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Abstract. The CRCW PRAM under dynamic fail-stop (no restart) processor behavior is
a fault-prone multiprocessor model for which it is possible to both guarantee reliability and
preserve efficiency. To handle dynamic faults some redundancy is necessary in the form of
man) processors concurrently performing a cornmon read or write task. In this paper we show
how to significantly decrease this concurrency by bounding it in terms of the number of actual
processor faults. We describe a low concurrency, efficient and fault-tolerant algorithm for the
Write-All primitive: “using < N processors, write 1's into N locations”. This primitive
can serve as the basis for efficient fault-tolerant simulations of algorithms written for fault-
free PRAMs on fault-prone PRAMs. For any dynamic failure pattern F, our algorithm has
total write concurrency < |F| and total read concurrency < 7|F}logN, where |F| is the
number of processor faults (for example, there is no concurrency in a run without failures);
note that, previous algorithms used (N log N) concurrency even in the absence of faults.
We also describe a technique for limiting the per step concurrency and present an optimal
fault-tolerant EREW PRAM algorithm for Write-All, when all processor faults are initial.

1. Introduction
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1.1. Motivation and Background v
. . . ‘31 . . &

A basic problem of massively parallel computing is that the unreliability of inexpensive g &
processors and their interconnection may eliminate any potential efficiency advantage of g';
parallelism. Qur research is an investigation of fault models and parallel computation g8
models under which it is possible to achieve algorithmic efficiency (i.e., speed-ups close to Ev_f: {
linear in the number of processors) despite the presence of faults. s d i

Such combinations of fault and computation models are interesting because they il- < el
lustrate good trade-offs between reliability and efficiency. To see that there is a trade-off § . f
consider that reliability usually requires adding redundancy to the computation in order to ‘g a8 {
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detect errors and reassign resources, whereas gaining efficiency by nmsswely pardile! com--,
puting requires removing redundancy from the coraputation to fully utilize each processor.

Even allowing for some abstraction in the model of parallel computation, 1t is not obvious
that there are any non-trivial fault models that allow near-linear speed-ups. So it was
somewhat surprising when in [18] we demonstrated that it is possible to combiue efficiency
and fauit-tolerance for many basic algorithms expressed as concurrei.t-read concurrent-write
parallel random access machines (CRCW PRAMSs). The [18] fault model allows any pattern
of dynamic fail-stop no restart processor errors, as long as one processor remains alive.
Interestingly, our technique can be extended to all CRCW PRAMs. In {20] it is shown how
1o simulate any fault-free PRAM on a CRCW FRAM that executes in a fail-stop no-restart
environment with comparable efficiency and in [31] it is shown how the simulation can be
made optimal using processor slackness. The fault model was extended in {32] to include
arbitrary static memory faults, i.e., arbitrary memory initialization. The CRCW PRAM
computation model is a widely used abstraction of real massively parallel machines. As
shown in [18], it suffices to consider COMMON CRCW PRAMs (all concurrent writes are
identical) in which the atomically written words need only contain a constant number of
bits.

All the above-mentioned algorithmic work makes two somewhat unrealistic, but critical,
assumptions, It is assumed that: (1) processors can read and write memory concurrently,
and (2) processor faults are fail-stop without restarts. This paper is an investigation of
assumption (1) about the model of computation, while still making assumption (2) about
the fault model. Specifically, the redundancy which is essential for the above algorithmic
techniques seems to be the result of more than one processor concurrently performing a
common read or write task. Our contribution here is to show how to control and minimize
this redundancy,

Qur analysis js deterministic with worst-case failure-inducing adversaries. For this we
still assume {2) above, namely that the dynamic processor errors do not affect shared
memory and processors once stopped do not resume computation. More general processor
asynchrony has been examined in {2, 3, 4, 7, 8, 9, 11, 14, 20, 21, 22, 25, 26, 27]. Many
of these analyses involve average processor behavior and use randomization. Some (e.g..
[2. 7.22]) deal with deterministic asynchronous computation (i.e., removing ascamption {2)
without using randomness). In this case the strongest lower bounds are in [22] and the
tightest upper bounds are in [2].

A key primitive in much of the above mentioned work is the Write-All operation of {18].
The main technical insight in this paper is an efficient, deterministic fault-tolerant Write-All
algorithm that significantly reduces memory access concurrency.

The Write-All problem is: using P processors write 1s into all locations of an array of
size N, where P £ N, When P = N this operation captures the computational progress
that can be naturally accomplished in one time unit by a PRAM. In the fail-stop PRAM
mode] the P processors share a global clock and are fail-stop no restart.

Under dynamic failures, efficient deterministic solutions to Write-All, i.e., increasing
the fault-free O(N) work by small polylog(N ) faciors, are non-obvious. The first such




sohution was algorithm W of [18] which has (to date) the best worst-case work bound
O(N + Plog? Nfloglog N} for 1 € P < N (this bound was shown in [22] for a variant
of algorithm W and in [24] the same bound was shown for algorithm W). Algorithm W
was extended to handle arbitrary initial memory in [32] and served as a building block for
transforming fault-free PRAMs into fault-prone PRAMs of comparable efficiency in [20, 31].

We say that Write-All completes at the global clock tick at which all the processors
that have not fail-stopped share the knowledge that 1's have been writien into all N array
locations. Requiring completion of a Write-All algorithm is critical if one wishes to iterate
it. as pointed out in [20] which uses a certification bit to separate the various iterations
of (Certified) Write-All. Note that the Write-All completes when all processors halt in
algorithin W, This is also the case for the algorithms presented here.

In Section 2.1 we present our fault and computation models. In Section 2.2 we review
our measures of efficiency and introduce a measure of concurrency. To make the exposition
self contained we present in Section 2.3 an outline of the main algorithmic ideas of algorithm
W and sketch how it is utilized in PRAM simulation and memory clearing.

Memory access concurrency is the main topic of this paper. In {18] it is shown that read
and write concurrency are necessary for deterministic exScient solutions under dynamic
processor faults. All Write-All solutions that have efficiens work for any dynamic processor
failures require concurreni-read concurrent-write (CRC'V) PRAMs. Moreover, all such
solutions to date make very liberal use of concurrent reads and writes.

1.2, Summary of Results

In Section 3 we present our main contribution, that we can bound the total amount of
memory access concurrency in terms of the number of dynamic processor faults of the actual
run of the algorithm.

When there are no faults our new algorithm executes as an EREW PRAM and when
there are faults the algorithm differs from an EREW PRAM in an amount of concurrency
related to the number of faults. The algorithm is based on a conservative policy towards
concurrency: concurrent reads or writes occur only when the presence of failures can be
inferred from what processors know (i.e., when failures are detected) and these concurrent
operations happen in proportion to the failures detected.

We describe an efficient fault-tolerant CRCW algorithm for the Write-All problem such
that, for any failure pattern F in a run of the algorithm the total write concurrency is
< |F| and the total read concurrency is £ 7|F|log N, where |F} is the number of failures.
The algorithm is based on algorithm W and makes use of processor identifiers to construct
mergeable processor priority trees, which control concurrent access to memory. We present
it in two steps, first controlled write concurrency (Section 3.1) and then controlled read
concurrency (Section 3.2). The work of the Write-All algorithm described in Section 3.2 is

OiNlog Nlog P + Plog Plog? N/loglog N), where 1 < P < N. —
In Section 3.3 we utilize paralie] slackness to obtain a Write-All algorithm that has opti-
mal work for a non-trivial range of processors. The algorithm has work O(N + Plog: );;osz .-\,) eroeom e eram——
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and is optimal for Plog? P < Nloglog N/log? N. We extend this algorithm to handle ar-
bitrary initial memory contents in Section 3.4. In Section 3.5 we demonstrate that there is
no efficient and fault-tolerant algorithm whose total*write concurrency is bounded by | F|*
for § £ £ < 1. in Section 3.6 we describe how this algorithm can be used as a building
block for efficient simulations of arbitrary PRAMs. This is a dynamic version of Brent’s
lemma [6].

In Section 4 we examine the worst-case concurrency per step. This is a different measure
than the overall concurrency of Section 3. We present a variation of algorithm W whose
mazimum read/wrile concurrency per step is N/polylog{N) instead of N. The point here
is decreasing concurrency per step by polylog amounts using a general pipelining. technique
of synchronizing processors into waves. This idea can be combined with those of Section 3.

The case of static faults is examined in Section 5. Using a variant of the parallel prefix
operation, we give a O(N + P'log P)-work EREW algorithm for Write-All, where P’ is
the number of live processors and P — P is the number of initial faults. For P = N, this
solution is optimal (based on a result of {5]. For general simulations of PRAM algorithms
our solution introduces a ©(P'log P) additive overhead. It also handles static memory
faults at no additional overhead. In summary, the static case has a simple optimal solution
which eliminates memory access concurrency.

We conclude with some open problems in Section 6.

2. The Model and Base Algorithms

2.1, Fail-Stop PRAM

The parallel random access machine (PRAM) of Fortune and Wyllie [13] combines the
simplicity of RAM with the power of parallelism, and a wealth of efficient algorithms exist for
it: see surveys [12, 19] for the rationale behind this model and the fundamental algorithms.
The main features of this model are as follows:

1. There are P initial processors with unique identifiers (PID) in the range 1,...,P.
Each processor knows its PID and the number of processors P.

oo

The memory accessible to all processors is denoted as skared, each processor also
has a constant size local memory denoted as private. Each memory cell can store
©(log max{N, P}) bits on inputs of size N.

