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Information-Decay Pursuit of Dynamic

Parameters in Student Models

Abstract

Leamning processes are often analyzed using a model with a structure
that is assumed to apply to all points in time, but with one or more
parameters that may change over time. In some applications, such as
learning theory, the goal is to model the character of change itself;,
observations at all time points are used to estimate, for example, learning
curves. In other applications, such as tutoring systems, the goal is to make
decisions based on status at each point in time. Current observations
depend directly on current value of the parameter(s) of interest, but recent
observations were produced by values that were probably similar if not
identical. This note describes and illustrates approximations for the current
value of such a parameter, using models that posit no change but
downweight the influence of observations as they recede in time. The idea
is similar to that of robust estimation procedures that downweight the
influence of outliers. The applicability of these approaches to intelligent
tutoring systems (ITS’s) that use Bayesian inference networks to update
student models is discussed.

Key words:  Bayesian inference networks, causal probability networks,
intelligent tutoring systems, robust estimation.




Introduction

This note concems inference in situations in which the form of a stochastic model is
assumed constant, but values of certain parameters may change over time. Assuming we
could carry out likelihood-based or Bayesian inference if there were no secular change, we
discuss approximations that retain these forms but discount information from older
observations. Two “decaying information” approximations are weighted likelihoods and
successively adjusted posterior distributions. The resulting estimators tend to lag behind a
monotonically changing parameter, in what might be called a “pursuit” strategy. The
rationale parallels that of reducing the influence of outliers in robust estimation (Huber,
1981): Decaying-information estimators are less efficient than full-information estimators if
the parameters are in fact constant, but they provide less biased approximations of current
values when trends do exist. Using a robust version of a simpler model, as opposed to
fitting more a complex model, provides serviceable, if not optimal, approximations across a
variety of departures from the basic form.

The motivating problem arose in the context of an intelligent tutoring system (ITS)
for trouble-shooting aircraft hydraulics (Gitomer, Steinberg, & Mislevy, in press). In
HYDRIVE, students’ actions are modeled as probabilistic functions of parameters that
characterize aspects of a student’s system understanding, strategic knowledge, and
procedural skills. The values of these parameters increase with experience and practice, but
with different patterns and rates for different students. Certain instructional decisions
would be based on current values of these parameters at a given point in time, but these
values are not known with certainty; only imperfect information in the form of a history of
actions is available. We presume that an action’s evidential value about student-model
parameters declines over time. Our purpose here is to begin exploring the potential of
information-decay approximations in this context; the second running example is a
simplified version of the problem. Formal investigations of the properties of the methods
are beyond the scope of the present paper.

Running Examples
Example 1: Animal Learning

Suppose Session ¢ in an learning experiment consists of M trials in which the
animal chooses either the correct or the incorrect path in a maze. It may be reasonable to




"413'1*« Ry

Information-Decay
Page2

model these trials as independent Bemoulli variables with a common probability 6, of a
correct choice. As in the simple conditioning model discussed below, 6 may change from

evidence about 8, but indirect and successively weaker evidence about values of 64,
6:+2, and so on.

Example 2: Educational Testing

An examinee’s responses to equally-difficult test items are observed in sequence.
The variable of interest is her unobservable “proficiency,” say 8, the probability of
answering items correctly. Item responses are modeled as conditionally independent given
6. (More complex models allow for nonexchangeable items, multidimensional 6, and
multiple, perhaps unordered or partially-ordered, response categories.) Typically 8is
assumed to be constant over the period of observation. Secular trends may exist, however,
as when students overcome initial nervousness or learn during the course of testing. In a
context similar to that of HYDRIVE, Kimball (1982) models the probability that a student
will apply a given calculus rule in appropriate circumstances as constant within an exercise,
but updates the estimate between problems.

Setup and Notation

Let ¢ index time points, and consider observations of M, iid variables
x, = (x,, ..... Xy, ) at Time ¢, conditional on the parameter 6. Let p(x;;;6,) denote their

common pdf. The outcomes observed at Time ¢ induce a likelihood function for 6;:

M,
L(6,1x,} =[] p(x,:6,).
i= (D
Denote by X, =(x,,...,%,) the sequence of observations up through Time ¢; that is,

x,represents the possibly vector-valued observation from Time 1, governed by 6;, x,the
observation from Time 2, governed by 6, and so on. Let p,_,(6,!X,_,) represent belief

-1

about 6, at Time ¢-1, or prior to observing x;, starting with p,(6,). Belief about 6;
posterior to observing x; is obtained by Bayes Theorem as

pl(ellxc) oc p(xl'ol)pl-l(ellxt—l )
2
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In the context of Kimball’s calculus ITS, 6, would represent the student-model
parameter value for Exercise ¢, and x5, for j=1,..., My, would represent instances of
applying or not applying the target rule when it applies during the course of the exercise.

P,.(6,1X,_,) would represent the belief about 6, at the beginning of the problem, based on
actions in previous problems and a reinforcement function; p(x,!6,) would be a binomial
likelihood based on x; and p,(6,1X,) would be the posterior for §; combining both sources

of information.

