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PREFACE

A preface to the entire Handbook of Supersonic Aerodynamics
appears in Volume 1 and includes a brief history of the project.

The material for the Handbook has been selected on the basis
of its anticipated usefulness to those who are ccncerned with the de-
sign and performance of supersonic vehicles, Therefore, the various
sections of the Handbook present relevant data along with results of
the more significant experiments and a resume of basic theory.

The Handbook is printed and distributed by the Bureau of
Naval Weapons, Department of the Navy, and is being published in sepa-
rate sections as material becomes available, The unpublished sections
of the Handbook are now being prepared by individual authors for the
Applied Physics Laboratory. The selection, editing, and technical re-
view of Handbook material are functions of an editorial staff and a
technical reviewing committee at the Applied Physics Laboratory. A

list of the sections comprising the Handbook Series is presented on
the facing page.

Correspondence relating to the contents of the Handbook
should be directed to

Editor and Supervisor
Aerodynamics Handbook Project
Applied Physics Laboratory
The Johns YHopkins University
8621 Georgia Avenue

Silver Spring, Maryland

Communications concerning the distribution of the Handbook
should be directed to

Chief, Bureau of Naval Weapons
Department of the Navy
Washington 23, D. C.

Section 18, '"Shock Tubes,” was prepared under a contract with

G. N, Patterson, Director of the Institute of Aerophysics at the Univer-
sity of Toronto,

The interest of the Wind Tunnel Panel Committee of NATO-AGARD
in the presentation of this material in its present form has been in-

strumental in obtaining financial assistance from the Defence Research
Board nt Canada,

Reviews of this section were prepared for Wilbur C, Nelson,
Editor of the NATO-AGARD Wind Tunnel Panel, by Ira H., Abbott, Julius
Lukasiewicz, Ernest H, Winkler, and Thomas D, Wilkerson and were made
available to the Aerodynamics Handbook Reviewiug Committee at The Johns
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Hopkins University Applied Physics Laboratory. These reviews and a re-
view by Robert N, Schwartz are gratefully acknowledged,

The pagination of Section 18 departs from the decimal system
used in sections previously published, The pages are consecutively
numbered on the lower margin, and the subsectional identification of
text and figures has been retained on the upper margin,

As members of the Handbook staff, Anthony Strank shared with
me the work of editing the manuscript for Section 18, Bruce Holland
attended to many details in preparing the manuscript for publication,
and Mrs, Doris Rupertus typed the reproduction copy.

Stuart L., Penn
Editor and Supervisor
Aerodynamics Handbook Project
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SYMBOLS

sound speed

area

Angstrom unit: 10-7mm

mass flow; light source brightness

heat capacity per unit mass at constant pressure
heat capacity per unit mass at constant volume
skin friction coefficient: 7/(1/2 puz)

length

(4 X area

BE;TEEYE;): mirror diameter

hydraulic diameter:

internal energy per unit mass

voltage; illumination; energy

resultant body force per unit mass; focal length
see Eq. (2), Subsec. 4.2.2.1

heat y‘ransfer coefficient, enthalpy per unit mass;
Planck's constant

electric current
heat conduction coefficient; Boltzmann's constant

equilibrium constant: Knudsen number; Gladstone-Dale
constant

heat of dissociation per unit mass
heat of ionization per unit mass

length
mass; molecular weight; magnification
Mach number

shock wave Mach number referred to sound speed of

stationary gas ahead of shock: ﬁL
1

index of refraction; number of diaphragms

xxxiti

L maraiad e

o

oot e s i okl

SlaRiE £r 3

kel

o

IO

Py




F e S R S S S B e N S S - TR A Y s Ld

Symbols NAVORD Report 1488 (Vol. 6, Sec. 18)
i \
: N dimensionless characteristic slope: Eif ..
1 4
p static pressure
po stagnation pressure
p; pitot pressure
. P bursting pressure difference across diaphragm; also
. . 2
Riemann v le: +
n ariable ?—:_T a u
uc
! P Prandtl number: -T?
r
F q rate of heat transfer/unit area
L 2
iema i le: - ;
P Q Riemann variable 713 u f
LN universal gas constant
R gas constant per unit molecular mass: % ; electrical
resistance; radius of curvature 1
1 E Y
i; S specific entropy; area; sensitivity §
Dé . El
L t time
;' T absolute temperature
b
P T, stagnation temperature
i
b u velocity along x-axis i
L v relative velocity; specific volume: (l); volume of
v driver section p i
L i
w shock wave velocity
X distance; degree of ionization
b X dimensionless distance: %
y distance
z disitance
yA : sS1 1 : _L
compressibility factor oRT
oy temperature cocfficient of resistivity,; degree of
dissociation; angle
; .. _h
1 centhalpy parameter: —r—
p/p
C
Y specific heat ratio: EE \
v
; XXX1v
}
&.
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Symbols

isentropic index: paz/p

boundary-layer thickness; film thickness; resistance
element thickness

efficiency of energy transfer

angle; characteristic absolute temperature
1

characteristic temperature for dissociation: 1?

1.
characteristic temperature for ionization: 1%

characteristic temperature for vibration: %;

wavelength, mean free path
coefficient of viscosity; Mach
frequency

distance (fringe shift)

mass density

a,t
dimensionless time: 4 ; wall shearing stress:

L
Cep u2
—g ; relaxation time

Subscripts

denotes initial condition
denote a quasi-steady uniform state of the basic

shock-tube flow shown below or of a particular
flow described in the text

R

! (1)
— Diaphragm

(x,t) Diagram of Basic Shock-Tube Flow
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Special Notation

Dimensionless ratios of velocities and thermodynamic variables are de-
noted below; subscripts i and j refer to quasi-steady uniform states
1, 2, 3, etc,

A sound speed ratio

ij

speed ratio of Q-characteristic line

speed ratio of a P-characteristic line

specific internal energy ratio

Mach number

static pressure ratio

stagnation pressure to reference static pressure
ratio

dynamic pressure to reference pressure ratio
static temperature ratio

stagnation temperature to reference state tempera-
ture ratio

particle velocity to reference sound speed ratio

relative gas velocity to reference sound speed

ratio (viJ = wiJ - Uij)

ratio of relative velocities
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Symbols

= = 4
wiJ Mg ay
u
A = Pit
ij pJaJ
r =%
ij Pj
vyt
Sy 1
vy -1
[3:
i 2y,
D _ @ 3
pt 8t TV

4
e
+
——
c
I+
f--3
N’

o]

=l

=t
wut

air/argon

airl'helium

shock Mach number

mass flow ratio

density ratio

perfect gas quantity

perfect gas quantity

derivative along a line whose slope is g% = u, or

in thec direction of a particle path (substan-
tive or wmaterial derivative)

derivative along a line whose slope is %% =uta,

or in the direction of a characteristic line

represent contact regions travelling to the left
and right, respectively

represent forward facing or P-type rarefaction
waves and shock waves, respectively, in which
the particles enter from right to left

represent backward facing or Q-type rarefaction
waves and shock waves, respectively, in which
the particles enter from left to right

represents a diaphragm initially separating air
and argon in a shock tube

represents a contact surface separating air and
helium in a shock tube
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Introduction

[

SECTION 18: SHOCK TUBES

1. Introduction

A shock tube is a device for generating gas flows ot very
short duration, In its simplest fourm it consists of a tube of constant

cross section in which a diaphragm initially separates two bodies of

gas at different pressures, Rapid removal of the diaphragm generates

a flow of short duration containing waves of finite amplitude separated . f
by quasi-steady regions. Initially, after diaphragm removal, a shock

wave travels into the low pressure gas while an expansion or rarefaction

wave travels into the high pressure gas, The quasi-steady flow regions

induced behind these waves are separated by a contact surface across

which pressure and velocity are equal, but density and temperature are

in general different, The shock heating of the low pressure gas and

the expansjion cooling of the high pressurc gas permit a very wide range

of flow temperatures to be achieved, One important application of the

shock tube has been to the study of gases under extreme temperature con-

ditions.

The shock tube was first used in France by Paul Vieille as
early as 1899 (Ref. 1), Vieille's tube was 22 mm in diamecter and over

6 m long, with a chamber length of 271 mm, He used diaphragms of col-

lodion, paper, glass, and steel toil, The collodion diaphragms proved

most successful, since like cellophane they had very desirable rupturing

properties, Collodion diaphragms 0,29 and (.11 mm thick burst when the

chamber pressures were 27 and 16 atmospheres, respectively, whiie the

paper diaphragms ruptured at an overpressure of 1 atmosphere., The rec-

ords appear to indicate that the velocity recording apparatus was rather " A
limited, Nevertheless, Vielille came very close to obtaining the theo- y
retical shock velocity of almost twice the speed of sound in air at a

diaphragm pressure ratic of 27, It might be noted that he was at that

time also concerned with shock wave attenuation and the effect of cham-

ber length on the shock strength,

No further work appears to have been done in shock tubes until
Payman and Shepherd in 1940 (Ref. 2) made a detailed study of the flow
in the channel following the rupture of copper diaphragms, They suc-
cessfully used a wave-speed camera with a schlieren system that they had
developed more than a decade earlier while working on combustion studies
for the Explosives in Mines Research Committee of Britain,

Work in this field in America was initiated by Prof. W, Bleakney
and his associates at Princeton University around 1942, Their shock tube
was used initially for calibrating crystal pressure gauges (Refs, 3 and 4),
Later it was applied to problems in gas dynamics in the form of a study

of regular and Mach type reflections of shock waves from a solid surface
(Ref, 5), The potentialities of the shock tube for investigating many
problems in physics and fluid mechanics were sooun recognized, and its

use in university and other laboratories became quite widespread in the
United States soon after the Second World War (see Refs, 6, 7, 8, 9, 10,
and 11, for example).

A thcoretical analysis applicable to the shock tube was first
given by Kobes in Austria in 1910 (Ref, 12), when he investigated a pneu-

matic brake system used in railway cars, This work was referred tc by .
Schardin in Germany (Ref, 13) in connection with his own development of

the shock-tube theory relating to bursting diaphragms in a pipe., The
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shock-tube equation, relating diaphragm pressure ratio and shock-wave
pressure ratio, was later developed independently by G, I, Taylor in

England (Ref. 2), A, H, Taub (Ref. 3) in the U. S, A., and by

G. N, Patterson (Ref. 14) in Canada. Some recent accounts of shock-

tube theory and experiment can be found in Refs, 15, 16, and 17,

Some of the research applications of the shock tube have been
as follows: Study of transitions through the shock front, contact sur-
face and rarefaction wave; collision, overiaking, and refraction of
shock waves and rarefaction waves,; shock wave diffraction; shock-loading
of structures; relaxation effects and imperfect gas effects; chemical
kinetics; combustion and flame propagation; condensation effects; sound-
speed measurements; unsteady boundary layers induced by shock and expan-
sion waves, dissociation, ionization, electrical conductivity, radiation,
heat transfer, spectra, and other physical effects produced in gases at
extremely high temperatures; magnetogasdynamics; and use as an aerody-
namic test facility in the subsonic, transonic, and supersonic flow
regions, as well as a means of driving hypersonic shock tunnels. This
wide utilization of the shock tube has resulted in a large research out-
put, and a sizeable literature on shock tube studies has now accumulated.