3. The input is stored in N cells in shared memory and the rest of the sharad memorv
is cleared (i.e., contains zeroes). The processors know the input size N.

In the study of fail-stop PRAMs, this base model is extended with a failure model:

4. We allow any dynamic paitern F of processor fail-stop errors provided one processor
survives {one processor is necessary if anything is to be done). F describes whick
processors fail and when. This pattern is determined by an adversary, who knows
everything about the structure and the dynamic behavior of the algorithm.

4
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Fig. 1. Aa architecture for a fail-stop multiprocessor.

N 5. We consider fail-stop {no restart) errors: processors fail by stopping and not per-
forming any further actions; their private memory is lost, but shared memory is not
affected by processor failures.

6. Shared memory writes are atomic with respect to failures: failures can occur before or
after a shared write of O(log max{N, P})-bit words, but not during the write. (This
non-irivial assumption is made only for simplicity of preseatation; algorithms that
make it can be converted to use only single bit atomic writes [18].) We also handle
arbitrary inttwalization of the shared memory, which is assumed clear in the fault-free
PRAM model. (This extends 3 above.)

The abstract model that we are studying can be realized in the architecture of Fig. 1.
Fanlt-tolerant techunologies, such as those in surveys {10, 15, 16], all contribute towards
concrete realizations of its components.

a. There are P fail-stop processors (see [29]), each with a unique address and some local
memory.

b. There are Q shared memory cells, the input of size N < Q is stored in shared memory.
These semiconductor memories can be manufactured with built-in fault tolerance us-
ing replication and coding techniques withcut appreciably degrading performance [28}.

c. Processors and memory are interconnscted via a synchronous network (e.g., as in the
Ultracomputer [30}). A combinirg interconnection network that is well suited for im-
plementing synchronous concurrent reads and writes is studied in [23] (the combining
properties are used in their simplest form only to implement concurrent access to
memory). The network can be made more reliable by employing redundancy [i}.

2.2, Measures of Efficiency

The complexity measure used throughout this work is the available processor steps
of [18]. It generalizes the fault-free Parallel-time x Processors product and accounts for
all steps performed by the active processors.

Definition 2.1. Consider a computation with P initial processors that terminates in par-
allel time 7 after completing its task on some input data [ of size |[I{ = N, and in the




presence of some fail-stop error pattern F of size |F| < P. if P{{(I,F} < P is the number
of processors completing an instruction at time ¢, we define the available processor steps of
this computation as

T
SLF.P = Z R(I‘l F)’
$=1
and the available processor sieps S of an algorithm as

§ = S(N, P) = max{S1sp : 1l = N, [F < P}.
- a
The notion of algorithm robustness combines fault tolerance and efficiency:

Definition 2.2. Let T(N) be the best sequential (RAM) time bound known for N-size
instances of a problem. We say that a parallel algorithm for this problem is a robusi perallel
algorithm if for any input I of size |I| = N and for any number of initial processors P
(1 £ P £ N) and for any failure pattern F of size |F| < P, this algorithm completes its
task and it has § = §(N,P) < ¢ T{N)log" N, for fixed ¢, ¢'. 0

We now introduce new measures to gauge the concurrent memory accesses of a compu-
tation.

Definition 2.3. Consider a computation with P initial processors that terminates in par-
allel time 7 after completing its task on some input data I of size {I| = N in the presence
of fail-stop error pattern F of size |F| < P. If at time ¢ (1 < i € 7), PR processors com-
plete reads from AR shared memory locations and PV processors complete writes to N ¥
locations. then we define:

,.
(i) the read concurrency p of the computation as: p=prrp = Z (P,-R - N,R), and

i=1

T
(ii) the write concurrency w of the computation as: w = wyFpp = Z (P,-w - N,w) a
f=1
Remark 1. For concurrent reads from {writes to) a particular memory location, the read
(write) concurrency for that location is simply the number of readers (writers) minus one.
For example, if only one processor reads from {writes to) to a location, then the concurrency
is 0, i.e., no concurrency is involved. This leads to an equivalent definitien of p and w: For
a given computation, let R;; be the number of reads from location ¢ during step j, and
1, be the number of writes to location i during step j. Then p for the computation is
T j=1 2im,s0(Rij—~1),and wis Li=1 2oiw,, >0 Wij—1). It is easy to see that this definition
of p and w is equivalent to Definition 2.3 above.

Remark 2. Note that p and w are defined for a computation, or actual run, of an algorithm.
They are cumulative measures over all the steps of the computation. § is the maximum
over all computations where [I| = N and |F| < P. Cur bounds for § are worst-case over
all inputs and failure patterns, but our bounds for p and w depend on |F}| and |I} = N.
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01 forall processors PID=1..N parbegin

02 Phase W3: Visit the leaves based on PID to perform work on the input data

03 Phase W4: Traverse the progress tree bottom up to measure progress

04 while the root of the progress tree is not N do

113 Phase W1: Traverse the processor epumeration tree botiom up to enumerate processors
06 Phase W2: Traverse the progress tre« top down o reschedale work

07 Phase W3: Perform rescheduled work on the input data

08 Phase W4: Traverse the progress tree bottom up to measure progress

09 od

10 parend

Fig. 2. A high level view of algorithm W for P = N.

Remark 3. p and w can be used to characterize the type of PRAM that ar execution of
an algorithm requires. An execution that has p = w = 0 can be carried out on an EREW
PRAM while a CREW PRAM suffices for an execution with v = 0. This does not imply
that the algorithm itself is an EREW or CREW algorithm. However, an algorithm is EREW
if its worst case p and « are § and it is CREW if its worst case w is 0.

2.3. Background Algerithms

2.3.4, Algorithm W

Algorithm W of [18] is a robust Write-All solation. It uses two complete binary trees
as data structures: the processor enumeration and the progress trees. A high level view
of algorithm W is in Fig. 2. It is an iterative algorithm in which all active processors
synchronously execute the following four phases:

o Phase W1 — processor enumeration. All processors traverse bottom-up the processor
enumeration tree always starting at the same leaf, i.e, this traversal is static. This
phase utilizes a version of the standard parallel prefix algorithm. The result is an
overestimate of the number of live processors in every subtree and a numbering of the
live processors.

¢ Phase W2 — processor allocation. The processors traverse top-down the progress tree
using a divide-and-conquer approach (based on processor enumeration and progress
measurement) to allocate themselves to the unvisited leaves of the progress tree.

o Phase W3 — work phase. The processors work at the leaves they reached in W2.

o Phase W4 — progress measurement. The processors traverse bottom-up the progress
tree and compute an underestimate of the progress of the algorithm for each subtree.
They start from the leaves they were at in phase W3. A version of the standard
parallel summation algorithm is employed to compute underestimates of the progress
for each subtree.



01 forall processors PID=1..P parbegin —~ P jail-stop processors simulate N foult-prone ones
02 The PRAM plogram for N processors is stored in shared memory (read-only)

03 Shared memory has'two generations: current and future; the rest of shared memory is clear
04 Initialize N simulated instruction counters to start at the first instruction

05 while there is a simulated processor that has not halted do

06  ——Perform tentative computation: Fetch next instruction; Copy registers to scratchpad;
07 Do read cycle using “current” memory; Perform the compute cycle;

08 Do write cycle into the “future” memory; Compute next instruction address

09  ——Reconcile memory and registers: Copy “future” memory and registers to “current”
10 od

i1 parend

Fig. 3. Simulations using Write-All primitive and two generations of shared memory.

The following lemma of {24] provides a bound on the total number of block steps executed
by all processors (where a block step is an execution by one processor of the body of the
while-loop in Fig. 2). It will be used in our analyses in Section 3.

Lemma 2.1 ([24]). Let U be the number of unvisiled leaves of the progress tree and P be
the number of processors at the beginning of algorithm W. Let U; and F; be the number
of unvisited leaves of the progress tree und processors, respeclively, at the start of the ith
iteration of the while loop. Then the total number of block steps of all iterations for which
P; < U: is at most UV and the total number of block steps of iterations for which F; > U; is
at most O PWEF‘OEU) The overall number of block steps is O(U + P EFEP) a

Algorithm W can be parameterized by clustering elements of the input array and as-
signing one cluster to each leaf of the progress tree. We will use the notation W{s} to specify
that the input elements form clusters of size s; in this case the progrees tree has ¥ /s leaves,
one for each cluster. When usmg P processors such that P > -3—, it is sufficient for each
processor to take its PID modulo & = to assure a uniform initial assignment of at least [P/
and no more than fP/ L] processors to a work element.

Algorithm W performs best when the cluster size s is chosen to be log NV, resulting in
a progress tree of N/log N leaves. A complete description of the algorithm can be found
in [18]. Using the above lemma for U = A /log N, a tight bound can be obtained for
algorithm Wilog N}:

Theorem 2.2 ({18, 24]). Algorithm Wllog N is a robust paraliel algorithm for the Write-
All problem with § = O(XN + Plog? N/lcglog N}, where N is the input array size and the
initial number of processors P is between 1 and N . O

2.3.2. PRAM Simulations

The original motivation for studying the Write-All problem was that it intuitively cap-
tures the essential nature of a single synchronous PRAM step. This intuition was made
concrete when it was shown in {20, 31] how to use solutions for the Write-All problem in
implementing general PRAM simulations.



