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Information-Decay Pursuit of Dynamic

Parameters in Student Models

Abstract

Learning processes are often analyzed using a model with a structure

that is assumed to apply to all points in time, but with one or more
parameters that may change over time. In some applications, such as

learning theory, the goal is to model the character of change itself;

observations at all time points are used to estimate, for example, learning

curves. In other applications, such as tutoring systems, the goal is to make
decisions based on status at each point in time. Current observations

depend directly on current value of the parameter(s) of interest, but recent

observations were produced by values that were probably similar if not

identical. This note describes and illustrates appoximations for the current
value of such a parameter, using models that posit no change but

downweight the influence of observations as they recede in time. The idea
is similar to that of robust estimation procedures that downweight the

influence of outliers. The applicability of these approaches to intelligent

tutoring systems (ITS's) that use Bayesian inference networks to update

student models is discussed.

Key words: Bayesian inference networks, causal probability networks,
intelligent tutoring systems, robust estimation.



Introduction

This note concerns inference in situations in which the form of a stochastic model is

assumed constant, but values of certain parameters may change over time. Assuming we

could carry out likelihood-based or Bayesian inference if there were no secular change, we

discuss approximations that retain these forms but discount information from older

observations. Two "decaying information" approximations are weighted likelihoods and

successively adjusted posterior distributions. The resulting estimators tend to lag behind a

monotonically changing parameter, in what might be called a "pursuit' strategy. The

rationale parallels that of reducing the influence of outliers in robust estimation (Huber,

1981): Decaying-information estimators are less efficient than full-information estimators if

the parameters are in fact constant, but they provide less biased approximations of current

values when trends do exist. Using a robust version of a simpler model, as opposed to

fitting more a complex model, provides serviceable, if not optimal, approximations across a

variety of departures from the basic form.

The motivating problem arose in the context of an intelligent tutoring system (ITS)

for trouble-shooting aircraft hydraulics (Gitomer, Steinberg, & Mislevy, in press). In

HYDRIVE, students' actions are modeled as probabilistic functions of parameters that

characterize aspects of a student's system understanding, strategic knowledge, and

procedural skills. The values of these parameters increase with experience and practice, but

with different patterns and rates for different students. Certain instructional decisions

would be based on current values of these parameters at a given point in time, but these

values are not known with certainty; only imperfect information in the form of a history of

actions is available. We presume that an action's evidential value about student-model

parameters declines over time. Our purpose here is to begin exploring the potential of

information-decay approximations in this context; the second running example is a

simplified version of the problem. Formal investigations of the properties of the methods

are beyond the scope of the present paper.

Running Examples

Example 1: Animal Learning

Suppose Session t in an learning experiment consists of Mt trials in which the

animal chooses either the correct or the incorrect path in a maze. It may be reasonable to
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model these trials as independent Bernoulli variables with a common probability 81 of a

correct choice. As in the simple conditioning model discussed below, 0 may change from

one session to the next. Choices in Session t, say x, = (x1..... x., ), thus provide direct

evidence about O9, but indirect and successively weaker evidence about values of 01+1,

Ot+2, and so on.

Example 2: Educational Testing

An examinee's responses to equally-difficult test items are observed in sequence.
The variable of interest is her unobservable "proficiency," say 9, the probability of

answering items correctly. Item responses are modeled as conditionally independent given
9. (More complex models allow for nonexchangeable items, multidimensional 9, and

multiple, perhaps unordered or partially-ordered, response categories.) Typically 0is

assumed to be constant over the period of observation. Secular trends may exist, however,

as when students overcome initial nervousness or learn during the course of testing. In a

context similar to that of HYDRIVE, Kimball (1982) models the probability that a student

will apply a given calculus rule in appropriate circumstances as constant within an exercise,

but updates the estimate between problems.

Setup and Notation

Let t index time points, and consider observations of Mt fid variables

x, = (x,,..... x., ) at Time t, conditional on the parameter O9. Let p(xtj; Ot) denote their

common pdf. The outcomes observed at Time t induce a likelihood function for O0:

L(, I xj Hp(x,,; 0).
j=1 (1)

Denote by X, = (x1 ,..., x,) the sequence of observations up through Time r, that is,

xrepresents the possibly vector-valued observation from Time 1, governed by 01, x2 the
observation from Time 2, governed by 62, and so on. Let p,-_ (0, 1X,-,) represent belief

about 91 at Time t-1, or prior to observing xt, starting with po(0 1). Belief about Ot

posterior to observing x, is obtained by Bayes Theorem as

(2)
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In the context of Kimball's calculus ITS, O9 would represent the student-model

parameter value for Exercise t , and xQj, for j=1....,M, would represent instances of

applying or not applying the target rule when it applies during the course of the exercise.
P,. (O, I X,-,) would represent the belief about Ot at the beginning of the problem, based on

actions in previous problems and a reinforcement function; p(x, 10,) would be a binomial

likelihood based on xi; and p,(0,lX,) would be the posterior for Bt combining both sources

of information.

If 0 were constant over time-that is, 0, a 0 for all t-the posterior shown as (2)

after observations at time points 1 through T would simply be proportional to an initial
prior for 0 and a joint likelihood function L(8I X) combining observations from a time

points in the same way:

PT(0IXT ) - P(XTIO)p(OIXT-l)

.P(XTI )p(XT, IO)po(O)
T

= JJL(OIx,)pO(O) (3)
1-1

= L(eIXT)pO(e).