1.1 General Scope of Contents

This section of the Handbook of Supersonic Aerodynamics pre-
sents a comprehensive account of shock tube theory and application.
Subsections 1 through 3, by 1. I. Glass, treat the detailed theory and
performance of idealized cold-driven constant-area shock tubes (simple
shock tubes), including a discussion of real-gas effects (Subsec, 2),
and a comparison with theory of experimentally observed flows in shock
tubes with a discussion of viscous and heat transfer effects (Subsec. 3).
Subsections 4 through 7, by J. G. Hall, treat the production of strong
shock waves by varicus modifications to the simple shock tube (such as
driver-gas heating and area reduction from driver to driven sections)
and comparison of the relative effectiveness of such modifications
(Subsec, 4); applications of the shock tube as an aerodynamic facility,
including the hypersonic shock tunnel, and applications to aerophysics,
chemical kinetics, and combustion research (Subsec. 5); shock-tube
materials, design, and construction (Subsec, 6); and finally, shock-tube
instrumentation (Subsec. 7).
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2. Performance of Simple Constant-Area Shock Tubes

2.1 One-Dimensional Rarefaction and Compression Waves

A disturdance or pressure wave of finite amplitude in a one-
dimensional nonstationary flow may be considered as being composed of
an infinite number of infinitesimal disturbance fronts or pulses, A
basic property of the pressure wave is that each small pulse (Mach wave
or characteristic line) travels at the local sound speed with respect to
the gas at the point under consideration (Ref., 1). It will be shown 2

that each sound wave changes p, p, and u, so that Ap = (p a) {A u) = a%Ap,

The above concept is illustrated in Fig, 2.1-1, Consider a piston held
by a peg in the duct as shown, At t = 0 the peg is released and the pis-
ton moves to the right as shewn on the (x, t)-plane, Approximate the
piston path by small reversible steps 0-1-2-3, At point 0, acoustic
pulses of identical speed are transmitted into rzgions A and B, and at
different speeds for points 1, 2, and 3. The gas to the right is being
compressed and heated by the piston, whereas to the left the gas is ex-
panded and cooled. Consequently the acoustic pulses in the compressicn
wave (CW) separating states a-b, b-c, and c-D are travelling with pro-
gressively increasing sonic speeds, while those in the rarefaction wave -
(R) between e-f, f-g, and g-C travel with a diminishing speed., Therefore,
rarefaction waves are disturbances which spread and become less steep
with time. Through the wave, the thermodynamic properties decrease along
a particle path, while the flow velocity iacreases, Whereas through a
compression wave, both the thermodynamic and dynamic properties increase
along a particle path, so that this disturbance steepens and finally
forms into a shock wave. These waves are really transition fronts which
are non-linear and aperiodic,

In nonstationary flows such rarefaction and compression waves
may be generated and modified at pressure and internal energy discon-
tinuities, at area changes, through skin triction and heat transfer, and
by mass removal or addition, The flows may be analysed by applying the
appropriate equations of motion and thermodynamic relations,

For duct flows, such as in the shock tube, the analysis is
greatly simplified by the assumption of one-dimensional flow whereby
the flow properties are assumed to be uniform over any cross section
and to vary only with distance along the duct axis and, in gencral, with
time, Departures from this idealization are caused by friction at the
duct walls, duct cross-section area change, and significant curvature of
the duct axis, Figure 2.,1-2(a) shows idealized one-dimensional flow
through a straight constant-area duct. Such a flow is fictitious, for
in a real gas viscosity causes a boundary layer to grow at the wall
which changes the velocity profile to the one shown in Fig, 2,1-2(b),
In this case, due to the condition of no slip (gas adjacent to the wall
adheres to it), the velocity is zero at the wall and increases to the
free stream value uy at a distance 6 from the wall, In this thin bound-

ary layer of thickness 0, ti> flow is viscous and diabatic, whereas out-
side of it the flow is frictionless., When the boundary layer growth is
very large the entire flow becomes viscous ana diabatic, i.e., becomes

a fully developed pipe flow, Here the velocity distribution varies con-
tinuously from zero at the wall to a maximum at the pipe centre, Even
in large ducts with relatively thin boundary layers it is quite diffi-
cult to achieve truly uniform flow quantities at aay cross section,
Consequently, one-dimensional representation of real flows requires the
use of average flow quantities at each cross section, Even in steady
flow no unique definition of an average Mach number of flow velocity
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exists which will satisfy all of the relations connecting the flow

" quantitics (Ref, 2)., 1In the prescnt note it will be assumed that the
; dynamic and thermodynamic quantities (u, p, p, etc.) are averaged over
a cross-section A, While the method of averaging is not prescribed,
the mean quantities are functions of distance x (along the duct axis)
and time t only,

When the cross-section area varies, the velocity must change
in magnitude and direction even with inviscid flow, If the area change

is sufficiently gradual so that g% (1ln A) is small compared to unity,

the transverse velocity components (v and w) are small (see Fig, 2.,1-2)
by comparison with the axial component (u), and the flow may be treated
as one-dimensional whether inviscid (c) or viscous (d). The relation
of an actually measurcd flow velocity or other physical quantity to the
corresponding averuge quantity must be carefully considered in each .
particular experiment in order to avoid misleading comparisons (Ref. 2), i
However, it should be noted that small stream~tubes in a flow can always
be treated on a one-dimensional basis.

S
S .Sy

——

[l
The assumption of one-dimensional flow is made in deriving §

the differential equations governing fluid wmotion which follow ia
Subsec, 2.1.1. For straight duct flows such as in the shock tube; the ]
one-dimensional representation will involve only small errors in the i
J
1

AL Yt

change of average flow gquantities along the duct axis provided (Ref, 8):

1. The fractional rate of change of cross-section area with respect
to distance along the duct axis is small, i,e,,

. e e——r—
- ——— .

d _ 1 dA :
ax lnA—KT’? << 1 ;

P 2. The velocity and temperature profile shapes remain approximately :
i unchanged from section to section along the duct axis, {
1

PSR TRVINTY

2.1,1 Fundamental Equations

The fundamental equations which govern a nonstationary one-
dimensional flow can be found in general texts such as Liepmann and i
Roshko (Ref, 3). i

P

1, Coatinuity Equation

This equation expresses the principle that mass is conserved: 's
3(pA) d(pud) _
ot * ox 0 (1)
2. Momentum Change i

This equation expresses Newton's Second Law which states that
the resultant force on a particle equals the time rate of cuange of the i
momentum of the particle: P

Du _ 2u ou _ -1 3p !

Dt ~ 3t " Y3Ix " p ox ' f (2) 3

]

A
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Performance of Simple Constant-Area Shock Tubes 2.1.1

All body and viscous forces are assumed as represented by a resultant
body force denoted by f. The properties of £ must be given in a par-
ticular case, For example, if only the wall friction forces are impor-
tant, f = -fs,

where

f

2
¢ = perimeter x 1 xTw _ 2u” C

s p x area x 1 D

3. Energy Equation

Neglecting gravitational forces, the total energy, E, per
unit mass is the sum of the internal and kinetic energy per unit mass,

or (assuming an ideal gas with constant specific heats) E = C, T+ % uz.

The rate of heat transfer per unit mass per unit t ¢ is given by q,
The heat transfer may be through the walls or as a result of heat addi-
tion due to combustion or chemical reactions,

Therefore,

é% [p AE dx] = - ;; [p u AE + p Au] dx + qp A dx

or,

uz)] + ;— [P u A(Cv T + g + 1 uz)]dx

4
qp A dx = It [p A dx(Cv T + 3

[ I

(3)

Substituting in Eq, (3) tke applicable continuity and momentum equa-
tions (f = —fq),

]
ou du , 129p =
at+ux+pax+fs 0
then,
D 3}
g +uf =g (CT) *fﬁﬁ(““) (4)

The above states that the sum of the rate of heat transferred by exter-
nal sources and internally by the power of the friction force times the
average velocity is equal to the total time rate of cha:ge of internal
energy &long a particle path plus the power generated by the pressure
forces,

4, Equation of State

A thermal equation of state of the form p = p (v, T) connects

the three thermodynamic variables p, T, and v = %. Gases in thermal
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equilibrium at low pressure or density and at temperatures sufficiently
below the onset of dissociation or ionization approximately obey the so-
called perfect equation of state:*

pv = ;? = RT or g = RT per unit mass (5)

In general, the caloric equation of state of a gas expresses
the specific internal energy of a gas e as a function of specific

volume v and temperature T, i.c., € = e (v, T)., The specific heats of
a gas at constant volume (Cv) and constant pressure (Cp) are given, in

general. by
_ [ de _{ ¢h
W (%), - (B)
v P

where h = e + pv = specific enthalpy. For a thermally perfect gas, e is
independent of v and depends only on T, Thus, for a thermally perfect
gas, Cv and Cp are functions of T only and can be shown to be related by

Cp_cv=%=R (6)

A gas for which CV and C_ are constants, independent of both volume and

temperature, 1is termed calorically perfect,

A relation of the form p = p(S, p) is sometimes called an en-

tropic equation of state, for example p = where A = —3,exp(S -8 )/C,
p r b ‘) fe) v

o
and the subscript '"o" refers to some unknown reference state.

5. VYelocity of Sound

The speed of sound (propagation of a small pulse) in gas
causes the particles to undergo slow changes, Velocity and temperature
gradients are negligibly small, and even though coefficients of vis-
cosity and heat conduction exist, no entropy change is produced (except

in the region of ultrasonic sound absorption) as their products, u (g%

and < (k%%),required for entropy production are essentially zero (see
Ref. 3, for example), For an imperfect gas, the sound speed a becomes
quite a complex quantity to evaluate (Ref, 6) and will be considered in

Supplement B, However, for a thermally perfect gas, it reduces to the
foilowing simple form:

2:22 :Z-B=7RT 7
: <ap)s p )

*Equation (5) is for thermally perfect gases, The equation of state for
thermally imperfect gases is discussed in Supplement A,
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For a thermally perfect gas, the entropy change of a fluid element may
be expressed from thermodynamic considerations as

ds ¢, T RS (8a)

v constants), the

speed of sound and the entropy may be used as the independent variables
to give two alternate forms of the equation of state as follows:

For a thermally and calorically perfect gas (Cp, C

0 R 2y/(y-1) e—(s-sl)/a (8b)
Pr\™1 |
2 /"(')"1) - .
L - i "(Q-S )/R
; (""1) (575 (8c)
2,1.2 Characteristics in the (x,t)-Plane

The equations of continuity and momentum, Eqs, (1) and (2) in
Subsec, 2.1,1, may be expressed, with the aid of Eq, (8), in the follow-
ing form:

gln o oln p _ du _ _ dln A _ d1ln A

at Ty ? x T ox YT x ot (1)
du, ,2u_ _a® dlnp., (2)
ot o X Y 9 X

From Eq, (8) in Subsec, 2.1.1

- 27 - 48 _ _2y da _dS

d 1In p y_ldlna R 71 a R (3a)
-2 95 _ _2 da _gdS

dlnp=cSgdina -F =297 = (3b)

Substituting the above relations in Egqs, (1) and (2) yields the follow-
ing results (see Ref, 7):

2

(=%
Y

2

(%
o
c

U

- oln A _ oln A a DS
ToTot Py =T Vox tA0x 0T Tx a5t *woe (4
2
du du 2 9a _ a” as
3t P UIx T3y -1 25%x T ¥R 9x +f (5)
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Adding to, and subtracting EqQ. (5) from Eq. (4) gives

5? <7_%—T a + u) + {u + a) 5; (7 E 7232 u) =

_ 9ln A _ 3ln A afDS  aads
auv 3% 2 73t +R(t:76x)tf (6)

Special curves, known as characteristics, exist in the (x, t)-plane
along which the fluid properties are continuous, but derivatives of
fluid properties can be discontinuous, The characteristic curves have
slopes given by

dx _
ax - uwra (7)

The left hand side of Eq., (6) therefore represents the derivative of
the parameter (7—%—T a + u) in the direction of the characteristic

curves, Characteristics can also be defined as curves with slopes
given by Eq. (7), along which changes in the flow parameter

(7 Z— @ * u) are governed by Eq. (6).

sible for a large disturbance to be propagated by means of the charac-
teristic curves in a nonstationary flow., It should be noted that a

particle path has a characteristic slope given by %% = u,

D -9, 2
Dt ot ox

line, whereas

As a consequence, it is pos-

Therefore

represents the derivative along a third characteristic

6
+_ 9 2 - =2 - 9
3t “sc t(ura) 5o and m =g+ (u-a) o

(=]

represent derivatives along the characteristics with slopes (u + a),

Applying these differential operators, the terms in 5% may be eliminated

from Eq. (5), since

(=]

23X % bt - Bt TDot (8)
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Using the above one can rearrange Eq. (6) as follows:

6.P 6,8
3aln A A DS
e e e R - D Gt (9
5.Q 6_s
- . 91ln A _ oln A a " - o a DS _
5t T a5t tyrse (v D Jgpr - £ (10)

Similar results can be obtained in a more formal manner (Ref, 8) by
using the energy equation(Eq, (4), Subsec. 2.1.1).