01 farall processors PlD=1..P parbegin - Use P processors to clear N memory locations
02 Clear the initial block of Ny = Gy clements sequentially using P processors

83 {20 - Heration counfer

04 while N, < N do

05 Use a Write-All salution with data stractures of size N; and Gy elements

06 at the leaves 1o clear memory of size Niyy = Ny G i =i+l

o7 od

08 parend

Fig. 4. A high level view of algorithm Z.

A high level view of this approach is given in Fig. 3. The simulations are implemented
by robustly executing each of the cycles of the PRAM step: instruction fetch, read cycle,
compute cycle, write cycle, next instruction address computation. This is done using two
generations of shared memory, “current” and “future”, and by executing each of these cycles
in the Write-All style, e.g., using algorithm W (for details, see {20, 31}).

Using such algorithm simulation techniques it was shown in {20, 31] that if S (N, P)
denotes the available steps of solving a Write-All instance of size N using P processors, and
if a linear in N amount of clear memory is available, then any N-processor PRAM step
can be deterministically simulated using P {ail-stop processors and work S,(N, P). If the
Parallel-time X Processors of ap original N.processor algorithm is 7 - N, then the available
steps of the fault-tolerant simulation will be O{r - 5,(N, P)).

2.3.3. Static Initial Memory Errors

The Write-All algorithms and simulations, e.g., [18, 20, 22, 31], or the algorithms that
can serve as Write-All solutions, e.g., the algorithms in [8, 26], invariably assums that a
linear portion of shared memory is either cleared or is initialized to known values. Starting
with a non-contaminated portion of memory, these algorithms perform their computation
by “using up” the clear memory, and concurrently or subsequently clearing segments of
memory needed for future iterations. An efficient Write-All solution that requires no clear
shared memorv has recently been defined using a bootstrap approach {32].

The bootstrapping proceeds in stages: In stage 1 all P processors clear an initial segment
of Ng locations in the auxiliary memory. In stage ¢ the P processors clear Nj4; = N; -Gy
memory locations using N; memory locations that were cleared in stagei— 1. if N;.; > N;
and Ng 2 1. then the required N memory location will be cleared in at most N stages.

The efficiency of the resulting algorithm depends on the particular Write-All solution(s)
used and the parameters N; and G;. In [32], a solution for Write-All (algorithm Z, see Fig. 4)
is presented that for any failure pattern F' (| F| < P) has work O(N + Plog® N/(loglog N )?)
withour any initialization assumptions.

This solution uses algorithm Wi{log N] as the underlying Write-All algorithm. In the
early iterations, the number P of processors may be greater than the number N; of leaves
of the enumeration tree. In this case processors are assigned to the leaves by taking their
PIDs mod N;, as described in Section 2.3.1.




3. Controlling Memory Access Concurrency

Algorithm W is a robust faill-stop Write-All solution, however it makes liberal use of
concurrent memory accesses even when there ore no foults, When P = N, in phase W4
(Fig. 2. line 03), the algorithm has w = JR8N+1 (N - g!.,} = Q(Nlog N) in the absence
of failures. The same problem is shared by all robust deterministic Write-All algorithms
that have been proposed to date.

As shown in [18], concurrent memory writes cannot be eliminated altogether. Any
Write-All algorithm .that does not use concurrent writes, e.g. CREW PRAM, has worst
case work Q{N?) and thus is not robust,

8.1. Algorithm W with Controlled Write Concurrency

In this section we present a version of algorithm W that controls the overall pumber of
concurrent accesses. For ease of presentation we will first develop methods to control the
write concurrency while allowing unlimited concurrent reads. In the next section we will
extend these technigues to control the read concurrency as well.

Assume there are p < P processors that want to write to a common memory location 7.
QOur technigue for controlling the write concurrency is based on organizing the p processors
into & processor priority tree (PPT).

A PPT is a binary tree whose nodes are assoclated with processors based on a processor
numbering. All levels of the tree but the last are full and the Ieaves of the last level are
packed as left as possible. Thus these trees are structurally similar to heaps. PPT nodes
are numbered from 1 to p in a breadth-first left-to-right fashion where the parent of the
ith node has index [i/2] and its left /right children have indices 2{ and 2i + 1, respectively.
Processors are also numbered from 1 to p and the ith processor is associated with the ith
node. Note that these processor numbers need not be the same as their permanent PIDs.
Priorities are assigped to the processors based on the level they are at. The root has the
highest priority and priorities decrease according to the distance from the root. Processors
at the same level of the tree have the same priority, which is lower than that of their parents.

Processor priorities are used to determine when a processor can write to the common
memory location T. Al the processnrs with the same priority attempt to write to T
concurrently but only if higher priorily processors have failed to do so. To accomplish
this the processors of a PPT concurrently execute algorithm CW, shown in Fig. 5. Starting
at the root (highest priority) and toisg¢ down the tree one level at a time, the processors
at each level first read T’ and then concurrently update it iff it contains an old value. This
implies that if level i processors effect the writ=, all processors at higher levels must have
failed.

It is clear that whereas unrestricied concurrent writes by p < P processors take only one
step to update T', a PPT requires as many steps as there are levels in the tree, i.e., O(log p).
Provided there is at least one live processor in the tree the correct value will eventually be
written. Although CW introduces several idle processor cycles, it aliows us to bound the
number of concurrent writes incurred during an update of T.

10
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01 forall processors 1D = 1.p parbegin
02 =Proceacrs write o new value to location T as fellows
83 foriz= o L {logpl do ——For cach level { of processor privrily free
o4 i "'<Iﬂ<2‘”‘” then —- The processors at level §
058 READ jocation T
o6 T doss not contain new vaiue then

C o7 WRITE new value to 7

‘ a8 fin

' 05 od

10 parend

Fig. 5. Pseudocode for the controlled write (CW) algorithm.

Lemma 3.1. If algerithm CW is execuled in the presence of a failure paltern F, then its
write concurrency w is no more than the number of failures [Fi.

Proof. By the description of CW above it is clear that location T is updated by the
processors of at most one level, say i. In this case all processors on levels 0,...,1 ~ 1 must
have failed. Since level 7 has 27 processors the total number of processors on these lavels
| is Tian 2’ =2 — 1 and hence |F| 2 2 - 1. On the other hand, level i has at most 2' live
processors and hence w < 2° ~ 1. The lemima follows by combining the two inegualities. O

YWe can now modify algorithm W by incorporating PPTs into its four phases. This
is done by replacing each concurrent write in these phases by an execution of CW. Since
in the worst case all P processors can form a single PPT, we allow {log | + 1 steps for
each execution of CW, thus slowing down each iteration of the original algorithm W by a
Of(log P) factor. (Although this will be sufficient for our analysis, in practice we could use
the overestimate of surviving processors computed in phase W1 to find the height of the
largest possible PPT for the current iteration and use this to determine how much time to
spend in CW.} PPTs are organized and maintained as follows.

At the outset of the algorithm and at the beginning of each execution of phase W1
each processor forms a PPT by itself. As processors traverse bottom up the trees used by
algorithm W they may encounter processors coming from the sibling node (if there is one}.

. In this case the two PPTs are merged to produce a larger PPT at the common parent of the
two nodes. In order to be able to use Lemma 3.1 to bound the overall write concurrency
of the algorithm, we must guarantee that a newly constructed PPT has no processors that
have already been accounted for as dead in the above lernma. Such processors are those
that are above the PPT level that effected the write. In order to accomplish this we compact
PPTs during merging to eliminate these processors.

To compact and merge two PPTs, the processors of each PPT store in the memory
location they are to update the size of the PPT, the index of the level that effected the
write and a timestamp along with the new valye to be stored in this location. A timestamp
in this context is just a sequence number that need not exceed N (see [18]). Since there
can be at most P processors, O(log N} + O(log N) + Ollog P) + O(loglog P) = O(log N)
bits of information need to be stored for the new value, the timestamp, the size of the tree

11




Fig. 6. Merging and compacting two PPTs. There are P, and Py processors in the left
and right PPTs, respectively. At the end of algorithm CW, up to F{ and P} precessors
remained in the PPTs. The resulting PPT will contain the surviving F{ + P processors.

and the leve] index.

After the log P steps of CW, the processors of each of the two PPTs that are to be merged
concurrently read the information stored in the two memory locations they updated and
compute the size of the resziting PPT, which is the sum of the two sizes read less the number
of the rertifiably dead processors above the levels that effected the writes. By convention,
wheu two PPTs are merged the processors of the left PPT are added to the bottom of the
right one. The timestamp is needed so that processors can check whether the values they
read are current {i.e., vhere is some PPT at the sibling node and merging has to take place)
or old.

Using the size and the level index each processor can locally compute its position in the
merged tree. If 8y and s; are the sizes of the left and right PPTs respectively, and {; and
I; are the corresponding level indices, the merged tree will have size sy + 85 — 20 — 22 4.2
and the first s, — 22 4 1 nodes will be occupied by the processors from the right PPT. This
process is iliustrated in Fig. 6.

