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NOMENCLATURE

The following nomenclature is used in this paper:

Temperature coefficient for k in Equation [5]

e

9B = Amplitudes of constant and first haprmonic terms of
- heat flux input, Equation [417]

b = Temperature coefficient for s in Equation [6]
¢ = Specific heat (for unit mass)
£ = Time-independent term in temperature solution
k = Tpgrmal conductivity
“‘go = Value of k at reference temperature (assumed zero)
L = Thickness of slab
3-"' = Heat flux

= Amplitude of ni® harmonic of temperature

= ¢P = .Volumetric specific heut

= Value of s at reference temperature (assumed zero}

= Amplitude of temperature input, Equation ([17]

+= By /N2 k, ¥, , = Amplitude of linear solution at boundary
= Constant temperature at x = L.

= Temperature

Transformed temperature, defined by Equations [3] and [7]

Distance coordinate

k / c@ = Thermal diffusivity
Vnw/2 X,
= (b-8) B, / 2k, ¥,

Density

"'("b m=°< Q % I I tl_:a Ao?.!)e L- lo |

= Time




Accesion For

ﬁ n - Coefficient of cosine term of nif temperature harmoni gps CRA&I §
! IC TAB

X n = Phase angle of nEE harmonic in temperature solution ynmm0mmed )
ustification

"n = Coefficient of sine term of ny‘1 temperature harmonic T
w - By ..

= Angular frequency Distributionf

Availability Cocigs

INTRODUCTION

st
The general equation for heat conduction in an w

Avaii ancT[or
Special

|

isotropic material, without heat sources or sinks, is

— at
div grad = e ‘ 1!
(k gra t ) s 3

where t is temperature,‘t is time, k 1s thermal
conductivity, and 8 = E-P the volumetric specific heat,
i.8., the product of specific heat and density. In the case

where k and s are constants this becomes
2 2t
= .
« V't = % [2]

where = g/g is a constant, This is a linear onartial
differential equation; solutions have been obtained by
standard methods for many cases of practical interest {see
for example h(l)). However, in the rore general case, both
k and s in Equation [l] are functions of temperature; hence
the differential equation 1is nonlinear,

In the nonlinear case k and s may readily be
combined into a single temperature-dependent quantity through

the transformation used by van Dusen (2)

4o-
',

h Numbers in parentheses refer to the Bibliography at thei 77 P

end of the paper.
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where k is the value of k at temperature t,. It follows

that k grad t = k grad u and (3t/3%)= (k/k) (3u/2¥)

20
and hence
2 du
& (W) Vuw= ==
A o1
where o(u) = k (u)/s (u). For the time-independent case,

Vv 2 u =0 ; thus, after the boundary conditions have been
expressed in terms of u , the problem reduces to the familiar
linear one,

In the transient case the scope of available analytical
solutions is much more limited. Hopkins (3) has suggested the
method of successive approximations and applied it to a
number of examples, Another analytical technique has been
the Boltzmann transformation (l}), which converts the nartial
differential equation into an ordinary one; this is
limited to the one-dimensional case with rather srecialized
initial condition and boundary conditions, Additional
solutions for various cases are given by Crank (7) and by
Friedmann (5,6) who includes an extensive bibliography. Much
of the work in the field 1is based on numerical solutions; most
of it limited to the one~dimensionsl problem.

The case in which boundary conditions are neriodic in
time has not received as much attention, However, if the
initial transient is neglected, the time-dependent steady state
solution can readily be found, under physically reasonable
restrictions, Vernotte (8,9} has treated a semi-infinite
bar with sinusoidal heat flux input and has briefly discussed
the case of square-wave heat fluxe.

The present naper, based on the fuller analysis by




one of the authors (10}, is an extension and amplification

of Vernotte's worke It treats additional problems, presents
more explicit results, and includes second harmonic terms.
(However, 1t deals only with a one=-dimensional solid rather
than a bar with convection losses at the cylindrical surface.)
Qualitative conclusions are discussed from two diffe:ent
view-points: a) the case in which the thermal properties

are known and the temperature solution is desired (e.ge. the
periodic solar heating of the crust of the earth or the
pericdic heating of a cylinder wall in an internal combustion
engine); b) the case in which the required temperatures are
experimentally measured in order to determine the thermal

properties.

