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Abstract. The CRCW PRAM under dynamic fail-stop (no restart) processor behavior is
a fault-prone multiprocessor model for which it is possible to both guarantee reliability and
preserve efficiency. To handle dynamic faults some :edundancy is necessary in the form of
man. processors concurrently performing a common read or write task. In this paper we show
how to significantly decrease this concurrency by bounding it in terms of the number of actual
processor faults. We describe a low concurrency, efficient and fault-tolerant algorithm for the
Write-All primitive: "using < N processors, write l's into N locations". This primitive
can serve as the basis for efficient fault-tolerant simulations of algorithms written for fault-
free PRAMs on fault-prone PRAMs. For any dynamic failure pattern F, our algorithm has
total write concurrency 5 IFj and total read concurrency <: 7 FjlogN, where IFI is the
number of processor faults (for example, there is no concurrency in a run without failures);
note that, previous algorithms used Ql(N log N) concurrency even in the absence of faults.
We also describe a technique for limiting the per step concurrency and present an optimal
fault-tolerant EREW PRAM algorithm for Write-All, when all processor faults are initial.

1. Introduction

1.1. Motivation and Background

A basic problem of massively parallel computing is that the unreliability of inexpensive
proces.sors and their interconnection may eliminate any potential efficiency advantage of 0"
parallelism. Our research is an investigation of fault models and parallel computation.,
models under which it is possible to achieve algorithmic efficiency (i.e., speed-ups close to V V

ID linear in the number of processors) despite the presence of faults. I
N ~ Such combinations of fault and computation models are interesting because they il- -.

lustrate good trade-offs between reliability and efficiency. To see that there is a trade-off 0. t
consider that reliability usually requires adding redundancy to the computation in order to

*Research supported by ONR grant N00014-91-J-1613. A preliminary version appeared in 1]. [11].
'Ekcpartmcnt of Computer Scienct, Brown University, Box 1910, Providence, RI 02912-1910, LISA, A V

IDigital Equipment Corporation, 30 Porter Road, LJ02/111, Littleton, MA 01460-1446, USA. l ' ý

DTIC QUALIy 29CTD 0S

94629 0 83



J4

detect errors and reassign resources, whereas gaining efficiency by Aihssively parkle comn--.
puting requires removing redundancy from the computation to fully utilize each processor.

Eveu allowing for some abstraction in the model of parallel coihputation, it is not obvious
that there are any non-trivial fault models that allow near-linear speed-ups. So it was
somewhat surprising when in [18] we demonstrated that it is possible to combine efficiency
and fault-tolerance for many basic algorithms expressed as concurrel.*-read concurrent-write
parallel random access machines (CRCW PRAMs). The [18] fault model allows any pattern
of dynamic fail-stop no restart processor errors, as long as one processor remains alive.
Interestingly, our technique can be extended to all CRCW PRAMs. In [20] it is shown how
to simulate any fault-free PRAM on a CRCW P RAM that executes in a fail-stop no-restart
environment with comparable efficiency and in [31] it is shown how the simulation can be
made optimal using processor slackness. The fault model was extended in (32] to include
arbitrary static memory faults, i.e., arbitrary memory initialization. The CRCW PRAM
computation model is a widely used abstraction of real massively parallel machines. As
shown in [18], it suffices to consider COMMON CRCW PRAMs (all concurrent writes are
identical) in which the atomically written words need only contain a constant number of
bits.

All the above-mentioned algorithmic work makes two somewhat unrealistic, but critical.
assumptions. It is assumed that: (1) processors can read and write memory concurrently,
and (2) processor faults are fail-stop without restarts. This paper is an investigation of
assumption (1) about the model of computation, while still making assumption (2) about
the fault model. Specifically, the redundancy which is essential for the above algorithmic
techniques seems to be the result of more than one processor concurrently re'rforming a
common read or write task. Our contribution here is to show how to control and minimize
this redundancy.

Our analysis is deterministic with worst-case failure-inducing adversaries. For this we
still assume (2) above, namely that the dynamic processor errors do not affect shared
memory and processors once stopped do not resume computation. More general processor
asynchrony has been examined in [2, 3, 4, 7, 8, 9, 11, 14, 20, 21, 22, 25, 26, 27]. Many
of these analyses involve average processor behavior and use randomization. Some (e.g..
[2. 7. 22]) deal with deterministic asynchronous computation (i.e., removing ass amption (2)
without using randomness). In this case the strongest lower bounds are in [22] and the
tightest upper bounds are in [2].

A key primitive in much of the above mentioned work is the Write-All operation of [18].
The main technical insight in this paper is an efficient, deterministic fault-tolerant Write-All
algorithm that significantly reduces memory access concurrency.

The Write-All problem is: using P processors write is into all locations of an array of
sizc N. where P < N. When P = N this operation captures the computational progress
that can be naturally accomplished in one time unit by a PRAM. In the fail-stop PRAM
model the P processors share a global clock and are fail-stop no restart.

Under dynamic failures, efficient deterministic solutions to Write-AMl, i.e., increasing
the fault-free O(N) work by small polylog(N) factors, are non-obvious. The first such
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solution was algorithm W of [18] which has (to date) the best worst-case work bound
O(N + P log2 N/loglog N) for 1 •5 P _< N (this bound was shown in [22] for a vriant
of algorithm W and in [241 the same bound was shown for algorithm W). Algorithm W
was extended to handle arbitrary initial memory in [32] and served as a building block for
transforming fault-free PRAMs into fault-prone PRAMs of comparable efficiency in [20,311.

We say th.%t Write-All completes at the global clock tick at which all the processors
that have not fail-stopped share the knowledge that I's have been written into all N array
locations. Requiring completion of a Write-All algorithm is critical if one wishes to iterate
it. as pointed out in [20] which uses a certification bit to separate the various iterations
of (Certified) Write-All. Note that the Write-All completes when all pr'ocessors halt in
algorithm W. This is also the case for the algorithms presented here.

In Section 2.1 we present our fault and computation models. In Section 2.2 we review
our measures of efficiency and introduce a measure of concurrency. To make the exposition
self contained we present in Section 2.3 an outline of the main algorithmic ideas of algorithm
W and sketch how it is utilized in PRAM simulation and memory clearing.

Memory access concurrency is the main topic of this papi.r. In [18] it is shown that read
and write concurrency are necessary for deterministic eicient solutions under dynamic
processor faults. All Write-All solutions that have efficient work for any dynamic processor
failures require concurrent-read concurrent-write (CRCW) PRAMs. Moreover, all such
solutions to date make very liberal use of concurrent reads and writes.

1.2. Summary of Results

In Section 3 we present our main contribution, that we can bound the total amount of
mncmory access concurrency in terms of the number of dynamic processor faults of the actual
run of the algorithm.

\Vhen there are no faults our new algorithm executes as an EREW PRAM and when
there are faults the algorithm differs from an EREW PRAM in an amount of concurrency
related to the number of faults. The algorithm is based on a conservative policy towards
concurrency: concurrent reads or writes occur only when the presence of failures can be
inferred from what processors know (i.e., when failures are detected) and these concurrent
operations happen in proportion to the failures detected.

We describe an efficient fault-tolerant CRCW algorithm for the Write-All problem such
that, for any failure pattern F in a run of the algorithm the total write concurrency is

!< I F and the total read concurrency is < 7 1F1 log N, where IFI is the number of failures.
The algorithm is based on algorithm W and makes use of processor identifiers to construct
mergeable processor priority trees, which control concurrent access to memory. We present
it in two steps, first controlled write concurrency (Section 3.1) and then controlled read

concurrency (Section 3.2). The work of the Write-All algorithm described in Section 3.2 is
Oi N logN log P + Plog Plog2 N/ loglog N), where I _< P < N.

in Section 3.3 we utilize parallel slackness to obtain a Write-All algorithm that has opti-
mal work for a non-trivial range of processors. The algorithm has work O(N + • )P10 2 NA

.. 'r•gV
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and is optimal for Flog2 P < NloglogN/log2 N. We extend this algorithm to handle ar-
bitrary initial memory contents in Section 3.4. in Section 3.5 we demonstrate that there is
no efficient and fault-tolerant algorithm whose totalwrite concurrency is bounded by IF[`
for 0 < , < 1. in Section 3.6 we describe how this algorithm can be used as a building
block for efficient simulations of arbitrary PRARVs. This is a dynamic version of Brent's
lemma [6].

In Section 4 we examine the worst-case concurrency per step. This is a different measure
than the overall concurrency of Section 3. We present a variation of algorithm W whose
marimum read/write concurrency per step is N/polylog(N) instead of N. The point here
is decreasing concurrency per step by polylog amounts using a general pipelining. technique
of synchronizing processors into waves. This idea can be combined with those of Section 3.

The case of static faults is examined in Section 5. Using a variant of the parallel prefix
operation, we give a O(N + P'log P)-work EREW algorithm for Write-All, where P' is
the number of live processors and P - PF is the number of initial faults. For P = N, this
solution is optimal (based on a result of [5]. For general simulations of PRAM algorithms
our solution introduces a O(P'logP) additive overhead. It also handles static memory
faults at no additional overhead. In summary, the static case has a simple optimal solution
which eliminates memory access concurrency.

We conclude with some open problems in Section 6.