Assuming that A can be given as a function of % und t, then
the third equation for the three dependent variables a, u, and S is
provided by an entropy equation of the general form

w

= F(a,u,S,x,t) ' (11)

95

If the force f is due to wall fraiction only, i.e., f = -fs, then from
the energy equation it may be shown that

ps _ 2 * ufg
e T — (see also Eq. (3a), Subsec, 2,2.1)

Problems illust-ating the use of Eq. (11) may be fcund in Refs. 7 and 9,
Relations (9), 10), and (11) are a set of non-linear partial differen-
tial equations which theoretically provide the means of solving non-
stationary flow problems, They may be regarded as forms of the wave
equation since they indicate how the quantities P, Q, and S vary along
characteristic curves whose slopes in the (x, t)-plane are given by

dx _ _
At v + a for P-waves
dv _
=u - a for Q-waves
(12)
dx _ . .
St - v tfor S (particle paths)

Consequently, curves of -'npes (u + a) and (u - a) are known as P-waves
and Q-waves, respective”. while those of slope u are the paths of fluid
elements or particle pa.ns. Equations (9), (10), and (11) are not solv-
able except in the most simplified cases, and, in general, one must re-

546697 OO B0 4

sort to numerical or graphical finite difference methods (Refs, 7 and 8),

e eeda bt
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In the special case of isentropic (homentropic) flows in ducts
of constant area without heat transfer or friction forces, Egs. (9), (10),
(11), and (12) reduce to the following simple forms:

constant
constant

constant

dt Y + a for P-waves

for Q-waves

The flow problem thus reduces to one with two dependent variables, i.e.,
(u,a) only,

It is of interest to note from Eq. (13) that the rate of ad-
vance of the P~ and Q-waves is given by (u + a) and (u - a), respec-
tively, However, when this rate is referred to the local flow velocity,
it is given by (+a) and (-a), Thus the P- and Q-pulses propagate at the
local sound speed relative to the gas and justifiably may be defined as

sound waves from a gas—-dynamical consideration of infinitesimally weak
pulses, *

I

2.1,3 Rarefaction and Compression Waves in Perfect Gases

The conditions presented in Eq, (13}, Subsec, 2.1.2, define
the P-wave and Q-wave for an isentropic flow through a duct of constant
cross section, If the flow is steady, the P- and @-~waves may be thought
to form two families of parallel lines as shown in Fig. 2.1-9, 1If a
local flow disturbance occurs, its effects can be felt at other points
only after the arrival of the P~ and Q-pulses from the origin of the
disturbance. The P- and Q-waves or the characteristic curves therefore
may be considered as signals which transmit information about infini-
tesimal local flow disturbances to other parts of the duct. Finite am-
plitude pressure fronts are composed of an entire family of P- or Q-pulses
which do not remain parallel, but converge or diverge, depending on the
type of disturbance., This point is illustrated in Fig. 2.1-10, which
shows a disturbance front composed of a family of diverging P-waves moving
to the right. It is seen that to the right (1) and to the left {4) of
the disturbance front the flow is quasi-steady and the P-pulses are par-
allel, although their values in states (1) and (2) are different, (A
finite amplitude disturbance front which separates two uniform flow re-
gions is also called a simple wave,) Although the value of P(Pl to P4)

the value of Q re-
since no disturbance was generated at the right side
The slope of a Q~pulse changes as it moves through the

!
¥

. throughout the disturbance decreases monotonically,
1 mains a constant,
of the duct,

*A discussion of "Gas Imperfections at Low Pressures and High Tempera-
tures" is presented in Supplement B, This discussion cconsiders caloric
: and thermal imperfections resulting from high temperature effects only,
F A treatment of "Relaxation Effects in Gases” is presented in Supplement
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P-disturbance, owing to the change in u and a, but in the uniform
states (1) and (2) the slope remains constant. The Q-waves also re-
main parallel owing to identical changes in u and a throughout the flow

field, Hence, for the particular case of isentropic flow in a duct of
2a

constant cross section shown in Fig, 2,1-10, the value of P = oyt
. 2a

d 1 a = -
is a constant along each Mach wave and Q 3 -1 u is constant across

the entire disturbance front, Therefore, on a given P-wave,

u = E—ilg (a constant) (1)
a = Lg_iiilril—:—ll (a constant) (2)

and the P-waves are straight lines because

Py +1) -Q(38 - 7) (3)
]

is also a constant, However, the Q-waves cross P-waves for which the
value of P varies from wave to wave; therefore %% = (u - a) will change
at every P-wave. Consequently, the Q-waves become curved whenever the
value of P changes, Analogous results are obtained by considering a
disturbance front from the right composed of Q-waves,

P-waves and Q-waves in turn are subdivided into compression
and rarefaction (or expansion) waves, depending on whether or not they
increase or decrease the pressure of the gas into which they advance,
The above may be illustrated by referring to Fig, 2,1-10. If the dis-
turbance is an expansion wave moving to the right, then the pressure,
density, and temperature fall from P1 to P4. Consequently
(e.g., for P,),

82 <a1 (4)

However, since the P-waves are crossed by Q-waves of constant value, as

no disturbance is propagated from the right side of the duct, the follow-

ing also applies:

_ 2 _ 2 -
Q = y -1 az - u2 =3y-I al uy (5)
From Eqs. (4) and (5) it follows that
uy < up (u1 = 0)
l,l2 + a2 < \11 + 81 (6)

Py < Py
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Since an increasing inclination of a wave towards the x-axis represents
an increasing wave velocity, it is seen that each P-wave propagates at
a slower velocity than the preceding one, Therefore the P-waves in a
rarefaction front diverge., As indicated by Eq. {(6), although the abso-
lute value of uy increases, u becomes monotonically more negative

throughout the rarefaction front, Conversely, for a compression front
(see Fig, 2,1-11) the P-waves converge and

ug > vy oo (ul = 0)

u, + a, > u, + a
2 2 1 1 (7
P2 > Pl

The converging P-pulses brought about by an increased tempera-
ture, owing to isentropic compression and increased particle velocity in
the direction of the wave propagation, soon overtake and coalesce to form
a shock front, Where the P-waves meet, the values of the flow guantities
are no longer unique; they undergo discontinuous changes and the flow
ceases to be isentropic,

This difficulty is not generally encountered with a rarefac-
tion wave since the characteristic lines diverge and the flow remains
isentropic, However, it may be seen from Fig. 2.1-10 that if the P-waves
were extended back in the (x, t)-plane, they too would intersect, If
the Mach waves meet at a point, the wave is called a centred rarefaction
wave, Such a wave has a discontinuity at the focal point, However, it
is assumed that it is smoothed out very quickly (Ref. 1). This type of
wave is difficult to generate in practice, as it implies an instantane-

ous drop in pressure at some point, Usually, the rarefaction wave is
of the non-centred type,

It is of interest to note that the diverging or converging
properties of P- or Q-waves are maintained regardless of the wave which
may cross their path, This is illustrated in Fig, 2.1-12, which shows
the collision of P- and Q-wave fronts, Initially, P2 > Pl and
(u4 + a4) > (ul + al) for the P-wave front,

Pi(y + 1) - Q3 - 7)
ug + ag 7

Po(v + 1) - Qy(3 - 7)
u2+32 2 42

(8)

n

Therefore, ug + a9 > u3 + a3, and the compression characteristics re-

main converging. Similarly, the expansion characteristics remain di-
verging,

A physical insight into the properties of compression and
rarefaction waves may be obtained by considering the motion of a piston
in an infinite cylinder (Fig, 2,1-13). A piston of a given mass and
area moves under the influence of certain forces such that it accele-
rates from rest to a uniform velocity uy. It is seen that during the
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period when the piston accelerates it gives rise to P-charucteristic
lines which overtake and steepen to form a shock wave, Simultaneously,
the piston generates a Q-rarefaction wave which moves into state (4).
Here the characteristic lines fan out with time, The gas adjacent to
the piston in states (4) and (1) follows the piston, whose velocity is
communicated along the characteristic lines to the particle paths, The
piston path generates a Q-rarefaction and a P-compression wave, where
the particle velocity is positive in each case, However, the particles
move in a direction opposite to the rarefaction wave head, but follow
the compression wave head, This feature distinguishes a compression
wave from a rarefaction wave.

Since the gases in states (1) and (4) are initially at rest,
one may write for the P-compression wave:

characteristic slope

dax _
-a—t-—u+a (9)
along each characteristic
- 2a
P-'y-l—_—f*'u (10)
across the entire P-compression wave
2a
- 2a_ _ - 1
Q ——,1_ u ',;7]-:—‘1‘ (11a)
or
v, =1
2 1 u (11b)

-1
2 S S (g—’t‘> (12)

-2 2 ax
u Wﬂal*'):TI—f(dt) (13)
Similarly, for the Q-rarefaction wave:
characteristic slope

dx _ -~

_d-E—u a (14)
along each characteristic

_ _.2a _

Q 74-7-1‘ u (195)
15
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2.1.3 NAVORD Report 1488 (Vol, 6, Sec, 18)

across the entire wave

2a

_ 2a _ 4
P = 74 - 1 +tu = 7;‘:—1 (16a)
Ya - 1
a _ _ 4 u
a; =1 3 EZ (16b)
- 2 Yy ~ 1 7ax
a = ;z—:—T a4 - 32—:—T ET) (17)
2a
- 4 2 dx
“’y4+1*y4+1a) (18)

Equations (9) to (18) are of particular importance since they make it
possible to determine u and a from the slope of a characteristic line,
1f the piston path is established in the form of x = f(t) or u = £'(t),
then trom the initial conditions and Eqs, (11a) and (168; the sound
speed is determined at every point along the piston path, the charac-
teristic lines can be drawn, and the entire flow pattern as shown in
Fig. 2.1-13 is determined, Each characteristic line would have a
straight line equation

X = mt +b (19)

where m depends on u, and a and b is the intercept on the x-axis, The
heads of the expansion and compression waves go through the origin, and
their equations, regardless of the piston path, are given by x = -a4t

and x = alt, respectively, In addition, one may obtain the thermody-
namic properties of the homentropic flow from p = p RT, p = Apy and

a2 = %f, so that for the compression wave and the rarefaction wave,
01 Yn-1
1 .,2 — 'i-—"—
a - <JL> . (JL)——z = (Jl) "n (20)
2 Tn Pn Py
n=1o0rn=4

