ON A GENERALIZED PROCEDURE FOR THE CALCULATION
OF THERMAL RADIATION TRANSFER

B. T. Chao
Assoc. Prof. of Mech Engrg.
University of Illinois
Urbana, Illinois

Contributed by the Heat Transfer Division for presentation at the ASME
Manuscript received at ASME Headquarters December 7, 1954.

Written discussion on this paper will be accepted up to July 26, 1955.
(Copies will be available until April 1, 1956)

The Society shall not be responsible for statements or opinions advanced in
papers or in discussion at meetings of the Society or of its Divisions or
Sections, or printed in its publications.

ADVANCE COPY: Released for general publication upon presentation.

Decision on publication of this paper in an ASME journal had not been taken
when this pamphlet was prepared. Discussion is printed only if the paper is
published in an ASME journal.
Best Available Copy
ABSTRACT

A systematic procedure is introduced for determining the radiant heat transfer between a radiating gas or flame and a gray receiving surface in a closed chamber consisting of n gray surfaces, all of different emissivities. The effect of radiating beam length on the absorptivity of the gas or flame is considered. The resulting equations are then modified for the calculation of radiant heat transfer between gray surfaces in an enclosure separated by non-absorbing media. The solution and particularly the method presented have wider application than those heretofore published. For numerical calculation, the results can be obtained readily from the digital computer.
ON A GENERALIZED PROCEDURE FOR THE CALCULATION
OF THERMAL RADIATION TRANSFER

By B. T. Chao

NOMENCLATURE

The following nomenclature is used in the paper; any consistent system of
units can be used for numerical calculation:

A = surface area

\(a \) = gas absorptivity associated with radiation emitted by \(A_i \)
and received by \(A_j \)

\(G(ij) \) = total emissive power of a black surface, \(E = \sigma T^4 \)

\(eF \) = equivalent gray-body emissivity of the radiating gas or flame

\(eG_i \) = gas emissivity associated with \(A_i \)

\(e_i \) = normal total emissivity of the gray surface \(A_i \)

\(F_{ij} \) = shape factor. It is the fraction of the radiant energy emitted
or reflected from \(A_i \) and received by \(A_j \) when there is no gas
absorption. In particular, \(F_{ii} \) represents the fraction of
energy emitted from \(A_i \) and intercepted by itself. They are
determined completely by the geometry of the system under
consideration.

\(q_{Gi} \) = gross rate of radiant interchange between the radiating gas
or flame and \(A_i \). It is the total amount of thermal radiant
energy emitted by the gas and absorbed by \(A_i \) in a unit time.

\(q_{ij} \) = gross rate of radiant interchange between surfaces \(A_i \) and \(A_j \)

\(q_{Gi, net} \) = net rate of radiant interchange between radiating gas or flame
and \(A_i \)

\(q_{ij, net} \) = net rate of radiant interchange between surfaces \(A_i \) and \(A_j \)

\(q_{i, net} \) = net rate of radiant energy leaving \(A_i \)

\(\sigma \) = Stephan-Boltzmann radiation constant

\(T \) = absolute temperature

\(iX_r, iY_r, \text{etc.} \) = amount of radiant energy reflected from \(A_i \) in a unit time
after reflection has taken place for the \(r \)th time.
INTRODUCTION

Calculations of radiant heat transfer between a flame and a gray surface, or between two gray surfaces, in the presence of other surfaces which may either be gray or refractory, have been a subject of considerable interest. They arise in the evaluation of combustion-chamber performance, analysis of furnace problems, computation of heat balances of various panel heating and cooling systems, etc. The case which deals with the net radiant interchange between a gray flame and a gray sink due to combined actions of direct radiation, reradiation from the refractory surfaces, thence back through the flame to the sink with partial absorption therein has been treated by Hottel. The combustion chamber considered consists of only one gray sink surrounded by refractory surfaces at a common temperature. Raber and Hutchinson developed a rational expression for the calculation of the thermal energy absorbed at one infinitesimal surface due to emission from another when both could "see" a third. The three surfaces were of different emissivities. Recently, Hottel has published a more general procedure by which the net radiant interchange between two gray surfaces in an enclosure of n gray surfaces can be computed. In the latter two instances, the surfaces were separated by nonabsorbing media. The present analysis forms a generalization of the cases cited and many others which can be found in literature.

