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Ion chemistry of CIONO 2 involving NO3 Lore ions: A detection
scheme for CIONO 2 in the atmosphere

A. A. Viggiano and Robert A. Mortis
Geophysics Directorate, Ionospheric Effects Division, Hanscom Air Force Base, Massachusetts

Jane M. Van Doren
Department of Chemistry, College of the Holy Cross, Worcester, Massachusetts

Abstract. Rate constants and product branching ratios for reactions involving
atmospherically interesting ions and CIONO2 have been measured. H30+ reacts
rapidly with CIONO 2 , but hydrates of H30 do not. This implies that CION02 does
not play a central role in the positive ion chemistry of the atmosphere. CO3 reacts
with CION02 to form N0-. Both N3O- and N0 3 (H 20) react with CIONO 2 to form
NO3(CIONO 2 ). H2 0 does not react with NO03(CIONO 2 ), which is essential to the
proposed in situ measurement technique. NO -(CIONO 2) does react with HNO 3 and
HCI, producing NO-(HNO3) in both cases. The reaction of NO-(HCI) with CIONO 2
also produces N03 (HNO3 ). These latter two efficient reactions, which are discussed in
detail in a separate publication, are analogous to the efficient neutral heterogeneous
reaction of HCl with CIONO 2 which is important in the chemistry of the Antarctic "
stratosphere. A detection scheme is presented for atmospheric CIONO 2 based on the
reactions studied and utilizing mass spectrometry. A CIONO2 detection limit of 107
molecules cm 3 is estimated based on the operating characteristics of current ion-
molecule based mass spectrometric field instruments.

Introduction models assume that total inorganic chlorine is essentially
divided between HCI and CIONO 2 (in the absence of PSCs)

The details of the chemical cycling of inorganic chlorine and therefore calculate the concenti stion of CIONO 2 from
species and nitrogen oxide species (NOy) in the stratosphere the difference 1- veen the total inorganic chlorine concen-
are critical to our understanding of stratospheric ozone tration, derived from N20 measurements, and the measured
chemistry. In the presence of polar stratospheric clouds HC! concentration [Salawitch et al., 1993; Webster et al.,
(PSCs), the heterogeneous reactions of the chlorine reser- 1993]. Recently, Webster et al. [1993] made the first in situ
voir species CIONO2 , HCI, and HOCI chemically transform spectroscopic determinations of the HCI concentration in
these long-lived species into photoactive species which can the stratosphere. Their values, measured outside of the polar
lead to rapid and catalytic destruction of ozone. In the vortices, differ from previous determinations by as much as
midlatitude stratosphere and in the absence of PSCs, the a factor of 2 [Raper et al., 1987; Webster et al., 1993]. If total
combination of photochemical life cycles of these species inorganic chlorine is partitioned between HCI and CIONO2 ,
results in a relatively stable ozone concentration. The chem- their measurements indicate that there is a corresponding
ical life cycle of chlorine nitrate is especially important to the error in the accepted CIONO2 values [Rodriguez, 1993;
chemistry of the stratosphere because it is a member of both Webster et al., 1993]. The discrepancies between these
the inorganic chlorine and NOy families. As such, chlorine different determinations represent significant differences in
nitrate couples these two important chemical families. Un- our overall understanding of the chemistry of the strato-
derstanding the complex chemistry and changing concentra- sphere. A direct in situ measurement of the concentration of
tion of chlorine nitrate is critical to a complete understanding CIONO 2 in the stratosphere would contribute significantly to
of the chemistry of the atmosphere. a resolution of these discrepancies.