It may be emphasized that the piston path fixes the starting
point, the position, and the slope of the characteristic lines in the
(x, ts-plane. Without the piston path, the compression or rarefaction
wave cannot be drawn, The piston path generally may be of a form which
gives a non-centred expansion or compression wave, However, there is
a particular piston path which can result in a centred type rarefaction
wave (i,e., if the characteristics were projected back they would meet
at a point which is not at the origin of the (x, t)-planc), This type
of piston path is given by the equation of the particle path for a
centred rarefaction wave (see Subsec, 2,1,4). It will be noted from
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Fig. 2.1-13 that in the casc of the non-centred compression wave the
shock 1is initiated as soon as two Mach lines overtake., The shock front
continues to grow as additional Mach lines catch up until it achieves
its full strength, The entropy change increases simultancously and
this gives rise to an entropy layer separating states (2) and (2)1. 1t
will be shown (Subsec. 2.4.7) that when two shock waves overtake, only
a reflccted rarefaction wave is possible in a real gas., 1In the limit
the coalescing compression pulses will therefore reflect expansion
pulses, This ecxpansion fan will increase the particle velocity and re-
duce the pressure such that these quantities are identical with those
produced by the shock, Subsequently, the reflected rarefaction pulses
will interact with this layer and will givc rise to a complex pattern
of weak reflected and transmitted P- and Q-pulses as indicated schemati-
cally in Fig, 2.1-13. (The wave system outlined above is closely re-
produced in a shock tube, as shown on Plate 1,1-1, Even some entropy
lines, from overtaking and coalescing shock waves, appear near the
origin and thcy are quickly absorbed by the thick and spreading con-
tact front from the diaphragm,)

In the case where the piston path generates a centred compres-
sion wave and a focused shock wave, the entropy layer reduces to a con-
tact surface, and a reflected centred rarefaction wave propagates into
region (2) (Fig. 2.1-154d).

2.1.4 Centred Waves in Perfect Gases

Of particular jinterest for the study of shock tube flows is
the rarefaction wave which is centred at the origin of the (x, t)-plane
{(see Fig, 2.1-14). A cowparison of Fig, 2,1-13 and Fig, 2.1-14 shows
that the initial portion of the piston curve has degenerated to a single

point; that is, the piston is instantly accelerated to a uniform velocity,

Under this condition a plane shock wave is propagated into state (1) and
the compression wave disappears, The advantage of this type of simpli-
fication is that for a given uniform piston speed all wave elements
start from the origin and their positions in the (x, t)-plane are fixed,
For an accelerating piston which is producing a non-centred wave, this
is not the case, and the position and extent of the wave systcm differs
for each piston curve,

For a rarefaction front centred at the origin the Q-waves or
characteristics are straight lines whose equation may be expressed in

terms of one parameter as % = (u - a), This mathematical simplifica-

tion is not possible for a non-centred wave where % = (u - a) + Eg%ﬁl.
Hence, for a centred Q-rarefaction wave:

x: -
(a) TS a
(b) Q = 7;2§_T - u (along a characteristic line)

. __2a - 28, .
(c) P = +u = - (across the entire wave)
Yy T 74 1

a _ Yy -1y
S v v

4 4
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-1
.2 _Ya T x
(e) 2T Ty, T (©)
- 2 2 X
(f) “‘-,,4_+—fa4"'§,4—+‘1‘(f) (1)
From

p = PpRT p = Apy and a2 = %f

yq"1 v 41 (2)
a . (J;)l/z _/e\  ./»
3 \T4 <P4) (P4

It w:11 be noted that Eqs, (1) and (2) would be identical
with Egqs, (14) to (18) and (20) of Subsec. 2,1,3 except that for the
centred wave the position of the characteristic lines are known from
the initial and final gas states x = (u - a) t, whereas for a non-
centred wvave the piston curve must also be given (x = (u - a) t + con-
stant) before the Mach lines can be positioned in the (x, t)=-plane.

The above is the only essential ditference between the two types of
waves, Parts (e) and (f) of the above equations show that the slope

of the characteristic determines u and a, For example, a centred or
non~centred wave having the same characteristic slope at the tail of the
wave will alsc have identical dynamic and thermodynamic properties, al-
though the position of the tail of the wave in the (x, t)-plane will be
different, To verify whether or not a wave is centred, when the piston
path is not known, it is essential to extend at least three character-
istic lines to determine if they meet at the same focal point.

8

If a centred rarefaction wave of the type shown in Fig. 2.1-14
is generated, then all the characteristics converge at the origin or
focal point where the dynamic and thermodynamic quantities (u, p, p, and
T) as functions of (x, t) are discontinuous, It is assumed that these
discontinuities are rapidly smoothed out in the subsequent motion, This
is an example of an initial discontinuity which immediately undergoes a
transition tec continuous flow (Ref, 1).

A theoretical limiting case of the centred rarefaction wave
occurs when the temperature behind the wave becomes zero and the par-
ticle velociiy attains its maximum possible value, the so-called escape

speed G. A vacuum would exist behind such a wave which is known as a
complete centred rarefaction wave, Since for a Q-wave

2a
2 a+u-= 4
Y4 T 1 Ya 1

applies, the value of U is given by

e | (3)
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r

when a = 0. At the tail of such a wave, the characteristic slopes and
the particle paths are given by QT = (u - a)T = G, Pp = (u + a)T = ﬁ,
and up = 4. Hence for a complete centred rarefaction the tail of the

wave, the paiston path, and the Q- and P-characteristics at the tail are
all coincident, i.e,, x/a4t =N = 2/(74 - 1), A4s a perfect vacuum is

impossible to achieve physically, a complete centred rarefaction wave
is only of hypothetical interest,

—— -

I'f a centred or noncentred rarefaction wave is generated by 2
a piston which is instantly started from rest or attains a velocity :
greater thaun the escupe speed, then ''cavitation' exists between the
tail of the wave and the piston, The particles cannot follow the pis-
ton and a hypothetical vacuum exists.

B A ~— A

The eQuation of the particle path for a centred Q-rarefaction
wave may be determined from Eq. (1f):

Do 4B A

i e AL

o cp—
-1

¥rom Fig, 2.1-15 (a) it is seen that

o

:
; X - x
F R T i
. or
f X - X E
PINPENCELN N |
! = = s — -+ a (4)
; dt y4+i t t 74+1 4 i
‘ Equation (4) 1s an ordinary linear differential equation which has the
' solution, |
: (74"’1) !
r 7y - 1 T4 ;
- 2 _ 4 -
t = [-;4—;1'( 3" (tp = to) * & (5)
i
When N = -1 (head of wave), t = t,- For a gas with, for example, 3
Yy = 1.4, when N—=5 (tail of compiete centred wave), t=—=eco, The

last result indicates that the particle path in the limit approaches
the slope of the tail characteristic of a complete wave after an infi-

nitely long time, Alternataively, the escape speed U is attained after
an infinitely long time in a zenired type of rarefaction wave, !

e B e

A piston moving in accordance with Eq., (5) will generate a
rarefaction wave which is focused rt the point 0 of the (x, t)-plane,
The farther away point P (the real origin of the physical (x', t')-plane)

is from 0, the more gentle wi 1 be the transition through the rarefac-
tion wave,
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It is of interest to determine the acceleration produced on 1
a particle path of a Q-centred rarefactiou wave:

- 2 (x\ 224 %
u = =)t !
g * I\t vy + 1
or 4
2 b
G
u y4+1(N+1)a4 |5
du=234 '
dN Y, + 1 !
4 l
!.‘
i
9u - du N _ _ N du :
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At the head of the wave N = -1, and b = G+ 1t that is, b varies :

4 T
inversely as t., At the tail of the compleie centred wave N = 5, and '}
b = 0 regardless of t, Thus the acceleration is a maximum at the head §
of the wave and decreases across the wave to zero for a complete wave, j
It is worth noting that at t = 1 usec, the acceleration for air is of i
the order of 0,92 x 109 ft/sec-2 (2.8 x 107 g) at the head of the wave, .

Similarly, the equation for a P-characteristic crossing a 3
Q-rarefaction wave (Fig. 2.1-14) may be obtained as follows: .
dx _ ;

gg-uta ;

or from Eq, (1lc) and (1f) ‘ j
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2(74'1)

2a vy, + 1/t -t \"a*l (
(x_xo)=')T_‘_4T(t—t0) 1-42 {_tZ) -J(7) .

which gives

74+1
Yy - 1 SRR
t = .},4_+f<1"—2——N>

(ty - t) + t (8)

P 1

When N = -1, t = tp, as N—a5, t——eo0, and the previous remark re-
garding the particle path applies here as well, A comparison of

Eqs., (5) and (8) shows that they differ as the square root of the power,
Consequently the P-characteristic will approach the tail of a cowplete

wave faster {(dx/dt = u + a) than the particle path (dx/dt = u),
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Typical particle paths and characteristic lines are shown on
Fig., 2.1-14, 1t is of interest to point out that a P-characteristic
originating in state (4) penetrates the rarefaction wave as well as
state (3) and state (2), and therefore will influence all of these
regiors, On the other hand, a Q-wave originating in state (1) pene-
trates states (2) and (3), but cannot enter the rarefaction wave be-
cause it becomes parallel to the tail of the wave (Q3) and cannot

Thus the rarefaction wave is isolated from any downstream

overtake it,
influence,

The previous discussion on rarefaction waves applies to com-
in this case the characteristic lines or ‘
The characteristic slope ;

The particle ve- ,

pression waves. However,
pulses soon overtake as shown in Fig, 2,1-15,

is given by g% = (u + a) for the P-compression wave,
locity u increases with time and the temperature or sound speed rises
= (u + a) increases and the Mach

behind each pulse, Consequently, %%
waves converge to form a shock wave., At the points of intersection of
these pulses, the values of u and a are no longer unique, This is re-
solved by the generation of a shock wave which has a change in entropy
across it, so that the original isentropic equations are invalidated,

The shock wave may be generated at the head or within the compression

wave (see Ref, 1), and depends on the piston acceleration,

Consider the motion of a piston which starts from rest with

a constant acceleration b as shown on Fig. 2.1-~15 (c), Along and 2
[

across the Pl-pulse,
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or
Yy +1
g% = u "l_f"' u +a,

For the P,~pulse, x = x_ + (u+a)q
or
1,2 7 t!
x=3ee? s(a) + Lo e ) (t-e) (9)

The time parameter € depends on the piston position, Solving for x1
and t1 from the Pl and P2 characteristics:

_ 2 Y
tl_ -;,1+ b[a]+-£b€]
(10)
X, = a,t, = 2 -fl[a +%be]
ERRS S S Eur s VR

This gives the birth point of the shock (x tl) for a piston of con-
stant acceleration b, where

u = be
71 ~1

a = —3 be + a,
Yl + 1

In order to get the envelope, Eq. (9) may be considered as a one param-
eter family of curves for ¢ > 0, and the required conditions are that

G (x, t, €) = 0 and gf = 0. Thus
7+l
—-—7—— bt = ylbe + al
or
t_)'12+1 ’abl"%ll_'f‘
and from Eq. (9), .
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Performance of Simple Constant-Area Shock Tubes 2.1.4

Eliminating ¢ yields

gt 1? oy -t 8’ .
x—T— bt +—2—)71—a1t+ﬁ-;6 (11)

Thus the shock wave starts at (xl, tl) and grows from that point until
it has achieved its full strength,

The case of a centred compression wave that gives rise to a
focussed shock wave is shown in Fig, 2.1-15 (d). 1In this idealized
case, all the Mach lines converge at the focal point F (xF, tF), wheve

the shock wave forms and attains its full strength instantly,

If the condition that the particle velocity and the pressure
must be constant across the contact surface is to be met (p2 = pPgs

u2 = u3), then a centred rarefaction wave must be reflected as shown,

The reason for this can be explained from wave interaction considera-
tions, as noted above, or from the following, For the same pressure
ratico across a compression wave and shock wave, the compression wave
generates a lower temperature (or higher density), sound speed, and
particle velocity than the shock front, If the boundary conditions
at the shock wave are to be satisfied, then the compression wave must
be of higher strength in order that the reflected rarefaction wave can
reduce its pressure and increase the particle velocity to give Py = P3

and “2 = u3.