2. The Model and Base Algorithms

S2.1. Fail-Stop PRAM

The parallel random access machine (PRAM) of Fortune and Wylie [13] combines the
simplicity of RAM with the power of parallelism, and a wealth of efficient algorithms eyrist for
it: see surveys [12, 19] for the rationale behind this model and the fundamental algorithms.
The main features of this model are as follows:

1. There are P initial processors with unique identifiers (PID) in the range 1,...,P.
Each processor knows its PID and the number of processors P.

2. The memory accessible to all processors is denoted as shared, each processor also
has a constant size local memory denoted as private. Each memory cell can store
O(log max{N, P)) bits on inputs of size N.

3. The input is stored in N cells in shared memory and the rest of the shared memory
is cleared (i.e., contains zeroes). The processors know the input size N.

In the study of fail-stop PRAMs, this base model is extended with a failure model:

4. We allow any dynamic pattern F of processor fail-stop errors provided one processor
survives (one processor is necessary if anything is to be done). F describes which
processors fail and when. This pattern is determined by an adversary, who knows
everything about the structure and the dynamic behavior of the algorithm.
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5. We consider fail-stop (no restart) errors: processors fail by stopping and not per-
fonning any further actionsi their private memory is lost, but shared memory is not
affected by processor failures.

S~6. Shared memory wr~ites are atomic with respect to failures: failures can occur before or
after a shared write of G(log max{N, P})-bit words, but not during the write. (This
non-trivial assumption is made only for simplicity of presentation; algorithms that
make it can be converted to use only single bit atomic writes [18].) We also handle
arbitmary initialization of t•hetared memory, which is assumed clear in the fault-free

-- PRAM model. (This extends 3 above.)

The abstract model that we are studying c-an be realized in the archfitectuLre of Fig. 1.
Faith-tolerant technologies, such as those in surveys [10, 15, 16], all contribute towards

• concrete realizations of its components.

a. There are P fail-stop processors (see. [29]), each with a unique address and some local

memory.

b. There are Q shared memory cells, the input of size N <S 9 is stored in shared memory.
These semiconductor memories can he manufactured with built-in fauflt tolerance us-
big replication and coding techniques witheut appreciably degrading performa~nce [28].

c. Processors and memory are interconnected via a synchronous network (e.g., as in the
Uliracomputer [30]). A combini•,g interconnection network that is well suited for ira-
plemnenting synchronous concurrent reads and writes is studied in [23] (the combining
properties are used in their simplest form only to implement concurrent access to
memory). The network can be made more reliable by employing redundancy [1].

2.2. Measures of Efficiency•

The complexity measure used throughout this work is the available processor steps
of [18]. It generalizes th~e fault-free Parallel-time x Processors product and accounts for
all steps performed by the active processors.

Definition 2.1. Consider a computation with P initial processors that terminates in par-
allel time 'r after completing its task on some input data I of size jI[ = N, and in the

5



presence of some fail-stop error pattern F of size IFj < P. If P,(I, F) < P is the number
of processors completing an imstruction at time i, we define the available processor steps of
this computation as

1*

SIA Pj(I, F),
s--1

and the available processor zitps S of an algorithm as
S = S(N, P) = max{Sjrp :II = N, IFI < P}.

The notion of algorithm robustness combines fault tolerance and efficiency:

Definition 2.2. Let T(N) be the best sequential (RAM) time bound known for N-size
instances of a problem. We say that a parallel algorithm for this problem is a robust parallel
algorithm if for any input I of size jII = N and for any number of initial processors P
(1 < P < N') and for any failure pattern F of size IF1 < P, this algorithm completes its
task and it has S = S(N, P) < c T(N) log"' N, for fixed c, c'. 0

We now introduce new measures to gauge the concurrent memory accesses of a compu-
tation.

Definition 2.3. Consider a computation with P initial processors that terminates in par-
allel time r after completing its task on some input data I of size III = N in the presence
of fail-stop error pattern F of size IFI < P. If at time i (1 < i < r), PR processors com-
plete reads from NJI shared memory -locations and pW processors complete writes to N~w
locations, then we define:

'Ii) the read concurrency p of the computation as: p = pI,F.p = ý - NYVI), and
i-1

(ii) the write concurrency w of the computation as: w = wlF (Pwv - NýV). 1

Remark 1. For concurrent reads from (writes to) a particular memory location, the read
(write) concurrency for that location is simply the number of readers (writers) minus one.
For example, if only one processor reads from (writes to) to a location, then the concurrency
is 0, i.e., no concurrency is involved. This leads to an equivalent definition of p and w: For
a given computation, let Rj be the number of reads from location i during step j, and
14"Wj be the number of writes to location i during step j. Then p for the computation is

E:.= 1 •i:R,,>o(Rij - 1), and w is F[7 Ii:w,,>0 (Wj, -1). It is easy to see that this definition
of p and a is equivalent to Definition 2.3 above.

Remark 2. Note that p and w•are defined for a computation, or actual run, of an algorithm.
They are cumulative measures over all the steps of the computation. S is the maximum
over all computations where III = N and IF, < P. Our bounds for S are worst-case over
all inputs and failure patterns, but our bounds for p and w depend on IFI and III = N.
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01 forall processors PID=1..N parbegm-
02 Phase WS: Visit the leaves based on PID to perform work on the input data
03 Phase W4: Traverse the progress tree bottom up to measure progress
04 while the root of the progress tree is not N do
05 Phase Wl: Traverse the processor enumeration tree bottom up to enumerate processors
06 Phase W2: Traverse the progress trem top down to reschedule work
07 Phase W3: Perform rescheduled work on the input data
08 Phase W4: Traverse the progress tree bottom up to measure progress
09 Od
10 pareud

Fig. 2. A high level view of algorithm W for P = N.

Remark 3. p and w can be used to characterize the type of PRAM that an execution of
an algorithm requires. An execution that has p = w = 0 can be carried out on an EREW
PRAM while a CREW PRAM suffices for an execution with w = 0. This does not imply
that the algorithm itself is an EREW or CREW algorithm. However, an algorithm is EREW
if its worst case p and : are 0 and it is CREW if its worst case w is 0.

2.3. Background Algorithms

2.:3.. Algorithm W

Algorithm W of [18] is a robust Write-All solution. It uses two complete binary trees
as data structures: the processor enumeration and the progress trees. A high level view
of algorithm W is in Fig. 2. It is an iterative algorithm in which all active processors
synchronously execute the following four phases:

a Phase WI - processor enumeration. All processors traverse bottom-up the processor
enumeration tree always starting at the same leaf, i.e, this traversal is static. This
phase utilizes a version of the standard parallel prefix algorithm. The result is an
overestimate of the number of live processors in every subtree and a numbering of the

live processors.

i Phass W2 - processor allocation. The processors traverse top-down the progress tree
using a divide-and-conquer approach (based on processor enumeration and progress
measurement) to allocate themselves to the unvisited leaves of the progress tree.

"* Phase W3 -- work phase. The processors work at the leaves they reached in W2.

"* Phase W4 - progress measurement. The processors traverse bottom-up the progress

tree and compute an underestimate of the progress of the algorithm for each subtree.
They start from the leaves they were at in phase W3. A version of the standard
parallel summation algorithm is employed to compute underestimates of the progress

for each subtree.
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01 foral! processors PID=I..P parbogin -- P fail-stop proceusors simulate i Jauft-prone ones
02 The PRAM program for N processors is stored in shared memory (read-ony)
03 Shared memory has'two generations: current and future; the rest of shared memory is cear
04 Initialize N simulated instruction counters to start at the first instruction

05 while there is a simulated processor that has not halted do
06 -- Perform tentative computation: Fetch next instruction; Copy registers to scratchpad;

07 Do read cycle using "current" memory; Perform the compute cycle;
08 Do write cycle into the "future" memory; Compute next instruction address
09 -- Reconcile memory and registerr. Copy "future" memory and registers to "current'

10 od
I I paredd

Fig. 3. Simulations using Write-All primitive and two generations of shared memory.

The following lemma of [24] provides a bound on the total number of block steps executed
by all processors (where a block step is an execution by one processor of the body of the
while-loop in Fig. 2). It will be used in our analyses in Section 3.

Lemma 2.1 ([24]). Let U be the number of unvisited leaves of the progress tree and P be
the number of processors at the beginning of algorithm W. Let IA and PA be the number
of unvisited leaves of the progress tree and processors, respectively, at the start of the ith
iteration of the while loop. Then the total number of block steps of all iterations for which
Pi < Ut is at most U and the total number of block steps of iterations for which Pi > Ui is
at most O(Pj~g tU). The overall number of block steps is O(U + P , 1 -

Algorithm W can be parameterized by clustering elements of the input array and as-
signing one cluster to each leaf of the progress trEe. We will use the notation W[s] to specify
that the input elements form clusters of size a; in this case the progrees tree has Nr/s leaves.
one for each cluster. When using P processors such that P > N, it is sufficient for each
processor to take its PID modulo N to assure a uniform initial assignment of at least LP/.j
and no more than [P/E9 processors to a work element.