DEVELOPMENT OF GENERAL SOLUTION FOR RADIANT INTERCHANGE BETWEEN A RADIATING GAS OR FLAME AND A GRAY SURFACE

Consider a system consisting of n gray surfaces bounding a radiating gas or flame at a mean temperature T_G. It is desired to calculate the gross and net radiant heat transfer between the gas and any one of the gray surfaces. It will be designated arbitrarily as A_1. The amount of thermal energy emitted by the gas or flame and absorbed at various surfaces in a unit time is listed in Table 1. Kirchhoff's law is assumed valid throughout the present analysis. The reflected energy also has been tabulated and is designated by I_1, I_2, \ldots, I_n at various surfaces as shown. The left-hand subscript refers to the particular surface in question while the right-hand subscript is 1 since they represent thermal energy after the first reflection.

7 The present analysis will be valid either for a radiating gas or a luminous flame.
The fraction of the reflected energy after once more being absorbed and reflected at various surfaces are given in Table 2. The presence of the terms F_{i1}, F_{i2}... etc., indicates that the surface may "see" itself. The use of different values of gas absorptivity $A_G(i)$ associated with surfaces A_i and A_j is to account for variation of gas absorptivity with radiating beam length and surface temperature. The summation of all the reflection terms at the surface A_i is now denoted by iX_2 where $i = 1, 2, ... n$. They will again be absorbed and reflected in precisely the same manner as their predecessors, iX_1. Such a multireflection process accompanied by partial absorption due to gas will take place indefinitely in the system under consideration.

From Table 2, it is seen that

$$1X_2 = (1 - e_1) \sum_{i=1}^{n} iX_1 F_{i1}(1 - aG(i))$$

$$2X_2 = (1 - e_2) \sum_{i=1}^{n} iX_1 F_{i2}(1 - aG(12))$$

$$\vdots$$

and

$$nX_2 = (1-e_n) \sum_{i=1}^{n} iX_1 F_{in}(1 - aG(in))$$

In general, we can write

$$1X_r = (1-e_1) \sum_{i=1}^{n} iX_{r-1} F_{i1}(1 - aG(i))$$

$$2X_r = (1-e_2) \sum_{i=1}^{n} iX_{r-1} F_{i2}(1 - aG(12))$$

$$\vdots$$

and

$$nX_r = (1-e_n) \sum_{i=1}^{n} iX_{r-1} F_{in}(1 - aG(in))$$

where $r = 2, 3, \ldots \infty$.
The thermal energy emitted by the radiating gas and absorbed by \(A_1 \) in a unit time due to direct radiation and multireflection and multiabsorption is the sum of all the absorption terms at \(A_1 \) as listed in the previous tables. Hence

\[
q_{G1} = e_{G1} E_0 A_1 + e_1 \left(F_{11}(1-a_G(11)) \sum_{s=1}^{\infty} n \bar{x}_s + F_{21}(1-a_G(21)) \sum_{s=1}^{\infty} 2 \bar{x}_s \right)
\]

\[+ \ldots + F_{n1}(1-a_G(n1)) \sum_{s=1}^{\infty} n \bar{x}_s \right) \ldots \ldots \ldots (2)\]

We shall now proceed to evaluate the unknowns \(\sum_{s=1}^{\infty} n \bar{x}_s \), with \(i=1, 2, \ldots, n \).