The piston path which yields a focussed compression wave may
be found from the following considerations (Fig. 2.1-15 (d)}).

Let the piston path be given by x = f(t), and the focal point
by (xF, tF). The slope of any Mach wave emanating from the piston is
given by

X - X

= u +
Ca— u+a

F

For a Q-pulse across the P-compression wave,
u - 2a = - za1
7y - 1 R

Combining the above,

2a Yy - 1/x - x
2= +11+1+1(t—tp)
"1 " F

/X - X 2a
“=°g"t£=y2+7(t—tf‘>'y +11
1 F 1

That is, the same results apply for a P-compression wave as for a
P-rarefaction wave, except that (u) is positive for the former and
negative for the latter,
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R X - 2

Integrating the equation for u yields

2a
- = - 1 - -
x Xp T_T (t tF) + A(t tF)

On the first P-pulse

X, : Xp -
o tF
and ﬁ—l
A Yt "
?l_yl’i(t"‘_t’)
or 71"1
) 22y [n +1 (to - tFj"l+I 1 12)
(x - x = ~—(t - t — -1 1
Py F ) Tt T, J
Since the characteristic slope
X - x
N =
al t - tF
then an alternate form of the piston path is
7&+1
5 v -1 Nt
“ﬁT‘f(““r“) (to = tp) * tp (13)

When N = 1, t = to’ and when N—eoo, t—-—tF . The above relations give

the piston path x as a function of the focal point tF and t, or t as a
function of N and the focal point tF'

In this case as well, the farther away F is from 0, the more
gentle will be the compression wave transition profiles, Compression
waves are chiefly of academic interest, since in practice they quickly
turn into a shock front,

2a

The piston velocity u = 7——%—T (N - 1), and following the
1

method of Eq. (6), the piston acceleration is given by

2a
_ du _ 1 2 _ ~2a
b"d—‘tl_(vl+1) (t - tp) [‘rl*rl(N“l)'N]_(71+171t-tr)
(14)
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It should be noted that although Eq, (14) will yield accelera-
tions to the left of the piston curve (Fig. 2.1-15(d)}, they have no
physical meaning, The accelerations on each characteristic pulse are a
minimum at the piston face and increase in value as the focal point is
approached,

Since (t - tF) is negative, b is positive, and increases from
2a1/(‘y1 + l)tF at the head of the wave to an infinite value when

t-—--tF. The acceleration decreases with large tF as expected,

The flow properties through unsteady expansion waves may be
described in terms of the local Mach number or the local characteristic
slope by the following alternate forms (see Eqs, (1) and (2)).

For a Q-rarefaction wave in a perfect gas: : 3

1. Speed of sound ratio i

-1 i é
Yq - 1 (v ~ 1) ]
a _ 4 _ 4 ;
;-—1——2——-%-[“—7——»1] (15) ;
4 4
when i
23, i
[§ P— Y1 or Moo, a — () ‘
4 !
i 2, Flow temperature ratio :
i
. ) "
} T Yy ~ 1 u vg ~ 1 o
— - @ —m— = 4
i T4 [1 — 34] [1 r— M] (16) 3
F when ;
Me—e—woo, Te—0 ‘!
P
3. Flow density ratio 4
1 -1 1
R I TETEN
when
M—e o, p—=»0
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4, Static pressure ratio
)
1 -1
74 -1 u -Ez 74 -1 84
gi =11 = —y— 3; =11+ — M (18a)
or
B
4
‘ ot @)
] B Vg~ Py 3
1 when
Me——— >, p—=0 ’ ;u;—.’ﬁ-g_—[ - G » p~——=0 2
1
; 5. Particle velocity ratio §
M .
F
R A U (19) 3
} 1 +—2—M 3,
when °
u 2 i
M——-oo, ;Z_~774_:'_-T
6, Mass flow ratio i
(pa_)_: : = M 5 (20)

PP R

when
M ————eox, p: 2 —0
!
i 7. Stagnation temperature ratio i
p Yy, - 1 .
H 4 2 i
A To o 2 QT M) (21)
“ 4. . ————l————z
‘ T4 Ty Yy - 1
v (1 . 4 M
; Z 4
H
; when . i
) Mo, =2 2 1
r TR %
\ 1
: |
4 26 1
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8. Isentropic stagnation pressure ratio

1
[yt
Po _Po p 17 - (22)
p p ° 1
4 4 - B
Y, -1 4
R
when 1
L 75
M——=s o, 90/94‘_"(74'_-_1')
9. Pitot pressure ratio for subscnic flow (M < 1)
This relation is identical to Eq., (22)
1
o [“74-1_“2]732
-0 2 {23a)
Py 1 ’
v, -1 1B,
1+ 4 13
2
when _%.
Py 2 2 4
Me——a1 , p—4-——b(74—+f)
10. Pitot pressure ratio for supersonic flow (M _>1)
1
74 + 1 2 2“7/)4
i:pﬁo =‘y4+1M2 M l
Py P 7 Py 2 STy 2 _Te " e
Yy * 1 Y4 + 1 Yy -1 4
1+—2——li
1 (23b)
when
Pg 2 2Py
—t B —e(rt)
Moo, 2 —=0 , -2 ~ 0,545 at M ~3, 7, = 1.4
Py P4 max
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11, Reynolds number per foot ratio

n
T
ey, - Gy (F) - —* (24)
a a T _ a-2n
Py PRy (1 7y - 1
+—T—H
For
Mo 0 and M——» < , Re —»0
For
Y4 = 1,4 and n=1 |, Re ., occurs when M = %

where n is the exponent in the viscosity-temperature relation,

12. Dynamic pressure

Y4 2
'2"9”2 - a . 3 M (25)
Py Py 7g - 1 1VPa
1+ 2o
2
For
M—a (0 or M——woo , q/p4~.0
For

Yq = 1.4 , q/p4 max Occurs when M = 2

It should be noted that in Eqs, (21), (22), and (23) it is
assumed that the steady flow adiabatic equations apply locally at a
measuring instrument in an unsteady flow, The correctness nf this as-
sumption must be verified by experiment,

The physical quantities of the flow can also be expressed in
a very useful form in terms of the slope of the characteristic lines of
a Q-centred (noncentred) rarefaction wave, The slope is expressed in
nondimensional form as

N =X = (centred)

(noncentred)

From Eq, (1d)
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o . A

From Eq, (1f)

Mo 2 + 2 .
a4 y4 + 1 74 + 1 a4t

Combining the above gives:

1. Particle velocity ratio

u o 2 - 1
T-?T[N+l]"m?r["+l] (26)
4 4 4
For 3
Y, = 1.4 when N = -] o= 0 N =275 g : 5 -
4 . ’ b ’ a ’ 3 'a—' a
4 4 |
2. Sound speed ratio ]
Yo - 1
a _ 4 x 1
A =y - (—+) - L (n
a, Yqg t ] agt 1 1 « (N+1) (27) f
{ ror :
Y4 =14 , when N=-1 , 2 =1 ; N=5 & X-9 i
4 a4 ay ]
i 3. Static temperature ratio
5 2
: T 1
! = = 1——(N+l)] (28)
Ty [ ay {
. For é
_ - T _ _ T _ {
74-1.4, when N—l,;r—“l ,N-s,T—-o !
4 4 i
# ' 4. Density ratio %
b l 5
7, |
' 2 =1y - Ly (29) :
P4 @ !
1 :
N For
J Y4 = 1.4 , when N =-1 | £ -1 . N=5 , £ =0
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5., Static pressure ratio

;?;=[1'bl“4(“*1>] (30)

For
'}’4=1.4 , when N=-1 , 2 =1 ; N=5 , 2 -9

6., Mach number

- Bl - [ )
For

7'4=1.4 , When N=-1 | MM=0 ; N=5§5 | M—sx

7. Mass flow ratio

1
(N + 1} TEE;TZ (32)

For

8, Stagnation temperature ratio

T _To . 1 [ % )]1 ]2
2 =_9 ., 2 =|1+ -—(N+1)
T,CT T, —rr—‘am;“ L
(33)
For i To To
Y4—1.4,when N=-1’TZ_I;N=5”-I‘:=5

9, Pitot pressure ratio (subsonic flow), a
pressure ratio

nd isentropic stagnation

1

By
9 =-_90., P = 1 + ( ) L(N“'l)
P4 P Py 5 (37’4 ] oy

For (34)
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Performance of Simple Constant-Area Shock Tubes 2,1.4
when 1
N = -1 PoyN=o0 2 = 0.528
A ren BN
i
5 , 2o i ! - 280
= —_— et =
N ' Py [74 - ]
10. Fitot pressure ratio (supersonic flow)
74*l [ ney P
o d T (TEw A4
P.Q:EB-.P.:YUI[ N+l ] Y - [:1——1..(N+lﬂ
P P P 7 a
4 4 4N 27 ( N+l ) 4
(35)
For . ’
Py Po
Yy <G 1,4 , when N=0 , —=0,528 ; N=5 , — =040
1 P
4 4
11. Reynolds number per foot ratio
1 - 2n
u/ u (T4)n 1 Arl4 1
Toariy - T T =|:1"a—4("+1)]' (N + 1) oe,
For (36)
Y4 < 1.4 , Re =0 when N =-1 and N =95
12, Dynamic pressure
1 2
3P _q_ M N+ ]2 1
= = - —_— 7
P4 Py =z l_l - @7,4 N [1 a, (N + l)] (37)
For
L/ 1.4 =0 wher N =1 and N =5

The above relations are tabulmted in Table 2.1-6 as functions

of the nondimensional slope (N = :ET = !—;——) of the characteristic
4 4

lines of a centred rarefaction wave, The value of N = -1 corresponds

L}

L Ca s
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to the head of a Q-rarefaction wave, while N = 5 is the limiting value
cf the slope of the tail of a complete centred rarefaction wave, The
intermediate values of -1 § N €5 represent characteristic lines or
the tails of rarefaction waves greater than a Mach wave but less than
a completed centred wave,

At T UL i
P

Some of the features of Eqs. (15) to (37) and of Table 2,1-6
are illustrated in Figs, 2.1-16 to 2,1-28 for ¥ = 1.4.