Algorithm XV performs best when the cluster size s is chosen to be log N, resulting in
a progress tree of N/ log N leaves. A complete description of the algorithm can be found
in [18]. Using the above lemma for U = N/logN, a tight bound can be obtained for
algorithm W[log NJ:

Theorem 2.2 ([18, 24]). Algorithm WflogN] is a robust parallel algorithm for the Write-
A!! problem with S = O(N + Plog2 N/krglogN), wherc N is the input array eizc and the
initial number of processors P is betwetn I and N. C)

"2.3.'. PRAM Simulations
The original motivation for studying the Write-All problem was that it intuitively cap-

tures the essential nature of a single synchronous PRAM step. This intuition was made
concrete when it was shown in [20, 31] how to use solutions for the Write-All problem in
implementing general PRAM simulations.
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f1 tretai procesors PID=I..P parbegin --- Use P prcesno I clear N raemoy locatios
02 Cler the initial block of Na = Go elements sequentially using P protstors
03 i := 0 -- Iteration counter
04 whileN, < N do
05 Use a Write-All solution with data structures of size N. and G,+i elements
06 at the leaves to clear memory of size J*, 1+ = N, -G~i i; i :z i + I
07 od
08 parend

Fig. 4. A high level view of algorithm Z.

A high level view of this approach is given in Fig. 3. The simulations are implemented
by robustly executing each of the cycles of the PRAM step: instruction fetch, read cycle,
compute cycle, write cycle, next instruction address computation. This is done using two
generations of shared memory, "current" and "future", and by executing each of these cycles
in the Write-All style, e.g., using algorithm W (for details, see [20, 311).

Using such algorithm simulation techniques it was shown in [20, 31] that if Sw(N, P)
denotes the available steps of solving a Write-All instance of size N using P processors, and
if a linear in N amount of clear memory is available, then any N-processor PRAM step
can be deterministically simulated using P fail-stop processors and work S,(N, P). If the
Paracli-tiuw x Processors of an original N-processor algorithm is r N, then the available
steps of the fault-tolerant simulation will be O(r- S,"(N, P)).

2.3.3. Static Initial Memory Errors
The Write-All algorithms and simulations, e.g., 118, 20, 22, 31], or the algorithms that

can serve as Write-All solutions, e.g., the algorithms in [8, 26], invariably assume that a
linear portion of shared memory is either cleared or is initialized to known values. Starting
with a non-contaminated portion of memory, these algorithms perform their computation
by "using up" the clear memory, and concurrently or subsequently clearing segments of
memory needed for future iterations. An efficient WVrite-AM solution that requires no clear
shared memory has recently been defined using a bootstrap approach [32].

The bootstrapping proceeds in stages: In stage I all P processors dear an initial segment
of No locations in the auxiliary memory. In stage i the P processors clear Ni+; = Ni- ,i+j
memory locations using Ni memory locations that were cleared in stage i - 1. If N 4+1 > Ni
and No _> 1. then the required N memory location will be cleared in at most N stages.

The efficiency of the resulting algorithm depends on the particular Write-Al solution(s)
used and the parameters Ni and Gi. In [32], a solution for Write-All (algorithm Z, see Fig. 4)
is presented that for any failure pattern F (I F1 < P) has work O(N + P log3 N/(log log N )2)
without any initialization assumptions.

This solution uses algorithm W[log N] as the underlying Write-All algorithm. In the
early iterations, the number P of processors may be greater than the number Ni of leaves
of the enumeration tree. In this case processors are assigned to the leaves by taking their
PIDs mood Ni, as described in Section 2.3.1.
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3. Controlling Memory Acees Concurrency

Algorithm W is a robust fail-stop Write-AD solution, however it makes liberal use of
concurrent memory accesses evert when them arm no faults. When P = N, in phase W4
(Fig. 2, line 03), the algorithm has w = >j+' (N - = Q(NlogN) in the absence
of failures. The same problem is shared by all robust deterministic Write-All algorithms
that have been proposed to date.

As shown in [18], concurrent memory writes cannot be eliminated altogether. Any
Write-All algorithm .that does not use concurrent writes, e.g. CREW PRAM, has worst
case work (2(N 2) and thus is not robust,

S 1. A lgorithm W with Controlled Write Coneurre"n

In this section we present a version of algorithm W that controls the overall number of
concurrent accesses. For ease of presentation we will first develop methods to control the
write concurrency while allowing unlimited concurrent reads. In the next section we will
extend these techniques to control the read concurrency as vwll.

Assume there are p < P processors that want to write to a common memory location T.
Our technique for controlling the write concurrency is based on organizing the p processors
into a processor priority tree (PPT).

A PPT is a binary tree whose nodes are associated with processors based on a processor
numbering. All levels of the tree but the last are full and the leaves of the last level are
parked as left as possible. Thus these trees are structurally similar to heaps. PPT nodes
are numbered from I to p in a breadth-first left-to-right fashion where the parent of the
ith node has index Li/2J and its left/right children have indices 2i and 2i + I, respectively.
Processors are also numbered from 1 to p and the ith processor is associated with the ith
node. Note that these processor numbers need not be the same as their permanent PIDs.
Priorities are assigned to the processors based on the level they are at. The root has the
highest priority and priorities decrease according to the distance from the root. Processors
at the same level of the tree have the same priority, which is lower than that of their parents.

Processor priorities are used to d&termine when a processor can write to the common
memaory lication T. All the processors with the same priority attempt to write to T
concurrently but only if higher priority processrs have failed to do so. To accomplish
this the processors of a PPT concurrently execute algorithm CW, shown in Fig. 5. Starting
at the root (highest priority) and Toi-, down the tree one level at a time, the processors
at each level first read T and then coacurrently update it ifE it contains an old value. This
implies that if level i processors effect the writ-, all processors at higher levels must have
failed.

It is clear that whereas unrestricted concurrent writes by p < P processors take only one
step to update T, a PPT requires as many steps as there are levels in the tree, i.e., O(logp).
Provided there is at least one live processor in the tree the correct value will eventually be
written. Although CW introduces several idle processor cycles, it ailows us to bound the
number of concurrent writes incurred during an update of T.
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o2 - -I'to z., re write a *ew value to kvauiou T as folows
03 for:i=0. jlcg pj do -- ForewA eahkwd: of Pweenor priorilp ftwe
04 ii" < ID < 2*" then -- Thtpenosson at kv i
05 READ locatio T
06 ifT does uot contai. new value then
07 WRITE new value to T
08 BA
@9 04
10 parend

Fig. 5. Pseudocode for the controlled write (CW) algorithm.

Lemma 3.1. 11 algorithm CW is executed in the presence of a failure pa•tr F, then its
write concurrency w is no more than the number of failures jFJ.

Proof. By the description of CW above it is clear that location T is updated by the
processors of at most one levei, say i. In this case all processors on levels 0,... ,i - I must
have failed. Since level j has 2i processors the total number of processors on these levels
is Z i =2' - I and hence IF1 > 2t - I. On the other hand, level i has at most 2i live
processors and hence w 5 2i - 1. The lemma follows by combining the two ineqalities. 0

We can now modify algorithm W by incorporating PPTs into its four phases. This
is done by replacing each concurrent write in these phases by an execution of CW. Since
in the worst case aJl P processors can form a single PPT, we allow [log P1 + I steps for
each execution of CW. thus slowing down each iteration of the original algorithm W by a
O(log P) factor. (.Athough this will be sufficient for our analysis, in practice we could use
the overestimate of surviving processors computed in phase WI to fird the height of the
largest possible PPT for the current iteration and use this to determine how much time to
spend in CM.) PPTs are organized and maintained as follows.

At the outset of the algorithm and at the beginning of each execution of phase W1
each processor forms a PPT by itself. As processors traverse bottom up the trees used by
algorithm W they may encounter processors coming from the sibling node (if there is one).
In this case the two PPTs are merged to produce a larger PPT at the common parent of the
two nodes. In order to be able to use Lemma 3.1 to bound the overall write concurrency
of the algorithm, we must guarantee that a newly constructed PPT has no processors that
have already been accounted for as dead in the above lemma. Such processors are those
that are above the PPT level that effected the write. In order to accomplish this we compact
PPTs during merging to eliminate these processors.

To compact and merge two PPTs, the processors of each PPT store in the memory
location they are to update the size of the PPT, the index of the level that effected the
write and a timestamp along with the new value to be stored in this location. A timestamp
in this context is just a sequence number that need not exceed N (see 118]). Since there
can be at most P processors, O(log N) + O(logYA) + O(logP) + O(loglog P) = O(logAN)
bits of information need to be stored for the new value, the timestamp, the size of the tree
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Fig. 6. Merging and compacting two PPTs. There are PL and Pf processors in the left
and right PPTs. respectively. At the end of algorithm CW, up to PL and l1 t processors
remained in the PPTs. The resulting PPT will contain the surviving PL + PR processors.

and the level index.
After the log P steps of CW. the processors of each of the two PPTs that are to be merged

conc'urrently read the information stored in the two memory locations they updated and
compute the size of the resulting PPT, which is the sum of the two sizes read less the number

of the certifiably dead processors above the levels that effected the writes. By convention,
when two PPTs are merged the processors of the left PPT are added to the bottom of the
right one. The timestamp is needed so that processors can check whether the values they
read are current (i.e., there is some PPT at the sibling node and merging has to take place)
or old.

Usihg the size and the level index each processor can locally compute its position in the
mer-ged tree. If R and s2 are the sizes of the left and right FPTs respectively, and 11 and
12 are the corresponding level indices, the merged tree will have size ,i + S2 - 2' - 212 + 2
and the first S2 - 2'2 + I nodes will be occupied by the processors from the right PPT. This
process is illustrated in Fig. 6.

