The arrows indicate the

direction of increasing polydispersity.

Figure 7 - EPF values for athermal (upper curve), attractive (middle curve) and neutral (lower

curve) interactions. Note that a continuum exists between the values shown.

Figure 8 - Free energy given by equation 21 as a function of polydispersity. The results are

shown for overall brush volume fractions of 0.1 (shaded squares), 0.25 (shaded

triangles), 0.5 (asterisks), 0.75 (open squares) and 0.9 (crosses).



Table I - Dlscretized, Log-Normal Moecular Weight DWstribudons
Employed in Simtuations

Mw/iMn- 1.2 Mw/Mn = 1.4 MwAdn = 1.6
M(k)iMo N(k) M(k)Ilo N(k) M(k)/Mo N(k)

36 0.021013 30 0.044803 20 0.025197
51 0.089124 44 0.117125 31 0.073994
64 0.15976 78 0.218509 44 0.130461
79 0.213198 61 0.188369 83 0.187511
98 0.222677 104 0.206941 66 0.181579

127 0.167429 149 0.136816 102 0.175439
170 0.078199 225 0.053072 134 0.139791
212 0.03222 288 0.023635 254 0.04413
260 0.011192 386 0.007157 323 0.022849
295 0.005188 447 0.003574 403 0.01118

498 0.005119
580 0.002749

Mw/Mn = 1.8 Mw/Mn = 2.0 Mw/Mn = 3.0
M(k)/Mo N(k) M(k)/Mo N(k) M(k)IMo N(k)

13 0.014803 11 0.012423 12 0.037908
25 0.0718 31 0.092437 22 0.076301
40 0.142519 40 0.11945 32 0.099469
62 0.192511 54 0.143251 43 0.112037
76 0.198081 67 0.150647 56 0.116504

103 0.181273 87 0.146355 68 0.115141
159 0.121599 112 0.129601 84 0.109329
279 0.045014 229 0.055752 106 0.098528
368 0.022647 133 0.113198 132 0.085381
596 0.005015 413 0.015963 172 0.067762
687 0.002982 493 0.009942 220 0.051617
787 0.001757 617 0.005114 435 0.018215

726 0.003017 830 0.004593
854 0.001716 1073 0.002391
956 0.001133 1266 0.001521

1424 0.001086
1597 0.000772
1750 0.000584
1877 0.000468
1982 0.000394



Table II - Entanglement Probability Function summary

percent
Athermal Mw'Mn EPF increase

1 2.159 -
1.2 2.679 24.1
1.4 3.012 39.5
1.6 3.245 50.3
1.8 3.438 59.2
2 3.56 64.9
3 3.937 82.4

percent
Repulsive Mw/Mn EPF increase

1 1.106 -
1.2 1.124 1.6
1.4 1.129 2.1
1.6 1.129 2.1
1.8 1.130 2.2
2 1.130 2.2
3 1.132 2.4

percent
Attractive Mw/Mn EPF increase

1 3.598 -
1.2 4.382 21.8
1.4 4.752 32.1
1.6 4.958 37.8
1.8 5.164 43.5
2 5.248 45.8
3 5.577 55.0
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