We refer 1o the algorithm that results from W by incorporating CW and PPT com-
paction and merging as algorithm Wcw. In more detail, the four phases of algorithn W
need to be modified as follows:

W1: At the beginning of this phase each processor forms a PPT by itself. Processors
traverse the enumeration tree bottom up storing at each internal node of the tree
a value based on the values stored at its two children. In addition, in the original
algorithm W a timestamp is written to distinguish new from old values. The required
modifications entail using algorithm CW for writing to the nodes of the enumeration
tree and dispensing with the timestamp; the latter is because all values written by
CW are already timestamped in order to facilitate PPT merging as discussed above.
After each call of CW all PPTs are compacted and merged,

W2: This phase can be implemented without concurrent writes and the only modification
is that processors need to keep track of the size of the PPT they beloang to and their
position within this PPT since this information is needed in the subsequest phases.
As processors traverse the progress tree top-down they move to the left or right child
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of the current node in proportion to the number of unvisited leaves in the left and
right subtrees, as in the original algorithm W. This causes each PPT to be split in two
at each step. I a PPT has & processors of which &’ need to go left and the remaining
k ~ k' need to go right, then by convention the first &' processors of the PPT are
allocated to the PPT that moves to the left child and the remaining k — k' processors
form the PPT that moves to the right child.

W3: Frocessors use the information they gathered during phase W2 to organize themselves
into PPTs and then proceed to write 1 to the input elements associated with the leaf
they reached at the end of W2. Each such write uses algorithm CW and is followed
by compaction to eliminate the dead processors. There is no PPT merging in this
phase, As a result there is no need for timestampiag either.

W: In this phase processors traverse the progress tree bottom up writing at each node
the sum of the values stored at its two children. This write is accomplished by cailing
C'W and is fcllowed by compaction and merging. The PPTs used at the beginning of
this phase are those left at the end of W3.

For the case where each leaf of the progress tree is asscciated with one elemei.t of the
input array we can obtain the following bound on the performance of Wew:

Lemma 3.2. Algorithm Wow 1s a robust algorithm for the Write-All problem wiith w < | F|
and work § = O{Nlog Nlog P + Plog Plog® N/loglog N), where 1 < P < N.

Proof. The correctness of the algorithm follows from the correctness of algorithms W and
("W and from the fact that we just replace each write step in W by a call to CW,

To show the bound on § we invoke Lemma 2.1 according to which the total number of
block steps of algorithm W is at most U + Plog U/ log log U, where U is the initial number of
unvisited leaves. The number of available processor steps is (U + Plog U/ loglog U )(t: + ).
where t, is the time needed to traverse the processor enumeration and progress trees in
phases W1, W2, and W4, and #; is the time spent at the leaves during phase W3,

In our case. {, = O(log N log P) since each execution of C'W takes O(log P) time and the
height of the trees traversed is 2(log V), and t; = O{log P), the time of a single execution
of CW, Thus. with U = N

:S‘

H

(N + Plog N/loglog N)(O(log N log P) + O(log P))
= O(Nlog Nlog P+ Plog Plog? N/logleg N).

To show the bound on w, we first note that contributions to w occur oniy during the
executions of CW since there are no other concurrent writes. If there were m executions of
("W, let w; denote the contribution of the ith such execution tow, 1 < i< m. Let F;C F
be the failure pattern that consists of the failures of the processors above the PPT leve] that
efiected the write or of all the processors of ihe PPT if all failed during the ith execution.
From the proof of Lemma 3.1, w; < |{F;|. Due to the compaction of PPTs all processors
named in F; are eliminated at the end of CW and hence can cause at most one concurrent
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wriie {contribute at most once o0 « ). By summing the contributions from all executions of

CW we conclude that the overall write concurrency is w = 3%, w; < L7, |Fi < |Fl.
Note that failed processors that are below the level that completed the write during CW

are not removed by compaction but they do not cause any concurrent writes. ]

3.2. Algorithm W with Controlled Read/Write Concurrency

In this subsection we present extensions of algorithm CW that control read concurrency
in addition to write concurrency. Qur approach is based on replacing concurrent reads by
broadcasts through the PPTs. We first describe a simple scheme and then give a more
elaborate and efficient method.

As before assume there are p < P processors that need to write to a commmon memory
location T. Algorithm CW allows all the processors of a PPT level to concurrently read T
to check if it has been updated. Our first scheme for controlling read concurrency replaces
this concurrent read by a broadcast through the processors of the PPT level. Specifically,
we view the processors of each level as forming a heap-like binary tree where the leftmost
processor is the root, the second and third processors are the root’s children and so on.

The broadcast through each such tree proceeds in a top-down fashion by having each
processor broadcast the value it read to its two children, starting with the root. U a
processor does not receive a value because ¥ts parent has failed, then it reads T directly. If
the sibling processor is alive it will also read 7" thus incurring a concurrent read. The rest of
the algorithm is as in CW. The tree formed by the processors of the ith PPT level has 74+ 1
levels of its own so ¢ + 1 steps are required for the ith PPT level (i < [logp]). This means
that algorithm CW modified as described here requires max{i+1}log P = O(log? P) steps.

Simple as this method may be it is not satisfactory as it does not provide good bounds
on the read concurrency. The problem stems from the fact that a failed processor may
remain in a PPT for several steps and cause concurrent reads during each of these steps.

We next present a more elaborate scheme that addresses this problem. The advantages
of this algorithm over the ons described above are

¢ it uses several PPT levels at a time to broadcast instead of just one, and
¢ it tries to move failed processors towards the leaves of the PPT.

Even though a failed processor can still remain in a PPT for several steps, its movement
towards the leaves means that it can cause concurrent reads for only a small number of
steps, as we will show below. This algorithm will allow us to control read concurrency
without degrading the perfurmance of algorithm Wcw. It relies on the observation that
each level of a PPT contains one more processor than all the levels above it, This allows us
to use levels 0,...,7 — 1 to broadcast to level ¢ in constant time.

Algorithm CR/W: A high level view of this algorithm, that we call CR/W, is given in
Fig. 7. Communication takes place through a shared memory array (B in Fig. 7). Such an
array is used by each PPT so that processors can communicate with each other based on
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91 ~=Code executed by each of the p processors in the PPT

02 Initialize B[ID] ~broadcast location for processor ID

03 fori=0...{logp| do ——for each level i of the PPT

04 if 2 €<1D < 2'*! then —~if the processor it at level i

05  READ B{ID] .

06 if B{1D] has not been updated then —-—note that this is always true if ID = 2% = 1

07 READ (value,level) from T

08 if T contains some old value then

09 level 1= i ——level i effects the write

10 WRITE (newvalue,level) to T

11 else i 2" < TD -2 4+ 1 < 2 then ——unless it is above the level that effects the write
12 1D = 1D —2 41 w—wtake the place of the processor that was to update B{I D}

13 A&A#

14 HWID< 2" and 1D+ 2" < p then ——if the processor’s level + < §

1§ WRITE newvelue to B{1D + 2%} ~—broadcast to appropriate processor at level i+ 1
15 £

17 od

Fig. 7. High level view of algorithm CR/W for the controlled read/write. This code is
executed by each of the p £ P processors in the PPT. Here ID is the position of the
processor in the PPT and newvalue is the value to be written. Processors read and write
pairs that include T7s value as well as the index of the PPT level that effects the write.

their positions in the PPT; B[k] stores values read by the kth processor of the PPT. This
allows processors to communicate without requiring them to know each other’s identity.
Yor all the PPTs, we can store these B arrays in a segment of memory of size P; we discuss
an implementation later on in this section.

Each processor on levels 0,...,7— 1 is associated with exactly one processor on eack of
levels i.741..... Specifically, the jth processor of the PPT is responsible for broadcasting to
the jth (in a lefi-to-right numbering) processor of each level below its own. The algorithm
proceeds in {log p| + 1 iterations that correspond to the PPT levels. At iteration i, each
processor of level { reads its B location (line 5). If this location has not been updated, then
the processor reads T directly (lines 6-7).

Since a PPT level has potentially more live processors than all the levels above it com-
bined, there is in general at least one processor on each level that reads 7 since no processor
at a higher level is assigned to it. If a level is full, this processor is the rightmost one (the
root of the PPT for level 0). As long as there are no failures this is the only direct access
to T. Coucurrent accesses can occur only in the presence of failures. In such a case several
processars on the same level may fail to receive values from processors at higher levels, in
which case they will access T directly incurring concurrent reads.

A processor that needs to read T directly first checks whether it contains the value to
be written (line 8) and then writes to it (line 10) if it does not. As can be seen from the
figure, whenever processors update T they write not only the new value for 7 but also the
index of the level that effected the write (for simplicity we leave out the timestamps and
the size of the tree).
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01 -~ Code execated by euch of the p processors in the PPT

02 Initialize B{i D} —~broadcast location for processor ID

03fori=0...|Jogp| do —~jor each level § of the PPT

04 i 2° € ID < 2! then —~—if the processor is at level §

05  READ B[ID)

06  if B{ID] has not been updated then —-—note that this is always true if ID = 2% - 1
07 READ T

08 if ID# 2% — 1 then ——unless this is the rightmost processor
09 ID = 1D ~2"+1 ——tlake the piace of the processor that was to update B{I D]
10 fAfifi S

11 i 1D < 2% and ID 42 < p then ——if the processor’s level is < i

12 WRITE value read to B[ID + 2] —~brosdcast to appropriate processor at level i+ 1
13 fi

14 ad

Fig. 8. High level view of algorithm CR1 for the controlled read. The code is executed by
each of the p < P processors in the PPT. Here 1D is the position of the processor in the
PPT, which may change during the execution of the algorithm.

If a processor P, that accesses T directly verifies that T has the correct value and the
failed processor that should have broadcast to P is at or below the level that effected the
write, then P assumes the position of the failed processor in the PPT (lines 1i~12). This
effectively moves failed processors towards the leaves of the PPT and plays an important
role in estatlishing the bound on the read concurrency. Failed processors are moved towards
the leaves nuly if they are not above the level that effects the write since processors above
this level will be eliminated by compaction as was done in the previous section.