We refer to the algorithm that results from W by incorporating CW and PPT com-
paction and merging as algorithm Wcw. In more detail, the four phases of algorithm W
need to be modified as follows:

WI: At the beginning of this phase each processor forms a PPT by itself. Processors
traverse the enumeration tree bottom up storing at each internal node of the tree
a value based on the values stored at its two children. In addition, in the original
algorithm W a timestamp is written to distinguish new from old values. The required
modifications entail using algorithm CW for writing to the nodes of the enumeration
tree and dispensing with the timestamp; the latter is because all values written by
CW are already timestamped in order to facilitate PPT merging as discussed above.
After each call of CW all PPTs are compacted and merged.

W2: This phase can be implemented without concurrent writes and the only modification
is that processors need to keep track of the size of the PPT they belong to and their
position within this PPT since th insformation is needed in the subsequent phases.

As processors traverse the progress tree top-down they move to the left or right child
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of the current node in proportion to the number of unvisited leaves in the left and
right subtrees, as in the original algorithm W. This causes each PPT to be split in tv.'o
at each step. If a. PPT has k processors of which k' need to go left and the remaining
k - kV need to go right, then by convention the first k' processors of the PPT axe
allocated to the PPT that moves to the left child and the remaining k - kV processors
form the PPT that moves to the right child.

W3: Processors use the information they gathered during phase W2 to organize themselves
into PPTs and then proceed to write I to the input elements associated with the leaf
they reached at the end of W2. Each such write uses algorithm CW and is followed
by compaction to eliminate the dead processors. There is no PPT merging in this
phase. As a result there is no need for timestamiping either.

W4: In this phase processors traverse the progress tree bottom up writing at each node
the sum of the values stored at its two children. This write is accomplished by calling
CW and is followed by compaction and merging. The PPTs used at the beginning of
this phase are those left at the end of W3.

For the case where each leaf of the progress tree is associated with one eleme,.t of the
inpit array we can obtain the following bound on the performance of Wcw:

Lemma 3.2. Algorithm Wc.w is a robust algorithm for the Write-All problem with w <_ F!
awd work S = O(N log N log P + plog Plog2 NI loglog N), where 1 < P < N.

Proof. The correctness of the algorithm follows from the correctness of algorithms W and
CNNV and from the fact that we just replace each write step in W by a call to CW.

To show the bound on S we invoke Lemma 2.1 according to which the total number of
block steps of algorithm W is at most U + Plog U/loglog U, where U is the initial number of
unvisited leaves. The number of available processor steps is (U + P log U/ loglog U)(te + ti).
where tf is the time needed to traverse the processor enumeration and progress trees in
phasps WE. W2. and W4, and ti is the time spent at the leaves during phase W3.

In our case. t1 = O(log N log P) since each execution of CXW takes O(log P) time and the
height of the trees traversed is O(log N), and ti = O(log P), the time of a single execution
of C(W. Thus. with U = N

S = (N + PlogiN/loglogN)(O(logNlogP) + O(log P))

= O(N log N log P + Plog Plog2 N/loglog N).

To show the bound on w, we first note that contributions to w occur only during the
executiors of CW since there are no other concurrent writes. If there were m executions of
C(W. let wi denote the contribution of the ith such execution to w, 1 < i < m. Let Fi C F
be the failure pattern that consists of the failures of the processors above the PPT level that
effected the write or of all the processors of the FPT if all failed during the ibh execution.
From the proof of Lemma 3.1, w.i _< tFi. Due to the compaction of PPTs all processors
named in F. are eliminated at the end of CW and hence can cause at most one concurrent
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writ.e (contribute at most once to 4;). By summing the contributions from all executions of
CW we conclude that the overall write concurrency is w = •t!' wi :5 T--l ]-•l - IFf.

Note that failed processors that are below the level that completed the write during CW
are not removed by compaction but they do not cause any concurrent writes.

3.2. Algorithm W with Controlled Read/Write Concurrency

In this subsection we present extensions of algorithm CW that control read concurrency
in addition to write concurrency. Our approach is based on replacing concurrent reads by
broadcasts through the PPTs. We first describe a simple scheme and then give a more
elaborate and efficient method.

As before assume there are p < P processors that need to write to a common memory
location T. Algorithm CW allows all the processors of a PPT level to concurrently read T
to check if it has been updated. Our first scheme for controlling read concurrency replaces
this concurrent read by a broadcast through the processors of the PPT level. Specifically,
we view the processors of each level as forming a heap-like binary tree where the leftmost
processor is the root, the second and third processors are the root's children and so on.

The broadcast through each such tree proceeds in a top-down fashion by having each
processor broadcast the value it read to its two children, starting with the root. If a
processor does not receive a value because its parent has failed, then it reads T directly. If
the sibling processor is alive it will also read T thus incurring a concurrent read. The rest of
the algorithm is as in CW. The tree formed by the processors of the ith PPT level has i + 1
levels of its own so i + I steps are required for the ith PPT level (i < [logp1). This means
that algorithm CW modified as described here requires max{i- 1) log P = C(log2 P) steps.

Simple as this method may be it is not satisfactory as it does not provide good bounds
on the read concurrency. The problem stems from the fact that a failed processor may
remain in a PPT for several steps and cause concurrent reads during each of these steps.

We next present a more elaborate scheme that addresses this problem. The advantages
of this algorithm over the onr described above are

* it uses several PPT levels at a time to broadcast instead of just one, and

* it tries to move failed processors towards the leaves of the PPT.

Even though a failed processor can still remain in a PPT for several steps, its movement
towards the leaves means that it can cause concurrent reads for only a small number of
steps, as we will show below. This algorithm will allow us to control read concurrency
without degrading the performance of algorithm Wcw. It relies on the observation that
each level of a PPT contains one more processor than all the levels above it. This allows us
to use levels 0,..., i - I to broadcast to level i in constant time.

Algorithm CR/W: A high level view of this algorithm, that we call CR/W, is given in
Fig. 7. Communication takes place through a shared memory array (B in Fig. 7). Such an
array is used by each PPT so that processors can communicate with each other based on
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01 -- tCode executed by each of the p processors in the PPT
02 Initialize B[I D] -- broadcast location for processor ID
03 for i = 0... [log pj do -- for ecah level i of the PPT
04 if 21 < ID < 21+' then -- if the processor is at level i
05 READ BLID)
06 if B[1D] has not been updated then -- note that this is always true (f ID 2'+' - 1
07 READ (value, level) from T
08 if T contains some old value then
09 level -= i -- level i effects the write
10 WRITE (newvalue, level) to T
11 else if 2ieve < ID - 2' + I < 2' then -- unless it is above the level that effects the write
12 ID ID - 2' + 1 -- take the place of the processor that was to update BVlD]
13 ftflftft
14 It i D < 2V+' and 1D + 2'÷+ < p then -- if the processor's level -w < i
Is WRITE newvalue to B[ID + 2`3] -- broadcast to appropriate processor at level i + I
Is ft
17 od

Fig. 7. High level view of algorithm CR/W for the controlled read/write. This code is
executed by each of the p < P processors in the PPT. Here ID is the position of the
processor in the PPT and newvalue is the value to be written. Processors read and write
pairs that include T's value as well as the index of the PPT level that effects the write.

their positions in the PPT; B[k] stores values read by the kth processor of the PPT. This
allows processors to communicate without requiring them to know each other's identity.
For all the PPTs, we can store these B arrays in a segment of memory of size P; we discuss
an implementation later on in this section.

Each processor on levels 0, ... , i - 1 is associated with exactly one processor on each of
levels i. i% 1..... Specifically, the jth processor of the PPT is responsible for broadcasting to
the jth (in a left-to-right numbering) processor of each level below its own. The algorithm
proceeds in [logpJ + 1 iterations that correspond to the PPT levels. At iteration i, each
processor of level i reads its B location (line 5). If this location has not been updated, then
the processor reads T directly (lines 6-7).

Since a PPT level has potentially more live processors than all the levels above it com-
bined, there is in general at least one processor on each level that reads T since no processor
at a higher level is assigned to it. If a level is full, this processor is the rightmost one (the
root of the PPT for level 0). As long as there are no failures this is the only direct access
to T. Coucurrent accesses can occur only in the presence of failures. In such a case several
processors on the same level may fail to receive values from processors at higher levels, in
which case they will access T directly incurring concurrent reads.

A processor that needs to read T directly first checks whether it contains the value to
be written (line 8) and then writes to it (line 10) if it does not. As can be seen from the
figure, whenever processors update T they write not only the new value f&r T but also the
index of the level that effected the write (for simplicity we leave out the timestamps and
the size of the tree).
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01 --- Code e•ec -ted by each of the p processors in the PPT
02 Initialize • j D] -- broadcast location or processor ID
03 for 2 = 0 I- D 009 pj do --- for each pesei of the PPT
04 If 2' <ID < 2'+ then -- if the processor is at level i
0 REAif [ID] o
06 if B[IDJ has not been updated then -- note that this is always true if ID =2'+1 - I
07 READ T
08 if ID 9 2'+' - I then -- anless this is the rightmost processor
09 ID:= ID - 2' + 1 -- take the place of the processor that was to update B[ID]
10 flftfl
11 if ID < 2'+1 and ID + 24+' <p then -- if the processor's level isi
12 WRITE value read to B[ID + 21+'] -- broadcast to appropriate processor at level i + 1
13 fi
14 od

Fig. 8. High level view of algorithm CR1 for the controlled read. The code is executed by
each of the p _< P processors in the PPT. Here ID is the position of the processor in the
PPT, which may change during the execution of the algorithm.