Bayesian inference over time would be based on the sequence of posterior distributions

p,(OIX') c, P,-1 (8IXt-i)L(OIxJ,
(4)

each built up from po(6) by multiplying another likelihood term L(O6x 1) as given in (1),

but all with the same 0.

Suppose, however, that the value of 0 varies over time, perhaps as a stochastic
function p(,1IX,-,, y) of X..1, and/or an unknown parameter r- An example is Estes's

(1950) model for the probability of the keyed response on Trial t under simple
conditioning, with initial probability 00 and learning parameter r.

(5)

Bayesian inference about 6O after observing XTrequires expanding the posterior given in

(2) as follows:
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Pr(OrlXr) -• P(Xrl 8r)pr7t ( 8rXr-, )

= p(XT1OT)f pT.,(OT•IxT-,, )P(YixTI)dY. (6)

In contrast to (2), the more complex form of (4) requires specifying and manipulating
functions that model the nature of change, p(6e, IX,_. . 1 ,) and p(Vi Xrl), which harbor the

possibility of specification error.

We aim to approximate (6) without modeling the nature of change, for situations in
which the primary interest is status at Time T rather than the nature of change, which may
vary across cases. This approach is analogous to that of robust procedures that limit the
influence of aberrant observations in time series processes (e.g., Hampel et al., 1986,
Section 8.3; Martin, 1979). The two approximations sketched below replace the term
p(6OTIXT_•) in (6) with a simpler version based on the assumption of stasis over time, as in

(3) and (4). The first approximation uses a weighted likelihood, such that the influence of
observations decays over time. The second replaces each posterior in the sequence with an
attenuated version, shrinking each time toward an initial, less informative, prior.

Decaying Likelihoods

Suppose we model all observations as if they were lid with a common parameter
&EOr. This approximation is correct insofar as xT' itself is concerned, but less trustworthy
for observations further back in the sequence. Our decreasing confidence in this expedient
can be reflected by a weighted likelihood:

C(OeX) I[pT(X[;8)1
i11

_H/ ,,o,,;> 0)

where O<wS<...•w- I. This leads to the corresponding weighted posterior p;(OIX.)
L (OlXN )po().

As with modeling the form of change, choosing a weighting scheme involves
choices; in particular, how quickly to discount information as it ages. The choice matters
less for observations more distant in time, however-exactly where modeling the true
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relationship between current and past values of 0 is apt to be most difficult. One option is a

geometric rate of decay, with parameter & that is,

W, = 8 T-s (8)

in (7). Table 1 shows the sequences of decreasing weights that correspond to 8=1, .95,

.75, and .5; that is, ranging from no decay down to a half life of one unit. Example 1

below illustrates its use. An alternative to a smooth rate of decay is to posit weights of I
for recent time points, and weights of zero for all points further than, say, c units in the

past. This scheme is used in Example 2.

Point estimates of 0 based on (7) are analogous to robust M-estimators (Huber,

198 1), except that observations' weights are based on recency rather than typicality. For
cases in which 0 is in fact constant over time, (7) is an example of what Arnold and

Strauss (1988) call a "pseudo-likelihood;" under regularity conditions, its maximum is a
consistent, asymptotically normal, estimator of 0. Likelihood point estimates of 9 based

on (7) tend to the correct central tendency, but less efficiently than standard full-information

maximum likelihood estimators.

[Table 1]

Example 1, continued: Estes's Model for Simple Conditioning

Table 2 presents data generated according to the Estes simple conditioning model
(5), and weighted-likelihood approximations of 0 obtained with various geometric rates of

decay. The second column gives the values of 09 produced recursively from model (5) with
00=.2 and -. I. The sequence of Bernoulli variables x, in the next column was generated,

each with the corresponding 0, as the probability of observing a '1' (Mt= I for all t). If we

were to assume 0 were constant over time and impose a uniform prior, the posterior for 0

at Time T would be the beta distribution

T

pr(O1XT)oc FZ (1 - 0)T-"'
'=3
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T

with s. - x, the number of successes. The posterior mean of 0 at Time T would be the
jul

average of all observations up through that point, 0 T = STIT. A geometric rate of

likelihood decay approximation with decay parameter 6 replaces T and sT with

T T

T and

[Table 2]

Table 2 gives decaying likelihood posterior means, namely weighted means
s -;•T/T, with =1 (no decay), .95, .75, and .50. While all of these sequences of

weighted means tend to lag behind the generating probabilities, faster rates of decay

decrease the drag; they pursue the true values more closely on the average. But faster rates
of decay also increase the variance of the estimate. As in robust estimation, less
information is used in the hope that the information foregone is most apt to be misleading.
In this example, means with 8=.5 are less biased than those obtained with 6=.75, but the

more severe trimming causes the 6=.5 means to have a larger mean squared error.

Example 2, continued: An Inference Network for Sequential Testing

In this example, an examinee's proficiency 9 is posited to have only three possible

values, -1, 0, and + 1, with prior probabilities of .25, .50, and .25. There are five test
items, responses to which are assumed iid for simplicity.' The conditional probabilities of
a correct item response at the three 6 values are. 10, .40, and .70 respectively. Numerical

results will be presented in the idiom of Bayesian inference networks.