If 6 were constant over time—that is, 6, = @ for all r—the posterior shown as (2)

after observations at time points 1 through 7 would simply be proportional to an initial
prior for @ and a joint likelihood function L(61X;) combining observations from a time

points in the same way:

p-(61X;) erle)P(o'X'r-l)

o P(xrl 0 )P(Xr-n | e)Po(e)
[TLeox,)p,(6) o)

1=l

L(61X; )pq(6)

Bayesian inference over time would be based on the sequence of posterior distributions

pt(elxl) oc pl-l(elxt-l)l‘(elxr)a
@)
each built up from pg(6) by multiplying another likelihood term L(6lx,) as given in (1),
but all with the same 6.

Suppose, however, that the value of 8 varies over time, perhaps as a stochastic
function p(6,!X,_,.7) of X..1, and/or an unknown parameter 7. An example is Estes’s

(1950) model for the probability of the keyed response on Trial ¢ under simple
conditioning, with initial probability 6y and learning parameter 7.

6,=1-(1-6,)".
&)

Bayesian inference about 6 after observing X requires expanding the posterior given in
(2) as follows:
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Pr(671X;) = p(*r16;)pr.y (671X;_,)
= p(xT|GT)IpT-l(eT'XT-l’ 7)p(11X;.)or. (6)

In contrast to (2), the more complex form of (4) requires specifying and manipulating
functions that model the nature of change, p(6,!X,_,,7) and p(y1X;_, ), which harbor the

possibility of specification error.

We aim to approximate (6) without modeling the nature of change, for situations in
which the primary interest is status at Time T rather than the nature of change, which may
vary across cases. This approach is analogous to that of robust procedures that limit the
influence of aberrant observations in time series processes (e.g., Hampel et al., 1986,
Section 8.3; Martin, 1979). The two approximations sketched below replace the term
p(6,1X;_,) in (6) with a simpler version based on the assumption of stasis over time, as in
(3) and (4). The first approximation uses a weighted likelihood, such that the influence of
observations decays over time. The second replaces each posterior in the sequence with an
attenuated version, shrinking each time toward an initial, less informative, prior.

Decaying Likelihoods

Suppose we model all observations as if they were iid with a common parameter
6=6r. This approximation is correct insofar as x7 itself is concerned, but less trustworthy
for observations further back in the sequence. Our decreasing confidence in this expedient
can be reflected by a weighted likelihood:

T >,
L'(61X;)= H[Pr(xﬁe)]

=1

T [ M W
= H[H p(x,j; 6)] R (7)
=] | j=}

where O<wi<...<wr<1. This leads to the corresponding weighted posterior p;(61X; )<
L'(61Xy )p(6)-

As with modeling the form of change, choosing a weighting scheme involves
choices; in particular, how quickly to discount informatiion as it ages. The choice matters
less for observations more distant in time, however—exactly where modeling the true
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relationship between current and past values of @ is apt to be most difficult. One optionis a
geometric rate of decay, with parameter & that is,

w,=06"" ®)

in (7). Table 1 shows the sequences of decreasing weights that correspond to &=1, .95,
.75, and .§; that is, ranging from no decay down to a half life of one unit. Example 1
below illustrates its use. An alternative to a smooth rate of decay is to posit weights of 1
for recent time points, and weights of zero for all points further than, say, ¢ units in the
past. This scheme is used in Example 2.

Point estimates of 0 based on (7) are analogous to robust M-estimators (Huber,
1981), except that observations’ weights are based on recency rather than typicality. For
cases in which € is in fact constant over time, (7) is an example of what Arold and
Strauss (1988) call a “pseudo-likelihood;” under regularity conditions, its maximum is a
consistent, asymptotically normal, estimator of 6. Likelihood point estimates of 8 based
on (7) tend to the correct central tendency, but less efficiently than standard full-information
maximum likelihood estimators.

[Table 1]
Example 1, continued: Estes’s Model for Simple Conditioning

Table 2 presents data generated according to the Estes simple conditioning model
(5), and weighted-likelihood approximations of 8 obtained with various geometric rates of
decay. The second column gives the values of 6, produced recursively from model (5) with
6p=.2 and }=.1. The sequence of Bernoulli variables x; in the next coiumn was generated,
each with the corresponding 6, as the probability of observing a ‘1’ (M,=1 for all 7). If we
were to assume 6 were constant over time and impose a uniform prior, the posterior for 6
at Time T would be the beta distribution

pr(61x,) <[] 6" (1- 6)"

=]

=6"(1-6)"",
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T
with s, = Zx, the number of successes. The posterior mean of 6 at Time T would be the

t=]
average of all observations up through that point, é, =5;/T. A geometric rate of
likelihood decay approximation with decay parameter & replaces T and sT with

T = i&"‘ and s; = i&"‘x, .

=] t=]
{Table 2]

Table 2 gives decaying likelihood posterior means, namely weighted means
8; =s;/T", with 8=1 (no decay), .95, .75, and .50. While all of these sequences of
weighted means tend to lag behind the generating probabilities, faster rates of decay
decrease the drag; they pursue the true values more closely on the average. But faster rates
of decay also increase the variance of the estimate. As in robust estimation, less
information is used in the hope that the information foregone is most apt to be misleading.
In this example, means with &=.5 are less biased than those obtained with &=.75, but the
more severe trimming causes the &=.5 means to have a larger mean squared error.