Despite the importance of chlorine nitrate to the chemistry In situ ion composition measurements have proven to be a
of the stratosphere, few in situ measurements of its concen- valuable tool in determining atmospheric concentrations of
tration in the atmosphere have been made [Rinsland et al., trace neutral species when combined with the knowledge of
1985; Raper et al., 1987; Toon et al., 1993]. Current mea- the chemistry and rate constants involved. Determination of
surements include column abundance determinations, where concentrations of naturally abundant atmospheric species
a vertical profile is estimated from the spectral line shape using ion chemistry has been developed mainly by the
[Toon et al., 1993t. Detailed models of stratospheric chem- research groups of Arnold and Eisele, and their work hasistry, however, do not generally use these values of CION02 recently been reviewed by Viggiano [1993]. Detection of
but rather deduce the concentration of CIONO2 from mea- neutral species can be achieved by measurements of ambient
surements of related species [Salawitch et al., 1993]. Many atmospheric ions or, in a more elaborate apparatus, by

Copyright 1994 by the American Geophysical Union. measurements of product ions formed from reaction with
Paper number 94JD00425. ions produced in an active ion source. These mass spectro-
01484-227/94/94JD-00425$05.00 metric techniques combine the selectivity of ion-molecule

8221 94 5 2i



8222 VIGGIANO ET AL.: ION CHEMISTRY OF CIONO 2 INVOLVING NO3-

chemistry with the sensitivity of mass spectrometry to yield room temperature. This is based on the knowledge of the
a very powerful detection technique for neutral species known association rate constant (Ikezoe et al., 1987J and
abundant in only trace amounts. Measurements of a number thermodynamics [Keesee and Castleman, Jr., 1986] through
of species in the parts per quadrillion range have been made. K = k//k,. The use of a H2 buffer lowers the center of mass
Negative ion composition measurements have been very energy upon injection for the same laboratory frame energy
successful in determining the concentrations of NO, and [Viggiano, 1984]. Even with these steps, about equal parts of
HNO, species [Arnold et al., 1992; Viggiano, 1993]. How- NO0 and NOf-(H 2 0) were initially present in the flow tube.
ever, no detection scheme has been successfully devised The presence of both these ions does not affect our rate
previously for CIONO 2. In this paper we report kinetics constant measurements. Both of these ions produce only
measurements involving N0 3 core ions and CIONO2 , the NO(CIONO2 ), and therefore product determination also
latter species as both a ligand and a neutral reactant. We was unaffected. NO;(CIONO2) was made by adding NO 2
believe these data will make in situ determinations of the and CIONO 2 to the source. Creation, injection, and detec-
atmospheric CIONO 2 concentration possible using currently tion of N0 3 (CIONO2) was easier than N0 3 (H20) but more
available mass spectrometric ion detection field instruments. difficult than NO(HNO3), reflecting the intermediate clus-

ter bond strength of NO(CIONO2 ). H30+(H20), ions
were made from H20, and CO was formed from CO2.

Experimenlt The CIONO 2 was synthesized from CIF and HNO3 by the
The measurements were made using the Phillips Labora- method of Shack [1967] with some modification [Lloyd,

tory variable temperature-selected ion flow drift tube appa- 1993] and stored at 200 K. During the experiments, the
ratus [Viggiano et al., 1990]. Instnuments of this type have CIONO 2 was heated to 233 K, and the vapor was added to
been the subject of review [Smith and Adams, 1988], and the flow tube through a mass flow controller. At this tem-
only those aspects important to the present study will be perature, little of the HNO3 impurity present in the sample
discussed in detail. Ions were created by electron impact in should be volatile. The flow rate of CIONO 2 was calibrated
a high-pressure ion source (-0.1-1 torn). The ions were by using the heat capacity given by Miller et al. [1967]. In
extracted from the source, mass selected in a quadrupole initial experiments the CIONO2 sample was found to contain
mass filter, and injected into a flow tube. Buffer gas was a large amount of HNO3. After flowing the CIONO 2 for a
added through a Venturi inlet surrounding the ion injection time period of the order of an hour or two, the HNO3
orifice and transported the ions along the length of the flow impurity was greatly reduced, presumably through condi-
tube. The Venturi inlet aids in injecting the ions at low tioning of the inlet lines; that is, water on the inlet line
energy, critical to the present experiments. Downstream, surfaces had reacted away. The experiments required the
after the ions have had sufficient collisions with the buffer to use of a large amount of CIONO 2 which limited the number
thermalize, the neutral reactant is added. At the end of the of reactions studied to date because of limited sample
flow tube, a small fraction of the ions are sampled through a quantity, and further studies are planned. We estimate the
0.2-mm hole in a nose cone. The ions sampled are mass uncertainty in our rate constants to be ±30% and the relative
analyzed in a second quadrupole mass spectrometer and error to be 20%, slightly higher than our usual error limits.
detected by a channel electron multiplier. Flow rates of the
buffer and of the reactant gas were controlled and measured
by MKS flow controllers. The entire flow tube could be Results
heated or cooled. As will be explained below, cooling was Table 1 lists the reactions studied and the temperatures at
necessary to perform some of the experiments presented. which the rate constants were measured. As explained in the
Rate constants were determined from the decay of the experimental section, different ions were best studied at
primary ion signal as a function of added neutral flow. different temperatures. The limited amount of CIONO 2