Algorithms CR1 and CR2: Algorithm CR/W combines a read with o write (ie., it
incorporates the functionality of the old CW). In addition to CR/W we use two simpler
algorithms when all the processors of a PPT need to read a common memory location but
no write is involved.

The first of them is similar to CR/W but without the write step. This algorithm,
referred to as CR1, is presented in Fig 8. It is simpler than CR/W since processors that are
found to have failed are pushed towards the brttom of the PPT independent of the level
they are at. This algorithm will be used for bottom-up traversals during W.

The second algorithm, referred to as CR2, uses a simple top-down broadcast through
the PPT. Starting with the root each processor broadvasts to its two children; if a processor
fails then its two children read T directly. Thus the processors of level ¢ are responsible to
broadcast only to processors of level i + 1. Unlike CR1 no processor movement takes place.
This algorithm will be used for top-down traversals during W.

It is easy to see from the description of the algorithms that all three of CR/W, CR1,
and CR2 require O(log P) time for PPTs of at most P processors.

Algorithm Wcg,w: We are now ready to present a Write-All algorithm that controls
both read and write concurrency. It utilizes algorithms CR/W, CR1, and CR2 for memory
accesses as well as the techniques of PPT merging and compaction introduced in the previous
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section. As with Wew, we augment the values written by CR/VW with timestamps to
facilitate PPT merging and also write the PPT size to assist with compaction {for simplicity,
these two additional pieces of information are not shown in Fig. 7). The resulfing algorithm
will be referred to as Weryw. In more detail, the following modifications must be made to
the four phases of the original algorithm W:

W1: Processors begin this phase by forming single-processor PPTs. The objective is for
processors to write to each internal node of the enumeration tree the sum of the values
stored at its two children. For this they use algorithm CR/W to store the new value,
the size of the PPT, the index of the level that completed the write, and a timestamup.
As with Wew the timestamps written in algorithm W are not required.

Upon completion of CR/W all PPTs are compacted. In order to merge PPTs the
processors of each need to read the data stored at the enumeration tree node that is
the sibling of the node they just updated. For this, algorithm CR1 is used and after
it finishes PPTs are merged. At this point the processors of the merged PPTs know
the value they need to write at the next level of the enumeration tree. This value is
just the sum of the value written by CR/W and the value read by CR1. Therefore
one call to each of CR/W and CR1 is needed for each level of the enumeration tree.

W2: This phase involves no concurrent writes and can be implemented using mostly local
computations. Surviving processors traverse top-down the progress tree to allocate
themselves to the unvisited leaves. The only global information needed at each level
is the values stored at the two children of the current node of the progress tree. These
values are read using two calls to CR2, one for each child. Using this information
the processors of a PPT compute locally whether they need to go left or right. No
compaction or merging is done in this phase. As PPTs move downwards tliey are split
as describ»d in phase W2 of algorithm Wcw.

W3: Processors organize themselves into PPTs based on the information they gathered
during the previous phase and proceed to write 1 to the locations that correspond to
the leal they reached. Each of these writes uses algorithm CR/W and is followed by
compaction. No merging is involved.

WJ: This phase initially uses the PPTs that resulted at thé end of W3. The task to be
performed is> similar to that of W1. As before CR/W is used for writing followed by
compaction and then one call to CR1, after which PPTs are merged.

Before embarking on the analysis of this algorithm, we discuss briefly how o accomodate
the B arrays of all the Pr'Ts ‘n O(P) space. We use an array B of length P and implement
the B array of each PPT as a contiguous subarray of B. Each PPT maintains the starting
location of this subarray, whose length is just the size of the PPT.

Initially each PPT has a single processor and processor P; is allocated location Bi).
When twe PPTs are merged we need to combine their B subarrays. If the left PPT uses a
subarray of size s; that starts at Bt;] and the corresponding parameters for the right PPT
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are sy and Blt;], then the merzed PPT will use a subarray of size s; + s, starting at Byl
The only information thut needs to be communicated between the two PPTs is that the
right PPT must know #;. This is accomplished by having the processors of the left PPT
write {; along with the new value for 7', the timestamp, the PPT size and the level index.
Note that the subarrays used by the two PPTs that are merged may not be contiguous in
B but in this case the space between the two subarrays is unused (i.e., there may be a gap
between them® since the two PPTs are siblings. .

When PPTs are split during W2 their B subarrays are also split. If a PPT of size s that
uses a subarray starting at Bft] is split into a left PPT of size &' and a right PPT of size
& — &', then the subarray for the left PPT will start at B[t] and the one for the right PPT
will start at Bt + &']. Only local computations are involved here.

Analysis of algorithm Wgg/w: Although we can guarantee a write concurrency of at
most |F] for algorithm Wep,w, the read concurrency is slightly more. This is because PP'T
compaction does not eliminate all the failed processors from 2 PPT but only those above
the level that completed the write. Failed protessors below this level remain in the PPT
and although they do not cause any concurrent writes they may cause concurrent reads.

In order to account for the concurrent reads incurred we associate a potential with each
processor. Our intention is to make the overall potential an upper bound on p. Below we
explain how this is done.

Let &, denote the potential of the the ith processor, 1 < i < P, let ¥ppr = Zpeprr @i
denote the potestial of a PPT, and let @ = 37, ;. p ®; be the overall potential. We use A,
to denote the change in the potential of the ith processor during an operation or sequence
of operations. Initially &; = 0,1 <:i < P.

Durinz each operation we increase the potential of a failed processor by an amount that
is an upper bound on the number of concurrent reads that can potentially be incurred during
this operation due to the failure of this processor. As a result ¢ will be an upper bound
on the toral number of concurrent reads incurred during an sxe~ution of the algorithm, i.e.,
p < ¢. The following lemma describes the required increase in the potential of a failed
processor during an execution of each of the algorithms CR/W, CR1 and CR2.

Lemma 3.3. Letly be the PPT level of a processor at the beginning of an ezecution of any
of the algorithms CR1, CRZ, or CR/W and let l; be the PPT level of the same processor
at the end of this execution. If this processor is dead at the end of this ezecution, then its
potential should be increased by (i) I; ~ Iy during CRI, (ii) 2 during CR2, and (ii) I3 ~ I
if 1t is at or below the level that completes the write and log P — Iy if it is above this level
during CR/W.

Proof. We need to show that the proposed increases in the potential of a failed processor
are upper bounds on the number of concurrent reads that can be incurred due to its failure.
(i) From the description of the algorithm it is clear that concurrent reads are the result
of processors discovering that processors at higher PPT levels have failed and could not
broadcast as a result. In this case the failed processors move to lower PPT levels as the
proressors that detect the failuis take their position in the PPT. Since a failed processor
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moves by at Jeast one level for each concurrent read it chuses, the number of concurrent
reads caused by a failed processor that moves from level {; to level I; can be at most I; - [;.
(ii) Since in CR2 a processor is responsible only for broadcasting to its two children, a failed
processor can cause at most two concurrent reads. This happens if both of its children are
alive and other processors at the same PPT level are also accessing the same location as a
result of their parents also having failed.
(iit) Let L be the index of the PPT level that completed the write. If a processor is above
L then no processor will take its position in the PPT. Since the PPT can have up to log P
levels this processor can cause a concurrent read at each of the levels below its own resulting
in log P — Iy concurrent reads. If the processor is at or below L then the situation is similar
to that of case (i} and by the same argument the processor will incur Iz ~ /; concurrent
reads. ]

Because of PPT compaction it is possible for some failed processor to actually move to
a higher PPT level after an execution of CR/W (note that compactions occur only after
CR/W). To account for this we charge each processor that is eliminated by compaction for
log P concurrent reads. As the following lemma shows, this one time charge is sufficient to
account for all the concurrent reads that can be caused by failed processors that move to
higher jevels following a compaction.

Lemma 3.4. If each processor that is eliminated by compacting a PPT is charged log P
and cach processor that moves to a higher level as a result of the compaction is credited for
the number of levels it moves, then the potential ®ppr of the PPT does not increase and
netther does §.

Proof. Let L be the PPT level that completes the write. As a result of compaction 2L ~ 1
processors will be eliminated. Increasing the potential of each such processor by log P
increases the petential of the PPT by (2% — 1) log P.

The absence of these 2X — 1 processors from the compacted PPT means that some
processors at levels > L move up. Since 2L — 1 processors are eliminated, the first 28 — 1
processors of each level > L will move up while all other processors will move left within
their levels but will not change level. We decrease the potential of each processor that
moves up by the number of levels it moves.

The 2L — 1 processors of level L that will move may move by as many as [ levels, so the
decrease in their potential is at most L (this is a pessimistic estimate). The processors of
the other levels that will move may move by just one level, so their potential is decreased
by 1.

The total decrease in potential for all processors that move 1o higher levels is at most

log P
Lonp+ Y @ -1 =2t~ DiegPp,
i=L+1
equal to the increase in potential. Thus potential redistribution does not increase &ppr
(since we are taking a pessimistic approach, ®ppr may actually decrease dus to this redis-
tribution). As a consequence @ does not increase either. o
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The remaining operation involved in Wrw, PPT merging, can never cause a processor
to move to a higher level. As a result we neither increase nor decrease processor potentials
during this operation, so we ignore merging in the rest of our analysis.