Example 2, continued: An Inference Network for Sequential Testing

In this example, an examinee’s proficiency 0 is posited to have only three possible
values, -1, 0, and +1, with prior probabilities of .25, .50, and .25. There are five test
items, responses to which are assumed iid for simplicity.! The conditional probabilities of
a correct item response at the three € values are .10, .40, and .70 respectively. Numerical
results will be presented in the idiom of Bayesian inference networks.

Bayesian inference networks (also referred to as causal probability networks and
influence diagrams) are systems for representing and carrying out probability-based
inference in networks of interrelated variables (see Andreassen, Jensen, & Olesen, 1990;
Lauritzen & Spiegelhalter, 1988; Pearl, 1988, and Shafer & Shenoy, 1988). The starting
point is a directed acyclic graph (DAG) representation of the conditional independence
relationships among the variables; Figure 1 shows the DAG for this example. A

1 See Wainer et al., 1990, on adaptive sequential testing with a continuous real-valued proficiency
parameter 8 and items parameterized individually in terms of their regressions on 8.
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representation of the joint probability distribution is constructed in terms of products of the
distributions of subsets of interrelated variables (cliques) divided by distributions of
intersecting subsets. A corresponding “join tree” representation with the property of
single-connectedness makes it possible to propagate coherently the consequences of new
information throughout the network, employing only calculations local to cliques and their
neighbors. Figure 2 is the join tree for the current example. Calculations are carried out by
means of operations on “potential tables,” which comprise values proportional to the joint
probabilities of the potential value combinations of all the variables in a clique (see Mislevy,
in press(a), for a simple worked-through example). Commercially available computer
programs for structuring and using Bayesian inference include ERGO (Noetic Systems,
Inc., 1991) and HUGIN (Andersen, Jensen, Olesen, & Jensen, 1989).

[Figures 1 & 2]

Table 3 is a trace of the updating of potential tables as the response sequence
(0,0,1,1,1) is absorbed one item at a time. The matrices for the cliques and the clique
intersection correspond to the depiction in Figure 2. Note how the marginal table for 8
shifts belief toward -1 after the first two incorrect responses, then increases gradually
upward as the next three correct responses arrive. Table 4 shows updating with
information-decay weights of 1 for the current and previous two observations, and 0 for
observations further back in the sequence. These values were achieved in ERGO by, at
each time point, absorbing information from x; and, once >3, retracting information
corresponding to x,.3 and any earlier observations. Table 5 gives the means of the
successive @ posteriors, starting with the prior. (The “Geometric decay” and “Attenuated
posterior” rows are discussed below.) The full-information and trimmed-likelihood
posterior means are identical for the first three responses by construction, but they depart
for =4 and r=5 when the leading responses are trimmed from the sequence.

[Tables 3-5]

We now implement the geometrically decaying likelihood scheme, with 8=.75.
This is effected in the inference network by, at each time point, entering the current finding

with the correct conditional odds ratios for right and wrong responses, and for past time
points, re-entering the findings with odds ratios multiplied by 67. The conditional
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probabilities that effect the decaying likelihood are shown as Table 6.2 Findings are
entered as if anew at each time point, with potential tables reflecting the decayed odds
updated by the corresponding observed responses. Table 7 traces the results of this
procedure. As seen in Table 5, the results after the final string of correct responses lead to
higher posterior means for 6 than the straight likelihood solution, but not as high as those
of the “three most recent items” scheme. The influence of the initial incorrect responses
remains, albeit with declining influence.

[Tables 6 & 7]
Attenuated Posteriors

A disadvantage of the decaying likelihood approach discussed above is having to
retain and re-analyze, at each time point, some or ali of the data from past time points. An
alternative is to modify the posterior obtained at each point to achieve the same effect of
successively discounting the influence of earlier observations. The form of the “attenuated
posterior” approximation is thus defined recursively as

Pr(61X;) = plxr1 61 )g[pr, (81X, )}, o

where g[] is a function that “flattens” the previous posterior so that the current
observations will have a relatively greater influence. For example:

1. When employing conjugate priors, one can modify the parameters of each
successive distribution so as to remain within the same parametric family. Suppose x
follows a Poisson distribution with parameter € constant over time, and belief about 9 at
Time T-1 is expressed as Gamma(orr.1,n7-1)- The usual posterior after observing x7 is
Gamma(ar.1+x1.n7-1+1). One possible attenuated conjugate prior for Time T would be
Gamma(dar.1,0n7-1), where 0<d<1, a distribution with the same functional form and
mean but more dispersed. The resulting posterior would be Gamma(dorr.1+x1,6n7.1+1).

