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Absirect

The segregation polential (SP) model is semiempirical in nalure. An accurale
mathematical model is needed that provides the functional dependence of SP
on pertinent variobles specifying given thermal and hydraulic condiions in
ferms of well-defined funclions (or paramelers) dec ~Sing the properties of a
given soit. In response fo such a need 0 mathemalk.  model colled M, was
introduced and efforts have been made 1o validole M, «~ith empirical findings
and experimental dala. In this report we wiil show that the funclional depen-
dence of SP on pertinent variables predicied by M, is consisient with empirical
findings that were used 1o build the SP model.
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NOMENCLATURE
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correction factor

small negative number
positive number

correction factor

positive number wherei=1,2
positive number

heat capacity of R,
constant wherei=0,1, ..., 4
unit of time, day

mass flux of water
function defined by eq Al
function defined by eq 12b

function defined by eq 23¢, 23d, 25b and
25¢

function wherei=1,2,3
thermal conductivity of a frozen fringe

thermal conductivity of theunfrozen part
of the soil

thermal conductivity of an ice layer
hydraulic conductivity in the unfrozen
part of the soil

empirical function defined by eq 4a
wherei=1,2

limiting value of K; as x approaches n;
whilexisinR,,i=1,2

limiting value of K; as x approaches n,
whilexisinR,,i=1.2

latent heat of fusion of water, 334 J g~!
location of the free end of the column
boundary in Ry,

boundary with i = 0, 1 where ny denotes
the boundary where T = 0°C and n, the
interface between an ice layer and a fro-
zen fringe.

boundary between R]o and Ri
neighborhood of n; where x <n; (x> n;)
pressure of water

overburden pressure

value of Pat ng

valueof Patn

defined by eq 10

heat flux

unfrozen part >f the soil

frozen fringe

ice layer

region where 02T>T;"

L 44
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region where T} * >T2 T,

region in the diagram of temperature gra-
dients where an ice layer melts

region in the diagram of temperature gra-
dients where the steady growth of an ice
layer occurs

boundary between R, and R,

boundary between R, and R,

region in the diagram of temperature gra-
dients where the steady growth of an ice
layer does not occur

temperature

temperature at ng = 0°C.

temperature at 1,

temperature at n, at the formation of the
final ice lens

temperature at n, at the phase equilib-
rium of water

average temperature gradient in R,
defined by eq 29a

defined by eq 29b

defined by eq 33a

defined by eq 33b

spatial co.rdinate

segregation potential function
valueofyatT)=T;"

defined by eq 24¢

absolute value of the temperature gradi-
entatng

absolute value of the limiting tempera-
ture gradient as xapproaches n; while xis
in Ry, defined by eq 9

constant, 1.12 MPa °C’!

thickness of a frozen fringe

distance between n and n,

constant defined by eq 24e

constant defined by eq 24f

effective pressure defined by eq 13a
empirical function of T; defined by eq 13b
empirical function of Ty defined by eq 13¢
superscript used to indicate the value of

any variable evaluated at the formation of
the final ice lens

superscript used to indicate the value of
any variable evaluated at the phase equi-
librium of water




Dependence of Segregation Potential on the
Thermal and Hydraulic Conditions Predicted by Model M,

YOSHISUKE NAKANO

INTRODUCTION

We will consider the one-directional steady
growth of an ice layer under an overburden pres-
sure P, (20). Let the freezing process advance from
the top down and the coordinate x be positive
upwards, with its origin fixed at some point in the
unfrozen part of the soil. A freezing soil in this
problem may be considered to consist of three
parts: the unfrozen part Ry, the frozen fringe R,
and the ice layer R, as shown in Figure 1 wheren;
is the interface between R, and R,, n is the 0°C
isotherm and n is the reference boundary. We will
assume that the pressure of water is kept constant,
P, atn. The physical properties of parts Ry, and R,
are well understood but our knowledge of the

ny TBT'

n TlToBm

Figure 1. Schematic drawing of a steadily
growing ice layer in a freezing soil.

physical properties and the dynamic behavior of
part R, does not appear sufficient for engineering
applications.

Konrad and Morgenstern (1980, 1981) empiri-
cally found that the mass flux of water f at the
formation of the so-called final ice lens is propor-
tional to the average temperature gradient T; in
R;. This may be written as

SP = /Ty @

where a prime denotes differentiation with re-
spect to x. The positive proportionality factor SPis
termed the segregation potential, which is a prop-
erty of a given soil.