If a processor Pk that accesses T directly verifies that T has the correct value and the
failed processor that should have broadcast to Pk is at or below the level that effected the
write, then Pk assumes the position of the failed processor in the PPT (lines 1 i-12). This
effectively moves failed proceesors towards the leaves of the PPT and plays an important
role in estallishing the bound on the read concurrency. Failed processors are moved towards
the leaves only if Zhey are not above the level that effects the write since processors above
this level will be diminated by compaction as was done in the previous section.

Algorithms CR1 and CR2: Algorithm CR/W combines a read with a write (i.e., it
incorporates the functionality of the old CW). In addition to CR/W we use two simpler
algorithms when all the processors of a PPT need to read a common memory location but
no write is involved.

The first of them is similar to CR/W but without the write step. This algorithm,
referred to as CR1, is presented in Fig 8. It is simpler than CR/W since processors that are
found to have failed are pushed towards the bottom of the PPT independent of the level
they are at. This algorithm will be used for bottom-up traversals during W.

The second algorithm, referred to as CR2, uses a simple top-down broadcast through
the PPT. Starting with the root each processor broadcasts to its two children; if a processor
fails then its two children read T directly. Thus the processors of level i are responsible to
broadcast only to processors of level i + 1. Unlike CR1 no processor movement takes place.
This algorithm will be used for top-down traversals during W.

It is easy to see from the description of the algorithms that all three of CR/W, CR1,
and CR2 require O(log P) time for PPTs of at most P processors.

Algorithm WCR/w: We are now ready to present a Write-All algorithm that controls
both read and writp concurrency. It utilizes algorithms CR/W. CR 1, and CR2 for memory
accesses as well as the techniques of PPT merging and compaction introduced in the previous
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section. As with WCw, we augment the values written by CR/W with timestanps to
facilitate PPT merging and also write the PPT size to assist with compaction (for-implicity,
these two additional pieces of information are not shown in Fig. 7). The resulting algorithm
will be referred to as WcRt/w. In more detail, the following modifications must be made to
the four phases of the original algorithm W:

W I: Processors begin this phase by forming single-processor PPTs. The objective is for
processors to write to each internal node of the enumeration tree the sum of the values
stored at its two children. For this they use algorithm CR/W to store the new value,
the size of the PPT, the index of the level that completed the write, and a timestamp.
As with Wcw the timestamps written in algorithm W axe not required.
Upon completion of CR/W all PPTs are compacted. In order to merge PPTs the
processors of each need to read the data stored at the enumeration tree node that is
the sibling of the node they just updated. For this, algorithm CR1 is used and after
it finishes PPTs are merged. At this point the processors of the merged PPTs know
the value they need to write at the next level of the enumeration tree. This value is
just the sum of the value written by CR/W and the value read by CRI. Therefore
one call to each of CR/W and CRI is needed for each level of the enumeration tree.

W2: This phase involves no concurrent writes and can be implemented using mostly local
computations. Surviving processors traverse top-down the progress tree to allocate
themselves to the unvisited leaves. The only global information needed at each level
is the values stored at the two children of the current node of the progress tree. These
values are read using two calls to CR2, one for each child. Using this information
the processors of a PPT compute locally whether they need to go left or right. No
compaction or merging is done in this phase. As PPTs move downwards they are split
as describ •d in phase W2 of algorithm WCw.

V3: Processors organize themselves into PPTs based on the information they gathered
during the previous phase and proceed to write I to the locations that correspond to
the leaf they reached. Each of these writes uses algorithm CR/W and is followed by
compaction. No merging is involved.

W4: This phase initially uses the PPTs that resulted at the end of W3. The task to be
performed ib similar to that of W1. As before CR/W is used for writing followed by
compaction and then one call to CR1, after which PPTs are merged.

Before embarking on the analysis of this algorithm, we discuss briefly how to accomodate
the B arrays of all the PiPTs in O(P) space. We use an array B of length P and implement
the B array of each PPT as a contiguous subarray of H. Each PPT maintains the starting
location of this subarray, whose length is just the size of the PPT.

Initially each PPT has a single processor and processor PA is allocated location B[i].
When tvic PPTs are merged we need to combine their B subarrays. If the left PPT uses a
subarray of size sl that starts at B[tl] and the corresponding parameters for the right PPT

17



are s,, and B[t,], then the mered PPT will use a subarray of size s, + a, starting at 8[ti].
The only information thtz needs to be communicated between the two PPTs is that the
right PPT must know t1 . This is accomplished by having the processors of the left PPT
write tj along with the new value for T, the timestamp, the PPT size. and the level index.
Note that the subarrays used by the two PPTs that are merged may not be contiguous in
B but in this zase the space between the two subarrays is unused (i.e., there may be a gap
between them' since the two PPTs axe siblings.

When PPTs are split during W2 their B subarrays are also split. If a PPT of size s that
uses a subarray starting at B[t] is split into a left PPT of size ' and a right PPT of size
s - sz'. then the subarrav for the left PPT will start at B[t] and the one for the right PPT
will start at 5[t + s']. Only local computations are involved here.

Analysis of algorithm WcR/w: Although we can guarantee a write concurrency of at
most IFf for algorithm Wc~piwj the read concurrency is slightly more. This is because PPT
compaction does not eliminate all the failed processors from a PPT but only those above
the level that completed the write. Failed processors below this level remain in the PPT
and although they do not cause any concurrent writes they may cause concurrent reads.

In order to account for the concurrent reads incurred we associate a potential with each
processor. Our intention is to make the overall potential an upper bound on p. Below we
explain how this is done.

Let 4), denote the potential of the the ith processor, 1 < i < P, let tppT = Epe pp @
denote the potential of a PPT, and let I = 4)<i<p tj be the overall potential. We use A4•
to denote the change in the potential of the ith processor during an operation or sequence
of operations. initially Ai = 0, 1 < i < P.

During: each operation we increase the potential of a failed processor by an amount that
is an upper bound on the number of concurrent reads that can potentially be incurred during
this operation due to the failure of this processor. As a result t will be an upper bound
on the total number of concurrent reads incurred during an exp-ution of the algorithm, i.e.,
p < C. The following lemma describes the required increase in the potential of a failed
processor during an execution of each of the algorithms CR/W, CR1 and CR2.

Lemma 3.3. Let 11 be t.',e PPT level of a processor at the beginning of an execution of any
of the algorithms CRI, CR2, or CR/W and let 12 be the PPT level of the same processor
at the end of this czecution. If this processor is dead at the end of this execution, then its
potential should be increased by (i) 12 - l1 during CRI, (ii) 2 during CR2, and (.iii) 12 - 11
if it is at or below the level that completes the write and log P - 11 if it is above this level
during CR/W.

Proof. W'e need to show that the proposed increases in the potential of a failed processor
are upper bounds on the number of concurrent reads that can be incurred due to its failure.
(i) From the description of the algorithm it is clear that concurrent reads are the result
of processors discovering that processors at higher PPT levels have failed and could not
broadcast as a result. In this case the failed processors move to lower PPT levels as the
processors that detect the failui s take their position in the PPT. Since a failed processor
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moves by at least one level for each concurrent read it &ses, the number of concurrent
reads caused by a failed processor that moves from level 11 to level 12 cat be at mOst 12 - 1.

(ii) Since in CR2 a processor is responsible only for broadcasting to its two children, a failed

processor can cause at most two concurrent reads. This happens if both of its children are
alive and other processors at the same PPT level are also accessing the same location as a
result of their parents also having failed.
(iii) Let L be the index of the PPT level that completed the write. If a processor is above
L then no processor will take its position in the PPT. Since the PPT can have up to log P
levels this processor can cause a concurrent read at each of the levels below its own resulting
in log P - 11 concurrent reads. If the processor is at or below L then the situation is similar
to that of case (i) and by the same argument the processor will incur 12 - 11 concurrent
reads. C3

Because of PPT compaction it is possible for some failed processor to actually move to
a higher PPT level after an execution of CR/W (note that compactions occur only after
CRiW). To account for this we charge each processor that is eliminated by compaction for
log P concurrent reads. As the following lemma shows, this one time charge is sufficient to
account for all t'ýe concurrent reads that can be caused by failed processors that move to
higher levels following a compaction.

Lemma 3.4. If each processor that is eliminated by compacting a PPT is charged log P
and cach processor that moves to a higher level as a result of the compaction is credited for
the number of levels it moves, then the potential 'OPPT of the PPT does not increase and
ncithc r does @).

Proof. Let L be the PPT level that completes the write. As a result of compaction 2L - I
processors will be eliminated. Increasing the potential of each such processor by log P

increases the potential of the PPT by (2 L - 1) log P.

The absence of these 2L - 1 processors from the compacted PPT means that some
processors at levels > L move up. Since 2 L - I processors axe eliminated, the first 2 L - I
processors of each level > L will move up while all other processors will move left within
their levels but will not change level. We decrease the potential of each processor that
moves up by the number of levels it moves.

The 2L - I processors of level L that will move may move by as many as L levels, so the
decrease in their potential is at most L (this is a pessimistic estimate). The processors of
the other levels that will move may move by just one level, so their potential is decreased
by 1.

The total decrease in potential for all processors that move to higher levels is at most
log P

{£-1)L + 1: (2' - 1) =- IL - 1) log P,

i=fL+l

equal to the increase in potential. Thus potential redistribution does not increase *PPT

(since we are taking a pessimistic approach, $ppg may actually decrease du'! to this redis-
tribution). As a consequence * does not increase either. 0
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The remaining operation involved in Wcj/w, PPT merging, can never cause a processor

to move to a higher level. As a result we neither increase nor decrease processor potentials
during this operation, so we ignore merging in the rest of our analysis.