2 The probabilities for x=1 and x=0 given 8=-1 are .1 and .9, for example, for an odds ratio of .111; the
odds ratio for the same conditional probabilities with lag=1 is therefore .111-79=.192, implying
probabilities of .161 and .839 respectively. For lag=2, the odds ratio becomes 111:75%.75= 291, implying
conditional probabilities of .225 and .775. (Recall that an odds ratio of 1 is tantamount to “no evidence.”)
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2. Suppose 6 takes one of the values (6 ...,6k), and the observation of x induces the

likelihoods (L1(x),...,.Lx(x)). Let belief at Time T-1 be represented by the vector of
probabilities (1:,’7_1,. s n”_l), where 2 n,_, =1. By Bayes Theorem, the posterior for 6
k

after the observation of x7 is obtained as
(Z70-s Txr) = (CLy (X7 )0y 10 s L (% ) g 1y )

where C =1/ L,(x;)%, 7. Let (7y..... 7x,) Tepresent a “baseline” (usually flatter) prior
k

distribution for 6, toward which we wish to bias belief at each stage. We can define a
decayed-information version of the posterior by using for the prior a mixture of the T-1
posterior and the baseline prior:

(%0 Trr ) = (C Ly (%) p oy o C L (2 ) g 1y ),
where

Bera = OMy 7y + (1= )M, (10)

and C" =1/ Y L,(x;) %1,
k

Example 2, continued

This example uses the samie inference network and realized response pattern
discussed above. After each item, an attenuated posterior replaces the true Bayesian
posterior, which is mixed with a proportion of .75 with the baseline prior (.25, .50, .25).
Table 8 wraces the successive updating of potential tables. For each time point, the “After
Item 7’ tables represent updating from the previous set of beliefs; “Before Item #+1”
represent the results of mixing the resulting posterior with the baseline prior as in (10) and
propagating this change through the network. The trace of the posterior mean for 6,
appearing as the final row of Table 35, is similar to that of the geometrically decaying
likelihood.

[Table 8]
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Discussion

This paper begins to explore ways to account for learning that might be useful
intelligent tutoring systems (ITSs). In the HYDRIVE ITS (Gitomer, Steinberg, &
Mislevy, in press), students work through a series of adaptively selected problems.
Problem selection and interventions within problems are guided by current estimates in the
student model. A Bayesian inference network is employed to update the student model
within a problem, under the assumption that its parameters are stable during the course of
observation. (An exception is upward adjustment following episodes of direct instruction.)
By the end of a problem, enough information has been acquired to make reasonably well
informed inferences about the student status, at least for parameters dealing with aspecis of
knowledge that the problem probes. At the beginning of each problem, though,
performances on previous problems presumably convey some information about the
student’s status. We wish to exploit this information, without either assuming that the
student model does not change over the course of problems or attempting to model the
likely nature of change from one problem to the next (as is done, for example, Anderson’s
LISP tutor (Anderson & Reiser, 1985) and Kimball’s (1982) calculus tutor, which use
variants of learning models such as Estes’s).

While both the decaying-likelihood and attentuated-posterior approaches discussed
above achieve the desired effect, the decaying-likelihood approach requires raw data to be
maintained for subsequent partial retraction. The attenuated-posterior approach works with
temporally local quantities only. This seems preferable in a context such as ours, where it
is advantageous to minimize bookkeeping, computation, and data maintenance. An
additional advantage is that this approach is compatible with the storage- and calculation-
reducing scheme described in Mislevy (in press(b)) for reducing the size of Bayesian
inference networks with multiple copies of iid observable variables.
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Table 1

Weights for Geometric Rate of Information Decay

t =1 5=.95 =75 &=.50
1 1.00 1.00 1.00 1.00
2 1.00 .95 75 .50
3 1.00 .90 .56 25
4 1.00 .86 42 13
5 1.00 81 32 .06
6 1.00 a7 24 .03
7 1.00 74 .18 .02
8 1.00 .70 13 .01
9 1.00 .66 .10 .00
10 1.00 .63 .08 .00
11 1.00 .60 .06 .00
12 1.00 57 .04 .00
13 1.00 .54 .03 .00
14 1.00 Sl .02 .00
15 1.00 .49 02 .00
16 1.00 .46 .01 .00
17 1.00 .44 .01 .00
18 1.00 42 .01 .00
19 1.00 .40 .01 .00
20 1.00 .38 .00 .00
21 1.00 .36 .00 .00
22 1.00 34 .00 .00
23 1.00 32 .00 .00
24 1.00 31 .00 .00
25 1.00 29 .00 .00
26 1.00 .28 .00 .00
27 1.00 .26 .00 .00
28 1.00 25 .00 .00
29 1.00 24 .00 .00
30 1.00 23 .00 00