Bayesian inference networks (also referred to as causal probability networks and

influence diagrams) are systems for representing and carrying out probability-based
inference in networks of interrelated variables (see Andreassen, Jensen, & Olesen, 1990;

Lauritzen & Spiegelhalter, 1988; Pearl, 1988, and Shafer & Shenoy, 1988). The starting
point is a directed acyclic graph (DAG) representation of the conditional independence

relationships among the variables; Figure 1 shows the DAG for this example. A

1 See Wainer et al., 1990, on adaptive sequential testing with a continuous real-valued proficiency

parameter Band items parameterized individually in terms of their regressions on 0.
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representation of the joint probability distribution is constructed in terms of products of the

distributions of subsets of interrelated variables (cliques) divided by distributions of

intersecting subsets. A corresponding "join tree" representation with the property of

single-connectedness makes it possible to propagate coherently the consequences of new

information throughout the network, employing only calculations local to cliques and their

neighbors. Figure 2 is the join tree for the current example. Calculations are carried out by

means of operations on "potential tables," which comprise values proportional to the joint

probabilities of the potential value combinations of all the variables in a clique (see Mislevy,

in press(a), for a simple worked-through example). Commercially available computer

programs for structuring and using Bayesian inference include ERGO (Noetic Systems,

Inc., 1991) and HUGIN (Andersen, Jensen, Olesen, & Jensen, 1989).

[Figures 1 & 2]

Table 3 is a trace of the updating of potential tables as the response sequence

(0,0,1,1,1) is absorbed one item at a time. The matrices for the cliques and the clique
intersection correspond to the depiction in Figure 2. Note how the marginal table for 0

shifts belief toward -1 after the first two incorrect responses, then increases gradually

upward as the next three correct responses arrive. Table 4 shows updating with

information-decay weights of 1 for the current and previous two observations, and 0 for

observations further back in the sequence. These values were achieved in ERGO by, at

each time point, absorbing information from x, and, once t>3, retracting information

corresponding to xt-3 and any earlier observations. Table 5 gives the means of the

successive 0 posteriors, starting with the prior. (The "Geometric decay" and "Attenuated

posterior" rows are discussed below.) The full-information and trimmed-likelihood

posterior means are identical for the first three responses by construction, but they depart

for r=4 and t=-5 when the leading responses are trimmed from the sequence.

[Tables 3-5]

We now implement the geometrically decaying likelihood scheme, with 8=.75.

This is effected in the inference network by, at each time point, entering the current finding

with the correct conditional odds ratios for right and wrong responses, and for past time

points, re-entering the findings with odds ratios multiplied by 6-t. The conditional
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probabilities that effect the decaying likelihood are shown as Table 6.2 Findings are

entered as if anew at each time point, with potential tables reflecting the decayed odds

updated by the corresponding observed responses. Table 7 traces the results of this
procedure. As seen in Table 5, the results after the final string of correct responses lead to

higher posterior means for 0 than the straight likelihood solution, but not as high as those

of the "three most recent items" scheme. The influence of the initial incorrect responses

remains, albeit with declining influence.

[Tables 6 & 7]

Attenuated Posteriors

A disadvantage of the decaying likelihood approach discussed above is having to

retain and re-analyze, at each time point, some or all of the data from past time points. An

alternative is to modify the posterior obtained at each point to achieve the same effect of

successively discounting the influence of earlier observations. The form of the "attenuated

posterior" approximation is thus defined recursively as

Pr(01 XT) cc P(XTI Or )g[p;-. (eIXT-1)],
(9)

where g[.] is a function that "flattens" the previous posterior so that the current

observations will have a relatively greater influence. For example:
1. When employing conjugate priors, one can modify the parameters of each

successive distribution so as to remain within the same parametric family. Suppose x

follows a Poisson distribution with parameter 0 constant over time, and belief about Oat
Time T-1 is expressed as Gamma(aT.lnT-l). The usual posterior after observing xT is

Gamma(aT-l+xT, nTz.+l). One possible attenuated conjugate prior for Time T would be

Gamma(&'T-l,&T.1), where 0<&l, a distribution with the same functional form and
mean but more dispersed. The resulting posterior would be Gamma(&r.l+xT,8nT.1+l).

2 The probabilities for x=! and x=-O given 0--1 are .1 and .9, for example, for an odds ratio of .111; the

odds ratio for the same conditional probabilities with lag=l is therefore .111-75=.192, implying

probabilities of .161 and .839 respectively. For lag=2, the odds ratio becomes .11 1.75x.75=.2 9 1 , implying

conditional probabilities of .225 and .775. (Recall that an odds ratio of I is tantamount to "no evidence.')
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2. Suppose 0 takes one of the values (Of,...,&K), and the observation of x induces the

likelihoods (LI(x),. .. ,LK(x)). Let belief at Time T-1 be represented by the vector of
probabilities (r 1- ..... I. .- ),) I where X - =1. By Bayes Theorem, the posterior for 0

after the observation of XT is obtained as

(,,., .... ,7CC.) = (CL,(xT i,)ZIT,. .. ,CL,(X,),T._),

where C = I/ _Lk (Xr)7,._.1. Let (7.,o .. o) represent a"baseline" (usually flatter) prior
k

distribution for 0, toward which we wish to bias belief at each stage. We can define a

decayed-information version of the posterior by using for the prior a mixture of the T-I

posterior and the baseline prior:

(.TI-...,1K.T) = (CL,(xT.)7•r.T_,,...,C K(X7)7"K.T_1),

where

7rkT- = i,.• (1- + )Iik
(10)

and C* =I / XLk(XT) 1rA.T_

Example 2, continued

This example uses the same inference network and realized response pattern

discussed above. After each item, an attenuated posterior replaces the true Bayesian

posterior, which is mixed with a proportion of .75 with the baseline prior (.25, .50, .25).