Similar results may be plotted for a Q-compression wave,
However, in this case the range of N is - £N € -1, That is, it is
hypothetically assumed that a piston can be accelerated from rest to
infinite speed. 1In a real flow a shock wave would form long before
such a condition is reached, and the assumptions of isentropic flow
would become invalid,

Figure 2.1-16 shows that in the (a,t, x)-plane, for a gas

with ¥ = 1,4, the complete centred rarefaction wave ¢ cupies the region
between ¥ = -1 and N = 5, i,e,, from a slope of -45° to + 78,70°,
Figure 2,1-17 indicates that the velocity ratio has a value of 0 at

N = -1 and increases linearly to the escape speed value of 5 at N = 5,
Similarly, Fig, 2.1-18 shows that the sound speed ratio decreases lin-
early from 1 at N = -1 to 0 at N = 5,

gritiadi Selites~ Acintinue A B s R

The thermodynamic quantities of temperature, density, and
pressure ratio decrease monotonically from 1 at N = -1 to 0 at N = 5,
The rate of decrease 1is also in the same order, 2s shown in Figs, 2.1-19
to 2,1-21, On the other hand, the Mach number increases monotonically
from M = 0 at N = -1 to M—ec at N = 5 as shown on Fig. 2.1-22,

TN
© ewn  m——

By analogy with steady flow, the mass flow has a maximum
(pu/(pa)4 = 0,334) when N = 0 or M = 1, It is zero at N = -1 and

; N = 5, as shown in Fig, 2.1-23,

ot

¢ e m——

Figure 2.1-24 shows that the total temperature ratio TO/T4

i has a miniaoum (0,833) when N = Q or M =1, It is 1 at N = + 1 and has
. a value of 5 at N = 5., The isentropic stagnation pressure ratio po/p4

(Fig. 2.1-25) has a minimum (0,528) at N = 0, and has a value of unity
at N = + 1, It has a limiting value of 280 at N = 5, The pitot pres-
sure behind a normal shock wave in the rarefaction region appears in
Fig. 2.1-26. It is c~en to increase slightly up to N ~0.,5 from a
value of 0.528 at N = 0 (it has no real values for subsonic flows

-1 € N £0) and then decreases to ¢ at N = 5,

If the temperature-viscosity relationship is assumed to be
n
of the form ﬁL = %;) , n =1 (which is only good in a very narrow
4 4

range fcr real flows), then the Reynolas number per foot ratio can be
plotted in a simple form as shown on Fig, 2,1-27, It rises from 0 at
N = -1 tc a maximum value of (,528 at N = 1/2 or M = 5/3 and decreases
to 0 at N = 5, Similarly, the dynamic pressure has a maximum value of
0.265 at M = 2 or N = 5/7 (Fig, 2.1-27).

The Riemann invariants are shown on Fig. 2.1-28. For a

G@-centred rarefaction wave the value of él = 5 is a constant through-
out. The values of Q decrease linearly from éL =5 at N= -1 to

4
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B— = - " =
Q, 5 at N 5.

It is of interest to differentiate the above relations with
respect to N, or normal to the characteristic lines, giving

du 24

oN = Ta_ﬂ}’-): (a constant)
a

da _ _ "4

aN - a (a constant)
2T

aT _ _ °'4 1

ﬁ = 04 [1 o (N + l)]

o
dp _ Py 1 4
EE"I_T<¢4[1'F(“*1)]

W (1- @y M2

The derivatives listed in Eq, (37) are evaluated in
Table 2,1-7a for the range -1 < N 5, for Q-rarefaction waves,
Table 2.1-T72 illustrates what is shown graphically in Figs, 2.1-17 to
2.1-22 inclusive, The slopes of a and u versus N remain constant since
they are linear relations, The slopes of the curves of T, p, and p
versus N are monotonically decreasing, respectively, whereas %% in-
creases rapidly with N, Siwilar results for a Q-compression wave ap-
pear in Table 2.1-Tb,

A consideration of Fig. 2.1-14 will indicate that since
states (3) and (4) are uniform flow regions, there the derivatives of
the dynamic and thermodynamic quantities are zero, However, at the
head and tail of the Q-raretaction wave the same quantities change dis-
continuously and their values are shown in Table 4,1-7, Similar dis-
continuities exist irn the derivatives of higher order and illustrate
the following important ‘roperty of characteristic lines: if a uniform
state exists beside a nc.uniform region, the two are separated by a
characteristic line, for example, the head of the Q-rarefaction wave
in Fig. 2.1-14, Therefore, despite the fact that the values cf u, p,
p, and T are coantinuous across this characteristic, their derivatives
can be discontinuous, Consequently, the transition from one region to
another occurs through characteristic lines where the derivatives of
first and higher order can change discontinuvously (Ref. 1). (In a real
flow any sharp discontinuities would probably be smoothed out by the
action of viscosity and heat conduction,)
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Tables 2.1-6 and 2,1-7 show that the shape of a given flow- ;
quantity transition profile through a rarefaction wave depends on the
initial and final conditions, Also, the extent of the wave in the
(x, t)-plane depends on the initial and final states, for example, on
states (4) and (3) in Fig. 2.1-14. 1If state (3) is theoretically a
vacuum, then a complete centred Q-rarefaction wave connects states (4)
and (3}. Under this condition all of the derivatives are discontinuous
at the head of the wave, and those of a, u, and M are discontinuous at
the tail of the wave, For an incomplete wave (N<5), the derivatives
are 21l discontinuous at the head as well as at the tail of the wave,

Since
°) - d (3N} _ 1 d
3x), ~aN{sx/ T F,T ° AN (38)
(th dN(bx)t a,t * aN
and
3 -4 (aN) - _ N, d
(a_t)x'dﬂ (at)x t ~ aN (39) :

the derivatives in Table 2.,1-7 could have been rewritten in a somewhat
different form in order to illustrate the above remarks. For example,

b Ak 8,

3-7,
_ Va1 ;
QQ) - -1 204 1 - 74 1 . S| 4 (40) ;
(a" : agt " Ty + 1 74 * T \a gt
K
3"}’4 }
20, [ % -1 74t )
p) - x4 A (= 3
(at)x a4t2 g + 1 |}~ ¥ 71 <a4t * 1):\ (41) \

-

It is seen that at the origin, when t = 0, the derivatives are discon-
tinuous and must be smoothed out to give a continuous flow through the
rarefaction wave, Since the rarefaction wave profiles spread with time,
when t——e o their derivatives become vanishingly small, Although the

value of the discontinuity é% on each characteristic iine remains un-

changed, as shown in Table 2,1-7, it is important to note from Egqs. (40)
and (413 that the derivatives of the physical quantities with respect
to x and t will be smaller for any wave whose centre is not located at
the origin of the physical (x, t)-plane, Thus, in a schlieren record,

a wave which is centred at the physiral origin will appear sharper than
one which may be centred elsewhere, From Eq, (40) it is seen ti.at for
a given x = xl from the origin where t = t1 and

—XT='1’(22)=' lt.ﬂ_ :

a, ox t agty 74 + 1 Loy

is a maximum at this station, As t becomes >t1 and ;5T becomes more i j
4 {3

positive, (%ﬂ) decreases, -
X/ .

5
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It is sometimes of practicaul importance to obtain very fast
temperature changes in a shock tube, From Eq, (28) it is possible to
determine the time rate of change of temperature that a particle of gas
would experience on passing through a rarefaction wave, i.e,,

at
dN

1
(N + 1| =~
oy

(43)
dT

; N—=5 —_—

* dt
Hence, close to the rarefaction wave head, the cooling temperature gra-
dient is very high, For example, 1f T, = 300°K and t = 10 u#sec, thea

dT _ _4a7
i 10" °K/sec.

Some of the above results are summarized in Taple 2.1-8 for
Q- and P-rarefaction and compression waves as a ready and convenient
reference,

2.1.5 Rarefaction and Compression Waves in Imperfect Gases

A simple deviation from the perfect gas flow assumed in Sub-
secs, 2.1.3 and 2.1.4 occurs when the specific heat is dependent on
temperature, It is assumed that the gas is thermally perfect (p = p RT)

but calorically imperfect with ¥ = Y (1 + aT + sz + ...) where Yor R
b, etc., are known gas constants, A further assumption is made that
there are no variations in entropy in the flow,

The equations of motion are unchanged, and consequently, for
a P-wave,
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and for a Q-wave,

du _ -a
dp o

From the First Law of thermodynamics and the equation of state,
P = p RT,

4T
dp

=20 - (3)

If ¥ = constant, then the usual relation between p and T can be ob-
tained by direct integration p = CT V(r-1) From Eqs, (1) and (3),

du _ - 1 /2R
ar " tpar T r¥y—IVT 4

Since ¥ = yéT) was assumed as known analyiically or from an experimental
curve, Eq., (4) can in principle be integrated and

u.+ £(T) constant (Cl)
(5)
u - £f(T) constant (CZ)

Adding and subtracting the above equations shows that along a character-
istic line u and T are constant, and from Eqs, (1) and (2) it is seen
that the characteristics jn the (x, t)-plane are straight lines,

Sirce az = YRT and

therefore,

Similarly,
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From Eq, (6) it is seen that when 7 = constant, %% = 37%—T’ a constant,

That is, the characteristic lines in the (u, a)-plane are also straight
lines. However, when 7 = ¥Y(T) these characteristics become curved.

An alternative method for showing the relation between u and
p for a perfect gas and for a gas with vibrational excitation is given
in Ref, 24, 1t is shown that when changes in the specific heats are
small, that is, Cp = C 4 (1 + €T) for a compression wave where € is a

small quantity, then from Eq. (18), Subsec., 2.1.4, for a perfect gas,

s [ <
u . -
ay 7y -1 (! (-‘?Z ] D
becomes, - 34
_ 2 .
Sortrl @)

where ® <1 for a compression wave, Consequently, for the same pres-
sure ratio gl , the particle velocity is greater for the variable
specific heaé case, Similarly for a rarefaction wave Cp = Cp4 (1 - €T)

and ¢ 2 1, and for the same pressure ratio, the particle velocity is
less than for the constant specific heat case,

If imperfect or real gas flow tables or Mollier diagrams are
available (Refs, 34, 35, and 36), then all the flow properties through
rarefaction and compression waves can be determined quite accurately by
using graphical integration (Ref, 34b) without having to make any of the
above assumptions. This is accomplished by determining the initial en-
tropy of the real gas and then finding the pressure, density, tempera-
ture, and speed of sound at a constant entropy for an expansion or com-
pression wave,

The method is illustrated in Figs., 2.1-29 and 2.1-30 (from
Ref. 34b), where air is expanded from 100 atmospheres and 300°K to lower
values, ’

Figure 2,1-29 (a) shows that for a given pressure, the real
gas temperature is souwewhat lowcer than the perfect gas value,

Figure 2.1-29 (b) indicates that the initial higher sound
speed for the real gas is decreased as the expansion proceeds, and
finally, at low pressures, the perfect gas sound speed is greater,

From Fig. 2.1-29 (c) it is seen that the density for the same
pressure is greater for the real gas, since it is expanded to a lower
temperature than the perfect gas over most of the range.

From Eqs. (1) and (2) and the definition of sound speed

(az = dp/dp), one can write

- du _ 1
for a P-wave P - pa {1a)
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for a Q-wave %% = - B% (2a)

The quantity ;% is plotted against p om Fig. 2,1-30 (a), It
is seen that the perfect gas values are only slightly greater over the
pressure range, A graphical integration of (a) gives the particle ve-

locity directly at a given pressure (since u = + gf), and is shown

on Fig. 2.1-30 (b). At a given pressure, the particle velocity is
greater for the perfect gas than for the real gas in an expansion wave
as noted above, A cross plot of Fig. 2.1-29(b) and Fig. 2.1-30 (b)
gives the variation of u with a, and is shown on Fig. 2.1-30 (c¢)., It
is seen that for a forward facing rarefaction wave %g = -5 for a per-
fect gas, whereas for a real gas du/da becomes increasingly larger as
the expansion proceeds, It also illustrates the previous remark that
for the perfect gus the characteristic lines in the (u, a)-plane are
straight, and for the real gas they are curved, The method of obtain-
ing the characteristics in a real gas are discussed in Ref, 22. 1In
addition, it is worth noting that the Riemann invariant

?