PROBLEMS AND ASSUMPTIONS

Three problems will not be considered:

a) A one-dimensional, semi-infinite solid with the
surface temperature sinusoidal in time.

b) A one-dimensional, thick slab with sinusoidal
temperature variation at one boundary and constant temperature
at the other. (The term "thick slab" implies 2 negligibly
small periodic temperature variation near the second beundary,

c) A one-dimensional slab with the right bourdary at
constant temperature. At the left boundary there i3 a
prescribed heat flux input, consisting of a constant term

plus a sinusoidal term., This example may be ugeful in the

experimental measurement of thermal conductivity,
Two basic assumptions are made throughout the

analysis:




1) It is supposed that the periodic input has
been applied long enough so that the transient has
died out, In other words, only the steady-state,
time-dependent solution 1s obtained; it is assumed
that the solution is periodic with the same period
as involved in the boundary conditions. Hence, no

initial conditions appear in any of the cases

considered.

2) It is assumed that the temperature-
dependent r+~ovnerties are linear functions and that
the variations are small, 'ore snecifically, the
thermal ceonductivity k  and the volumetric specific

Mgt 8 apre taken ss

k= ky {1+ 2 at) [5]
8 = 8 (1 + 2 bt) [6]
whare kK., S5, &8 and b are constants. Since the

voriation is assumed small, 2at<<l and 2bt&l].

Herce terms independent of @ and b are considered
as zero=-order terms, linear terms in these parameters
are consldercd as first-crder in smallness, quadratic

terms in these parareters are taken as second order and

assurmed negliglbly small.

METHOD OF ANALYSIS

The method of solution is that of "harmonic balance."
This technique i3 the same as that employed by Vernotte (8,9)
except that he deals with amplitude and phase angle for each

R




frequency while the present 1nalysis deals with amplitudes
of sine and cosine terms, "Harmonic balance" is a familiar
technique for ordinary nonlinear differential equations
(e.g., references (11) through (1l).

It will be convenient to treat the problem in terms
of the transformed variable u defined by Equation [3] .
Using Eguation [5] for k in this transformation yields

u = t+at® = t (1+ at) [7)

If second-order terms are neglected (as stated in Assumption 2),

l1+au = 1+ a t and the inverse transformation 1is

iR

t u (1 + s.u)“1 = u (1 - av) [8]

In the same way, Equations [5] and [6] become k = Eo (1 + 2 au)

and s = s, (1 + 2 bu). Substituting these expressions in

the one-dimensional case of Equation [h] gives

k.(l+2agl]‘fu _ [9]

op s, (1+2bw) e -~ Y

Tu~ [ 1+ 20-a)u™u ; u  (b-a) 242

P R = e e — —

Py = T &, T & Iy [10]
#here X, = k / X

As stated in Assumption 1, the solution will be
assumed periodic and may thus be written as a Fourier

series, i.e.

w(x¥) =z F(¥) + B0 cos wr +p()sn wT

T (%) cos 2wT + y, (%) sin 2w O]




(If higher terms are included in the series, they will be
found to be at least second=-order for the problems under
consideration here,) Inserting Equation ﬁl] in
Equation [10] now yields the approximate expression

£}

[ X F'y 2
A‘f‘ri& cos WT -'-é_t‘ sin wT 1-."_,.! cos Zw"!'.’.,.c_‘_ﬁ: sin 2WTYT

xt . ax* dx? dx*

::._L[-
d.

¢

\

.w $in WT + ﬁw s WT - ap‘w $in 2WT *a"zw cos 3«0\’-]

+ (b-a) [— afgw sin Wt +2f g w cos we -(ﬁ,z- Y,a) Sin 20X 424, ¢, ©* 2“’1—']
‘.

(Since the last bracket i1s multiplied by (b ~ &) and since

ﬂ& and ¥, may be shown to be first-order terms, their

product has been omitted in the bracket,)

Equating coefficients of the time-independent _
terms and of the respective sine and cosine terms now gives

the five ordinary differential equations

4 o

axt

Jz¢. w Z'F (b‘“) w
Frie v %

e N '
d’s 2 (b-9)
- BT

[12]
(3]
[]

[15]




(‘-"_‘ ~)'2 (8°-

_Z.z+ 204 = T [26]

Solution of a specific protlem now cersists in
expressing the boundary conditions in terms ¢f u, comparing
these expressions with Equation [11] to determine the boundary
conditions on f, ¢, , }‘1 y ¢z , and yz , solving the
five ordinary differential equations (Equations [12] through

[lb] ) subject to these conditions and, finally, expressing
the solution in terms of t . The various steps will be
explained in some detail in the first problem below, while

the other cases will be outlined more brieflye.