From Equations (1), the following set of equations can be readily deduced:

\[
\sum_{s=1}^{\infty} \bar{x}_s = \bar{x}_1 + (1-e_1) \sum_{i=1}^{n} F_{11} (1-a_G(11)) \sum_{s=1}^{\infty} i \bar{x}_s
\]

\[
\sum_{s=1}^{\infty} 2 \bar{x}_s = 2 \bar{x}_1 + (1-e_2) \sum_{i=1}^{n} F_{12} (1-a_G(12)) \sum_{s=1}^{\infty} i \bar{x}_s
\]

\[\vdots \]

\[
\sum_{s=1}^{\infty} n \bar{x}_s = n \bar{x}_1 + (1-e_n) \sum_{i=1}^{n} F_{in} (1-a_G(in)) \sum_{s=1}^{\infty} i \bar{x}_s
\]

For simplicity, we designate

\[
\bar{x}_1 = \sum_{s=1}^{\infty} \bar{x}_s, \quad 2 \bar{x} = \sum_{s=1}^{\infty} 2 \bar{x}_s
\]

and

\[
n \bar{x} = \sum_{s=1}^{\infty} n \bar{x}_s
\]

Also, from Table I, it is seen that

\[
\bar{x}_1 = e_{G1} E_0 A_1 (1-e_1), \quad 2 \bar{x}_1 = e_{G2} E_0 A_2 (1-e_2), \text{ etc.}
\]
Substituting these relationships into the set of Equations (3) and rearranging, gives

\[
\begin{align*}
&\sum_{i=1}^{n} F_{i11} \left[1 - a_G(11)\right] + \frac{1}{1-e_1} + 2 \sum_{i=1}^{n} F_{i21} \left[1 - a_G(21)\right] + 3 \sum_{i=1}^{n} F_{i31} \left[1 - a_G(31)\right] \\
&+ \ldots + n \sum_{i=1}^{n} F_{i1n} \left[1 - a_G(n1)\right] = - e_{G1} E_G A_1 \\
&\sum_{i=1}^{n} F_{i12} \left[1 - a_G(12)\right] + 2 \frac{1}{1-e_2} + 3 \sum_{i=1}^{n} F_{i32} \left[1 - a_G(32)\right] \\
&+ \ldots + n \sum_{i=1}^{n} F_{i1n} \left[1 - a_G(n2)\right] = - e_{G2} E_G A_2 \\
&\sum_{i=1}^{n} F_{i13} \left[1 - a_G(13)\right] + 2 \frac{1}{1-e_3} + 3 \sum_{i=1}^{n} F_{i33} \left[1 - a_G(33)\right] \\
&+ \ldots + n \sum_{i=1}^{n} F_{i1n} \left[1 - a_G(n3)\right] = - e_{G3} E_G A_3 \\
&\sum_{i=1}^{n} F_{i1n} \left[1 - a_G(1n)\right] + 2 \frac{1}{1-e_n} + 3 \sum_{i=1}^{n} F_{i3n} \left[1 - a_G(3n)\right] \\
&+ \ldots + n \frac{1}{1-e_n} = - e_{Gn} E_G A_n
\end{align*}
\]

We have thus \(n \) linear algebraic equations to be solved simultaneously for \(n \) unknowns: namely, \(1X, 2X, \ldots \) and \(nX \). Standard programs are available for the solution of these equations on the digital computer.\(^8\)

\[
q_{G1} = e_{G1} E_G e_1 A_1 + e_1 \sum_{i=1}^{n} F_{i11} \left(1 - a_G(11)\right) iX
\]

\(^8\) The "Illiac," which is the digital computing machine at the University of Illinois can handle such problems up to \(n=39 \).
In combustion-chamber analysis, it is often desirable to find the "net" radiant interchange between the radiating gas or flame and a cold receiving surface. To this end, we shall now formulate an expression for q_{1G}, the thermal energy emitted by A_1 and absorbed by the gas due to direct and reflected radiation.

A procedure analogous to that employed for the calculation of q_{G1} will again be followed. Table 3 gives the radiant energy absorbed by the gas and the various surface reflections after once being received from the radiation emitted from A_1. The reflection terms are designated by iY_r, with i varying from 1 to n. Similarly, Table 4 illustrates the gas absorption and the energy reflected at various surfaces after once more being received from the reflected energy at all surfaces listed in Table 3. As before, such a multiabsorption and reflection process will take place indefinitely in the closed chamber.

