MANUFACTURED TO AIIM STANDARDS
BY APPLIED IMAGE, INC.
Augmentation of research on cognitive control

The influence of individual differences in working memory span (WMS) on comprehension of instructional text was examined. Results from the second year of the AASERT grant showed that readers across the range of WMS paid special attention to thematic statements when they read instructional texts. This was shown through longer reading times of sentences in the initial position of paragraphs. However, if comprehension of specific details was stressed by asking about details after each passage, then high WMS readers increased thematic processing in comparison to reading times obtained when the questions asked about topics and details. Low WMS readers did not increase thematic processing when details were stressed. The increased thematic processing by high WMS readers was associated with better comprehension of both topics and details on a later surprise test of learning. Higher WMS may allow some readers to use integrative strategies not available to other readers.
DISCLAIMER NOTICE

THIS DOCUMENT IS BEST QUALITY AVAILABLE. THE COPY FURNISHED TO DTIC CONTAINED A SIGNIFICANT NUMBER OF PAGES WHICH DO NOT REPRODUCE LEGIBLY.
Augmentation of Research on Cognitive Control

grant no. F49620-92-J-0243

Paul Whitney
Department of Psychology
Washington State University
Pullman, WA 99164-4620

June 7, 1994

Annual Technical Report for May 1, 1993 - April 30, 1994

Prepared for:

AFOSR/NL/Tangney
Building 410
Bolling AFB DC 20332-6448
The research supported by this grant is designed to uncover basic principles of cognitive control during the comprehension of expository text. Cognitive control refers to how individuals adapt their strategies for learning from text to both variations in text and to their own information processing limitations. In research in my own laboratory (e.g., Lee-Sammons & Whitney, 1981 and others e.g., Just & Carpenter, 1992), it has been established that subjects read in a qualitatively different fashion if they are low in working memory (WM) capacity. The capacity of WM is measured as the subjects' ability to actively manipulate information in short-term memory. Previous research in this area has focused on narrative, or story-like, materials. This project focuses on expository text, which people read to learn specific information. Unlike narrative text, which follows a familiar organizational pattern, expository texts vary widely in their organizational schemes. This makes them useful for the study of how people flexibly allocate their WM resources during comprehension. In addition, by studying expository text, we may be able to uncover basic principles that can be applied to improving people's ability to learn from text. In the second year of the AASERT grant, Desiree Budd (the supported student) and I had two specific objectives in mind:

1. We wished to establish whether readers that differ in WM capacity would vary in the adjustments they make to the types of comprehension questions that are asked.

2. We wished to develop a theoretical framework that could account for control processes in comprehension without appealing to a homunculus-like central executive.

STATUS OF THE RESEARCH EFFORT

Tradeoffs in Expository Text Processing

Several current theories of text processing (e.g., van Dijk & Kintsch, 1983; Kieras, 1982) make a distinction between macroprocessing (keeping track of the theme of a text) and microprocessing (relating each sentence to the preceding sentence). We reasoned that subjects low in WM capacity (low spans) might face a tradeoff between these two types of processing. That is, they could track sentence-to-sentence connections and learn about the details of a passage, or they could determine how each sentence relates to the overall theme.
and learn more about the topic of the passage. In contrast, lower span readers were expected to perform both types of processing.

In the first year of the grant, we developed a set of expository passages with a simple hierarchical structure. That is, each passage began with a statement of the overall topic, and this was followed by six supporting detail sentences. The passages were adapted from various non-technical science and hobby magazines.

Research in the first year established that if subjects are probed during reading with questions about topics or details, both high and low WM capacity readers can answer topic probes quickly and accurately even several sentences after a topic sentence. This result suggests that both types of readers were maintaining thematic information in WM throughout comprehension. A second experiment showed that both high and low span subjects showed longer reading times to sentences in the first position in a paragraph. Kieras (1982) found that when subjects performed macroprocessing, the reading times to the first few sentences were increased in the topic absent condition as subjects either make use of or infer a topic. Thus, the results of our second experiment supported the interpretation of experiment 1: even low WM span readers were performing macroprocessing.

The research from the first year led directly to the research we completed in the second year. We extended the results of the second experiment noted above by testing 80 subjects in a procedure in which we measured sentence-by-sentence reading times to passages with or without topic sentences. At the end of a block of six passages, the subjects answered multiple choice questions about the topics and details of the passages. We took the amount of decrease in reading time over the first four sentence positions as an index of the amount of thematic processing performed by the subjects. As Figure 1 (on page 4) shows, there was no relationship between WM span and thematic processing in either the topic absent or topic present condition. However, Figure 2 shows that the extra difficulty of thematic processing without an explicit topic sentence is associated with poorer performance on detail questions for lower WM span readers. Thus, when thematic processing is made more difficult, lower span readers show a tendency to do more poorly on questions about specific details.
Figure 2: Performance on the multiple choice questions: means and standard errors.
Theory development

Several researchers in the area of text comprehension have claimed that skilled readers adjust their comprehension processes to fit the nature of the text they are reading and their current reading goals (e.g., Just & Carpenter, 1992; Yonk & Noordman, 1991). The adjustment of the comprehension system to such contextual constraints may also include adjustments by subjects to their own WM capacity. This raises an interesting theoretical question of how the comprehension system can be self-organizing to adapt to a variety of contextual constraints.

Often, the types of control processes that must be used to make adjustments to context are assigned vaguely to a "central executive." In contrast, we have developed a framework that will provide the basis for understanding how the information processing system could make context-sensitive adjustments, but it uses a distributed set of control processes. The architecture for this framework is a hybrid of a semantic network and a production system. We believe that it will be possible to go beyond describing the adjustments that readers make in context, and actually predict what types of adjustments will be made, and in what contexts. The model relates different areas of psycholinguistics together—e.g. research on access to word meanings and research on logical inferences in text comprehension. In addition, our model makes testable predictions about what kind of information will be learned from a text depending on the skill of the reader and the goals of
Figure 3:
comprehension. For details, see the manuscript included with this report.

REPORTS RESULTING FROM THE GRANT

Inference Presentation


Manuscript Under Review


Manuscript in Preparation

Budd, D. & Whitney, P. Allocation of working memory resources during the reading of expository text.

Professional Personnel

The graduate student supported by the AASERT grant was Desiree Budd. She will begin her dissertation this year. It will extend the line of research covered by this grant.
References


AIR FORCE OF SCIENTIFIC RESEARCH (AFSC)

NOTICE OF TRANSMITTAL TO DTIC

This technical report has been reviewed and is approved for public release IAW AFR 190-12 distribution unlimited.

Joan Boggs
STINFO Program Manager