2a_ _ 2%y
Y4-1 Y4-1

P =u+

for a perfect gas is no longer a2 copstant in a real gas. The devia-
tions noted in Figs, 2.1-29 and 2.1-30 would be very much greater for
an expansion from an initially high temperature and low pressure, where
the real gas effects are more significant,

It should be noted that the above effects are important only
when imperfect gas effects for isentropic flows are noticeable, For
shock tube work at ordinary temperatures these effects in a rarefaction
wave would be small, However, for expansions from high temperatures,
gas imperfections can be quite significant, 1In addition, when such ex-
pansions occur very rapidly (near the focal point of a centred rarefac-
tion wave) the flow along each particle path can no longer be regarded
as isentropic (Fig. 2.1-31). Such flows are discussed in Refs, 22, 22a,
22b, 22c¢, 22d, 22e, 23, and 23a.

It is of interest to use the definition of the scund speed
along a particle path as defimed in Ref. 22 to illustrate some of the
forms it can take in a relaximg gas (agreewent on the correctness of

this procedure has not been reached; see the discussions in the above
noted references).

a2=%%/g%=[%(!:+U+RT)/%(E+U)]RT (9)

In Eq, (9), (E + U + RT) is the enthalpy, (E + U) the internal energy,
E the adjusted portion, and U the lagging part, Their derivatives
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define an effective isentropic index for the sound speed, where

p = pRT
E = E(T)
5t =t T, V)
R =R(p, T, V)
v =2, (10)

The lagging part (1) of the internal energy is designated by (Ui)’

The value of az can be found for different cases of lagging
specific heat, Consider the case of lagging rotational heat capacity
(in practice this would not occur readily, since it only requires a
few collisions (2 to 4) for adjustment),

Let
dE du

= r _
@ = C gyt

where er is a temperature typifying Ur. For a perfect diatomic gas
_ -3 =
R =R, (a constant), E = % RT and U, = R, o, .

Therefore,
DT DR D
R+ Tz + (E + u)
a2 - _Dt 5Dt Dt . BT (9b)
Dt (E + U)
or
Deé
LR R T
a® = *RT {11)
DT Dor °
3pt + 2 bt
1f @, = constant, then
Do, 2 5
oo 0 and a“ = 3 R,T (the monatomic value)
if 0, = T, then
2 _1
a® = ¢ RT (the diatomic value)
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If 6 lags T, then intermediate sound speed between the monatomic and .)

diatdmic value is obtained,

In the case of lagging vibraticnal heat capacity for a di-
atomic gas, E = g ROT and Uv = vibrational energy summed over all

modes, Or, Uv

fies the vibrational energy, #1d

= UV(OV), where 8 = vibrational temperature which typi-

Shad

LAt Nasaiste sl

DUv - DUv . Dev - c Dev :
Dt DGV Dt vib Dt ;
Substituting in Eq, (11) yields
700, 2 D&% |
9 Dt R, “vib Dt }
a = - DB-.ROT (12)
5.111‘.._2_.(: Vv
Dt Ro vib Dt
1f ev = constant, then
1.8
v o_ 2 _ 17
5T 0 and a B-RT
When
2 T+ -; Cvib
8, = T then, a% = ————— < R T
5 +=¢ °
Ro vib

For a diatomic gas cvib'__"Ro at high T (assuming no other modes) and

az-—-sg- ROT.

Similarly, for a dissociating gas with vibrational heat capacity lag,

if o is the degree of dissociation then R
molecular gas constant per unit mass, and

DU _ o v
bt = la bt * Cvib pe (1
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F A substitution into Eq, (9b) gives
&
! 21, vy, . 2 C . (1 - a) DO

' DT Da -
(T+3dpe * T \3*RT " ®T R bt
2 _ o 0 2 (1+a) R_T
a = T D 2T, 20, 2 C,p (1 - a D8, o
(S*a)ﬁ?”f“ﬁ'ﬁ)* R T
o o o (13)

It will be noted that when & = 0, Eq. (13) becomes identical with Eq. (12),
and when g—>»1, 82———P-% (2R°)T. That is, for the atomic gas the gas
constant is twice the molecular gas constant.,

For example, consider Eq, (11) and assume that Br does not

follow T instantly when a rarefaction or compression wave passes over a
gas, but maintains the temperature T1 for a few collisions., Then

Or = Tl and a2 = % ROT. This implies that the head (H) of the rarefac-
tion wave (R) (Fig. 2.1-31) starts out from the origin (O)with a sound
speed appropriate to a monatomic gas, and then the speed decreases to 3
the equilibrium value at the particle path §d), where flow changes are

now very gradual, That is, particle paths (a), (b), and (c) have di-

minishing entropy changes, and for particles (d) and beyond, the flow b
is isentropic, For the compression wave, the entropy increases as the {
shock is approached, and the head (H) of the wave (CW) speeds up as it

b approaches the shock wave, Whether the head speeds up to the monatomic
! sound speed will depend on whcther or not the compression wave which is
F steepening to form the shock wave is strong enough to yield a sharp or
diffuse type of shock wave (Subsec. 2.2.2). If a sharp shock is formed,
then the head will speed up until it has achieved the monatomic sound

| speed. If the shock is diffuse, this would not occur and would be simi-
! lar to the case of a rarefaction wave which is not centred at the physi-
i cal origin, and changes along a particle path may be small enough to

! avoid relaxation effects,
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Some special cases may be derived from Eq. (13) for a diatomic
gas,

1. If the chemical reaction rate or change in dissociation is very

small, the composition is fixed or frozen, i.e., o is constant across a

sound wave, 1If in addition vibration does not change, then the sound
speed is one of frozen composition and frozen vibration, From Eq, (13),

3
al =(%—%-gi’)(1 +a) RT (14,
or H

2. If the vibrational degrees do participate at their classical value
of R T when the translational temperature is high, ‘
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and

al =($—f—g)(1 +a) RT (15)
or

al = -g—f—g - 2 RT (15a)

3, 1If the chemical reaction rates and the rotational degrees caa fol-
low the changes across a sound wave and the vibrational degree cannot,
then (from Egqs, (B-25 and (B-26), Supplement B)

2

C
a® = =B . 2 (1 +a RT 16)
Cv 2+ a- ; ° (

where Cp and Cv are evaluated with fixed vibrational energies along an
isentrope,

4, If the vibrational degrees also can follow the change across a
sound wave, then complete equilibrium exists, and

C

2 _p 2

a“ = . (1 +a RT (17)
Cv 2 +a- ;2 °

where Cp and Cv now include the change in the vibrational energy.

The above definitions of sound speed are quite useful when
dealing with flows through shock waves and rarefaction waves (Ref. 24b).
They apply to nonstationary flows in a shock tube or stationary flows
over a model where these waves exist and relaxation effects occur,

For example, consider Fig. 2.1-32, where the flow over a model
in a shock tube is illustrated schematically, Behind the moving shock
wave (S) in the quasi-steady region (2), equilibrium is established after
a relaxation distance (L). Relaxation effects can occur in region (3),
through the rarefaction fan and in state (4), depending on whether or
not the flow time through a wave element along a streamline (1F) is very

much greater or less than the equilibrium time (t;) for external, inter-
nal, and chemical degrees of freedom (Supplement C),

2.2 Piane Shock Waves

In Subsecs, 2,1,3 and 2.1.4, it was shown that a compression
wave generated by a piston in a duct of constant area steepens to form
a plane shock wave. The properties of the shock wave now will be con-
sidered in some detail, It can be noted that the shock relations to be
derived also apply locally without restriction across spherical or cy-
lindrical shocks.
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2.2.1 Shock Waves in Perfect Gases

In its simplest form the shock front in a perfect gas is re-

garded as a discontinuity across which changes occur in the dynamic

and thermodynamic flow quantities (Fig. 2.2-1), 1In real flows viscosity
and heat conduction change the discontinuity into a thin front (of the
order of a few molecular mean free paths thick, see Ref. 26) through
which a rapid but continuous transition in velocity, pressure, density,
and temperature takes place (Fig. 2.2-2)., A further and much greater
thickening of the shock front takes place whenever relaxation phenomena
occur in imperfect gases (Subsec, 2,2.2). If viscous and diabatic ef-
fects are assumed to act within the transition front only, then regions
?1) and (2) can be considered as isentropic, one-dimensional states

behind the shock wave a boundary layer is formed in a real flow and
the flow is no longer strictly one-dimensional)., The equations of
motion of one-dimensional steady flow are as follows:

Continuity equation

ax (ov) = 0 (1)

Momentum equation

d d
H(pv2+p—'%ﬂ3¥;=0 (2)

Energy equation

2
das _ daQ _ dT dv _ 4 dv d dT
P”a-W§W%WrPaw”@+aGa)
(3a)
Alternately,
d 1.2 4 dv dT|_ .
a[m<%T+§”>‘§#Va*kaﬂ'° (3b)

The energy equation as given in Eq, (3a) is a restatement of the First
Law of thermodynamics, It is useful in showing the terms that contri-
bute to the entropy production in a shock wave. The form given in

Eq. (3b) is the usual onne which contains the enthalpy and kinetic energy
terms,

Equation of state for 2 perfect gas

p=p8r=-pm (4)

a constant,
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Entropic equation of state

L4
P = 4 (5)
s-s
o
Po Cy
where A = —5 e , & constant for isentropic flow,
Po
For all values of x,
pv = Cy (6)
2 _4 ,4dv _
p + gV -g”a C1C2 (7
1 2 4 dv dT _
pV(CpT*'EV)-’S-[lVE;“(E;—CICa (8)

where Cl’ Cz, C3 are constants that can be evaluated in terms of a
known state (1) ahead of the shock wave, and where

dv dT
a8 =0 , (_) = 0
(dx )1 dx 1

Therefore,
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When the viscous diabatic equations (Eqs. (6) to (9) are solved for the
shock front (Refs, 26 and 26a to 26c), a continuous transition front is
obtained which is shown schematically in Fig. 2.2-2. The thickness of
this front is considered in detail in Ref, 26, From Eq, (3), if k is
treated as a constant (just to indicate the physical effects, e.g., for
a weak shock front) it can be shown that the contribution to the entropy

production by dz'l‘/dx2 is positive when there is a net heat flow into tne
element and negative when it flows out, Consequently, the curves of
entropy and total enthalpy

dh 2
g 1.2 __o_pd8 6 4/44d%
dx (Cp T + 3 v7%) dx Tax*3 o de
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have a maximum value, The final result is a net increase in entropy
{in accordance with the Secund Law of thermodynamics) but there is no
change in the total enthalpy of the states separated by the shock,

That is, the heat which is generated remains within the shock front,

s = e — e e

If the conditions that %"% = 0 and g—} = 0 are also applied to

state (2) downstream from the shock wave, then Egqs, (6), (7), and (8)
reduce to algebraic form and are known as the Rankine-Hugoniot equa-
tions for a norwal shock wave, The resulting algebraic equations are

P V2 T P V) (10

2 (11)

{ C T, + 2=CT+%v12 (12a) ‘

or
2 (12b)

O aner . o itk d Piasstor- whid
-
| -]

+
[.CI0
<

2
Y]
1)
-2
b
+
(X L
<
s

PES——

P2 (13)

Y
Sq T 8 P P
B 2C 1. in -2 —1> (14)
v P1\P2

11 (15)

[
[ M)
'
1]
[
1
Ny
-
ye)
™
+
‘o
[aery
~
N
©
[
h=]
[ 1]

=2
™~
I
k=3
[
o)
—
o]
[ ]
[}
b=
—
~
©
©
[ ]

P P

2 The ratios -‘;g and p—l may be expressed in terms of shock wave Mach num- J

! 1 2 i

ber M_ = (% = W,., and it can be shown that S, 2 S; only for M_2 1.
s 1 11 2 1 8

a

ig! A comparison in series form of Eq. (13) with the isentropic relation

. p Po\
5—2- = ;’-2-) indicates that they differ only in the third order term
1 1