From the preceding tabulation, the following relationships can be readily deduced:

\[
\begin{align*}
1Y_r &= (1-e_1) \sum_{i=1}^{n} iY_{r-1} F_{i1} [1 - aG(i1)] \\
2Y_r &= (1-e_2) \sum_{i=1}^{n} iY_{r-1} F_{i2} [1 - aG(i2)] \\
&\vdots \\
nY_r &= (1-e_n) \sum_{i=1}^{n} iY_{r-1} F_{in} [1 - aG(in)]
\end{align*}
\]

where $r = 2, 3 \ldots \infty$.

The thermal energy emitted by A_1 and absorbed by the gas in a unit time is the sum of all the terms under the gas-absorption columns, the first two of which are illustrated in Tables 3 and 4, respectively. Hence

\[
q_{1G} = e_1 E_{1A_1} \left\{ (1 + \sum_{s=1}^{\infty} iY_s) \sum_{i=1}^{n} F_{i1} aG(i1) + (\sum_{s=1}^{\infty} 2Y_s) \sum_{i=1}^{n} F_{i2} aG(i2) \right. \\
\left. + \ldots + (\sum_{s=1}^{\infty} nY_s) \sum_{i=1}^{n} F_{in} aG(in) \right\} \ldots \ldots \ldots (7)
\]

Following a procedure similar to that used for evaluating $\sum_{s=1}^{\infty} iY_s$; and also, by writing iY for $\sum_{s=1}^{\infty} iY_s$, with i varying from 1 to n, one can deduce the following set of equations:
Again, we have n linear algebraic equations to be solved simultaneously. It may be remarked that the coefficients of the unknown y_1, y_2, etc. are identical to the corresponding ones in Equations (4). With these unknowns solved, Equation (7) may be modified as follows:

\[
q_{10} = e_1 E_1 A_1 \left\{ (1 + \sum_{i=1}^{n} F_{i1} aG(1i)) + \sum_{i=1}^{n} F_{21} aG(21) \right. \\
+ \left. \cdots + \sum_{i=1}^{n} F_{n1} aG(n1) \right\}
\]
If it can be assumed that the gas or flame is gray, i.e., an equivalent gray-body emissivity e_F can be adopted which serves both as absorptivity and emissivity, then

$$a_{G(1)} = A_{G(1)} = a_{G(1)} \ldots \ldots \text{etc.} = e_F$$

And, since $\sum_{i=1}^{n} F_{1i} = 1$, $\sum_{i=1}^{n} F_{2i} = 1$, etc., Equation (9) simplifies to

$$q_{1G} = e_1 E_1 A_1 e_F \left(1 + \sum_{i=1}^{n} i \right) \ldots \ldots \ldots \text{ (9a)}$$

Consequently, the net radiant interchange between the radiating gas and the gray surface A_1 is

$$q_{G \rightarrow 1} = q_{1G} - q_{1G} \ldots \ldots \ldots \text{ (10)}$$

Illustration

Hottel solved a simple case in which the combustion chamber consists only of two surfaces. They are the cold receiving surface A_c, at a uniform temperature T_c, and the refractory wall A_R also assumed to have a uniform temperature.

The flame is gray and a mean temperature T_F is assignable to it. To apply Equations (5) and (9a), we set $n = 2$, $A_1 = A_c$, $A_2 = A_R$, $e_1 = e_c$, $e_2 = e_R = 0$, $F_{11} = F_{cc}$, $F_{12} = F_{cr}$, $F_{21} = F_{rc}$, $F_{22} = F_{rr}$ and replaces all the a_G by e_F, the equivalent emissivity (or absorptivity) of the flame. Hence

$$q_{FC} = e_F e_F e_c A_c + e_c (1 - e_F)(F_{cc} \Delta X + F_{rc} 2\Delta) \ldots \ldots \text{(11)}$$