The weakly bonded cluster ions used in the present sample we could obtain prevented us from making extensive
experiments required mild conditions to minimize both col- temperature dependence measurements. Temperature de-
lisional breakup upon injection and thermal dissociation in pendence studies are planned for the future.
the flow tube. NO and NO(HNO3) were made from NO 2  The group of reactions listed in Table I was chosen for the
and a several percent HNO3 impurity in our NO2 sample. potential importance in the atmosphere both in terms of the
N0 3 (HNO3) is a strongly bonded cluster ion, and no special chemistry of ambient ions and for detection of CIONO 2. The
conditions were needed for working with it except low- series H30+(H20)n can be considered the starting point for
injection energy. In contrast, it was quite difficult to form, much of the positive ion chemistry of the lower atmosphere,
inject, and detect a sufficient concentration of NO(H 20). with the n = 3 or higher species being by far the predomi-
This ion was made from a mixture of NO 2 and H 2 0. Our nant ions [Ferguson and Arnold, 1981]. The present results
problems were traced to three sources: (1) instability of the show that CIONO 2 does not react with H30+(H20), 2.
ion in the ion source, (2) breakup of the ion upon injection Essentially, all other positive ions in the lower atmosphere
and (3) thermal dissociation in the flow tube. First attempts are more stable than H 30+(H2O). and will presumably also
at injecting N03(H 20) into a He buffer at room temperature be unreactive toward CIONO 2. Therefore the positive ion
proved unsuccessful. We observed mainly N0 3 ion signal chemistry of the atmosphere is essentially unaffected by the
and a small mass 80 signal which we later identified as SO presence of CIONO 2.
(formed from impurities in the source from previous exper- The most important ambient negative ions are the series
iments) and not NO3 -(H20). In order to make a sufficient NO(HNO3), with n = I to 3 being the most abundant
quantity of NO-(H20) we needed both to cool the system [Viggiano and Arnold, 1983]. Above 30 kin, the series
and to use a H 2 buffer. The cooling was necessary to prevent HSO4(H 2 SO 4 )m(HNO3)n also becomes important. The
thermal dissociation in the buffer gas, which is a problem at present results show that NO3(HNO3) does not react ap-
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Table 1. Rate Constants for Reactions Involving CIONO 2

Rate
Constant, Temperature,

Reaction cm 3 s-I K

(1) NO3 + CIONO 2 + H 2 -* NO3(ClONO 2) + H2  3.0 (-10)a 232
(2) CO + CIONO 2 --+ NO- + CIO + CO 2  2.1 (-9) 232
(3) NO-(HNO3) + CIONO 2 --o productsb <2 (-11)b 232
(4) NO3 (H20) + CIONO 2 -- NO3(CIONO 2) + H20 1.8 (-9) 232
(5) NOL-(CIONO 2) + H 20 -- products n.r.c 283
(6) NO-(CIONO 2) + HNO 3 -- N0 3"(HNO 3) + CIONO 2  1.1 (-9) 283
(7) NO-(CIONO 2) + HCI--* NO(HNO3) + C12 (94%) 1.5 (-9) 283