Estimated Time ¢ Means with Information Decay

Table 2

o=1 &=.95 &=.75 5=.50

t 6 x 6, eror 6, emor 6, emor 6, emor

1 28 0 00 -28 00 -28 .00 -28 .00 -28
2 35 1 .50 .15 51 17 57 .23 67 .32
3 41 0 33 -07 33 -0 32 -08 29 -12
4 46 0 25 -21 24 -22 21 -.26 A3 -33
5 S1 1 40 -.11 41 -10 47 -05 S8 .07
6 S56 0 33 -23 33 -23 32 -4 29 -28
7 .60 1 43 -17 44  -16 .52 -.08 .65 .04
8 .64 1 50 -.14 53 -1 .65 .01 .82 .18
9 67 0 44 =23 46 -22 48 -20 41 -26
10 1 1 S50 -21 52 -.18 62 -09 71 .00
11 .73 i S5 -.19 58 -.16 72 -02 .85 .12
12 J6 O 50 -.26 52 -24 53 -23 43 -33
13 .78 1 54 -24 57 -22 65 -.13 a1 -07
14 .80 1 57 -.23 61  -20 74 -06 86 .05
15 82 1 .60 -.22 64 -18 81 -02 93 .11
16 84 1 63 -21 68 -.16 835 .02 96 .13
17 .85 1 65  -.21 70 -.15 .89 .04 98 .13
18 87 0 .61 -26 65 -22 67 -20 49 -38
19 .88 1 63 -.25 67 -.21 a5 -13 75 -.13
20 .89 1 65 -24 10 -19 .81 -.08 87 -02
21 90 0 62 -28 65 -.26 61 -29 44 -47
22 91 0 59 -32 .60 -31 46 -45 22 -.69
23 92 1 61 -31 63 -29 59 -33 .61 -31
24 93 1 63 -30 65  -27 69 -23 .80 -.12
25 .93 1 64 -29 68 -26 a7 -16 90 -.03
26 94 1 65 -29 70 -24 .83 -.11 9 .01
27 95 1 67 -.28 72 -23 .87 -.07 98 .03
28 95 1 68 -27 74 -21 90 -05 99 04
29 96 1 69 -27 75 -20 93 -.03 99 04
30 96 1 70 -.26 a7 -.19 95 -01 1.00 .04
Mean -22 -.19 -12 -08
SD .09 09 13 22
MSE .06 .04 .03 .05




Table 3

Trace of Potential Tables and Clique Iniersection Table for Five Responses to IID Liems:
Response Vector = (0,0,1,1,1), No Information Decay
INITIAL STATUS AFTERITEM 1=0 AFTER (0,0)
Itml=1 Itml=0 Itml=1 Iml=0 Imi=] Imil=0
om-1 025 225 o=-1 O 375 o=-1 0 500
e=0 -200 .300 o=0 © 500 =0 O Ad4
O+l 175 075 o=+1 0 125 on+1 0 056
Itm2=1 [Im2=0 Im2=1 Im2=0 Itm2=1 Itm2=0
Om-] 025 225 o=-] -038 337 g=-1 0 500
e=0 -200 .300 o=0 -200 300 onp O A44
G=+l 175 075 0=+1 088 038 o=+l 0 056
) Im3=1 [Im3=0 0 Itm3=1 Im3=0 ) Itm3=1 Ikm3=0
0=-1 250  @gm.y 025 225 o=-1 375 @u-1 038 337 o=-1 500 g=.; 050 .450
=0 -S00 gm0 -200 .300 e=0 300 gx¢ .200 300 0=0 44 gx0 178 .267
0=+1 250  @g=41 175 075 0=+1 -125  g=4) 088 038 o=+1 056  g=41 039 017
Imd=1 Imd4=0 [tmds1  Iimd=0 Imd=] Itmd=0
o=-1 025 225 g=-1 -038 337 0=-1 050 450
=0 -200 300 =0 -200 .300 o=0 -178 267
Onsl 175 075 o=+1 -088 .038 0=+1 039 017
ImS=1 ImS=0 ImS=1 Im5=0 ItmS5=1 Itm5=0Q
0=-1 025 225 o=-1 038 337 0=.1 050 450
=0 -200 300 =0 -200 300 =0 -178 .267
o=+l -175 075 e=+1 088 038 o=+ 039 017
AFTER (0,0,1) AFTER (0,0,1,1) AFTER (00,1,1,1)
Itml=1 Imil=0 Itml=1 Imil=0 Itml=1 Itmi=0
8=-1 0 .188 6=-1 0 048 8=-1 0 010
e=0 O 667 e=0 O 688 =0 O 592
o=+1 0 .146 o=+1 0 263 0=+10 397
Im2=1 Im2=0 Itm2=1 Im2=0 Itm2=1 Itm2=0
0=-1 0 .188 6=-1 0 048 8=-1 0 010
o=0 O 667 o= O 688 =0 0 592
o=+1 0 .146 o=+1 0 263 0=+10 397
) Im3=1 Im3=0 0 Iim3=1 Im3=0 0 Im3=]1 Itm3=0
0=-1 .188 o=.1 -188 0 o=-1 -048 0=-1 .048 0 0=-1 010 g0 010 0
=0 667 o=0 -667 0 e=0 -688 =0 -688 0 o=0 392 gx0 592 O
f=+] 146 =41 146 O 9=+1 263 gm4) 263 O 0=+1 397 9241397 O
Imd=) Jumd=0 Imd=1 Imd=0 Itmd=] Imd=0
6=-1 019 169 8=-1 048 0 6=-1 010 O
o=0 -267 400 e=¢ 688 0 e=0 592 O
o=+1 -102 .044 0=+1 -263 0 0=+1397 O
ItmS=1 ItmS5=0 Im5=1 Im5=0 Itm5=1 Itm5=0
o=-1 019 .169 o=-1] ‘005 044 6=-1 010 0
o=p 267 .400 =0 -275 413 o=0 392 O
o=4+1 -102 044 o=+ -184 079 o=+1-397 O