Konrad and Morgenstern (1982b) also found
empirically that SP depends on the applied pres-
sure P, and the pressure of water Pj at ngand that
SP is a decreasing function of P, and the suction
~ Py. This may be written as

SP=y(Py, P,) 4]

) ]
0, 0. 3
y>0. p¥< &)

dPo

Extending the concept of segregation potential,
Konrad and M (1982a) introduced a
semiempirical model (SP model) of soil freezing.

Several researchers have used the SP model to
analyze frostheave data from field and laboratory
tests (Nixon 1982, Knutsson et al. 1985, Jessberger
and Jagow 1989). Their results suggest that the
accuracy of the SP model suffices engineering
needs. However, the SP model is not immune to
criticism. Some limitations or sho ings of the
SP model have appeared (Ishizaki and Nishio
1985, Van Gassen and Sego 1989, Nixon 1991).




Nevertheless, it is important to point out that an
accurate model of soil freezing, if it exists, should
be able to explain important empirical findings
suchaseq1,2and 3.

Recently the steady growth condition of an ice
layer was studied mathematically and experimen-
tally under anegligible applied pressure (Nakano
1990, Takeda and Nakano 1990, Nakano and Take-
da 1991) and under an applied pressure (Takeda
and Nakano 1993, Nakano and Takeda 1994). They
have shown that a model called M,; accurately
describes the experimentally determined condi-
tion of steady growth.

For the problem of a steadily growing ice layer,
the M, model is defined as a frozen fringe where
ice may exist but does not grow, and where the
mass flux of water fis given as

f=_Kla_P_K2.aI forxinRi (4a)

ox ox
Ka/Kyh =y as f-0 (4b)
lim P(®)=Pa
X —ni (4C)
x in R

where yis a constant, P is the pressure of unfrozen
water and K; (i = 1, 2) is the transport property of
a given soil that generally depends on the temper-
ature and the composition of the soil. The M;
model is a generalization of somewhat simpler
models (Derjaguin and Churaev 1978, Ratkje etal.
1982, Kuroda 1985, Horiguchi 1987) in which the
ratio K, /K is equal to yregardless of f.

Experimental methods were proposed todeter-
mine K; (Williams and Burt 1974, Horiguchi and
Miller 1983) and K; (Perfect and Williams 1980).
According to Horiguchi and Miller (1983) K, of
several frozen porous media is described in the
general form given as

Ki = AdT® ©®)

where Aj and B are positive material constants.
Nakano and Takeda (1994) experimentally deter-
mined K, of Kanto loam in the form given as

K2 = {Kzo 5
K»lA/T|

AST<O0
A>T

(6)

where Ky and B are positive constants and A is a
small negative constant. Since empirically deter-
mined functions K; and K, are known tobe bound-

ed, the functional form of eq 6 is a better approxi-
mation to their actual behaviors inaneighborhood
of T =0°C.

The SP model is semiempirical in nature. An
accurate mathematical model is needed that pro-
vides the functional dependence of SP on perti-
nent variables specifying given thermal and hy-
draulic conditions in terms of well-defined func-
tions (or parameters) describing the properties of
a given soil. In this report we will present the
results of our study on the problem of a steadily
growing ice layer by using the M, model. We will
show that the M; model provides the functional
dependence of SP that is consistent with empirical
findings (eq 1, 2 and 3).

PROPERTIES OF M,

An analytical solution was derived to the prob-
lem of a steadily growing ice layer under the M,
model (Nakano 1990). A schematic drawing of a
typical temperature profile is shown in Figure 2,
where the temperature is continuous but the tem-
perature gradient is discontinuous at n, where the
ice layer grows. Since the amount of heat trans-
ported by convection is generally much less than
thatby conduction, the temperature profilesin Ry,
and R; in the vicinity of R, are nearly linear (Na-
kano and Takeda 1991).

The temperature T; and the limiting value of
the temperature gradient at n, are given approxi-

mately (Nakano 1990) as
Ti=-aoopd (7a)
T'(nft)=-bao (7b)

where 0y is the absolute value of the temperature
gradient at ng, 3 is the thickness of R, and ngt de-
notes the limiting value as x approaches n; while x
isin R,. Thea and b in eq 7a and 7b are correction
factors that take account of effects of the convec-
tive heat transport and the variable thermal con-
ductivity in R; (Nakano and Takeda 1991). When
these effects arenegligible,aand bareequal toone.
We will neglect these effects hereafter.

