THERMAL POLYMERIZATION OF STYRENE IN THE PRESENCE OF STABLE RADICALS AND INHIBITORS

by

Daniela Mardare, Krzysztof Matyjaszewski

Published

in the

Carnegie Mellon University
Department of Chemistry
4400 Fifth Avenue
Pittsburgh, PA 15213

June 30, 1994

Reproduction in whole or in part is permitted for any purpose of the United States Government

This document has been approved for public release and sale; its distribution is unlimited.
Thermal polymerization of styrene in the presence of several radical scavengers and inhibitors was investigated. Rates, molecular weights and polydispersities depend on the nature of the scavenger, on its concentration and reaction temperature. In the best controlled systems, molecular weights up to $M_n = 10,000$ and polydispersities $M_w/M_n = 1.2$ were observed. It is proposed that in addition to the reversible activation by the homolytic cleavage of the "dormant" [P-R] species, degenerative chain transfer reactions may be involved.
THERMAL POLYMERIZATION OF STYRENE IN THE PRESENCE OF STABLE RADICALS AND INHIBITORS

Daniela Mardare and Krzysztof Matyjaszewski*
Carnegie Mellon University
Department of Chemistry
4400 Fifth Avenue
Pittsburgh, PA, 15213

Introduction
Radical polymerization usually proceeds with slow initiation producing a low stationary concentration of growing radicals, fast propagation with moderate regioselectivity and low stereoselectivity and fast bimolecular termination by recombination or H-abstraction. Recently, we proposed three approaches towards the synthesis of well-defined polymers by radical polymerization. They are based on the low stationary concentration of growing radicals and high concentration of chains capable of growth. Some (most) of these chains are, however, in the inactive form. Thus, growing radicals may react reversibly with scavenging radicals to form "dormant" species, or with covalent organometallic compounds to produce stabilized metal-centered radicals. The third approach employs participation of the growing radicals in the degenerative transfer reactions. A "living" radical polymerization mechanism was recently proposed in the synthesis of polystyrenes with low polydispersity by initiation with a system involving benzylic peroxide (BPO) and 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO) in various molar ratios at temperatures 123-140°C. The unusual narrow polydispersions were attributed to the fast initiation by the redox process in which phenyl radicals are formed by TEMPO-promoted decomposition of BPO. Growing polystyryl chains were proposed to be "reversibly" deactivated by scavenging TEMPO radicals, thus substantially reducing irreversible termination that prematurely stops chain growth. It was assumed that new initiating radicals generated by thermal processes should have no effect on molecular weights and polydispersities. However, at temperatures above 100°C, styryl radicals are continuously produced via thermal initiation process, as long as monomer is present.

In this paper we demonstrate that thermal polymerization of styrene in the presence of TEMPO without any additional radical initiator (peroxide, diazo compound) also produces polymers with narrow molecular weight distribution (Mₗ/Mₘ = 1.15 to 1.3) and that molecular weights increase linearly with conversion. Various inhibitors have similar effects to nitroxides but act less efficiently.

Results and Discussion

Fig. 1 presents time-conversion plots in semilogarithmic coordinates in thermal bulk polymerization of styrene at 120°C at different concentrations of TEMPO.

Longer induction periods were noticed at higher concentrations of TEMPO which acts as an inhibitor, by scavenging radicals thermally formed until their total consumption. Then, polymerization starts after different induction periods with rates also influenced by the amount of chains capped by alkoxamines.

Dependence of molecular weights (Mₘ) on conversion is almost linear, the highest values are observed at the lowest concentrations of TEMPO (Fig. 2, (a)).

Polydispersities increase with conversion as shown in Fig. 3. The lowest values (Mₘ/Mₘ = 1.15 to 1.3) are observed at the highest amount of TEMPO (9).