6=-1
6=0

6a+l -

0=-1
8=0
O=+1

.188
667
.146

“Trace of Possntial Tables snd

Response Vector = (0,0,1,1 1), Information from Thwes Most-Recent Iems

INITIAL STATUS
Iml=]l Imi=0
Ba-1 025 225
=0 200 300
Itm2=1 Im2=0
o=-1 025 225
om0 -200 300
o=+1 -l 75 075
Im3=1 Im3=0
ox-1 025 225
0=0 200 300
o=+l ‘175 075
Iund=1 lImd=)
on-] 025 225
o=p -200 300
O=+1 173 075
Itm5=1 ItmS=0
0=-1 .025 225
8=0 200 300
AFTER (0,0,1)
Itmi=1 lml=0
o=-1 0 .188
0=0 0 667
Itm2=1 lm2=0
o=-1 0 .188
0=0 0 667
Im3=1 Im3=0
o=-1 -188 0
0=0 667 0
Imd=1 Imd=0
O=-1 019 .169
o=0 267 400
h*l . 102 .044
lun5=1 [tmS=0
0=-1 019 .169
9=0 267 400
0=+l - 102 044

6=-1
=0
O=+1

0=-1
6=0
0=+1

mmhmw 0 ID lems:
Only
AFTER ITEM1=0 AFTER 0.0)
Imil=l Iml=0 Imi=] Emls0
o=-1 O 3715 om-1 0 500
9=0 O 500 e=0 O Ad4
o=+1 O 125 o=+10 056
Im2=1 Im2=0 Im2=1 Im2=0
o=-1 038 337 o=-1 0 500
e=0 -200 300 o=g O Ad4
0=+1 .088 038 o=+1 0 056
0 Im3=1 Im3=0 ) Itm3=1 Im3=0
375  ga-) 038 337 g=-1 500  g=.1 050 450
500 gz -200 300 444 g 178 267
125 gz 088 .038 0=+l 056 9=yl 039 017
Imd4=1 Imd=0 Imd=1 Itmd=0
o=-] -038 337 o=-] 050 AS50
0=0 200 300 o=0 -178 267
o=+1 088 038 o=+1 039 017
ImS=1 Itm5=0 ImS=1 ImS5=0
o=-1] 038 337 0=-1 050 450
8=0 200 .300 6=0 178 267
o=+1 ‘088 038 o=+1 039 017
AFTER (-,0,1,1) AFTER (--1,11)
Itml=1 Imil=0 Iml=1 Iml=0
9=.1 -003 023 9=-1 000 .002
o=0 -221 331 o=0 108 .163
0=+1 295 127 o=+1 509 218
Iim2=1 Im2=0 Im2=1 Im2=0
e=-1 0 026 o=-1 000 002
8=0 0 552 0=0 .108 .163
e=+1 0 422 o=+1 509 213
0 Im3=1 Im3=0 ) Itm3=] Im3=0
026 g-.; 026 0 g=-1 002  g=.1 002 0
552 g 552 O o=0 271 =0 271 0
422 gay 422 O 0=+1 727 o=+l 271 0
Imd=1 Iund=0 Itmd=1 Iimd=0
8x=-1 026 0 O=-1 002 0
552 0 0=0 271 0
e=4] 422 O oms1 727 O
ImS=1 ImS5=0 ImS5=] hmS=0
o=-1 003 023 o=.1 002 0
=0 -221 331 9=0 211 0
O=+] 295 127 o=+l 727 O




Posterior Means for 6

Table 5

t 0 1 2 3 4 5
No Decay .00 .25 -.44 -.04 22 .39
m{'fﬁ recent 00 -.25 -.44 -.04 40 73
Geomerric Decay, .00 -.25 -.42 .07 35 .51
5=.75

Atenuated 00  -25 -.40 13 39 53

posterior, 8=.75
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Table 6
Conditional Probabilities Implied by Decaying Likelihood with 8=.75

Lag=0 Lag=1 Lag=2 Lag=3 Lag=4
6 x=1 x=0 x=1 x=0 x=1 x=0 x=1 =0 x=1 x=0
100 900 .161 839 226 714 284 716 331 .669

-1
0 400 .600 425 575 444 556 A58 542 468 .532
+ 100 300 654 346 616 384 588 412 567 .433




0=-1
o=
=+1

9=-1
=0
0=+1

250
500
250

487
446
067

Table 7

Trace of Potential Tables and Clique Intersection Table for Five Responses:
Response Vector = (0,0,1,1,1), Likelihood Decay with 5=.75

INITIAL STATUS
Iml=1 Imil=0
O=-1 .025 225
=0 .200 300
o=+1 175 075
Itm2=1 Im2=0
0=-1 025 225
e=0 -200 300
o=+1 175 .075
Im3=1 Im3=0
o=-1 025 225
0=0 200 .300
9=-1 175 .075
Im4=1 limd=0
9=-1 025 225
o= 200 .300
o=+1 175 075
Iun5=1 ImS=0
0=-1 025 225
=0 -200 300
o=+1 ‘173 075
AFTER (0,0)
Itml=1 Iiml=0
8=-1 0 487
e=0 O 446
e=+] 0 -067
Im2=1 Im2=0
0=-1 O 487
8= 0 .446
o=+1 0 .067
Im3=1 Im3=0
o=-1 -049 438
=0 178 .268
o=+1 047 .020
Imd=1 Imd=0
o1 049 438
0= 178 .268
o=+1 047 .020
Itm5=1 ImS5=0
o=-1 049 438
0=0 -178 .268
o0=+1 -047 .020