where

$$\Delta X = - \frac{e_F e_F}{1 - e_F - 1}$$

$$\Delta = \frac{A_c F_{rc} (1 - e_F) \ A_R F_{rr} (1 - e_F - 1)}{\Delta}$$

$$\ldots \ldots \text{(11a)}$$
Similarly, by Equation (9a) we have

\[q_{cF} = e_c F_c A_c e_F (1 + \frac{1}{1 - \epsilon_F} + 2\mathcal{Y}) \]

where

\[\mathcal{Y} = \frac{F_{cc}(1-e_F) - \frac{1}{1-e_c} F_{Rc}(1-e_F)}{F_{cc}(1-e_F)} \]

and \(\Delta \) is given by Equation (11c).

Substituting Equations (11) and (12) into (10) and simplifying yields the following expression for the "net" radiant interchange between the flame and the cold receiving surface due to combined mechanisms of direct radiation from the flame, reradiation from the refractory wall, multireflection and absorption inside the chamber.
where
\[\mathcal{F}_{CF} = \frac{1}{\bar{e}_{CF}} + \frac{1}{e_c} - 1 \]

and
\[\bar{e}_{CF} = e_F \left(1 + \frac{\frac{A_R}{A_C}}{1 + \frac{e_F}{1-e_F} \cdot \frac{1}{F_{rc}}} \right) \]

which is identical to Hottel's result.

APPLICATION OF GENERAL SOLUTION TO AN ENCLOSURE IN WHICH SURFACES ARE SEPARATED BY NONABSORBING MEDIA

In this case, a problem of usual interest is the calculation of both the gross and net radiant heat transfer between any two of them. These surfaces shall arbitrarily be designated as A₁ and A₂. Again, an enclosure of n gray surfaces all of different emissivities and at different temperatures will be considered.

From the foregoing analysis, it is evident that the reflected radiant energy at various surfaces after once being received from the emission due to A₁ is identical to those given in Table 3, provided that all the aᵢ are set to zero. Similarly, the reflected energy after once more being reflected at various surfaces is again given by Table 4, on setting aᵢ = 0. Consequently, if \(iz \) is written for \(\sum_{i=1}^{n} iz \) \((i = 1, 2 ... n)\) where \(iz \) represents the amount of radiant energy reflected from a surface \(A_i \) in a unit time after reflection has taken place for the rth time, a set of n linear algebraic equations in \(iz \) is readily obtained by a procedure identical to that for \(iy \). In fact, they are identical to Equations (8) if one writes, \(iz \) for \(iy \) and at the same time, sets all the aᵢ to zero. Thence, it is easy to deduce

\[q_{12} = e_1 e_{12} A_1 e_2 (F_{12} + \sum_{i=1}^{n} iz F_{12}) \]

which is the gross rate of radiant heat transfer from A₁ to A₂. The net radiant interchange between A₁ and A₂ is
Many examples which illustrate the application of (14) and (15) can be found elsewhere.

Obviously, the net radiant flux leaving \(A_1 \) in an enclosure of \(n \) gray surfaces can be computed from either of the following expressions:

\[
q_{1\text{net}} = A_1 E_1 e_1 - \sum_{i=1}^{n} q_{1i} \quad \cdots \quad (16a)
\]

or

\[
q_{1\text{net}} = q_{1\rightarrow 2} + q_{1\rightarrow 3} + \cdots + q_{1\rightarrow n} \quad \cdots \quad (16b)
\]

DISCUSSION

In the formulation of the expression for \(q_{01}, q_{10}, q_{12} \) etc., it has been tacitly assumed that the integral of the infinitesimal shape factor products can be replaced by the finite shape factor products. Had infinitesimal areas and their corresponding shape factors been used, the foregoing analysis would be rigorously true under the assumptions stated. The inequality between shape factors for finite and for infinitesimal areas has been mentioned by Hottel and quantitatively investigated by Raber and Hutchinson. However, the present analysis enables one to obtain results with an accuracy as high as one desires, since the solution is valid for \(n \) surfaces and \(n \) can be chosen as large as desired. The larger the number of subdivisions of the area, the smaller the error will be.