Figures 2. Mₘ/Mₘ conversion dependence in polymerization of styrene, in bulk, 120°C, at different concentrations of TEMPO

Figures 3. Mₘ/Mₘ conversion plots in thermal polymerization of styrene, 120°C, in bulk, at different concentrations of TEMPO. Temperature has a pronounced effect on polymerization rates, at the same concentrations of TEMPO. (Fig. 4). At higher temperatures (140°C) the highest rates were noticed, but the lowest molecular weights (Fig. 5, (a)), and the lowest polydispersities (Fig. 6, (a)).

Figures 4. Time-conversion plots in semilogarithmic coordinates in thermal polymerization of styrene, 120°C, at different temperatures. [TEMPO]₀ = 10⁻⁴ M.
The control of molecular weights and decrease of polydispersities was up to now attributed to the reversible homolytic cleavage of the dormant species P-R (eq. 1):

\[
P_n + O^* \rightarrow P_n^* + O
\]

However, it is also possible that radicals formed continuously during thermal initiation may react in the transfer processes with polymeric alkoxyamines. In this thermodynamically neutral process newly generated radicals will react with alkoxyamines (dormant species), reforming radicals of the same structure as growing radicals and alkoxyamines also of the same structure. If the exchange process (degenerative transfer) (eq. 2) is fast enough and the ratio of terminated chains to the total number of chains is low, a well-defined system may be formed.

\[
P_n + O^* \rightarrow P_n^* + P_m - O^*\]

Conclusions

Thermal polymerization of styrene in the presence of several radical scavengers and inhibitors was investigated. Rates, molecular weights and polydispersities depend on the nature of the scavenger, on its concentration and reaction temperature. In the best controlled systems, molecular weights up to \(M_n=10,000\) and polydispersities \(M_w/M_n=1.2\) were observed. It is proposed that in addition to the reversible activation by the homolytic cleavage of the "dormant" [P-R] species, degenerative chain transfer reactions may be involved.

References
1. Grecka, D., Marture, D., Maryiazenski, K., Macromolecules, in press.

Acknowledgments

Acknowledgment is made to the Office of Naval Research and to the National Science Foundation, via the support within Presidential Young Investigator Award to K.M., as well as to Du Pont, Eastman Kodak, PPG Industries and Xerox Corporation for the matching funds.

Table 1 Thermal polymerization of styrene in the presence of different stable radicals, \(10^{-2} M, T = 120^\circ C, 48\) hours

<table>
<thead>
<tr>
<th>Radical</th>
<th>(M_n)</th>
<th>(M_w/M_n)</th>
<th>Conversion %</th>
</tr>
</thead>
<tbody>
<tr>
<td>TEMPO</td>
<td>4,240</td>
<td>1.26</td>
<td>80</td>
</tr>
<tr>
<td>4-0H-TEMPO</td>
<td>3,915</td>
<td>1.27</td>
<td>62</td>
</tr>
<tr>
<td>4-exo-TEMPO</td>
<td>6,830</td>
<td>1.38</td>
<td>74</td>
</tr>
<tr>
<td>2,2,3,4,5,5-Hexamethyl-3-imidazolinium-1-yl oxy methyl sulfate</td>
<td>4,367</td>
<td>1.31</td>
<td>78</td>
</tr>
<tr>
<td>DPPH</td>
<td>3,444</td>
<td>1.76</td>
<td>36</td>
</tr>
<tr>
<td>Galvinoxyl</td>
<td>43,157</td>
<td>1.5</td>
<td>57</td>
</tr>
</tbody>
</table>

Table 2 Thermal polymerization of styrene in the presence of inhibitors, \(120^\circ C, 22\) hours

<table>
<thead>
<tr>
<th>Inhibitor</th>
<th>(M_n)</th>
<th>(M_w/M_n)</th>
<th>Conversion, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hydroquinone</td>
<td>61,008</td>
<td>1.7</td>
<td>74</td>
</tr>
<tr>
<td>2,6-di-t-butyl-4-methylphenol</td>
<td>110,981</td>
<td>2.07</td>
<td>70</td>
</tr>
<tr>
<td>Benzoquinone</td>
<td>48,935</td>
<td>1.8</td>
<td>75</td>
</tr>
</tbody>
</table>