Electrodeposition of Conductors and Semiconductors with Controlled Stoichiometries and Morphologies.

by

Michael J. Sailor, Robert D. Herrick, II, Audrey S. Kaplan

Prepared for publication in

Extended Abstracts, Vol. 94-1
The Electrochemical Society
Spring Meeting, San Francisco, May 22-27, 1994

Department of Chemistry
University of California, San Diego
9500 Gilman Drive, Dept 0358
La Jolla, CA 92093-0358

June 21, 1994

Reproduction in whole or in part is permitted for any purpose of the United States Government

This document has been approved for public release and sale; its distribution is unlimited
In an attempt to electrodeposit carbon from CCl₄ in nonaqueous solvents, we observed growth of several unusual morphologies. Fibers with diameters on the order of 0.1-5 microns were synthesized by cathodic galvanostatic electrodeposition from nonaqueous solvents (CH₃CN or CH₂Cl₂) and an electrolyte containing CCl₄ and tetrabutylammonium salts. The fibrous morphology forms without the help of a structural template. Production of fibers can be observed on Ni, Fe, or Cu substrates, with the morphology being very dependent on current density, CCl₄ concentration, and electrode surface preparation. The materials apparently consist of carbon or a carbon nitride compound. The aspect ratio of the fibers ranges from about 2:1 to >100:1, depending upon deposition conditions. Growth of the unusual morphology is presumed to be driven by directional covalent bonding in a graphitic material, analogous to buckminsterfullerene-derived nanotubes.
Abstract No. 867

Electrodeposition of Conductors and Semiconductors with Controlled Stoichiometries and Morphologies.

Michael J. Sailor, Robert D. Herrick, II, Audrey S. Kaplan
Department of Chemistry
University of California at San Diego
9500 Gilman Drive, La Jolla, CA 92037-0358

Experiments directed at the electrochemical synthesis of CdSe, CdTe, carbon, and SiC will be discussed. In an attempt to electrodeposi.t carbon from CCI₄ in nonaqueous solvents, we observed growth of several unusual morphologies. Fibers with diameters on the order of 0.1-5 microns were synthesized by cathodic galvanostatic electrodeposition from nonaqueous solvents (CH₃CN or CH₂Cl₂) and an electrolyte containing CCl₄ and tetrabutylammonium salts. The fibrous morphology forms without the help of a structural template. Production of fibers can be observed on Ni, Fe, or Cu substrates, with the morphology being very dependent on current density, CCl₄ concentration, and electrode surface preparation. The fibers apparently consist of carbon or a carbon nitride compound. The aspect ratio of the fibers ranges from about 2:1 to >100:1, depending upon deposition conditions. Growth of the unusual morphology is presumed to be driven by directional covalent bonding in a graphitic material, analogous to buckminsterfullerene-derived nanotubes.

Preparation

For the semiconductor fibers, working electrodes were cut from 99.5% purity metal foils (Johnson Matthey Electronics). Wires were attached to the backside with conductive Ag paint and the contacts covered with epoxy (Hysol 1C Epoxy Patch Kit). Electrolytic solutions were distilled under nitrogen from the appropriate drying agent, and CCl₄ was vacuum distilled before use. The electrolytic deposition solutions typically consisted of 30 mL of solvent (CH₃CN or CH₂Cl₂), 0.1 mL of CCl₄, and 1 g of tetrabutylammonium tetrafluoroborate. All electrodeposition experiments were carried out under argon atmosphere. Current density for deposition was typically 3-5 mA/cm² and the depositions were carried out for 30-60 min.

Results

Figure 1 shows an electron micrograph of the fibers formed on a Ni substrate, from CH₃CN. The fibers in this image are approximately 5 microns in diameter, and have pronounced striations running parallel to the long axis. The image is not representative of the entire surface. In many places, patches of what appear to be bundles of these fibers are apparent, and in other areas, amorphous chunks of material without any discernible shape are seen.

Figure 2 shows an electron micrograph of fibers formed on a Cu substrate. Coiled structures such as the one in the center of this image were occasionally observed. Many of the fibers that we have observed in this system appear to have more of a square, rectangular, or T-shaped cross section, as opposed to the circular cross sections apparent in figure 1.

The diffuse reflectance infrared spectrum of the material scraped from the electrode surface of several deposition runs (from CH₃CN solutions) displays a sharp, strong absorption band at 2203 cm⁻¹, indicative of an isonitrile species. Presumably this isonitrile is incorporated into the material as a result of CH₃CN solvent decomposition. Separate measurement of the working electrode potential during the course of the depositions showed that it often exceeded the solvent decomposition potential (measured in the absence of CCl₄). However, fiber formation has also been observed in CH₃Cl₂ solution, and so the codecomposition of CH₃CN is not necessary for the production of fibers.

More complete characterization of these materials by X-ray diffraction, X-ray photoelectron, infrared, and Raman spectroscopy, and transmission electron microscopy is in progress.

Acknowledgment

This work was supported by the office of Naval Research.