During phases W1 and W4 the main operation at each level of the enumeration or
progress tree entails one call to each of CRfW, PPT compaction, and CRI in this order.

Phase W3 is similar but without CRa (phase W2 is quite different). The following lemma

provides a bound on the change of potential during a sequence of such operations.

Lemma 3.5. Let s be the length of a sequence of steps each of which consists of a call to

CR/W4" PPT compaction, and CR1 in this order and let Pi be a processor that is dead at

the end of this sequence but is not eliminated by compaction during the sequence. If Pi is at

PPT level 1o at the beginning of the sequence and at level lj after the jth step of the sequence

(I < j <5 s), then A$i = 1. - 10 over the entire sequence.

Proof. Consider the jth step of the sequence. A is at level li-I at the beginning of this
step and at level ly at the end of it. If Pi is at level P. >Ž li- after the call to CR/W and

at level I" '< l after compaction, then *i increases by l¼ - li-I + li - 1j (Lemma 3.3) and

decreases by l - 17 (Lemma 3.4). Thus Atj = li - lpj_ for the jth step and for the entire
sequence we obtain

j=01

This shows that the change in potential depends only on the starting and ending PPT levels

and not on the length of the sequence. 0

As in the case of algorithm W, we may duster several elements of the input array

and assign them to a single leaf of the progress tree. We use the notation WcR/w[S] to

indicate that input elements are organized into clusters of size s. For the case s = 1 we

use the shorthand WCR/W for WcR/w[I]. The following theorem provides bounds on the

performance of this special case:

Theorem 3.8. Algorithm WcR/w is a robust algorithm for the Write-All problem with

S = O(NlogNlogP + PlogPlog2A/loglogN), read concurrency p 5 71F1logN, and

writ concurrencyw < IFI, where 1 < P f_ N.

Proof. The bounds on S and w are obtained as in Lemma 3.2. To show the bound on p

we consider the change AM@ of the potential of a failed processor throughout a block step

(an iteration of the while loop). It suffices to focus on a single block step since PPTs are

rebuilt at the beginning of phase W1 and dead processors are eliminated. As a result, a

failed processor can cause concurrent reads for at most one block step.

Suppose that a processor is eliminated by compaction when it is at level I of a PPT.

It is clear that the processor causes the maximum number of concurrent reads when this

elimination takes place in phase W4 while the processor has failed since phase WI.
When it is eliminated its potential will increase by 2 log P - 1, where log P is due to the

potential redistribution as described in Lemma 3.4, and log P - I is due to the concurrent
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reads it may cause in the last execution of CR/W right before the compaction that eliminates
it (Lemma 3.3, (iii)). 1* 1.

The concurrent reads it causes until its elimination are accounted for as follows. In
phase W1 the sequence CR/W, PPT compaction, CR1, is executed once for each level of
the enumeration tree. If the processor is at PPT level 1, at the, beginning of the phase and
at level if at the end, then by Lemma 3.5 the change in potential is If - 1, _• log P since
the height of the PPT is at most log P.

Since the PPTs that exist at the end of W3 are the same as those used at the beginning of
W4, as far as accounting goes these two phases can be considered as being one. Consider the
sequence of calls to CR/W, compaction, and CRI upto the call to CR/W that immediately
precedes the compaction that eliminates this processor. The processor is at level I at the
end of this sequence. If it is at level 11 at the beginning of W3, then by Lemma 3.5 the
change in potential is I - 1P < I.

Finally. the change in potential for phase W2 is 2 for each execution of CR2 and there
are two such executions for each level of the progress tree. Thus the change in potential is 4
for each level of the progress tree and the total change in potential for phase W2 is 4 log N.

Combining the above we have that Ati for an entire block step is bounded by

log P + 4 log N + 1+ 2log P - I S_ 7log N.

Thus the amortized number of concurrent reads charged to a failed processor is at most
7 log N. Since the potential of alive processors is non-positive we obtain the following bound
for p

2 ýO 4 'i !ý 4,TfFj log N.
I <•P P failed

3.3. A n Optimal Algorithm

As discussed in Section 2.3.1, algorithm W becomes optimal if input elements are clus-
tered into groups of size log N, each group associated with one leaf of the progress tree, and
a number of processors smaller than N is deployed. In a similar vein, algorithm WCRIW
performs best if clusters of size larger than one are used and fewer than N processors are
employed.

Since the enumeration and p,'ogress trees traversed have height O(log N) and algorithm
CR/N1V requires O(log P) time, phases W1, W2, and W4 require O(log N log P) time. Thus,
we cluster the input elements into groups of size log N log P and have a progress tree with
N/log N log P leaves. The resulting algorithm Wca/w flog N log P] turns out to be non-
optimal. so a further modification is needed.

To obtain optimality we make use of the perfect allocation property of algorithm W
(see [18]). This property guarantees that available processors are allocated evenly to the
unvisited leaves in phase W2. Let U, and A, be the numbers of unvisited leaves and available
processors, respectively, at the beginning of the ith iteration of the while loop of algorithm
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WCR/w. The balanced allocation property implies that if 14 Pi, then at most.one
processor will be allocated to each unvisited leaf.

This le'ds to a modification of algorithm Wcj/w[logNlogP]. The difference in this

algorithm is that processors examine the overestimate of remaining processors P and the

overestimate of the number of unvisited leaves U1 at the beginning of each iteration. If

U, > Pi we are guaranteed that there wiia be at most one processor per leaf at the beginning
of phase W3 so that there is no need to ,,se CR/W and compaction. Instead processors go
sequentially through the log N log P elements of the leaf they reached spending 0(1) time

for each element. If, on the other hand, 1i < Pi several processors may be allocated to the

same leaf and algoritam CR/W needs to be used. The latter situation occurs infrequently

enough that the algorithm becomes optimal for a certain range of processors, as we show

below.
We refer to algorithm WcRtW [log N log P] with the above modification as algorithm

•¥opt
CR/w" The following theorem provides bounds on its performance.

Theorem 3.7. Algorithm W / is a robust algorithm for the Write-All problem with

, = -0(N+P io1{ ), write concurvency w < IP, and read concurrency p •7 jFjlogN,
whc•r I < P < A,

Proof. Let Pi be the (overestimate of the) number of live processors and Ui be the (over-

estimate of the) number of unvisited leaves at the begining of the ith iteration. We divide

the iterations into two cases:

(Ca. 1: The number of unvisited leaves is U£ 4 Pi. In this case phase W3 requires

V(log N log P) time, the same as the time to traverse the enumeration and progress trees.

B By Lemma 2.1 the number of block steps for all such iterations is at most U0 , where Uo
is th1 initial number of leaves. In this case Uo = N/log N log P and the total work for all

such iterations is N=S1 = oNlo O(log N lo-_ P) "- O(AT).

=g N, log P

Casn 2: The number of unvisited leaves is UI < Pi. In this case all the processors could

be allocated to the same leaf. Thus, in the worst case, log P time must be spent at each

element of the leaf and since there are log N log P elements per leaf the worst case time

to update a leaf is O(log N io' 2 P). By Lemma 2.1 the number of block steps for all such

iterations is at most 0 (PiI). Hence the total work of all these iterations is

S2 = 0O(P log N ) (O(log N log P) + O(log N log P))

_ = 0(9 log log x
= (Ploe2N loC P

log log N

In addition, we must account for the work performed by processors that fail in the

middle of an iteration. There are at most O(P) such block steps each costing at most
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O(logNlog1P) so that the total' irk in this case is SD = O(PlogNWo P). Combining
the three cases, we have

S = SO + S +5S2 = ON+PIg )log logN

The algorithm is optimal if the second term is O(N).
The bound on w is obtained as before by noticing that wheneier a PPT has more than

one processor, the tree is compacted after the write to eliminate any processors that have
caused concurrent writes. The bound on p is obtained as in Theorem 3.6. 0

3.4. Handling Unitialized Memort

The algorithms considered so far require that memory be initially clear. Algorithm Z
of [32] extends algorithm W to handle unitialized memory (see Section 2.3.3). It is possible
to incorporate CRiW into Z to obtain a Write-All algorithm with limited concurrency that
dispenses with the requirement that memory be clear.

A problem that arises if we try to combine the two algorithms directly is that we can
no longer guarantee good read and write concurrency. This stems from the fact that to
achieve these bounds the PPTs that are built at the beginning of phase WI must contain
no processors that are known to have failed. This is easy to do in the algorithms considered
so far since each PPT starts out with at most one processor. In algorithm Z, however, there
can be several processors that axe assigned to the samne leaf of the enumeration tree and
thus belong to the same PPT at the begining of W1; this happens whenever P > Ni. The
assignment of processors to such leaves is made based on the processor PItDs and since this
does not take into account failed processors, the resulting PPTs may have dead processors
that have already been accounted for in w.

To work around this we will use an enumeration tree with P leaves for all iterations of Z.
,o that each PPT will have at most one processor at the beginning of W1. To initialize this
tree we note that phase WI is a static phase in the sense that a given processor traverses
the same path through the enumeration tree every time WI is executed. In particular,
since processors can not restart once they have failed, if a node of the enumeration tree
is accessed at all, it must be accessed the first time WI is executed. The consequence of
this is that we do not need to clear the entire enumeration tree but only that portion that
can be accessed during the first execution of WI. To achieve tids, processors make an
initial bottom-up traversal of the enumeration tree similar to the traversal of WI (i.e., etch
processor traverses the same path it would traverse in W1) and dear the locations that they
would access in W I. This process is carried out as follows.