When an ice layer is steadily growing, accord-
ing to the M; model, ice does not grow in Ry; the
growth of ice occurs only at n,. The balance of heat
for R, is given as

kian = koo + (L - c2 TH)f 8)

wherek; and kj are the thermal conductivities of R,
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Figure2. Schematic drawing of typical tempera- N
ture and pressure profiles according to the My p py) R
model.

and Ry, L is the latent heat of fusion of water, and
cpis theheatcapacity of R,. o, is the absolute value
of the limiting temperature gradient at n, defined
as

o1 = lim 7’3 = -T'(n7)
X=rny .
xinR2

)

wheren;"denotesthelimiting valueas xapproaches
n, while x is in R,.

A schematic drawing of a typical pressure pro-
file is given also in Figure 2 where P, is kept at 0.1
MPa. The pressure of water P is continuous in the
combined region of Ry, and R, but the gradient of
P may be discontinuous at ng. Darcy’s law clearly
holds true in Ry. Neglecting the gravity effect, we
obtain

AP = Pn-Po= 8K f (10)
where §y =ng-n>0.

Ithasbeenshown (Nakano 1992) thataccording
to the M; model, the segregation potential func-
tiony is given as

y=-f /T =f o' =K{T;) (1)

whereanasteriskdeno.ws thevalueofavariableat
the formation of the final ice lens. For given 6 and
8y, the necessary and sufficient condition for the
steady growth of anice layeris given (Nakanoand
Takeda 1991, Nakano and Takeda 1994) as

(ki/ko)our> co2 ki (ko+ Ly) o, (11b)
Thecondition of eq11bisexplained in thediagram
of temperature gradients (Fig. 3). Rt"* in Figure 3is
givenas

ao=(ki/kjar on R’ (11c)
If an existing ice layer neither grows nor melts, f
vanishes on R* . We will refer to the region as Ry,
where g > (ky/ ko), f < 0 and an ice layer is melt-
ing. RY is given as

oo=ki(ko+Ly) o on RF. (11d)
The boundary R} is a curve stemming from the
originbecausey dependsonog. Thesteady growth
of an ice layer occurs in the region R,. The forma-
tion of the final ice lens occurs on RY whereeq11a
holds true.

The temperature T, is given (Nakano 1990,

Nakano and Takeda 1994) as




ay
Figure 3. Diagram of temperature gradients a; and o,

-Ti=(o+ &K' f)/1 (12a)

I=7¢a-K5'fog' on (12b)
where 0, ¢y; and ¢y, are defined as

6=P,-P, (13a)

T

¢ (T0) =T ] (Ko/K1) (K2/K2)dT (13b)
0

N

éu (T) =T J (Ko/K1)dT. (13¢)

Using eq 11a,12aand 12b, the mass flux f* atthe
formation of the final ice lens is given as

f* = (Ko/So) [~ TI" 1-0] (14a)

{r?)=79072)- Ko 'Ke(T?) 01 (1), (140)

Equations 14a and 14b imply that f* is uniquely
determined by T; when §;and ¢ are given. Using
eq 11a, we will reduce eq 14a and 14b to:

Kx(T?") = Koo 8 [- T I-0]. (15)

Since K is an increasing function of T, K, and T
are one-to-one and T may be considered to be a
function of K,. Therefore, eq 15 implies thaty is a
function of ag, 8y and o.

n
Figure 4. Schematic drawing of a steadily
growing ice layer under an applied load.

y=y(og 5 0). (16)

Ithasbeen shown empirically (Radd and Oertle
1973, Takashi et al. 1981) that there is a unique
temperature T* at n, for a given ¢ > 0 when an
existing ice layer neither grows nor melts and f
vanishes. This temperature T* at the phase equi-
librium of water is given as

if f=0. (17)

When an ice layer is steadily growing under a
positive o, Ty is less than 77** (Nakano and Takeda
1994) and the frozen fringe R, may be divided intc
two regions Rig(0 2 T2 71 ") and Ru(T* > T>
T:) asshown in Figure 4. At the phase equilibrium
f vanishes and R;, also vanishes. From eq 4b we
obtain

== YT"‘I

KZ/KI =Y, iano iff= 0. (18)
Itis easy tosee thateq 12ais reduced toeq 17 at the
phase equilibrium because of eq 18. An important
question arises whether or not eq 18 holds true
when f does not vanish. Since K| (i = 1, 2) mainly
depends on T and the composition of R;y, it is
probable that eq 18 holds true for f > 0 unless f
significantly affects the composition. We will as-
sume the validity of eq 18 regardless of f. With this
assumption eq 4a becomes one step closer to the
simpler models described earlier.