0=-1
0=0
O=+1

AFTERITEM 1=0
Itml=1 Imil=0
o=-1 O 375
e=0 O 500
e=+ 1 0 1 25
Im2=1 Itm2=0
o=-1 038 337
o= .200 300
o=+) -088 .038
0 Im3=1 Im3=0
375 0=-1 .038 337
500 8= 200 300
125 8=+1 .088 .038
Imd=1 Itmd=0
0=-1 .038 337
0=0 .200 300
0=+1 088 038
ImS5=1 Im5=0
o=-1 .038 337
=0 -200 300
=+1 .088 .038
BEFORE ITEM 3
lag=2 Imil=1 Itml=0
8=-1 110 377
e=0 -! 98 .248
e=+ 1 -041 -026
lag=1 Im2=1 Im2=0
0=-1 079 408
0=0 ! 89 257
o=+1 044 .023
0 Im3=1 Im3=0
.487 8=-1 .049 438
446 e=0 - 178 .268
067 8=+1 047 020
Itm4=1 Itmd=0
0=-1 049 438
e=0 178 .268
o=+1 047 .020
ImS=1 Itm5=0
8=-1 049 438

o=0 178 268

o=t 020

BEFORE ITEM 2
lag=1 Iml=]1 iml=0
8=-1 061 314
0=0 212 288
o=+] 082 .043
Im2=] Itm2=0
o=-1 038 337
e=0 -200 300
o=+1 088 .038
0 Im3=1 Im3=0
0=-1 375  g=.1 038 337
=0 -500 g0 .200 .300
0=+] -125  g=4) 088 .038
Itmd=1 Iimd=0
9=-1 038 337
=0 -200 .300
o=+1 088 .038
ImS=1 Im5=0
o=-1 038 337
=0 -200 .300
0=4+1 -088 .038
AFTER (0,0,1)
Iml=1 Itml=0
9=-1 0 157
e=0 O 618
o=+10 225
Im2=1 Im2=0
9=-1 0 157
e=0 © 618
0=+10 225
0 Im3=1 Itm3=0
o=-1 157 g=1 157 O
0=0 618 g=0 618 0
Itm4=1 Iumd=0
o=-1 016 .141
o=0 -247 371
o=+] -158 068
IimS=1 Im5=0
9=-1 016 .141
=0 -247 371
o=+1 -158 068

(contimued)



0=-1
0=0
O=+1

0=-1
=0
O=+1

157
618
225

.018
455
526

BEFORE ITEM 4

lag=3 imi=1 Imi=0
Ou-1 045 112

omp 283 335

B+l 132 093
lag=2 Itm2=]1 I[m2=0
Om-1 035 122
8=0 274 344
0=+l - 139 086
lag=1 Im3=1 Im3=0
0=-1 .025 132
8=0 262 356
Imd=1 [im4=0
B=-1 016 .141
8=0 247 371
O=+1 - 158 .068
ItmS=1 ImS=0
9=-1 016 141
8=0 .247 371
o=+] - 158 .068
AFTER (0,0.1,1,1)
Itml=1 Iml=0
6=-1 0 018
8=0 0 455
B=+1 0 526
Itm2=1 [tm2=0
B=-1 0 018
0=0 0 455
Im3=1 Im3=0
8=-1 .018 0
=0 455 0
Itmd=1 Iumd=0
0=-1 018 0
8=0 455 0
0=+1 526 0
Itm5=1 lun5=0
8=-1 018 0
o=Q 455 0
03"'1 .526 0

=0
0=+1

Table 7, continued

049
557
394

AFTER (0,0,1,1)
Itml=1 Itni=0
B=-1 0 049
=0 0 557
Im2=1 lm2=0
g=-1 O .049
6=0 O 557
o=+1 0 394
fm3=1 Im3=0
o=-1 -049 0
8=0 557 0
o=+] -394 0
Itmd4=1 Imd=0
e=-1 049 0
6=0 557 0
o=+1 -394 0
ImS=1 ItmS5=0
8=-1 005 044
8=0 223 334
o=+1 -276 118

o=-1 049
e=0 557
8=+1 -394

BEFORE ITEM §

lag=4¢ Iml=! [iml=0
om1 016 .033

o=0 -261 296
beel 223 AT

lag=3 Im2=) Ion2=0
=] 014 035

g=0 255 302
g=s1 232 162

lag=2 lm3=1 lun3=0
g=-1 011 .038
=0 247 310
o=s] 243 151

lag=1 Itmd4=1 Itmd=0

0=-1 008  .041
e=0 237 .321
0=+1 -258 .136
Itm5=1 Im5=0
g=-1 005 .044
9=0 -223 334
o=+1 -276 .118




0=-1

0=+1

471
457
0n

Table 8

Trace of Potential Tables and Clique Intersection Tabie for Five IID Responses:
Response Vector = (0,0,1,1,1), Autenuated Posterior Decay, &=.75

INITIAL STATUS

Itml=1 Iiml=0

8=-1 025 225

o=0 200 300

g=s1 175 075
Im2=1 Im2=0

6=-1 025 225

0=0 200 300
Itm3=1 Im3=0

8=-1 025 225

8= .200 300

6=+1 -l 75 075
Imd=1 [md=0

8=-1 .025 225

=0 .200 .300

g=t1 175 075
ImS=1 ImS5=0

8=-1 .025 225

6=0 -200 300

6=+1 - 175 075

AFTER (0,0)