During phases W1 and W4 the main operation at each level of the enumeraiion or
progress tree entails one call to eack of CR/W, PPT compaction, and CR! in this order.
Phase W3 is similar but without CR1 (phase W2 is quite different). The following lemma
provides a bound on the change of potential during a sequence of such operations.

Lemma 3.5. Lef s be the length of a sequence of steps each of which consists of a call to
CR/W. PPT compaction, and CRI in this order and let F; be a processor that is dead ai
the end of this sequence bul is not eliminated by compaction during the sequence. If F; is at
PPT levelly at the beginning of the sequence and at level l; after the jth step of the sequence
(1 <7 <s), then Ad; = I, = Iy over the entire sequence.

Proof. Consider the jth step of the sequence. F; is at level [;_; at the beginning of this
step and at level I; at the end of it. If P; is at level I} > I;_; after the call to CR/W and
at level 17 < I’ after compaction, then ®; increases by ¥~ b1 +1; - ¥ (Lemma 3.3} and
decreases by I’ — I/ (Lemma 3.4). Thus A®; =1 — l;; for the jth step and for the entire
sequence we obtain

b ]
A=Y (=) =b 1o
—
This shows that the change in potential depends only on the starting and ending PPT levels
and not on the length of the sequence. o

As in the case of algorithm W, we may cluster several elements of the input array
and assign them to a single leaf of the progress tree. We use the notation Werswls] to
indicate that input elements are organized into clusters of size s. For ihe case s = 1 we
use the sherthand Weg w for Werywil]. The following theorem provides bounds on the
performance of this special case:

Theorem 3.8. Algorithm Wog/w 15 @ robust algorithm for the Write-All problem with
§ = O(NlogNlog P + Plog Plog® N/loglog N'), read concurrency p < 7T{F|log N, end
write concurrencyw < |Fl, where 1 <P XN,

Proof. The bounds on S and w are obtained as in Lemma 3.2. To show the bound on p
we consider the change A®; of the potential of a failed processor throughout a block step
{an iteration of the while loop). It suffices to focus on a single block step since PPTs are
rebuilt at the beginning of phase W1 and dead processors are eliminated. As a result, a
failed processor can cause concurrent reads for at most one block step.

Suppose that a processor is eliminated by compaction when it is at level / of 2 PPT.
It is clear that the processor causes the maximum number of concurrent reads when this
elimination takes place in phase W4 while the processer has failed since phase Wi.

When it is eliminated its potential will increase by 2log P — [, where log P is due to the
potential redistribution as described in Lemma 3.4, and log P - ! is due to the concurrent
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reads it may cause in the last execution of CR/W right before the compaction that eliminates
it (Lemma 3.3, (iii)). o _

The councurrent reads it causes until its elimination are accounted for as follows. In -
phase W1 the sequence CR/W, PPT compaction, CR1, is executed once for each level of
the enumeration tree. If the processor is at PPT level I, at the beginning of the phase and
at level {; at the end, then by Lemma 3.5 the change in potential is Iy — I, < log P since
the height of the PPT is at most log P.

Since the PPTs that exist at the end of W3 are the same as those used at the beginning of
W4, as far as accounting goes these two phases can be considered as being one. Consider the
sequence of calls to CR/W, compaction, and CR1 upto the call to CR/W that immediately
precedes the compaction that eliminates this processor. The processor is at level I at the
end of this sequence. N it is at level I’ at the beginning of W3, then by Lemma 3.5 the
change in potential is I - I’ < L. .

Finally. the change in potential for phase W2 is 2 for each execution of CR2 and there
are two such executions for each level of the progress tree. Thus the change in potential is 4
for each level of the progress tree and the total change in potential for phase W2is 4log N.

Combining the above we have that A®, for an entire block step is bounded by

log P +4log N +1+2log P~ 1 < 7logN.

Thus the amortized number of concurrent reads charged to a failed processor is at most
7log N. Since the potential of alive processors is non-positive we obtaia tae following bound
for p .

p<®= 3 &< Y @ <T|FllogN.
1<i<P P, failed

3.3. An Optimal Algorithm

As discussed in Section 2.3.1, algorithm W becomes optimal if input elements are clus-
tered into groups of size log N, each group associated with one leaf of the progress tree, and
a number of processors smaller than N is deployed. In a similar vein, algorithm Wog,w
performs best if clusters of size larger than one are used and fewer than N processors are
emploved.

Since the enumeration and progress trees traversed have height O(log N) and algorithm
CR/W requires O(log P) time, phases W1, W2, and W4 require O(log N log P) time. Thus,
we cluster the input elements into groups of size log N log P and have a progress tree with
N/log Nlog P leaves. The resulting algorithm Weg wllog N log P} turns out to be non-
optimal, so a further modification is needed.

To obtain optimality we make use of the perfect allocation property of algorithm W
(see [18]). This property guarantees that available processors are allocated evenly to the
unvisited ieaves in phase W2. Let U; and I} be the nuinbers of unvisited leaves and available
processors, respectively, at the beginning of the ith iteration of the while loop of algorithm
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. Weryw. The balanced ailocation property implies that if I; > F;, then at most one

processor will be allocated to sach unvisited leaf. .

This lerds to 2 modification of algorithm Wcg wllog N log P} The difference in this®
algorithm is that processors examine the overestimate of remaining processors P, and the
overestimate of the number of unvisited leaves U; at the beginning of each iteration. H
U; > P: we are guaranteed that there wii' be at most one processor per leaf at the beginning
of phase W3 so that there is no need to nse CR/W and compaction. Instead processors go
sequentially through the log N log P elements of the leaf they reached spending O(1) time
for each element. If, on the other hand, ¥; < P; several processors may be allocated to the
same leaf and algoritnm CR/W needs to be used. The latter situation occurs infrequently
enough that the algorithm becomes optimal for a certain range of processors, as we show
below.

We refer to algorithm Wcp wilog N log P] with the above modification as algorithm
Wk, w- The following theorem provides bounds on its performance.

Theorem 3.7. Algorithm Wk is @ robust algorithm for the Write-All problem with

5= O(.‘\’+Pl—‘{—%§;—£), write concurrencyw < |F), and read concurrency p < 7|Fllog N,
&

where L < P <N,

Proof. Let F; be the {overestimate of the} number of live processors and U; be the {over-

estimate of the) number of unvisited leaves at the begining of the ith iteration. We divide

the iterations into two cases:

Cave I: The number of unvisited leaves is U; > F.. In this case phase W3 requires
O{log N log P) time, the same as the time to traverse the enumeration and progress trees.
By Lemma 2.1 the number of block steps for all such iterations is at most Up, where l'o
i the initia] number of leaves. In this case Uy = N/log Nlog P and the total work for all

such iterations is N
= ———— Oflog N lor P} = O{ V).
2 log Nlog P Olog Nloz F) = O(¥)
Case 2: The number of unvisited leaves is {/; < P;. In this case all the processors could
be allocated to the same leaf. Thus, in the worst case, log P time must be spent at each
element of the leaf and since there are log Nlog P elements per leaf the worst case time
to update a leaf is O(log N iog? P). By Lemma 2.1 the number of block steps for ail such
iterations is at most O(P,;‘-‘ff‘?w). Hence the total work of all these iterations is

- JogN 2
S = 0P =) (O(log N log P) + O(log N log® P))

log? N log? P

ow loglog N

In addition, we must account for the work performed by processors that fail in the
middie of an iteration. There are at most O(P) such block steps each costing at most
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Oflog N log? P) so that the total work in this case is Sy = O(Plog Nlog? P). Combining
the three cases, we have

_ _ log? Nlog? P
S=5+5+5=0N4tP Toglog N

).
The algorithm is optimal if the second term is O(N).
~ The bound on w is obtained as before by noticing that wheneser 2 PPT has more than
- one processor, the tree is compacted after the write to eliminate any processors that have
caused concurrent writes. The bound on p is obtained as in Theorem 3.6. O

3.4. Handling Unitialized Memory

The algorithms considered so far require that memory be initially clear. Algorithm Z
of {32} extends algorithm W to handle unitialized memory (see Section 2.3.3). It is possible
to incorporate CR/W into Z to obtain a Write-All algorithm with limited concurrency that
dispenses with the requirement that memory be dear.

A problem: that arises H we try to combine the two algorithms directly iz that we can
no longer guarantee good read and write concurrency. This stems from the fact that to
achieve these bounds the PPTs that are built at the beginning of phase W1 must contain
no processors that are known to have failed. This is easy to do in the algorithms considered
so far since each PPT starts out with at most one processor. In algorithm Z, however, there
can be several processors that are assigned to the same leaf of the enumeration tree and
thus belong to the same PPT at the begining of W1; this happens whenever P > N;. The
assignment of processors to such leaves is made based on the processor PIDs and since this
does not take into account failed processors, the resulting PPTs may have dead processors
that have alreadyv been accounted for in w.

To work around this we will use an enumeration tree with P leaves for all iterations of Z.
so that each PPT will have at most one processor at the beginning of W1, To initialize this
tree we note that phase W1 is a static phase in the sense that a given processor traverses
. the same path through the enumeration tree every time W1 is executed. In particular,
since processors can not restart once they have failed, if a node of the enumeration tree
is accessed at all, it must be accessed the first time W1 is executed. The consequence of
this is that we do not need to clear the entire enumeration tree but only that portion that
can be accessed during the first execution of W1. To achieve this, processors make an
initial bottom-up traversal of the enumeration tree similar to the traversal of W1 (i.e., each
processor traverses the same path it would traverse in ' W1) and clear the locations that they
would access in W1. This process is carried out as follows.