FUNCTION y

The functional form of y depends on those of K,
and K. Based on available experimental findings
(Horiguchi and Miller 1983, Nakano and Takeda
1994), we will assume that K, and K; are given as

K =Ko AST<0
Ko(A/TV A>T
K2={Kzo AST<O0 oy
Ko(A/TY? A>T
Because of eq 4b K and Ky are related as
Ky /Ko=7. (21)

The values of parameters in eq 19 and 20 deter-
mined empirically (Nakano and Takeda 1994) for
Kanto loam are

Ky =177 x10° g/(con d MPa)
Ky =1.98x10% g/(cm d °C)
b1 =0.520
b, = 1.04
A=-15x10"%°C

where d denotes day.
Using eq 19, 20 and 21 and eliminating T} * , we
reduceeq 15 to

J1-J(6) = a0 80 Co(1 + ]2y 22
where
i=Ciy~» (23a)
Ci=A KR bAbi+1) (23b)
J0) =17 (2-b) (230)
o) = M b-b)+z A<TI )
Ar 2 AzTi "
Co=-(AKn)'>0 (23e)
J2= Ca(008o)* > 0 (24a)
Ca=-Ab(hr1+1)'>0 (24b)
z=Cy0 (24¢c)
Ca=-(yA)'>0 (24d)

Ao=M/b, (24e)
Ay=b-by+1. (24f)
Fora special case where A, =0, ], and J are given as
J1= - by'In(y/Kx) (252)
J(0)=- by B (25b)
R AN

It is clear from eq 10 and 11 that oy and & must
be positive because the mass flux f* is positive at
the formation of the final ice lens. When agd, is
very small, eq 22 is reduced to

h-JIe)=CCy (26)

It follows from eq 26 that y no longer depends on
0o or 8y when agd, is very small. As shown in
Appendix A, eq 22 generally possesses a unique
positive rooty. However, under certain conditions
this unique root may not be physically meaning-
ful. This implies that the formation of the final ice
lens may not take place under such conditions.

When eq 22 possesses as a meaningful root, we
will study the dependence of y on parameters, ag,
8y, AP and ¢ below. We will write eq 22 as

J1-J(0) = 0080 Coy + Co Cay. (27)

Differentiating eq 27 with respect to oy and &y, we
obtain

_@g_z{-socoyu“ M20 (g,

0w |-&Coyly'  M=0
_3_y_={-aoCoyU'l ll#O (2&))
o |—aCoyl;'  AM=0

where
U = 0tg89Co + CoCz + Cihgy-ho+) (29a)
Up = 0to86Co + CoCa + b3 'y (29b)
Cido= KX /(51+1)>0. (29¢)

It follows from eq 28a and 28b thaty isa decreasing
function of both o and §,.




Fromeq lQ and 11, we obtain
o080 = KoAPy™. (30)
Using eq 30, we write eq 22 as
J1=-J(0) = KoCoAP + CoCay. (31)

Differentiating eq 31 with respect to AP, we obtain

_3y_={'-1(oCoV‘l A#0 32)
08P |_KoCoVp' M=0
where
V= CoCa+ Ci hoy-{ho+1) (33a)
Vo= CoCa+b3' y-\. (33b)

It follows from eq 32 that y is a decreasing function
of AP. This property of y is consistent with the
empirical finding (the first inequality of eq 3).

Differentiating eq 27 with respect to 6, we ob-
tain for A, 2 0:

y _|-cu? A<T
3 \-choHriy A>T
When A, =0, we obtain
3y _[-cup AT g
JG - -1, -1 vy
-0 U() A2Ti

It is easy to find from eq 34a and 34b that y is a
decreasing function of 6. This property of y is con-
sistent with the empirical finding (the second ine-
quality of eq 3).

Using experimentally determined parameters
of Kanto loam (Nakano and Takeda 1994), we will
show the behavior of y of Kanto loam below. For
Kanto loam the values of Ag and A, are 0.462 and
0.480, respectively. We will present the actual val-

ues of each term in eq 27:
J1=4.75 x 10 y 0462 . (35a)
J(0) =1.08 (35b)
z=595x10¢ (35¢)

108 +595x10°¢ A< T*

J(o) =
6.48 x 10 ¢"4% ATy

(35d)

0080 Co y = 3.370t0 Soy (35e)
CoCay=175x 10y (351)

where units of variables are y [g(cm ‘C d)], o
[MPa], a9 [*C cm™] and §y{cm].