Table 8 traces the successive updating of potential tables. For each time point, the "After

Item t" tables represent updating from the previous set of beliefs; "Before Item r+l"

represent the results of mixing the resulting posterior with the baseline prior as in (10) and

propagating this change through the network. The trace of the posterior mean for 0,

appearing as the final row of Table 5, is similar to that of the geometrically decaying

likelihood.

[Table 81
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Discussion

This paper begins to explore ways to account for learning that might be useful
intelligent tutoring systems (ITSs). In the HYDRIVE ITS (Gitomer, Steinberg, &
Mislevy, in press), students work through a series of adaptively selected problems.
Problem selection and interventions within problems are guided by current estimates in the
student model. A Bayesian inference network is employed to update the student model
within a problem, under the assumption that its parameters are stable during the course of
observation. (An exception is upward adjustment following episodes of direct instruction.)
By the end of a problem, enough information has been acquired to make reasonably well
informed inferences about the student status, at least for parameters dealing with aspects of
knowledge that the problem probes. At the beginning of each problem, though,
performances on previous problems presumably convey some information about the
student's status. We wish to exploit this information, without either assuming that the
student model does not change over the course of problems or attempting to model the
likely nature of change from one problem to the next (as is done, for example, Anderson's
LISP tutor (Anderson & Reiser, 1985) and Kimball's (1982) calculus tutor, which use

variants of learning models such as Estes's).

While both the decaying-likelihood and attentuated-posterior approaches discussed
above achieve the desired effect, the decaying-likelihood approach requires raw data to be
maintained for subsequent partial retraction. The attenuated-posterior approach works with

temporally local quantities only. This seems preferable in a context such as ours, where it
is advantageous to minimize bookkeeping, computation, and data maintenance. An
additional advantage is that this approach is compatible with the storage- and calculation-
reducing scheme described in Mislevy (in press(b)) for reducing the size of Bayesian
inference networks with multiple copies of iid observable variables.
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Table 1
Weights for Geometric Rate of Information Decay

t 86=1 8=.95 8=.75 8=.50

1 1.00 1.00 1.00 1.00

2 1.00 .95 .75 .50

3 1.00 .90 .56 .25
4 1.00 .86 .42 .13

5 1.00 .81 .32 .06

6 1.00 .77 .24 .03
7 1.00 .74 .18 .02

8 1.00 .70 .13 .01
9 1.00 .66 .10 .00
10 1.00 .63 .08 .00
11 1.00 .60 .06 .00
12 1.00 .57 .04 .00

13 1.00 .54 .03 .00

14 1.00 .51 .02 .00

15 1.00 .49 .02 .00

16 1.00 .46 .01 .00

17 1.00 .44 .01 .00

18 1.00 .42 .01 .00

19 1.00 .40 .01 .00

20 1.00 .38 .00 .00
21 1.00 .36 .00 .00
22 1.00 .34 .00 .00
23 1.00 .32 .00 .00
24 1.00 .31 .00 .00
25 1.00 .29 .00 .00

26 1.00 .28 .00 .00
27 1.00 .26 .00 .00
28 1.00 .25 .00 .00
29 1.00 .24 .00 .00
30 1.00 .23 .00 .00



Tabb 2
mistid TMme t Me=e with hiformaim Decay

8=1 8=.95 &=.75 J-.50

I at x, emmr G error 0, error 9,error

1 .28 0 .00 -.28 .00 -.28 .00 -.28 .00 -.28
2 .35 1 .50 .15 .51 .17 .57 .23 .67 .32
3 .41 0 .33 -.07 .33 -.07 .32 -.08 .29 -.12
4 .46 0 .25 -.21 .24 -.22 .21 -.26 .13 -.33
5 .51 1 .40 -.11 .41 -.10 .47 -.05 .58 .07

6 .56 0 .33 -.23 .33 -.23 .32 -.24 .29 -.28
7 .60 1 .43 -.17 .44 -.16 .52 -.08 .65 .04

8 .64 1 .50 -.14 .53 -.11 .65 .01 .82 .18
9 .67 0 .44 -.23 .46 -.22 .48 -.20 .41 -.26
10 .71 1 .50 -.21 .52 -.18 .62 -.09 .71 .00
11 .73 1 .55 -.19 .58 -.16 .72 -.02 .85 .12
12 .76 0 .50 -.26 .52 -.24 .53 -.23 .43 -.33
13 .78 1 .54 -.24 .57 -.22 .65 -.13 .71 -.07
14 .80 1 .57 -.23 .61 -.20 .74 -.06 .86 .05
15 .82 1 .60 -.22 .64 -.18 .81 -.02 .93 .11
16 .84 1 .63 -.21 .68 -.16 .85 .02 .96 .13
17 .85 1 .65 -.21 .70 -.15 .89 .04 .98 .13
18 .87 0 .61 -.26 .65 -.22 .67 -.20 .49 -.38
19 .88 1 .63 -.25 .67 -.21 .75 -.13 .75 -.13
20 .89 1 .65 -.24 .70 -.19 .81 -.08 .87 -.02
21 .90 0 .62 -.28 .65 -.26 .61 -.29 .44 -.47
22 .91 0 .59 -.32 .60 -.31 .46 -.45 .22 -.69
23 .92 1 .61 -.31 .63 -.29 .59 -.33 .61 -.31
24 .93 1 .63 -.30 .65 -.27 .69 -.23 .80 -.12