Iiml=1 Iml=0

0=-1 0 471

8= 0 457

e=+ 1 0 .07 1
Im2=1 [m2=0

0=-1 0 471

9= 0 457
Im3=1 Im3=0

8=-1 .047 424

6= .183 274

O6=+1 .050 021
Imd=1 [tm4=0

o=-1 -047 424

o=0 -183 274

g=41 050 021
Itm5=1 ImS5=0

o=-1 047 424

=0 -183 274

60=-1
=0
B=+1

0=-1
8=
6=+1

AFTERITEM 1=0

Itml=1
g=-1 0
e=0 O
g=+1 0

Im2=1
g=1 038
=0 200

=41 088

0 Im3=1

375 o=-1 038
.500 =0 -200
125 o=+1 -088

Tomd=1
= 038

=0 200
o=4] -088

ItmS=1
g=-1 038
=0 .200

=41 088

BEFORE ITEM 3

Itmi=1
p=-1 0
=0 O
g=+1 0

g=-1 0
=0 0
g=+1 0

0 Iim3=1
416 o=-1 042
468 =0 -187

116 gzqy 081

Iimd=1
=1 -042
0= 187
o=+1 081
Itm5=1
=.1 042
=0 -187
o=+1 .081

Iml=0
375

500
125

Im2=0
337

300
038

Im3=0
337
.300
.038

Itmd=0
337

.300
.038

ItmS5=0
337

300
038

Im1=0
416

468
116

Iim2=0
416

468
116

374
.281
035

Itmd=0
374

281
035

tm5=0
374

281
035

BEFORE ITEM 2
Imi=1 Imi=0
6=-1 0 344
o=0 O 500
Im2=]1 Im2=0
o=-1 034 309
=0 -200 300

6_—_+1 .109 -047

) Imm3=1 Im3=0
9=-1 344 g 034 309
e=0 500 g=¢ .200 .300
0=+1-136  g=41-109 .047

Imé=1 Imd=0
8=-1 034 .309
=0 -200 .300
0=+1 .109 .047
Itm5=1 ImS5=0
g=-1 034 309
=0 -200 .300
o=+1 -109 047
AFTER (0,0,1)
Itml=1 Iml=0
6=-1 0 .134
=0 O 604
Im2=1 Im2=0
o=-1 0 134
0=0 O 604
O=<+1 0 .262
0 Itm3=1 Im3=0

9=-1 -134 o=-1 134 0O
g=0 -604 =0 604 O
0=+]1 262 g=41-262 0

Imd=1 Itmd=(0
g=-1 013 .121
o=0 -242 362
0=+1 -183 079

ItmS=1 Im5=0
g=-1 013 .121
=0 -242 362
o=+1-183 079

(contimied)




=-1
6=0

0=-1

O=+1

.163
578
259

019
.435
546

BEFORE ITEM 4
Iml=1 Imi=0
g=-1 O .163
e=0 O 578
O=+1 0 259
Im2=1 Im2=0
g=-1 O .163
6=0 0 578
Im3=1 Im3=0
g=-1 -163 0
6=0 578 0
Itmé=1 JImd=0
8=-1 .016 147
=0 -231 347
o=+1 -181 .078
ImS=1 Itm5=0
o=-1 016 .147
=0 231 347
o=+1 -181 .078

AFTER (0,0,1,1,1)

Itml=1 Iiml=0
o=-1 0 .019
o=0 O A35
o=+1 0 546
Im2=1 Itm2=0
g=-1 O 019
=0 O 435
o=+1 9 546
Itm3=1 Itm3=0
8=-1 019 0
9=0 .435 0
O=+1 046 0
Itmd=1 Imd=0
o=-1 019 0
=0 435 0
O=+] 246 0
Itm5=1 Itm5=0
°=_ 1 .0 1 9 0
o=0 435 0
546 0

0=+1

Table 8, continued

., 038
g0 539

AFTER (0,0.1,1)
Imi=l Iml=0
o=1 O .038
0=0 0 539
0=+1 © 423
Im2=1 Itm2=0
0=-1 0 .038
e=0 O 539
O=+1 0 423
Im3=1 I[m3=0
o=-1 038 0
0= 539 0
8=+1 423 0
Itm4=1 Itmd=0
o=-1 038 0
0= .539 0
9= +] 423 0
ImS=1 Im5=0
o=.1] 004 034
0=0 216 323
o=+1 -296 127

g=-1 091
=0 329
o=+1 -380

BEFORE ITEM §

Imi=] kml=0
o=-1 0 091
e=0 O 529
o=+1 0 380

Im2=1 Im2=0
o=-1 0 091

=0 O 529
p=410 380

Im3=1 Iim3=0
o=-1 091 O
e=0 529 0
0=+1-380 O

Itmd=1 Immd=0
o=-1 091 O

o=0 529 O
=41 380 O

ImS=1 km5=0
=] 009 082

o=g 212 318
g4 266 114




Itm1

Itm2

:

Itm5

Figure 1

Directed Graph for the Educational Testing Example
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Figure 2

Join Trer: for the Educational Testing Example
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