It is easy to find from eq 35e and 35f that the
term CoCoy is much less than the term ay8y,Coy
unless agd, is very small. Neglecting this small
term, we reduce eq 27 to

1 - o) = a0 Coy. (36a)
Using AP, we write eq 36a as
J1-I(0) = KsCoAP (36b)

When o =0, the term J(0) is much less than the
other two terms of eq 36a or 36b. When J(0) is
neglected, eq 36a and 36b are reduced to

y = (C1/Co)VP*V (ughg) /0 + D (37a)
y =[C1/ (KoCo)]V™ (aP) ™. (37b)

Suppose that we measure a set of values either (y,
0,gdp) or (v, AP) and that 'n y and In a8 (or In AP)
are linear. If we know one of three parameters, b;,
b, and A, the remaining two parameters can be de-
termined by eq 37a (or eq 37b). When o # 0, the
term J(0) is not generally negligible and we must
use eq 36a (or eq 36b) to determine an accurate
dependence of y on oS, (or AP).

In Figure 5 we plotted experimental data, y vs.
ogwith§y=2cmundero=0,16.2,48.7and 195kPa
(Nakano and Takeda 1994) together with predict-
ed y calculated by eq 36a. It is easy to see thatIny
and In oy are nearly linear when 6 = 0. As ¢ in-
creases the relationship between In y and in oy
becomes nonlinear as anticipated.

CONCLUDING REMARKS

Many models of ice segregation have been pro-
posed in the past. However, the SP model pro-
posed by Konrad and Morgenstern (1980, 1981) is
one of few that were built on an empirical base.
The SP model has been conveniently used to solve
engineering problems. However, we need an ac-
curate mathematicalmodel that provides the func-
tional dependence of SP on pertinent variables
specifying given thermal and hydraulic condi-
tions in terms of well-defined functions (or para-
meters) describing the properties of a given soil.




igure 5. Experimental data of y [g(cm °C
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y calculated by eq 36a.

In response to such a need Nakano (1990) pro-
posed a new mathematical model called M. Ef-
forts have been made to validate the M; model by
empirical findings and experimental data (Takeda
and Nakano 1990, Nakano and Takeda 1991, Take-
daand Nakano 1993, Nakanoand Takeda 1994).In
this report we presented the result of our efforts to
validate the M, model by using empirical findings
that were used to build the SP model. It is impor-
tanttomentionthateq1,2and 3areempirical find-
ings, not assumptions. If theM; model is accurate,
it must be able to explain these important em-
pirical relationships. We have shown that the M,
model can explain these relationships.
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APPENDIX A: POSITIVE ROOT OF EQUATION 22

We will show that eq 22 possesses a unique positive rooty > 0. Using eq 27 that is equivalent toeq
22, we will introduce a function F(y) defined as:

F(y) = J1- 008 Co y—~ CoC2y -] (0). (A1)
It is clear that a root of eq 22 satifies

Fiy)=0 (A2)
Differentiating F(y) with respect to y, we obtain

F(y) = J;(y) - (080 Co + CoC2) (A3)

where a prime denotes the differentiation with respect toy.
From eq 23a and 25a we obtain

- Mcl y-(h*l) A-l 20

-b;l y?! M=0

I'(y) = (A9)

Since AqC; and b, are positive, J'(y) is negative. Hence F/(y) is also negative, in other words, F(y)isa
strictly decreasing function of y. We will examine the behavior of F(y) for two cases: Case 1, 4,20,
and Case 2, A4 <0.

For Case 1, F(y) approaches +co as y approaches 0 while F(y) approaches — as y approaches +<=.
Since F(y) is a strictly decreasing function, eq 22 possesses a unique positive root. For Case 2, F(y)
approaches -J(c) as y approaches 0 while F(y) approaches —- as y approaches +o. When A; <0, b, >
b; + 1. Hence J(0) is negative and eq 22 possesses a unique positive root. It may be noted paren-
thetically that A < T{* implies 2 < 1 because of eq 17

We have shown that eq 22 possesses a unique positive root regardless of ;. When an ice layer is
growing, the temperature T; must be less than T7*. This implies that y must be less than K Tf‘),
namely:

y<y**=K(T*) = Knz %2 (AS5)

It should be noted that y™ = K5, when o = 0. Equation AS implies that F(y**) must be negative; that
is

F(y**) =Js(y**, 0)-Caz2 < 0 (A6)
where |
Ja=]4y*") - I(0) (A7)
Ca = K20Co(0080 + C2)> 0. (A8)
The function J, is given as:




Inz+bby -2
b§l>0,

[b167' > 0,

Inz+bib; -2

kb;l >0,

AM=0,0=0
M=0,A<T
M=0,A2T1"

A1=0,0=0
M=0,A<TH
AMm=0,A2T1"

(A9)

(A10)

It follows from eq A6, A9 and A10 that the condition of eq A6 is always satisfied when A, #0 and A

2 TY* . However, for other cases it is not certain that eq A6 is satisfied.
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