25 .93 1 .64 -.29 .68 -.26 .77 -.16 .90 -.03
26 .94 1 .65 -.29 .70 -.24 .83 -.11 .95 .01
27 .95 1 .67 -.28 .72 -.23 .87 -.07 .98 .03
28 .95 1 .68 -.27 .74 -.21 .90 -.05 .99 .04
29 .96 1 .69 -.27 .75 -.20 .93 -.03 .99 .04
30 .96 1 .70 -.26 .77 -.19 .95 -.01 1.00 .04

Mean -.22 -.19 -.12 -.08
SD .09 .09 .13 .22

MSE .06 .04 .03 .05



Table 3

Trace of Potemial Tables and Clique inzrcam Table for Five R - to 1D Iam:
Response Vector = (0,0,1,1,1), No Informanon Decay

2NITLAL STATUS AFMER ITEM I 0 AFIER (0,0)

131-=1 htl-=0 I -i=I imilo0 JMa-I ml=n O
0-i .025 .225 q=-I 0 .375 0.-I 0 .500
94) .200 .300 0=0 0 m50 0=O 0 .4"

9.+l .175 .075 0.+I 0 .125 0+l00 .056

Imm2l I=20 [mg2=l In2=O Im2l Dm2=O
e.-i •025 .225 e=-i .038 .337 0.-i 0 .W0
0=0 .200 .300 9.0-0 .200 .300 O-0 0 .444

0-+1 .175 .075 0I .+l .088 .038 -+l 0 .056

0 IzM3-1 23) 0 IU.l3-1 1=3=0 0Im3=1 123=O

a-I .250 0--i .025 .225- 0--i .375 0- .038 .337 1 0--i .500 0--i .050 .450

0fO .500 0-0 .200 .300 060 -500 e=0 .200 .300 eo0 .4" 0-, .178 .267

0=+1 .250 04+l .175 .075 10=+1 .125 0=+1 .088 .038 9--+1.056 0+1 .039 .017

IuWA4 I llm I nM4=1 Im"i ILT-I hm4=0
0--i .025 .225 e 0--i .038 .337 0--I .050 .450

*f0 .200 .300 1 6=0 .200 .300 0ao .178 .267

0.+l .175 .075 0-=+1 .088 .038 0,+1 .039 .017

ItmS=l ImS-L luniw5=1 lm5.0 InnS-l ItmiS-
0--I .025 .225 Iffi .038 .337 0=-i .050 .450

0.0 .200 .300 1 e=0 .200 .300 100 .178 .267

9.+l .175 .075 0 e=+l .088 .038 9.+1.039 .017

AFTER (0,0,1) AFTER (0,0,1,1) AFTER (0,0,1,1,1)

Itm1=I luml=O kml=I Iunl=O Izml=l1 hIl-O

0--i 0 .188 I i 0 .048 0=-i 0 .010

e--o 0 .667 8=0 0 .688 0=0 0 .592

0-+1 0 .146 0 .1 0 .263 =..+il0 .397

Im2=l lm2=O itm2=l im2--O Im2=l Itm2=O
0=-I 0 .188 . 8=-i 0 .048 ga-I 0 .010

e=0 0 .667 =0 0 .688 0=0 0 .592
effi 0 .146 0ff1 0 .263 0=+10 .397

e i ztffil lm3.-0 0 im3=i lint3-0 1hm33-1 bm3-0

8=-1 .188 0=-1 .188 0 e 0-i- .048 0-!i .048 0 0=-1 .010 0,-1 .010 0
8=0 .667 0--o .6 6 7  0 0-0 .688 eff .688 0 8=0 .592 0-0 .592 0

0=+1 .146 9-f+l .146 0 9=+1 .263 o.+, .263 0 0.+1.397 =+1 .397 0

lum4fi lun=0 I Im4f-I t•a4-0 IDm4 I m
0--I .019 .169 0.i, .048 0 0--I .010 0

0=0 .267 .400 0-0 .688 0 0.0 .592 0

0-+1 .102 .044 0 0=+- .263 0 e=+1 .397 0

Iln5=l lur5=0 IID5-i IunlS=0 Iun5=1 hml5=0
0-i1 .019 .169 0--1 .005 .044 0--i .010 0

0e0 .267 .400 0=0 .275 .413 0=0 .592 0

0-+1 .102 .044 1 0.+1 .184 .079 0-+1 .397 0



bipams Vecto - (0,0,1,1,1). Wwufmimhi•frm TIIu• MoIm hum y

D•IAL STATUS AFTIE rm 1i0 - oAF (0,0)

!ial Imis0 lmll ulaok ianl-I knllO

0-I .025 .225 8=-I 0 .375 s-I 0 50

0,0 .200 .300 080 0 .500 600 0 A4"

0-+l .175 .075 0=+1 0 .125 0-+10 .056

n2-,l l2= l Wn2-l IbU2-0 kal2m1 ima2o

08-i .025 .225 e=-i .038 .337 8-1 0  50

9-o .200 .300 80 .200 .300 0=0 0 A4

0.4+ 175 .075 0 +I .088 .038 1 0+I 0 .056

e ~~~~ ~ ~ mm ll3l m=m3=lm= lm=

SIm3a Wn3=0rg~1 Iizi3a1 IU03=0 113- In0u
e=-I .250 0.-i 025 .225 8=I .375 0-1 .038 .337 ._-i .500 es-i .050 .450

8=0.500 ,0 .200 .300 0=0 .500 90 .200 .3001 0.0 .A' s-o .178 .267

8=+1 .250 8=+1 .175 .075 9=+1 .125 0.41 .088 .038 0t-l .056 9.+1 .039 .017

1un,=1 iun44 I IMnm1 hnAo i km 14 .