ACKNOWLEDGMENT

The author is indebted to Prof. K. J. Trigger, Department of Mechanical Engineering, University of Illinois, for his support and encouragement, and to Mr. E. L. Sartain also of the Mechanical Engineering Department, for his help in carrying out part of the analysis during the early stages of the present investigation.

Table 1 Absorbed and Reflected Radiant Thermal Energy at Various Surfaces after Once Being Received from the Radiating Gas or Flame

<table>
<thead>
<tr>
<th>k_1 Absorption</th>
<th>k_1 Reflection</th>
<th>k_2 Absorption</th>
<th>k_2 Reflection</th>
<th>k_3 Absorption</th>
<th>k_3 Reflection</th>
</tr>
</thead>
<tbody>
<tr>
<td>$e_{s1}A_1e_{s1}$</td>
<td>$e_{s1}A_1e_{s1}$</td>
<td>$e_{s2}A_2e_{s2}$</td>
<td>$e_{s2}A_2e_{s2}$</td>
<td>$e_{s3}A_3e_{s3}$</td>
<td>$e_{s3}A_3e_{s3}$</td>
</tr>
</tbody>
</table>

Table 2 Absorbed and Reflected Radiant Thermal Energy at Various Surfaces after Once Being Received from the Reflected Energy at All Surfaces Listed in Table 1, with Partial Absorption Due to Gas, Therein

<table>
<thead>
<tr>
<th>k_1 Absorption</th>
<th>k_1 Reflection</th>
<th>k_2 Absorption</th>
<th>k_2 Reflection</th>
<th>k_3 Absorption</th>
<th>k_3 Reflection</th>
</tr>
</thead>
<tbody>
<tr>
<td>$X_1F_{11}(1-e_{s1}(11))e_{s1}$</td>
<td>$X_1F_{11}(1-e_{s1}(11))e_{s1}$</td>
<td>$X_1F_{12}(1-e_{s2}(12))e_{s2}$</td>
<td>$X_1F_{12}(1-e_{s2}(12))e_{s2}$</td>
<td>$X_1F_{1n}(1-e_{s3}(1n))e_{s3}$</td>
<td>$X_1F_{1n}(1-e_{s3}(1n))e_{s3}$</td>
</tr>
<tr>
<td>$X_2F_{21}(1-e_{s2}(21))e_{s2}$</td>
<td>$X_2F_{21}(1-e_{s2}(21))e_{s2}$</td>
<td>$X_2F_{22}(1-e_{s3}(22))e_{s3}$</td>
<td>$X_2F_{22}(1-e_{s3}(22))e_{s3}$</td>
<td>$X_2F_{2n}(1-e_{s3}(2n))e_{s3}$</td>
<td>$X_2F_{2n}(1-e_{s3}(2n))e_{s3}$</td>
</tr>
<tr>
<td>$X_3F_{31}(1-e_{s3}(31))e_{s3}$</td>
<td>$X_3F_{31}(1-e_{s3}(31))e_{s3}$</td>
<td>$X_3F_{32}(1-e_{s3}(32))e_{s3}$</td>
<td>$X_3F_{32}(1-e_{s3}(32))e_{s3}$</td>
<td>$X_3F_{3n}(1-e_{s3}(3n))e_{s3}$</td>
<td>$X_3F_{3n}(1-e_{s3}(3n))e_{s3}$</td>
</tr>
</tbody>
</table>

Table 3 Gas Absorption and Reflected Radiant Energy at Various Surfaces after Once Being Received from the Emission Due to A_1