-- NO3(HCI) + CIONO 2 (6%)
(8) NO3(HCI) + CION0- NO-(HNO3) + C12 (98%) 1.8 (-9) 233

-' NO-(CIONO2) + HCI (2%)
(9) H 30+ + CIONO 2 -i H+ • CION0 2 + H 20 (31%)e 2.9 (-9) 233

- NO2+ + H 2OHOCI (6%)ef
-- NO2+(H 2O) + HOCI (63%)e

(10) H 30+(H2O) + CIONO 2 --' products' <1.3 (-10)' 233
(11) H 30+(H20) 2 + ClONO 2 -- products n.r.c 233
(12) H30+(H20) 3 + CIONO 2 -- products n.r.c 233

a3.0 (-10) means 3 x 10-'0.
bNo product observed.
'No reaction, no decline in reactant ion signal.
dEstimated effect of HNO3 impurity is less than 1 percentage point.
eBranching ratio not corrected for HNO3 impurity, correction will increase H+

- CIONO2 with respect to the other products.

fNeutral product is written as a dimer since monomer formation is endothermic by 0.4
eV. Dimer bond strength is unknown but formation should make the reaction close to
thermoneutral.

'HNO 3 impurity could account for the reactivity.

preciably with CIONO 2 , and it is therefore expected that the are needed to verify this assumption. In summary,
higher clusters are unreactive as well. The more stable ions NO"(CIONO2) should be formed very rapidly by both NO3
HSO4(H 2 SO 4)m(HNO3)n also are not expected to react. and NO3(H 2O) under atmospheric conditions.

CO3- and CO3-(H 20) have been used successfully to While this scheme includes a rapid means of forming an
monitor the concentrations of NO, NO 2, HNO2 , and HNO3  ion species that can be attributed unambiguously to
[Arnold et al., 1992]. Here we find that CO3 reacts rapidly CIONO 2, there are potentially interfering reactions. Fortu-
with CIONO 2 to form NOT. However, this is not a useful nately, H 20 does not react with NO0-(CIONO 2). If this
reaction for detecting the presence of CIONO 2 since NO, reaction were to proceed, the large abundance of H20 in the
NO2 , N 205, and HNO3 also form NO3 from reaction with atmosphere would ensure that NO3-(CIONO 2) would be lost
CO3- [Ikezoe et al., 1987]. In fact, the reaction of CIONO 2  before it could be detected. There are nevertheless several
with C0 3 may obscure or complicate the detection of some reactions that could interfere with this detection scheme.
of these other species when CIONO2 concentrations are HNO 3 switches CIONO2 out of NOT(CIONO 2) rapidly to
comparable to that of the nitrogen oxide species of interest, form NO3(HNO3). HCl reacts with NO0-(CIONO 2) to form

Another series of ions that is easy to create in active NO3(HNO3). This last reaction and the reaction of
ion source measurements is N0 3 and its hydrates, NO03(HCI) with CIONO2 are analogous to the neutral het-

o NOT(H 20)n, particularly the first hydrate (where n = 1). erogeneous reaction of CIONO 2 with HCI which is important
* The present results show that both NO3 and NO(H 20) in the mechanism of stratospheric ozone loss in the polar

react with CIONO 2 to form NO3 (CIONO 2). These reactions winter. These reactions are discussed in detail in a separate
each form an ion, which can be uniquely connected with the publication [Van Doren et al., 1994].
presence of CIONO 2, an important condition for the accu- The ion chemical detection scheme derived from our
rate determination of atmospheric concentrations. The clus- measurements for determining the concentration of ambient
tering rate between N0 3 and CIONO2 is relatively slow and CIONO 2 is as follows. A chemical ionization source is set up
would appear to reduce the sensitivity of using this reaction to produce N0 3 and NO3 (H210) as the primary ions. These
as a CIONO 2 detector. One must note, however, that our ions are injected into a flow reactor connected to a mass
results refer to a pressure of only 0.2 torr, while the region of spectrometer. In the flow tube, reactions (1) and (4) both
interest for atmospheric detection of CIONO 2, 10-25 kin, has produce -N0 3 (CIONO2). The rate constants for both of
a pressure of -20 - 200 torr. One expects that this reaction these reactions are expected to be large at stratospheric
will saturate under atmospheric conditions and cluster at temperatures and pressures and for the present purposes can
approximately the collision rate, that is, the rate constant t assumedto be equal tothe rate constant for reaction (4).
will be the same as that for NO(H 20). Direct measure- Iotal depletion of the NO- and NO-(H20) primary ions
ments of this rate constant in a high-pressure apparatus must be keptsmall, that is, less than 10%. This ensures that
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