Processors start at the leaves of the enumeration tree, with the ith processor at the ith
leaf, so that each processor forms a PPT by itself. PPTs then traverse the tree bottom-up
taking the same paths as in phase W1. The operation performed by the PPTs at eact
node they reach consists of clearing the node they are at using CR/W, PPT compaction,
clearing the sibling node using CR/W, PPT compaction, reading the contents of the node
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they are at using CR1, and finally PPT merging. The reason for cleaiing the sibling node
is that during phase W1 processors need to access the node they are at and its sibling and
we need to make certain that this sibling will not contain garbage data. The reason for the
remaining operations is to assist with merging. Essentially, this initialization phase is like
W1 but processors clear the sibling nodes instead of summing. The cost of this initialization
is O(log ¥ log P) since the enumeration tree is of height O(log N} and the time spent at
each level is O(log P).

The algorithm that results from Z by using a P-leaf enumeration tree initialized as de-
scribed above and utilizing algorithm W"Cppf rw o clear progressively larger areas of memory
is called Zcr/w and has the performance bounds given in the following theorem:

Theorem 3.8. Algorithm Zcpyw with contamingted memory of size O(P) is a robust
Write-All algorithm with § = O(N + Plog? Plog® N/(loglog N ¥*), read concurrency p <
7|Fllog N, and write concurrencyw < |F|, where ] <P X N.

Proof. Since W& sw uses clusters of size log Nlog P we chovse G; = log Nlog P,i 2 0
as the parameters for Z (see Fig. 4). Thus initially processors clear a3 memory area of size
Go = log N log P using algorithm CR/W; this costs Plog N log® F. Following this there are
log N'/(log{log N log P)) — 1 = O(log N/ loglog N) applications of uigorithm Wé‘; 7w Where
the ith application clears a memory area of size N; = {log Nlog Py*1. This analysis is
very similar to the analysis of {32] and the work bound follows by the same method; the
only difference is the different value for the G;’s and that the work of each iteration is given
by Theorem 3.7. The bounds on p and w are obtained as in the previous theorems in this
section. . o

3.5. A Lower Bound

Having shown a robust Write-All algorithm with w < |F] it is interesting to consider
whether there is a robust algorithm with even smaller w. Here we show that this is not
the case for a large class of functions of {F|. Specifically, we show that there is no robust
algorithm for the Write-All problem with concurrency w < {FJ* for0 e < 1.

For this we consider a simpler Wriie-One problem [18] which involves P processors and
a single memory location. The objective is to write 1 into the memory location subject
to fanlts determined by an on-line adversary. The adversary will try to maximize the
work while the algorithm will try to minimize it by appropriately scheduling the available
processors subject to the constraint that only up te |FIf concurrent writes are permitted,

We allow algorithms that can sense when the locatico has been written by employing
“oracles” thus having no need to certify the write. Algorithms without such power can not
perform better than oracle algorithms and hence the lower bound applies to them as well.
This is because given a non-oracle algorithm A there is an oracle algorithm B that mimics
A up to the point where A writes to memory. At this point B stops while A has to continue
in order to certify the write thus incurring additioral work.
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Since not all processors can write concurrently the algorithm will need to form “waves”
of processors. The adversary will fail each wave {but the last) right before the processors
in the wave write to the memory. This way the adversary prolongs the conclusion of the
process until the very last step while charging each processor as much as possible. As
the following lemma shows, the algorithm’s best answer to this strategy is to use a greedy
approach. that is assign to each wave as many processors as possible within the constraints.

Lemma 3.9. The work of Write-One algorithms is minimized when processors are allocated
greedily.

Proof. Let Wy W, ..., W; be the processor waves and let § be the total work of the
algorithim. Assuming that the original schedule is not greedy, let W;, 1 < j < &k be
the first wave that contains fewer processors than are allowed by the |F|® constraint. By
assigning a processor from Wy to W; for some § < §° < k we obtain a schedule with work
§" =8 - {j'— 73 < § and hence the original non-greedy schedule is not optimal. (]

We can now show the following:

Lemma 3.10. There is no robust algerithm for the Write-One problem with write concur-
rency w SUFPE Jor0<e < 1.

Proof. Since |F| < P, where P is the number of initial processors, it suffices to show
that the bound holds for the broader class of Write-One algorithms that allow upto P*
concurrent writes per step. By Lemma 3.9 P° processors should be allocated to each wave
and hence there will be P/P? = PI~% steps (for simplicity we assume that P is a multiple
of P¢). Then the work of the algorithm is 5.5 (P ~iPf)+ Pt > B~ £ = Q(P?e). O

We can now show that:

Theorem 3.11. There is no robust algorithm for the Write-All problem with write concur-
rency w S {FE for0 e < 1,

Proof. Cousider a Write-All algorithm for instances of size N with P processors. The
adversary picks one of the array locations and fails oidy processors that attempt to write to
it according to the strategy outlined earlier in this section. According to Lemma 3.10 the
work of the algorithm will be Q(P3~¢). o

3.6. PRAM Simulations Subject to Dynamic Faults

As discussed in Section 2.3.2, solutions to the Write-All problem can serve as building
blocks for efficent simulations of paralle! algorithms on fail-stop PRAMs. The algorithms
presented above likewise can be employed in fauit-tolerant simulations.

By using algorithm WZ._’;{IW we obtain efficient PRAM simulations on fail-stop PRAMs.
In particular. we obtain the following:




Theorem 3.12. Any N processor, v parallel time EREW PRAM olgorithm can b:. simu-
lated on a fail-stop P-processor CRCW PRAM with using wogk O(r - (N + ZHEEIg N )
so that the write concurrency of the simulation is w < |F| and the read concurrency is
p < TiFllog N, for any feilure pattern F and 1 < P < N.

The work bound of this theorem also holds for simnlations of ron-EREW PRAM algo-
rithms but the concurrency bounds depend on the concurrency of the simulated algorithm.
H wq and pg are the write and read concurrencies of the simulated algorithm, respectively,
then for the simulation we have w < {Fl+ wp and p < 7|Filog ¥ + pp Gllog N). Alterna-
tively, we can maintain the same concurrency Lounds at the expense of increasing the work
by a logarithmic factor by first converting the original algorithm into an equivalent EREW
algorithm {19]. :

Similar results can be derived for contaminated initial memory using algorithm Z and
Theorem 3.4 to initialize an appropriate amount of auxiliary shared memory required by the
simulation. There is an additive expense in woik of O(N + Plog® Plog® N/(loglog N )?).

Finally. if the fauity processors are restarted in the simulations so that they are re-
svachronized at the beginning of the individual simulated PRAM steps then the simulations
results apply as well.

4. Algorithm W with Bounded Maximum Access

For the algorithms developed in the previous section, the vead and write concurrencies
are bounded, but during some time steps the read and write concurrency migat still be as
high as ©( P) for large | F|. In this section, we are going to employ a pipelining tecknique
to limit the maximum per step concurrency of algorithnn W.

As a first approach to limiting concurrency we note that phases W1, W2, and W4 of
algorithm W involve traversal of trees of logarithmic depth with only one level of the trees
being used at any given time. A solution that naturally suggests itself is to divide the
processors into waves and have them move through the trees separately by introducing a
time delay between the waves. If we choose the number of waves carefully it is possible io
reduce the number of concurrent accesses without degrading the asymptotic work of the
algorithon. In particular, since the trees are of height log NV we can divide the processors
into log ' waves each of P/log N processors. During each of the phases W1, W2, and W4
we send the processors through the appropriate trees one wave at a time thus reducing the
nsumber of concurrent accesses to at most Pflog N for any memory location. Since the
values computed at the nodes of the heaps during each phase will be correct only after
the last wave of processors finishes, waves that finish earlier must wait for the last wave to
arrive before beginning the next phase. This introduces a O(log N} edditive overhead per
phase doubling the running time of each phase but does not affect the asymptotic efficiency
of the algorithm.

For phases W2 and W4, it is not significant how we divide the processors into waves.
However. phase W1 requires that processors be assigned to waves in a left to right fashion.
i.e.. the leftmost log N processors form the first wave, the next log N processors are in the
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second wave and so on. This is because phase W1 computes prefix sums and a processor
must not reach a node of the processor enumeration tree before any processor with smaller
PID.

This pipelining idea can be generalized by allowing a greater numnber of psrocessor waves.
In particular. for any k > 1 we can partition the processors into log® N waves each of
P/ log* N prucessors. Since there can only be log N active waves at any time, each phase
will be slowed down by a factor of log*~! N. This yields the following:

Theorem 4.1. Algorithm Wilog N with waves is a robust algorithm for the Write-All prob-
lem with § = O(Nlog" ' N + Plog"*t! N/loglog N) for any k > 1 and with at most
P/log* N concurrent accesses at any time for any memory location.

Remark 4. For k = 1 there is no asymptotic degradation in the efficiency of the algorithm.

Even though the pipelining of processor waves reduces the number of concurrent accesses
for each memory location, the algorithm still makes a lot of concurrent accesses overall. For
example. for k = 1 and P = N the algorithm makes Q(log N (ng ~1)) = Q(N) concurrent

writes when no processors fail since each wave makes ;—5‘&5, ~ 1 concurrent writes at the root
and there are log N such waves.