SOLUTIONS

a) Semi-Infinite Solid, Periodic Surface Temperature

This problem is mathematically defined by: 1) the
one-dimensional form of Equation [1] s 2) the expressions
for k and s , Equations [S] and [6] , and 3) the

houndary conditions

t(o/‘c)—_- -'; sin WY [‘17]
(e, | # o [18]

The first two items are combined in Equation [io] s Which

in turn led to Equations [12] through [16]. The third item,

the boundary conditions, may be transformed by Equation [7]

to become

= “'_La T sin w— “T‘a Cos 2w X
wlo)==+ " ey

Ju (o, ¥)| F o




By comparing u (o, ¥ ) with Equation [11] » 1t follows that

a T.°
'F(o)a =

[19]

g(e) =0 p,(c)=T, [20]
aTy

g, (e)= - == , ¥ ()= 0 [21]

u (e, T ) indicates that f, ?, S , ¢2 and §, all
remain finite at infinity,
The solution of Equation [12] is obviously

'F(K): :E-r& [.223

Since f (x) itself is firste-order in this case, the right
'hand sides of Equations [13] and [‘1)4,] are clearly negligible,
Hence these two, equations with the boundary condition given
by Equation [20] reduce to the well-known linear case; the

solutions are
- )’.75
¢' (0= = T, € sin ¥ X 23]

§,x

Y, (x) = T, e i cos ¥ X

L2 )

where

5, =Nw/zs [25]

Inserting Equations [23] and [24] in [157] and
[267] yie1ds

10




-28X

A 2w, _ _ (b-dw TS et s 2¥x
rr e %

~alx
Jl*a + gw ¢ = (.b-‘)w‘r'a e 2% <ced 2’.1
At %, ¢ o,

with boundary conditions given by Equation [21] e The

solutions are

-3
)T 2 - & _a2¥%x
¢a(x): - (E:_L e Cos XZX - (_b_;LL ) Cos 2)"1.

2 [26]
2a- L)T.a -5 2. _a2¥x
(X) = - (—_———- € sin & X ~ (b-Q)To e ! .
) A 2 - sin 2¥x [-27]
where

Xz = \Jw/d. =\z ¥, 28

The solution in terms of u is now obtained by
inserting Equations [22] , [23], [24] , [26) , eana [27]
in Equation [11] and finally converted back to t by the
inverse transformation, Equation [8] « When second~order

terms are neglected, the result is

2 2 -83,74 -X,x
t(xx) = 2;—‘- - 5;-‘-' ¢ + . © sin (w-¥x)

. (2a-b) T’a}"e.z!,x

yx
S cos (wr-2¥x)~-e 5 cos (Zw‘t-)'zx)] ;

9]
It 1s of interest to consider the amplitude 52

and the phase angle ’Xg of the second harmonic term., 1In

reference (10) it 1s shown that these quantities are closely

approximated by

11
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Fig.2 Ampli ime-i
oz N ¥X150 | g mPlxmdes of time-independent
1 < /, hEN \ term Fo, first harmonic R), and second Rg
e N s A ——— | — =N ——— in a semi-infinite solid with sinusoidal boun-
e
7 RN dary temperature for the case 2(a) To = 0. 25,
-0.2F "' TS - (b) = 0.
m 2w
Fig.1 Temperature soluti:;&or different positions R.= 42 (Zq— b) .ra Yx e -1 & X [30]
in a semi-infinite solid with sinusoidal boundary 2 ‘ ° |

temperature, given by Equation (29), for the case
2(a) Ty = 0.25, b = 0. The first harmonic is iden-
tical to the linear solution.