0.-1 .025 .225 .,-I .038 .337 8=-. .050 .450

0.0 .200 .300 0.0 .200 .300 .o- .178 .267

ou+1 .175 .075 0.+=1 .088 .038 9.+1.039 .017

IMS= I unS=5 I unnS-i km5=0 InmSl IkmS-0

s--i .025 .225 . s-I .038 .337 s-1 .050 .450

9-) .200 .300 e -=0 .200 .300 0.0 .178 .267

9.+1 .175 .075 e-=÷ .088 .038 1i.+1.039 .017

AFTER (0,0,1) AFTER (-.0,1,1) AFTER (-,-,1,1,1)

hml= O I ini-l lml= 0 kmi-0 lIM=1 lkml=O

8--1 0 .188 f 0.-1 .003 .023 0--i .000 .002
8=0 0 .6678 .221 .331 0=0 .108 .163

e0+l 0 .146 + 0,+1 .295 .127 9-÷l .509 .218

In2-l lun2= . lwthl2=1 Itm2= lnn2=l Ikm2xO

s,-1 0 .188 0--i 0 .026 0.-I .000 .002

0-0 0 .667 q80 0 .552 6=0 .108 .163

0m+1 0 .146 j 0.+1 0 .422 e.+1 .509 .218

Inn=I un-0It3a-1 Ivm3=0 lan3-1 Inn3=0u1=3,.-l lun.3-0 0 ll3• t300 lm

0=-I .188 0.-I .188 0 0--i .026 0--i .026 0 i .002 0.-i .002 0

0=0 .667 9.0 .667 0 1 0-0 .552 *=o .552 0 " 0 .271 0.0 .271 0

0-+1 .146 0.+1 .146 0 -0=41 .422 0+.1 .422 0 0+1 .727 0.+1 .727 0

1nn=1 nn1 h24-1 Im4-- Inu 4=1 n
0.-I .019 .169 I 0.-i .026 0 0--I .002 0

S.267 .400 o= .552 0 0.0 .271 0

0.+1 .102 .044 I 0.+1 .422 0 9-+1.727 0

Itn5sl ImQ 1 IInn. INM L 0 km..l haS-

0.-I .019 .169 0.-I .003 .023 1 0.-i .002 0

0-0 .267 .400 I,= .221 .331 o .271 0

if 1 .102 .044 9 0=+1 .295 .127 e .1.727 0



Table 5
Posterior Means for 0

t 0 1 2 3 4 5

No Decay .00 -.25 -.44 -.04 .22 .39

Mthe most recent .00 -.25 -.44 -.04 .40 .73
x's only

Geometric Decay, .00 -.25 -.42 .07 .35 .51
8=.75

Attenuated .00 -.25 -.40 .13 .39 .53
posterior, 8=.75



Table 6
Conditional Probabilities Implied by Decaying Likelihood with 8=.75

lag=) Lag-1 Lag=2 Lag3 Lag=4

O x=1 x=0 x= 1 x0 x=-1 x=O x= 1 x=0 x= 1 x=0
.1 .00 .900 .161 .839 .226 .774 .284 .716 .331 .669

0 .400 .600 .425 .575 .444 .556 .458 .542 .468 .532

+1 .700 .300 .654 .346 .616 .384 .588 .412 .567 .433



Table 7

Trace of Pouetial Tables and Clique Inemrsecýti Table for Five Responses:

Response Vector = (0,0,1,1,1), Likelihood Decay with 86.75

INITIAL STATUS AFTER ITEM I = 0 BEFORE rIEM 2

Imil=i Itmi • ILMl=1 ntmI0m I".alln=l lnnim0
em-i .025 .225 0=-i 0 .375 1=-I .061 .314

0.0 .200 .300 04 0 .500 0=0 .212 .288

0.+1 .175 .075 !.+1 0 .125 1 +1.082 .043

llm2=1 Iwn2-0 Imu2=I Iun2=0 IIm2=l Ium2=0
0=-i .025 .225 0=-i .038 .337 0=-i .038 .337

0=0 .200 .300 e e=0 .200 .300 0=0 .200 .300

0=+1 .175 .075 1 + .088 .038 9=+1 .088 .038

0 lt=n3= IItm3=0 O !Im=3=l I I3=0 I L3=1 Imi3=0

0=-i .250 0=-I .025 .225 e 0=-1 .375 0=-I .038 .337 e= .375 0=-i .038 .337

0=0 .500 0=0 .200 .300 0=0 .500 0=0 .200 .300 9=0 .500 0=0 .200 .300

e=+i .250 - .175 .075 6 0=+l .125 o=+i .088 .038 +1 .125 9+1 .088 .038

Iun4=l Im=0 ImA4=l Itn4= Ium4=1 Imn"
0=-i .025 .225 e 0=-i .038 .337 9,1 .038 .337

0=0 .200 .300 1 8=0 .200 .300 9=0 .200 .300

o-+1 .175 .075 e 0=+i .088 .038 =+l .088 .038

Iun5=i Iun5=0 Ihm5-= Irtm5=0 IMS=1 Im-0
0=-1 .025 .225 6 0=-i .038 .337 0=-i .038 .337