The use of processor waves can be combined with the PPTs of Section 3.2 to yield an
algorithm thati uses waves of priority trees to control both the per step and the overall
concurrency:

Thecrem 4.2. Algorithm Wy, with pipelined PPTs is a robust Write-All algorithm
with § = O(Nlogh~! N + Plog? Plog"* ¥/loglog N) for any k > 1, read concurrency
p < 71F|log N, write concurrency w < |F| and with at most P/logk N concurrent accesses
at any time for any memory location.

5. Write-All with Static ¥aults

The failure model we have been considering so far allows arbitrary dynamic faults. As
we have seen this model is too strong to allow efficient solutions without concurrent memory
accesses. In this section we consider the alternative, weaker, model of static (initial) faults
in which failures can only occur prior to the start of an algorithm. We will show that simiple
and efficient solutions are possible in this model without reauiring concurrent accesses and
without any need to initialize :he shared memory.

We assume that the size of the Write-All instances is N and that we have P processors,
P’ < P of which are alive at the beginning ~f the algorithm. We do not know P’ a priori
or which of the processors are faulty.

Gur EREW algorithm E consists of two phases E1 and E2. In phase E1, processors enu-
merate themselves and compute the total number of live processors. With this information
in phase E2, the processcrs partition the input array so that each processor is responsible
fur setting to } all the entries in its partition (Fig. 9).
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The enumeration phase E1 is similar to phase ‘W1 of algorithm W that is based on the
paralle]l prefix computation. However W1 ~-.n0t be used because of its concurrent accesses
and the standard parallel prefix algorithm is not adequate since it is oblivious and requires
that all processors be available. We present a simple non-oblivious EREW enumeration
algorithm that does not assume a known number of processors and that produces correct
results for any pattern of static failures.

A detailed description of phase E1 is given in Fig. 10. It uses a full binary tree of height
log P for enumeration, denoted T in the figure. The processors begin with initial rank 1 at
the leaves and move up toward the root. The algorithm ensures that at each interior node
of the tree, at most one processor moves up. If two processors reach sibling nodes within
the tree, one of them has to stop at the current level to avoid concurrent accesses at the
parent. By convention, the processor that is allowed to continue is the one coming from the
right.

Each processor F; that continues needs to be able to communicate with the processors
that have stopped at lower levels of the subtree rooted at the current location of P; so that
it c»n broadcast rank updates to them. To this end, the stopped processors in F;’s subtree
form a tree whose root is the processor most recently stopped because it encountered F.
Note that each processor in this tree stopped because it encountered either F; or some other
processor in the tree. F; can broadcast a value to the processors in this tree by passing the
value to the root of the tree and then having each processor pass the value to its children.

To do this, the algoritum of Fig. 10 assumes that each node of T has two fields: val, which
is used for broadcasting, and right_child, which points to the root of the right subtree of
stopped processors. We also use lefi_child to point,to the left subtree. Note that left_child
is a private variable, whereas right.child is a node field; this is because a processor P,
determines its left subtree by itself while its right subtree is determined by the processor
that staps P,

As a processor moves up, it chiecks whether there is any processor at the sibling node by
using a “probing” scheme. The processor writes § to its sibling node, then writes its current
rank at its own node and then reads the sibling node (lines 7-9). If it is 0, then there is no
processor at the sibling node, otherwise the value read is the number of processors in the
subtree rooted ai the sibling. As in the standard paralle] prefix the processor that comes
from the right adds this value to its rank (line 15) In our case, the right processor also
initiates the broadcasting of this value to the processors in its tree of stopped processors
by writing the value to the root of this tree (line 16). The trees of the two processors that
meet are merged by creating a new tree with its root being the processor that came from

01 forall processors PID=1..P parbegin

02 Phase E}: Use non-oblivious parallel prefix to compute rankg;p and P’
03 Phase E2: Set z{{rankp;p —~1)- f,‘%...(rmkmu . —g'-r) -1jtal

04 parend

Fig. 9. A high level view of algorithm E.
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06
o7
08
o0s
10
i1

13
14
15
16
17
18
1%
20
21

30
31

01 cwreut_mnk 12 I -—-«ancé;pracenof starh emh tmimf mn& 1
02 left.child 1= wdl ——no left ehildvin ¢

08 stopped := false ——initially oll processors can move up

04 pos 1= P4 PID «~ 2 —-initial position in the iree

05 for t:=1..log P do

12

if slopped = false thep —-processor can still move
Tisibling(poa)].val == & ——probe sibling; sibling() returns the location of the sibling node i
Tiposlvol 1= currenturank - :
rank,ip = T{sibling{pos)].val
M rankgyp = 0 then —-noone there
pos = |posf2| ——move to parent node
else if current node is a left child then
siopped = {rue; T{pos] val 1= 0 —-let the sibling proceasor continue
else ——current node iz a right child; processor continues
current.rank ;= current.renk + ronka
T{le ft.child).val 1= rank,;s —-propagate rank update
Ti{sibling{pos)).right. child := le ft.child ——modify trecs
le fi.child := Tsibling(pos))
pos i= |posf2] ——move to parent node

else -——processor has stopped; just propagate rank updates

22 if Tipos).val > 0 then ——there’s a vank update to propagate

23 current.rank 1= current_renk 4 Tlpos).val ~--update oun rank

24 T{T{pos].right.child].val ;= T{pes].val ~~pass the update on to the right child, if there is one
28 T{pos].val 1= 0 ~—get ready for the nezt iteration

26 fifi

27 od

28 ~--complete propugating rank updates and broadcast the number of live processors
29 fori:=1l.log F do

if siopped = false then =wthis is the processor that reached the root
T{le ft.child).val := —currenti.rank

32 else ~—stopped processors just propagate the values they receive

33 if T{pos).val > 0 then -~there's a rank update to propagate

34 curren! runk 1= current.rank + T{pos].val ——update own rank

35 T{Tpos).right.child].val := Tpos).val ——pass the update on to the right child, if there is one
36 Tipos].val :== 0 ——gel ready for the nezt iteration

37 elae if Tipos}.val < 0 then ——this is the number of alive processors

38 Tlle fi_child).val := T{T[pos).right.child].val := T{pos].val ~—propagate to both children

3s alive := ~T{pos}.val —~—alive is the number of alive processors

4 fifi

41 od

Fig. 10. A detailed description of phase E1.

the left, its left subtree the tree of the left processor and its right subtree the tree of the

right processor (lines 17-18).

An illustration of this process is provided in Fig. 11 when

P =8

When the rightmost live processor gets to the root its rank is the number of live proces-
sors and this value is propagated through the tree down to the other processors (lines 20-41).
In the algorithm of Fig. 10 we broadcast this value as a negative number to distinguish it
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(@) - T ®

(d)

Fig. 11. An illustration of phase E1 with 8 processors of which 4 have failed. Circles indicate
processors that have stopped their ascend because of encounters with other live processors
and squares indicate processors that continue their upward movement. The numberr beside
the processors indicate their ranks at each stage of the algorithm.

from the rank apdates whic! are positive. The whole process takes 2log P steps.

The algorithm can be made to work in place by collapsing the levels of the tree into 2
single linear array. In addition, because of the probing scheme, the initial values of the tree
are irrelevant and so the algorithm works even in the presence of initial memory faults.

In phase E2. knowing the number of live processors and their ranks, processors partition
the input and each sets to 1 the entries in its own part.

Theorem 5.1. The Write-All problem with initial processor and memory faults can be
solved in place with § = O(N + P'log P) on an EREW PRAM, where 1 < P < N and
P — P is the number of initial faults.’

With the result of [5] it can be shown that this algorithm is optimal.

Algorithm E can be used for simulations of PRAM algorithms on fail-stop PRAMs that
are subject to static jnitial processor and memory faults. Simulations are much simpler for
this case as compared to the dynamic failures case,

In particular, only the enumeration phase E1 of algorithm E is needed. At the beginning
of the simulation we use the enumeration algorithm to determine the number P’ of live
processors. We then use Brent’s Lemma [6] to simulate the P processors of the original
algorithm on the P’ available processors. The time overhead of the simulation in this case
is just O(log P) for the enumeration and the work overhead is O( ' log P). Both overheads
are additive. Thus we have the following:
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Theorem 5.2. Any P-processor, v parallel time PRAM algorithm can be simulated on a
fail-stop PRAM that is subject to static initial processor and memory faults. The work of the
simulation is P -1 +O(F'log P), where P’ is the number of live processors, The simulating
PRAM is of the same type as the PRAM for which the simulated algorithm is written and
the read and write concurrencies of the simulation are no more than those of the stmulated
algorithm.

Note that when P -7 = (( P'log P}, the simulation is optimal.

6. Conclusions and Open Problems

We have shown that it is possible to obtain robust soluticns to the Write-All problem
that make concurrent accesses only subsequent to processor failures and then in a controlled
fashion. We have further demonstrated that we cannot reduce the write concurrency much
further.

An open question is whether we can improve the read concurrency by eliminating the
logarithmic factor from p.

A second open problem is whether there is a faster algorithm than W for the Write-All
and whether the methods presented here for controlling memory accesses can be applied to
it.

In [22] an (N log N} lower bound was shown for the Write-All problem but no known
deterministic algorithm attains it. A third open problem is whether the lower bound of [22]
applies to the static case. It is interesting to consider whether there is a CRCW algorithm
for the static Write-All that requires o{ N log N) work.
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