<table>
<thead>
<tr>
<th>A_1 Gas Absorption</th>
<th>A_1 Surface Reflection</th>
<th>A_2</th>
<th>A_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>$F_{11}A_1(11)$</td>
<td>$F_{11}(1-e_{s1}(11))e_{s1}$</td>
<td>$F_{12}(1-e_{s2}(12))e_{s2}$</td>
<td>$F_{1n}(1-e_{s3}(1n))e_{s3}$</td>
</tr>
<tr>
<td>$F_{12}A_2(12)$</td>
<td>$F_{12}(1-e_{s2}(12))e_{s2}$</td>
<td>$F_{22}(1-e_{s3}(22))e_{s3}$</td>
<td>$F_{2n}(1-e_{s3}(2n))e_{s3}$</td>
</tr>
<tr>
<td>$F_{1n}A_3(1n)$</td>
<td>$F_{1n}(1-e_{s3}(1n))e_{s3}$</td>
<td>$F_{2n}(1-e_{s3}(2n))e_{s3}$</td>
<td>$F_{3n}(1-e_{s3}(3n))e_{s3}$</td>
</tr>
</tbody>
</table>

The radiant thermal energy emitted by A_1 in a unit time ($= k_1e_{s1}e_{s1}$) is taken as unity.
Table 4 Gas Absorption and Reflection at Various Surfaces after
Once Being Received from the Reflected Energy at All
Surfaces Given in Table 3

<table>
<thead>
<tr>
<th>Gas Absorption</th>
<th>Surface Reflection</th>
</tr>
</thead>
<tbody>
<tr>
<td>$Y_{1}F_{11}O(11)$</td>
<td>A_{2} A_{3} A_{4}</td>
</tr>
<tr>
<td>$Y_{1}F_{12}O(12)$</td>
<td>$Y_{1}F_{11}(1-\varepsilon_{3}(11)) (1-\varepsilon_{4})$ $Y_{1}F_{12}(1-\varepsilon_{3}(12)) (1-\varepsilon_{4})$ $Y_{1}F_{2n}(1-\varepsilon_{4}(2n)) (1-\varepsilon_{4})$</td>
</tr>
<tr>
<td>$Y_{1}F_{1n}O(1n)$</td>
<td>$Y_{1}F_{n}O(n)$ $Y_{1}F_{n}O(n)$</td>
</tr>
<tr>
<td>$Y_{2}F_{21}O(21)$</td>
<td>$Y_{2}F_{21}(1-\varepsilon_{3}(21)) (1-\varepsilon_{4})$ $Y_{2}F_{22}(1-\varepsilon_{3}(22)) (1-\varepsilon_{4})$ $Y_{2}F_{2n}(1-\varepsilon_{4}(2n)) (1-\varepsilon_{4})$</td>
</tr>
<tr>
<td>$Y_{2}F_{2n}(2n)$</td>
<td>$Y_{2}F_{2n}(2n)$ $Y_{2}F_{2n}(2n)$</td>
</tr>
<tr>
<td>$nY_{1}F_{n1}O(n1)$</td>
<td>$nY_{1}F_{n1}(1-\varepsilon_{3}(n1)) (1-\varepsilon_{4})$ $nY_{1}F_{n1}(1-\varepsilon_{3}(n1)) (1-\varepsilon_{4})$ $nY_{1}F_{n1}(1-\varepsilon_{4}(n1)) (1-\varepsilon_{4})$</td>
</tr>
<tr>
<td>$nY_{1}F_{n2}O(n2)$</td>
<td>$nY_{1}F_{n2}(1-\varepsilon_{3}(n2)) (1-\varepsilon_{4})$ $nY_{1}F_{n2}(1-\varepsilon_{3}(n2)) (1-\varepsilon_{4})$ $nY_{1}F_{n2}(1-\varepsilon_{4}(n2)) (1-\varepsilon_{4})$</td>
</tr>
<tr>
<td>$nY_{1}F_{nm}O(nm)$</td>
<td>$nY_{1}F_{nm}(1-\varepsilon_{3}(nm)) (1-\varepsilon_{4})$ $nY_{1}F_{nm}(1-\varepsilon_{3}(nm)) (1-\varepsilon_{4})$ $nY_{1}F_{nm}(1-\varepsilon_{4}(nm)) (1-\varepsilon_{4})$</td>
</tr>
</tbody>
</table>

$\sum = 1 Y_{2}$ $\sum = 2 Y_{2}$ $\sum = n Y_{2}$