0=0 .200 .300 .0=0 .200 .300 0=0 .200 .300

0=-+1 .175 .075 0 0+1 .088 .038 0=-+1.088 .038

AFTER (0,0) BEFORE ITEM 3 AFTER (0,0,1)

Itml=l Iunl=0 ]A "=21tmI=1 Itm1=0 Itrnl=1 ltrnI=0

0=-I 0 .487 0=-i .110 .377 0=-i 0 .157

0=0 0 .446 0-0 .198 .248 0=0 0 .618

e=+] 0 .067 e =-+1 .041 .026 0=+1 0 .225

Irn 2=l Im 2=0 : • Inn2=l I2-0 I un2=l b.0
0=-I 0 .487 e0=-1 .079 .408 0=-1 0 .157
0=0 0 .446 .0=0 .189 .257 0=0 0 .618

0=+1 0 .067 . 0=+1 .044 .023 0=+1 0 .225

0 Itm3 tn=3= e It=3=1 lun3=0 0 lm3=i Inm3=0

0=-i .487 0=-i .049 .438 9 1- .487 0=-1 .049 .438 0=-1 .157 0=-1 .157 0

0=0 .446 0=0 .178 .268 0=0 .446 0.0 .178 .268 0=0 .618 0-0 .618 0

+1 .067 9-+1 .047 .020 . e=+i .067 0=+i .047 .020 0+1 .225 9.+1.225 0

IurA4=l lm4=0 Itm4=I IMu4=0 Im4=l iun4-0
e--1 .049 .438 1 0=-I .049 .438 0=-i .016 .141

0=0 .178 .268 . 0=0 .178 .268 9=0 .247 .371

o-+1 .047 .020 ( 0=+1 .047 .020 0+.158 .068

ItrTf5=i Iron=0 Iri5--1 Itr5-0 Iun5=i Imm.=l
0=-1 .049 .438 ,- .049 .438 0=-I .016 .141

0=0 .178 .268 0=0 .178 .268 :=0 .247 .371

0o-+ .047 .020 0+ 1 .047 .020 0=+i .158 .068

(contimed)



T"l 7, ceminoW

BEYME ITE 4 AFTER (0,0,1,1) BEFM rEM S

Sl Oitml Ii .,tMI la a" hml-I Izmlk O
- .045 .112 - 0 .049 e-I .016 .033

9-0 .283 .335 0..0 0 .557 0= .261 .296
e=+1 .132 .093 1 0 .394 1+ .223 .171

Is1.=2 n2-1 LI-mO, Ia.2-1 ltn2n0 h.Is n2=i lWn2-0
0.-1 .035 .122 0=- 0 .049 eO.l .014 .035
e=0 .274 .344" =0 0 .557 6.0 .255 .302
e.+1 .139 .086 0=+1 0 .394 0=+1 .232 .162

0 u Iin3=1 Ium3=0 0 IWO3-1 Imn3-0 e 1 hm3=1 zm3-0

o=-1 .157 e,-1 .025 .132 9=-I .049 0=-i .049 0 6=-1 .049 9=-1 .011 .038

0=0 .618 8=0 .262 .356 8=0 .557 0=0 .557 0 =0 .557 8=0 .247 .310

6=.1 .225 e,+1 .147 .078 9=+l .394 0=+l .394 0 - .394 0=+1 .243 .151

1mn4=1 lm4=0 Itu 1 IUn4=0 n lmi41 km4-0
- .016 .141 08-- .049 0 8=-l .008 .041

0=0 .247 .371 0=0 .557 0 0=0 .237 .321
0-+1 .158 .068 0=+1 .394 0 (=.,+ .258 .136

InS=l hm5=0 lunS=l ItnS=0 ItmS=i Im5=0
e=-1 .016 .141 0=-1 .005 .044 0=-I .005 .044
8=0 .247 .371 8=0 .223 .334 9=0 .223 .334

+ .158 .068 0=11 .276 .118 + .276 .118

AFTER (0,0.1,1,1)

Iml=l Iunl='O
0=-i 0 .018

0=0 0 .455

-0 .526

luii2=1 [un2.=0
0=-i 0 .018

0--0 0 .455

e.=+i 0 .526

o IuW3=l lmi3=0
6=-1 .018 0=-I .018 0
0=-0 .455 8=0 .455 0
e=÷I .526 =+I .526 0

Ian4=1 ln4-
0=-i .018 0
0=0 .455 0

0=+i .526 0

lmiSl lunS=0
8=-1 .018 0
0=0 .455 0
0=+1 .526 0



Table 8

Trace of Potential Tables and Clique Intersection Table for Five 1ID Responses:
Response Vector = (0,0,1,1,1), Attenuated Posterior Decay, Sm.75

INITIAL STATUS AFTER ITEM 1 = 0 BEFORE ITEM 2

Itml=1 ItMlfi Iunl=l Inllffi Itml=lh kmli=0
0=-- .025 .225 0=- 0 .375 .i- 0 3
0=0 .200 .300 . =-0 0 .500 = 0 .500
o=+1 .175 .075 .o=+i 0 125 8fi l0 .156

Im12= 0 l 1mf Iun2=1 km2i I n2=I Inn2-0
0=- .025 .225 0=-1 .038 .337 0=-i .034 .309