12

7" 2
X,= - %~ L71 ¥ x +.03 (¥x) [31)

From equation ‘31] it readily follows that the maximum

value of_R2 occurs.at 5,5 = o5G and is given by

2
(Rpdpax = 09 (2a-B)T_ [321]

Figures 1 to 3 show various aspects of the nonlinear
solution for the case in which 2aT, = 025, i.e., the
thermal conductivity varies by + 25% about its mean value,
The effects of the nonlinearity appear considerably smaller

than might be expected from a preliminary estimate,

b} Thick Slab, Periodic Surface Temperature
The problem of the thick slab with periodic surface
temperature is identical with the previous case except that

Equation [18] is replaced by a boundary condition at the
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where it will be assumed

right hand surface X = L , i.e., 1 I
——MNONLINEAR SOLUTION
N ---LINEAR SOLUTION

t(Le)=T B3]

tuax/ To —
[«
[4.]
s/
7
’
.
7
’
’
’
’
’
’
¢
'
[}
]
7

-
il 2

I l = l Io ' « By Equation [7] , /

S .
this becomes
"% z 3
X —
_ 2 Fig. 3 Maximum and minimum temperatures in
u (L, T ) = Ty, + aTL [3,4' ] a semi-infinite solid with periodic boundary tem-

perature for the case 2(a) T, = 0.25, (b) = 0. The
linear case is shown for comparison.

Comparison with Equation [11:] now shows

£(L) = T +a r,° [35]

gL)=k(L)=pg (L)=K(L)=0 [36)

The problem now reduces to solving Equations [12) through
16} with boundary conditions given by Equations f19], [20),
(211, [35] , ana [36].

The time-independent part f (x) is easily found to

be

a

+ (T._ +a T._z - S..Tsa) (—’-‘-)

-
)= = z /\v

[57]
since the term "thick slab" will be taken to imply

x‘l_ = \Jw/au, L>>1 B8]

Hence terms in ¢ or € may be assumed zero at

-1
the right boundary. Furthermore terms in ( X, L) may be
taken as .first-order in smallness.

13
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Inserting Equation [37] in Equation [13]now yields

% _w oy o 2(2) -0 T (25)

%

[39]

w'll be approximately equal to the solution of the linear

problem as given by Equation [2]. Thus the order of magnitude
of the last factor in FEquation [3§] is

T ~¥%x
(3E) ~ =2~

The maximum value of the term on the right is .37 20 (J,;Q'l;

hence it is a first-order term. Since the right side of
Equation [3@] also contains a factor of (b-a)TL, the product
is negligible., Similarly the right hand side of Equation [ih]
varilshes.

Thus the remainder of the problem now becomes

identical to the previous case and the final temperature solution

is

tee T, 0eaT- ) ()

2 -23x -3x _
T (1-2-F 7 )+ T e @r-ny)

2, .2¥% A
+ (a-b) T, [e cos (zw't-zx,x)- e %cos (2(»1:-0;1)]

.

[i0]

¢) Thick Slab, Periodic Heat Flux.

The boundary conditions for a thick slab with periodic
heat flux will be taken as

&u (°/t) = -k (%—:)x = B. * B' Sin WY [h’]-]

o ———————




)
B aB L
t(Lx)s = == = —%—
(L,%) k. b fu2)
(The second condition is chosen to make u vanish at the origin,)
From Equation [3] s 1t follows that E ("E /3§)= -'-‘o (z‘ﬁ /35) ;

with this relation and Equation [7] s the boundary conditions

become
(3&: s - EE-- %? Sinw
r } 2 xX%0 k. ' | DLB]
2 (L, T ) = - BL/k fuu]

Hence the boundary conditions on Equations [12] through [16] are

(‘f\'f;)f-?i-:- ) 1c(l-)==--3;‘-.}-‘ [Ls]

)=, (£).-2 | gwee-po D€

ax A k. J
Jﬂ,_ = = ir! L)= 0= L [11—7]
(-T%.)Q ©= (dg.)o 7 ¢a ( ) v Yz( )
The solution of Equation [127] is now
EOEE [16]

Substituting this result in Equation [13] yields

2 b-a) Bo“’"
.‘_:_%-f:— )U.z_, a(k‘d’ ”l [h.9]

Since the coefficient on the right side of Equation D.|,9] is

first-order and since yl. differs from the linear solutlon,

)",l , by first-order quantities, it is sufficiently accurate

in this term and obtain

to use y"
15




2 B e-*
_& _w ¥ a 2(b=-a) B, wx [_ ' Cos ()'.x-r 14!;)] t50]
Aa’.‘ d' ' k. *, ﬁ koxn
Equation [lh,] may be approximated in a similar way, 1.e.,
g
2 2(b-a)B w , & i x
%"1- %. ¢‘ -7 k.)‘:. - [VE k, 8, o (x'x* 4)] [s1]