Processors start at the leaves of the enumeration tree, with the ith processor at the ith
leaf, so that each processor forms a PPT by itself. PPTs then traverse the tree bottom-up
taking the same paths az in phase W1. The operation pe-formed by the PPTs at each
node they reach consists of clearing the node they are at using CR/W, PPT compaction,
clearing the sibling node using CR/W, PPT compaction, reading the contents of the node
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they axe at using CRI, and finally PPT merging, The reason for ciea- i2g the sibling node
is that during phase WI processors need to access the node tbhy are at and its sibling and
we need to make certain that this sibling will not contain garbage data. The reason for the
remaining operations is to assist with merging. Essentially, this initialization phase is like
WI but processors dear the sibling nodes instead of summing. The cost of this initiaization
is O(log N log P) since the enumeration tree is of height O(log N) and the time spent at
each level is O(log P).

The algorithm that results from Z by using a P-leaf enumeration tree initialized as de-
scribed above and utilizing algorithm WbI't to clear progressively larger areas of memory
is called ZCR/w and has the performance bounds given in the following theorem:

Theorem 3.8. Algorithm ZCR/W with contaminated memory of size O(P) is a robust
Writc-All algorithm with S = O(N + Plog2 Plot) N/(loglog N) 2), read concurrency p <
71F1logN, and write concurrency w < IFl, where I <P <. N.

Proof. Since WXgw uses dusters of size log N log P we choose Gi = log N log P, i > 0
as the parameters for Z (see Fig. 4). Thus initially processors clear a wemory area of size
Go = log N log P using algorithm CR/W; this costs Plog N log2 P. Following this there are
log N/(log(log AN log P)) - 1 = O(log N/loglog N) applications of algorithm W'P1 w where

the ith application dears a memory area of size XVi = (log N log p)i-+. This analysis is
very similar to the analysis of [321 and the work bound follows by the same method; the
only difference is the different value for the Gi's and that the work of each iteration is given
by Theorem 3.7. The bounds on p and w are obtained as in the previous theorems in this
section. 0

3.5. A Lower Bound

Having shown a robust Write-All algorithm with w _< IF[ it is interesting to consider
whether there is a robust algorithm with even smaller w. Here we ;how that this is not
the case for a large class of functions of IFj. Specifically, we show that there is no robust
algorithm for the Write-All problem with concurrency w < IFJt for 0 S e < 1.

For this we consider a simpler Write-One problem [18] which involves P piocessors and
a single memory location. The objective is to write I into the memory location subject
to faults determined by an on-line adversary. The adversary will try to maximize the
work while the algorithm will try to minimize it by appropriately scheduling the available
processors subject to the constraint that only up to I Fit concurrent writes are permitted.

We allow algorithms that can sense when the locatioo has been written by employing
'oracles" thus having no need to certify the write. Algorithms without such power can not
perform better than oracle algorithms and hence the lower bound applies to them as well.
This is because given a non-oracle algorithm A there is an oracle algorithm B that mimics
A up to the point where A writes to memory. At this point B stops while A has to continue
in order to certify the write thus incurring additior-al work.
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Since not all processors can write concuTently the algorithm will need to form "waves"
of processors. The advifsary will fail each wave (but the last) right before the processors
in the wave write to the memory. This way the adversary prolongs the conclusion of the
process until the very last step while charging each processor as much as possible. As
the following lemma shows, the algorithm's best answer to this strategy is to use a greedy
approach. that is assign to each wave as many processors as possible within the constraints.

Lemma 3.9. The work of Writi-One algorithms is minimized tohen processors are allocated
.qeedily.

Proof. Let W1 , 42,..., Wj be the processor waves and let S be the total work of the
algorithm. Assuming that the original schedule is not greedy, let )Vj, 1 j c< k be
the first wave that contains fewer processors than are allowed by the jFIJ' constraint. By
assigning a processor from Wv, to W3 for some j < j' < k we obtain a schedule with work
S' = S - (j' - j) < S and hence the original non-greedy schedule is not optimal. 0

We can now show the following:

Lemma 3.10. Therc is no robust algorithm for the Write-One probetm with write concur-
rc rcy .,j < F. for 0 < 1.

Proof. Since 1Fj < P, where P is the number of initial processors, it suffices to show
that the bound holds for the broader class of Write-One algorithms that allow tpto P'
concurrent writes per step. By Lemma 3.9 P' processors should be allocated to each wave
and hence there will be P/1I = P1 -" steps (for simplicity we assume that P is a multiple
of P' . Then the work of the algorithm is t7 (P - ip-) + F-> & - fk(P'-'). 0

We can now show that:

Theorem 3.11. Therr is no robust algorithm for the Write-AlU problem with write concur-
rency •: < IFi'. for 0 < r < 1.

Proof. Consider a Write-All algorithm for instances of size N with P processors. The
adversary picks one of the array locations and fails oily processors that attempt to write to
it according to the strategy outlined eaxlier in this section. According to Lemma 3.10 the
work of the algorithm will be fl(P 2 '-). 0

3.6. PRA M Simulations Subject to Dynamic Faults

As discussed in Section 2.3.2, solutions to the Write-All problem can serve as building
blocks for efficent simulations of parallet algorithms an fail-stop PRAMs. The algorithms
presented above likewise can be employed in fault-tolerant simulations.

By using algorithm W".•/ we obtain efficient PRAM simulations on fail-stop PRAMs.C.R/W
In particular. we obtain the following:
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Theorem 3.12. Any N processor, r parallel time EREW PRAM algorithm can & simu.
lated on a fail-stop P-processar CRCW PRAM with using wo O(r. (N T- P4 l E1h N)

so that the write concurrency of the simulation is w <_ jFj and the read concurrency is
p < 7iFtlogN, for any failure pattern F and i < P <! N.

The work bound of this theorem also holds for simulations of ron-EREW PRAM algo-
rithms but the concurrency bounds depend on the concurrency of the simulated algorithm.
If wo and po are the write and read concurrencies of the simulated algorithm, respectively,
then for the simulation we have w < IFI + wo and p 5 71F1 log N + P 0O(log N). Alterna-
tively, we can maintaih the same concurrency Lbunds at the expense of increasing the work
by a logarithmic factor by first converting the original algorithm into an equivalent EREW
algorithm [19].

Similar results can be derived for contaminated initial memory using algorithm Z and
The.arem 3.4 to initialize an appropriate amount of auxiliary shared memory required by the
simulation. There is an additive expense in woik of O(N + Ploy] Ploy] N/(loglog N)').

Finally. if the faulty processors are restarted in the simulations so that they are re-
synchronized at the beginning of the individual simulated PRAM steps then the simulations
results apply as well.

4. Algorithm W with Bounded Maximum Access

For the algorithms developed in the previous section, the read and write concurrencies
are bounded, but during some time steps the read and write concurrency might still be as
high as O(P) for large IFI. In this section, we are going ta employ a pipelining technique
to limit the maximum per step concurrency of algorithm W.

As a first approach to limiting concurrency we note that phases WI, W2, and W4 of
algorithm W involve traversal of trees of logarithmic depth with only one level of the trees
being used at any given time. A solution that naturally suggests itself is to divide the
processors into waves and have them move through the trees separately by introducing a
time delay between the waves. If we choose the number of waves carefully it is possible to
reduce the number of concurrent accesses without degrading the as)mptotic work of the
algorithm,. In particular, since the trees are of height log N we can divide the processors
into log N waves each of P/log N processors. During each of the phases W1, W2, and W4
we send the processors through the appropriate trees one wav.e at a time thus reducing the
number of concurrent accesses to at most P/log N for any memory location. Since the
values computed at the nodes of the heaps during each phase will be correct only after
the last wave of processors finishes, waves that finish earlier must wait for the last wave to
arrive before beginning the next phase. This introduces a O(log N) additive overhead per
phase doubling the running time of each phase but does not affect the asymptotic efficiency
of the algorithm.

For phases W2 and W4, it is not significant how we divide the processors into waves.
Howevor, pha.p WI roquires that processors be assigned to waves in a left to right fashion.
i.e.. tihe leftmost log N processors form the first wave, the next log N processors are in the
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second wave and so on. This is because phase W1 computes prefix sums and a processor
must not ,ieach a node of the processor enumeration tree before any processor with smaller
PID.

This pipelining idea can be generalized by allowing a greater nunber of processor waves.
In particular. for any k > 1 we can partition the processors into logk N waves each of
p, logk N processors. Since there can only be log N active waves at any time, each phase
will be slowed down by a factor of logkI N. This yields the following:

Theorem 4.1. Algorithm 14fog N] with waves is a robust algorithm for the Write-All prob-
lkm with S = O(Nlogk-1 N + Plogk+l N/loglogN) for any k > I and with at most
P/ logk N concurrent accesses at any time for any memory location.

Remark 4. For k = 1 there is no asymptotic degradation in the efficiency of the algorithm.

Even though the pipelining of processor waves reduces the number of concurrent accesses
for each memory location, the algorithm still makes a lot of concurrent accesses overall. For
example. for k = I and P = N the algorithm makes fl(log N(r-7 - 1)) 1l(N) concurrent
writes when no processors fail since each wave makes -V concurrent writes at the root.
and there are log N such waves.