=o0 .200 .300 0=0 .200 .300 0=0 .200 .300

0=+1 .175 .075 1 0=+1 .088 .038 fi+1 .109 .047

1 =3=1 1tm3=0 1 e Itm3=1 1m3=00 0 Imni3=1 IUn3=

e=-I .250 0=-I .025 .225 . 0=-i .375 0=-i .038 337 0=-i . 0=-I .034 .309
8=0 .500 8=0 .200 .300 0=0 .500 0=0 .200 .300 0=0 .500 e=0 .200 .300

e=+i .250 0f+1 .175 .075 0=+I .125 fi+I .088 .038 offi .156 fi+I .109 .047

Ir4=l lm 4=i0 Itn4=1 Itm4=0 Im4=i Im4=0
0=-i .025 .225 0=-I .038 .337 e=-i .034 .309
0=0 .200 .300 e 0=0 .200 .300 0=0 .200 .300
e=+ l.175 .075 0. 8= .088 .038 effi .109 .047

Itn5=1 lnn5=0 5lun5=1 Itm5=0 IunS=1 Irn5=00=-i .025 .225 0=-I .038 1337 0-I .034 .309

0=0 .200 .300 0=0 .200 .300 0=0 .200 .300

f=+l .175 .075 e=+l .088 1038 0ffi .109 .047

AFTER (0,0) BEFORE ITEM 3 AFTER (0,0,1)

lumlfl ltml=0 ltml=1 Iml=0 Itml=I Itml=0

e=-I 0 .471 0 416 e=- 0  .134

e=0 0 .457 0=0 0 468 0=00 .604
0=-+ 0 .071 0=+l 0 .116 0f+i0 .262

Iln2=I lmr2f=0 lUn2fi Itm2=0 Iwm2=1 1m2=
ff-I 0 .471 .=--I 0 416 0=-i 0 .134

e=o 0 .457 0=0 0 .468 8=0 0 .604

0i+1 0 .071 fi- 0 .116 o=+10 .262

0 Itn3=I Itm3ff0i e ltm3=lt113=0 e Inn3fil
e=-i .471 0=--i .047 .424 0 o=-I .416 0=-i ,042 374 0=-i .134 0=-i .134 0

0=0 .457 0=0 .183 .274 eff=0 .468 0=0 .187 .281 =0i .604 =0- .604 0

o=+I .071 0f-+1 .050 .021 . f=+l .116 e 1 .081 035 ffi .262 effi .262 0

Irn4ffil lr4=0 [un4=1 Itmn4=0 Ifm4=l Itm4=0

o=-I .047 .424 . .042 .374 . =-I .013 .121
0=0 .183 .274 6=0 .187 .281 0=0 .242 .362

0=+1 .050 .021 . 0=+1 .081 035 0=+1 .183 .079

In5f=1 lz5n=0 Iun5=1 limS=0 IimS=1 ImiS=0
0=-I .047 .424 0=-I .042 .374 0=- .013 .121
0=0 .183 .274 e=0 .187 .281 0=0 .242 .362
0=+I .050 .021 0=+1 .081 .035 0=+i .183 .079

(continued)



* - ...... '. -6,

BRlIrM4 APTSR(O,0,I.1) IHROB 3$

Iml.-I Iml0nluO 1=1=1 1m=l0
0.- 0 .63 0.-l 0 .038 1,-1 o .091

0,, 0 .578 eo 0 .539 0=0 0 .529

e.+l 0 .259 e=+l 0 .423 .+] 0 .380

I=2=1 In2-, Im2=1 l=0 Ilun201 I'20

e=-i 0 .163 1=-1 0 .038 1=- 
0  .091

0: 0 .578 0:0 0 .539 0.0 0 .529
0=+1 0 .259 + 0 .423 e=+1 0 .380

0 Itm3=1 Itm3=O 10 ItM3=l IUn3=0 0 Iu 13=1 Itm3=O

6=-i .163 0=-i .163 0 9=-i .038 8=-- .038 0 e=.1 .091 0=-i .091 0

0=o .578 0=0 -578 0 0=0 .39 0=0 .539 0 0=0 .529 0=0 .529 0

0=+, .259 0=+1 .259 0 e=+1 .423 0=+1 .423 0 0=+1 .380 0=+l .380 0

ltm4=l Iun4=O lum4=1 Itu4=O In4=1 Ian
0=, .016 .147 e=-I .038 0 0=-I .091 0

0=0 .231 .347 0=0 .539 0 0= .529 0

0=+1 .181 .078 1=-+1 .423 0 .=+1 380 0

Ian5=I lunS=0 lcn5-l IuMS=0 ImiS=l Izm5=0
0=- 1 .016 .147 0=_ 1 .004 .034 0 .009 .082

9=0 .231 .347 e=0 .216 .323 0=0 .212 .318

0=+1 .181 .078 0=+1 .296 .127 0=+1 .266 .114

AFTER (0,0,1,1,1)

Iml=l Itml=O
0=-1 0 .019

0=0 0 .435

0=+1 0 .546

Iun2=1 Iun2=0
0=-i 0 .019

0=0 0 .435

0=+1 0 .546

0 Ihn3=1 ltm3=0

8=-I .019 8=-I .019 0

0=0 .435 0=0 .435 0

9=+1 .546 8=+1 .546 0

lia4= 1 lun4=0
0=-I .019 0

0=0 .435 0
0=+1 .546 0

lunS=1 lUnS=0

8=-i .019 0
0=0 .435 0
9=+1 .546 0
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IMA1

Itrn5

Figure 1

Directed Graph for the Educational Testing Example



Cliques

Intersection

Figure 2

Join Tra for the Educational Testing Example
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