When Equations [50] and [51] are solved with boundary
conditions given by [M)-J , the result is

g )= =T (+3) {t-+8<'m>+s<x.x>‘ Jsin (xeTr)

2 $
~5(8%) cos (8x+ L "i)} | [s2]

¥, @) =T e ch(‘_, %) {D + 550+ 3(3',‘)?'] co. (Jx+Te _g_)

-9 (15,74)z sin (¥ X+ '-2- - %)} [5-3]

where
> = B, /v k.Y, [s4)
s= (b-) B, /2 k3, [55]

2: is the amplitude of the linear solution at the boundary
while ® is a dimensionless parameter giving one measure of
nonlinearity. ¢a. and )"3 may nowbe found as before.

In terms of t , the final result becomes

16
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Fig.4 Temperature solution, given by Equation
(56), at ¥, x = 0.5 in a thick slab with input
flux consisting of a constant plus a sinusoidal term
for the case 2(a) Tp=0.25, )= 0, B, = Bi. The
linear solution is shown for comparison,

) \
03 \\J
N e
N —R/T
N ——Ful T
-0.5 ) ~ -— R./-L'
\
N
AN
-1.0 x
\
N
\
- \
-1.5 N\
N\
\
\
-2.0 A
\\
-2.5)
_ 3
0 05 1.0 15
wt—-

Fig.5 Amplitudes of the time-independent
term F,, first harmonic R;, and second har-
monic Ry in a thick slab with input flux con-
sisting of a constant plus a sinusoidal term

for the case 2(a) Tg = 0.25, (b) = 0, Bg =
B..
1

2 a2¥x
_ B. x B° % 2 o —r.’ e '
BT = - "“(k.)" 2
A -4 1.{[' + 2+ $(49)] sin (wr-3x-F -5)4- VZ $(5%) sin (we-yx- -)}
[_(.‘.’:.“_)..-T_ e axs.n (aun:-xr.)..- (2;‘5)1- Sia (2101-2{:& [55]

Some aspects of this solution are shown in Figures b, and 5,

CONCLUSIONS
a) The method presented here offers a rather general

approach for finding the steady-state solution when boundary

17
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conditions are periodic and variations of the thermal parameters

are small, However, the algebra may become quite complicated,

particularly in two-dimensional and three-dimensional problems.

b) The most important qualitative effect appears to be
the introduction of a second harmonic term; in the linear case,
such a term does not appear at all., Both the time~independent
term and the first harmonic may also be modified; in fact, in
some cases, it appears that a time-independent term 1is
introduced by nonlinearity., However, it must be recalled that
tiie zero level of temperature is arbitrary; hence the
time-independent term can be regarded as a quantitative change
rather than a qualitative one,

c) The quantitative effects of the nonlinearities are

surprisingly small; 1t appears that the thermal properties may

safely be treated as constants in some cases where their

variation is quite large., For example, when the thermal

conductivity at the surface varies by + 25% about its mean
value, the maximum amplitude of the second harmonic may be
only 2% or 3% of the amplitude of temperature variation at the
surface, (The effect on the time=independent term is roughly
twice as great; 1n the last problem this was accentuated by the P
constant term in the heat flux input.) The explanation seems
to be that the conductivity varies more or less symmetrically 1
about its mean value Eo 5 if the-vardietion in k were pro-
portional to the square of the temperature, nonlinear effects
might be considerably greater,

d) 1In general, variation in thermal conductivity k

has more effect than variation in the volumetric specific heat




8 « The time-independent part of the solution, if any, is
unaffected by s .

e) Since the second harmonic is a characteristically
nonlinear term and vanishes for the linear case, exrerimental
measurement of the second harmonic amplitude seems to provide a .
sensitive method of determining the ccefficlents & and b,
which describe the temperature variation of k¥ and s,
respectively. However, several possible drawhacks should be
noteds First, it may be difficult to generate a sinusoidal
temperature or heat flux input with sufficient accuracy.
Secondly on the basis of the second harmonic alone it is
d.fficult or impossible (depending on the boundary condition)

to separate a and b . Finally the frequencies required

would be quite low, thus perhaps complicating the experimental
task of frequency analysis., Further study is being given to

this problem,
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