The use of processor waves can be combined with the PPTs of Section 3.2 to yielei an
algorithm that uses waves of priority trees to control both the per step and the overall
concurrency:
Theorem 4.2. Algorithm WO~pt iipzen

CR4W u,*'a pipelined PPTs is a robust Write-All algorithm
with S = O(Nlogk-1 N + Plog 2 Plogk+i N /IoglogN) for any k > 1, read concurrency
p < 7 IF1 log N. write concurrency w < IF1 and with at most PI logk N concurrent accesses
at any time for any ••emory location.

5. Write-All with Static Faults

The failure model we have been considering so far allows arbitrary dynamic faults. As
we have seen this model is too strong to allow efficient solutions without concurrent memory
accesses. In this section we consider the alternative, weaker, model of static (initial) faults
in which failures can only occur prior to the start of an -Agorithm. We will show that simple
and efficient solutions are possible in this model without rtquiring concurrent accesses and
without any need to initialize .he shared memory.

We assume that the size of the Write-All instances is N and that we have P processors,
P' < P of which are alive at the beginning 1f the algorithm. We do not know P' a priori
or which of the processors are faulty.

Our EREW algorithm E consists of two phases El and E2. In phase El, processors enu-
merate themselves and compute the total number of live processors. With this information
in phase E2, the processors partition the input array so that each processor is responsible
fur setting to I all the entriz- in its partition (Fig. 9).
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The enumeration phase El is similar to phase-W1 of algorithm W that is based on the
parallel prefix computation. However W1 -. L.,not be used because of its concurrent accesses
and the standard parallel prefix algorithm is not adequate since it is oblivious and requires
that all processors be available. We present a simple non-oblivious EREW enumeration
algorithm that does not assume a known number of processors and that produces correct
results fox any pattern of static failures.

A detailed description of phase El is given in Fig. 10. It uses a full binary tree of height
log P for enumeration, denoted T in the figure. The processors begin with initial rank I at
the leaves and move up toward the root. The algorithm ensures that at each interior node
of the tree, at most one processor moves up. If two processors reach sibling nodes within
the tree, one of them has to stop at the current level to avoid concurrent accesses at the
parent. By convention, the processor that is allowed to continue is the one coming from the
right.

Each processor Pi that continues needs to be able to communicate with the processors
that have stopped at lower levels of the subtree rooted at the current location of Pi so that
it cpn broadcast rank updates to them. To this end, the stopped processors in Pi's subtree
form a tree whose root is the processor most recently stopped because it encountered Pi.
Note that each processor in this tree stopped because it encountered either Pi or some other
processor in the tree. Pi can broadcast a value to the processors in this tree by passing the
value to the root of the tree and then having each processor pass the value to its children.

To do this, the algoritum of Fig. 10 assumes that each node of T has two fields: val, which
is used for broadcasting, and righLtchild, which points to the root of the right subtree of
stopped processors. We also use leftchild to point,to the left subtree. Note that left-child
is a private variable, whereas right-child is a node field; this is because a processor P,
determines its left subtree by itself while its right subtree is determined by the processor
that stops P,.

As a processor moves up, it checks whether there is any processor at the sibling node by
using a "probing" scheme. The processor writes 0 to its sibling node, then writes its current
rank at its own node and then reads the sibling node (lines 7-9). If it is 0, then there is no
processor at the sibling node, otherwise the value read is the number of processors in the
subtree rooted at the sibling. As in the standard parallel prefix the processor that comes
from the right adds this value to its rauk (line 15). In our case, the right processor also
initiates the broadcasting of this value to the processors in its tree of stopped processors
by writing the value to the root of this tree (line 16). The trees of the two processors that
meet are merged by creating a new tree with its root being the processor that came from

01 forall processors PID=I..P parbegin
02 Phase El: Use non-oblivious parallel prefix to compute rankplD and P'

03 Phase E2: Set z[(rankp;D - 1)- - ... (rankPID .7) - 1] to 1
04 parend

Fig. 9. A high level view of algorithm E.
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01 cuir' Urcnsnk m: I -- achpraessor startý with initil rank I
02 le... . chitd nil -- no left•e..lde:n ...
"03 stopped :, false -- initially .41 processor can move up
04 poa := P +PID - 2 -- initial ositimor in the tree

Sfor i :=1.. log P do
06 if hopped = false then -- processor can still move
07 7Tsibling(pos)].val := 4 -- probe sibling; sibling() returns the location of the sibling node
08 'Tfyos].val:- c&TTr anCrtmk
09 rauksb :-= Tisibling(pos)3.ual
10 Jf rank,i = 0 theA -- noone there
11 pos :-= {os/2j -- move to parent node
12 else If current node is a left child then
13 stopped := true; Tfpos).val := 0 -- let the sibling processor continue
14 else -- current node is a right child; processor continues
15 current-rank := current-rank + rank..i
16 Tl•eft-child].val := rank!,i -- propagate rank update
17 7Tsibliuyg(posf).right.child:= left-child -- amodify trees
18 left-child := T[sibing(pos)]
19 pos -= pas/2J -- move to parent node
20 f1
21 else -- processor has stopped; just propagate rank updates
22 if Tjposl.val > 0 theu -- there's a rank update to propagate
23 current-rank -= current-rank + TI7pas].val -- update own rank
24 TfTlpos].ragh~tchild].val .=f T[pos].val -- pase the update on to the right child, if there is one
25 T7pos.zval := 0 -- get ready for the nest iteration
26 fiRf
27 od
28 --- complete propagating nrnk updates and broadcast the number of live processors
29 for i := L..log P do
30 if stopped = false then -- this is the processor that reached the root
31 T[left..child].val := -currentirank
32 else -- stopped processors just propagate the values they receive
33 if Tfpos].ral > 0 then -- there's a rank update to propagate
34 currenLrank := current-rank + T7pos].val -- update own rank
36 7IT[pos].right-chiidl.val := [pos].val -- pass the update on to the right child, if there is one
36 T[pos].val := 0 -- get ready for the nest iteration
37 else if T[pos].val < 0 then -- this is the number of alive processors
38 7{left-child].val := T[pos].rightschild.val := Ttpos].val -- propagate to both children
39 alive := -Tfpos].val -- alive is the number of alive processors
40 It ft
41 od

Fig. 10. A detailed description of phase El.

the left, its left subtree the tree of the left processor and its right subtree the tree of the

right processor (lines 17-18). An illustration of this process is provided in Fig. 11 when
P=8.

When the rightmost live processor gets to the root its rank is the number of live proces-
sors and this value is propagated through the tree down to the other processors (lines 29-41).

In the algorithm of Fig. 10 we broadcast this value as a negative number to distinguish it
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(a) (b)

(c) (d)

Fig. 1 . An illustration of phase El with 8 processors of which 4 have failed. Circles indicate
processors that have stopped their ascend because of encounters with other live processors
and squares indicate processors that continue their upward movement. The uumberr beside
the processors indicate their ranks at each stage of the algorithm.

from the rank apdates whid are positive. The whole process takes 2 log P steps.
The algorithm can be made to work in place by collapsing the levels of the tree into a

single linear array. In addition, because of the probing scheme, the initial values of the tree
are irrelevant and so the algorithm works even in the presence of initial memory faults.

It phase E2. knowing the number of live processors and their ranks, processors partition
the input and each sets to 1 tT±e entries in its own part.

Theorem 5.1. The Write-All problem with initial processor and memory faults can be
sohlmd in place with S = O(N + PlogP) on an EREW PRAM, where 1 < P ! N and
P - P' is the number of initial faults:"

With the result of [5] it can be shown that this algorithm is optimal.
Algorithm E can be used for simulations of PRAM algorithms on fail-stop PRAMs that

are subject to static initial processor and memory faults. Simulations are much simpler for
this case as compared to the dynamic failures case.

In particular, only the enumeration phase El of algorithm E is needed. At the beginning
of the simulation we use the enumeration algorithm to determine the number P of live
processors. We then use Brent's Lemma [6] to simulate the P processors of the original
algorithm on the P' available processors. The time overhead of the simulation in this case
is just O(log P) for the enumeration and the work overhead is O( ." log P). Both overheads
are additive. Thus we have the following:
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Theorem 5.2. Anyj P-processor, r parallel time PRAM algorithm can be simulated on a
fail.stop PRAM that is subject to static initial processor and memory faults. The work of the
simulation is P. r + O(P" log P), where P" is the number of live processors. The simulating
PRAM is of the same type as the PRAM for which the simulated algorithm is written and
the read and write concurrencies of the simulation are no more than those of the simulated
algorithm.

Note that when P . r = fQ(P log P), the simulation is optimal.

6. Conclusions and Open Problems

We have shown that it is possible to obtain robust solutions to the Write-AD problem
that make concurrent accesses only subsequent to processor failures and then in a controlled
fashion. We have further demonstrated that we cannot reduce the write concurrency much
further.

An open question is whether we can improve the read concurrency by eliminating the
logarithmic factor from p.

A second open problem is whether there is a faster algorithm thaa W for the Write-AD
and whether the methods presented here for controlling memory accesses can be applied to
it.

In [22] an fI(N log N) lower bound was shown for the Write-All problem but no known
deterministic algorithm attains it. A third open problem is whether the lower bound of [22]
applies to the static case. It is interesting to consider whether there is a CRCW algorithm
for the static Write-All that requires o(N log N) work.
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