3
Py = Py
-—p—-— , showing that for a very weak disturbance the two expressions
1

are equivalent,
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For a shock wave moving at spesd w into gas at rest vl = w

and Vg T W = Uy, where ugy is the flow speed induced behind the shock
wave, From Egs, (10) aa3 (11)

PL¥ = Py (w - uz) (17)
plwz + Py = Pz (w - uz)z + Py (18)
°r ( )
p Py - P
) ‘/,,2 RN (19)
1 (pz - Pl) .
" =‘/(pz - Pl) (Pz = Pl‘ (20)
2 PP
172
__w_ = W/al = m = p2/p1 = rzl (21)
ug up/ay Uy kp/py -1 Ty -1
Py Y11
~£ = r = v = 22
pl 21 w - UZ Wll - U2l ( )
pz B a Wl.l2
;I-le—l'*ﬁ,l?—-l*"yw UZl (23)
-, from a measurement of the shock velocity w and particle ve-
. g ihe pressure and density relation (Hugoniot) for the state
- shock wave can be determined (Ref, 27), It is seern from
by, that when
Pg—= Py » P2 T Py—wAP AR Py = py—u X
or
w——---a1 =l/Ap/Ap
That is, in the limit a weak shock becomes a sound pulse, In this case

ug = v, i,e,, vthere is no mass motion behind a Ms _h wave,

P -
From Eq. (13) it is seen that le-——"w when _l"""—;j_f
that is, in the limit for strong shock waves P2
_ P2 + 1 .
L3 py Y- (22)
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Performance of Simple Congstant-Area Shock Tubes

Substituting this value in Eq. (21) for strong shocks

(23a)

A substitution of Eq, (23) into Eq., (21} yields, for strong shocks,

y 2 2 . 2 2
Par =135 1 "nn (24)

- 2
L 2 (v - 1) Wy

P
21 2y 2 r-
T = = w =
21 Iy Y * 11 v+ 1 (v + 1)2

Ay, = w“|/27(7 - 1 /(y + 1)

l =22_1=m. )’*1 = 2
2 % Yy V-1 YV -

For the case of air, e,g,, with ¥ = 1,4, uz-——-l.ss as
Py —e . It is worth noting that 1 < ¥ £ 5/3. Consequently, =
monatomic gas (e.g., He) is least compressible (pz/pl--v 4); and a
gas of a complex structure (e.g., SFG), is most compressibile
(pg/py—== 21), For such a gas, W, /Uy, —1 and py, —e~ 2 i1y
remains constant., This condition is not satisfied for s° he ks
(Supplement B),

Physical quantities behind a normal shock wave in a perfect
gas are plotted in Figs. 2.2-8 to 2,.2-13, The same results alsc apply
locally across spherical and cylindrical shocks as well as to the nor-—
mal velocity components of oblique shock waves since the tangentizl ve-
locity components remain unchanged,

2.2.2 Shock Waves in Imperfect Gases

The present section deals with shock waves in imperfect gases,*
The effects of thermal [p = pRT (1 + a)] and caloric imperfections

*An alternaiive development of shock-wave ecuations in real gases is dis-
cussed in Supplement D,
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[Cv = Cv ‘T,p}) , and relaxation processes are considered, Entropy in-

creases are encountered considerably beyond that for shock waves in
perfect gases at high Mach pumbers,

2.2.2.1 Relaxation Effects

When a gas is suddenly compressed by a shock front (Supple-
ment C), thermodynamic cequilibrium is disturbed and a relaxation time
is required to restore it. If the relaxation time ¥ is much longer

than the times ‘1k of molecular collisions (t/té =2 >>1), then the

shock wave becomes quite extended and very marked changes occur in the
flow properties through the transition fromnt,

The distinct shock transition fronts shown in Fig. 2,2-3 may
occur in a gas (Refs, 11 and 28). Sketch {a) illustrates the adiabataics
in the (p, v)-plane. The value of 75 for complete equilibrium is in

this case less than the constant value of Yi-g for the so-called

"frozen" state, which considers the active degrees as jmmediately ex-
cited, but the inert degrees as unexcited, (Translation and rotation
are usually lumped together, since they reach equilibrium in a few col-
lisions,) Consequently, the gas is more compressible (v = 1/p), and
the complete equilibrium adiabatic lies closer to the p-axis, 4 plot
of p against x through the weak shock does not exhibit the fawiliar
Rankine-Hugoniot pressure ratio le discussed in Subsec, 2.2.1.
stead,

In-

a smooth transition or a "diffuse' shock occurs, This is analo-
gous to the action of heat conduction and viscosity in the transition
front for a perfect gas or frozen Y case, As a matter of fact, relaxa-
tion effects can be treated by adding bulk or compression viscosity
terms in the Mavier-Stokes equations (see Refs, 29, 30, and 31 for ex-
ample), Such a profile is found when w <'(a1 active), that is, the

compression or weak shock front travels with a veliocity less than the
sound speed for the Rankine-Hugoniot adiabatic with y evaluated on the
basis of the active degrees, This may be seen in sketch (a) of

Fig. 2.2-3. If a discontinuous shock is to be generated then state (2),

which lies on the Rankine-Hugoniot adiabatic, must be formed first,
Since the tangent ratio for state (1) is

(32),, /(8),; >

then
a 2 >a 2 . or w > (a, active)
1-2 1-2 1

is the conditiou for the formation of a sharp shock, If w < (a1 active)

then the sharp front is replaced by a smooth transition, (A gas with

a very long relaxation time (L = w¥ is large) would be most useful for
observing such a shock, A systematic experimental study of this problem
has not been done to date.,) This transition is propagated without change
of shape, The front is of the order of the vibrational mean free path,
The pressure, temperature, and density all increase continuously through
the transitiun front, while the velocity decreases until it hus attained

the equilibrium sound speed (al), and then decreases further until it is
subsonic,
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Performance of Simple Constant-Area Shock Tubes 2.2.2.1

An example similar to the case of Fig., 2.2-3 (a) occurs when
a subsonic steady flow with w < al is decelerated by a small pitot tube

(Ref. 32). Along the stagnation streamlise, near the pitot orifice,
the pressure rises from the free stream static pressure to the equilib-
rium stagnation pressure, giving a smooth tramsition curve similar to
that in Fig, 2.2-3 (a). The compression is accompanied by an entropy
increase even in the decelerated subsonic flow,

Figure 2.2-3 (b) illustrates the condition w > (a; active).

A discontinuous jump in pressure occurs from (1) to (2) along the
Rankine-Hugoniot adiabatic as the translatioual and rotational degrees
adjust in a few collisions, This is followed by a further, almost ex-
ponential, rise in pressure (2*), as the inert degrees adjust through
an increasing number of molecular collisions (see Supplement C).

Another possible shock transition profile that may occur is
shown in Fig. 2.2-3 (¢). For example, consider a very strong shock
wave propagating into a diatomic gas. Immediately behind the front the
pressure jumps from (1) to (2), However, if the translational tempera-
ture is very high, the collisions are very effective and the gas dis-
sociates almos? completely before vibration or any other inert degree
can be excited (assuming no electronic excitation or ionization). Under
these conditions the gas is nearly monatomic and cannot be compressed to
the same extent as a diatomic gas, (The perfect gas limit is pPa/py = 4

for ¥ = 5/3 and 21 for 7v= 1.1.) Alternately, there are no aew heat
sinks available to further cool the ges in order to increase its den-
sity, Consequently, the pressure behind the shock front jumps to the
perfect gas value and then drops exponentially as the gas reaches ther-
mwal equilibrium (2*), It is of interest to note that two adiabatics
cross at (i), Beyond (i), the equilibrium adiabatic now lies to the
right of the Rankine-Hugoniot adiabatic, having a comnstant ¥ evaluated
for the active degrees, and gives rise to a decreasing pressure and
density, Analyses for the weak shock case shown in Fig. 2.2-3 (a) may
be found in Refs, 11, 19, and 28, An experimental verification can be
found in Fef, 28d, Although this is an interesting problem in gas dy-
namics, it is not of immediate practical importance for actual flight
problems, Some recent work on strong shock wave profiles including
radiation effects can be found in Refs. 28a to 28c.

Shock waves shown in Fig., 2,.2-3 (b) can be readily produced
even for weak shock waves in a gas where the inert degrees are alrcady
excited (e.g., CO2 at NTP). The almost discontinuous jump (La is very

small, ~106 ir, at NTP, see Supplewent C) from pl to p2 is found from

the Rankine-Hugoniot relation Eq, {13), Subsec, 2.2.1, with y = 7/5 for
any diatomic or rinear polyatomic molecule, and with ¥ = 4/3 for aany other
polyatomic molecule, This very interesting result arises from a consid-
eration of the energy equation,

(1)

where Cpa Tl and Cpa T2 are the enthalpies excluding the inert iaternal

energy e which the initial gas possesses to start with, It is seen

i’
that this energy cancels out, and since the mass and momentum equations
are unchanged, only the ¥ for the active degrees is involved, It should
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be strongly emphasized that the use of ¥ = constant for the determina-
tion of the properties behind the shock applies only to the active por-
tion of the front, It will be seen subsequently that ¥ ceases to have
an important role in calculating the shock properiies when inert or im-
perfect gas effects are present,

Flow Quantities in the Equilibrium Region behind the Shock
Wave (Region 2*),--The almost exponential rise in pressure from Py to

ps is considered in some detail in Refs. 18, 33, and 34a, However,
since the equilibrium flow quantities in (2#*) are independent of the
intervening processes which establish equilibrium between the active
and inert degrees of freedom (Ref., 11), it is not necessary to consider
the relaxation zone in order to compute the equilibrium (*) values be-
hind the shock front., Consequently, the {inal equilibrium fiow quanti-
ties far enough behind the shock front can be determined from a know-
ledge of the enthalpy or internal energy content of the gas. It is
worthwhile illustrating the above by considering the case of C02, as

shown in Fig, 2.2-4, for vibrational excitation only {Ref, 34b). It
is seen that the equilibrium pressure (ps) and density (pz) exceed the

Rankine-Hugoniot values based on the active degrees only (y = T7/5),
while the temperature (TE) is less. The above result is shown 1in an

alternate manner in Fig. 2.2-5a, On the other hand, if for CO2 y=1.3

is considered as constant throughout the transition, then the Rankine-
Hugoniot equations give results roughly intermediate between the active
and equilibriuvm values for density and temperature and a lower value
for pressure.

The transition through a shock front for the case where dis-
sociation is also present is shown in Fig, 2,2-5b for the case of oxygen,
The sharp change L1 for the active degrees and the exponential approach

to equilibrium for vibration (Lv) and dissociation (Ld) as equipartition

of energy takes place are shown, The total shock thickness or relaxa-
tion zone is given by L,

The method of obtaining the equilibrium values is as follows,
Consider the equations of motion for adiabatic onc-dimensional shock
flow in stationary co-ordinates (v2 =W -u, vy s w):

Continuity, -
Py vy = (pg Vy) (2)

Momentum,

»
(Pl * Py V12) = (Pz * Py vzz)

gviien = (3 "22 +hy)"

Equation (3) may be rewritten as

* _ 2 E
Pyy =1+ vy M" (1 -
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e

where ¥ has the free stream value, HS is the free stream or shock Mach
w * _ %

number roglt and VEI Vo/Vye
4

Similarly, from Eq. (4),

*®
* _ 2 _ " - 1

h
Hyy =g =1+ —3— “52(1"‘[2*12) (6)

-

The thermally perfect equation of state for an undissociated or non-
ionized gas is given by

. R
P=pPnq

T = p RT (7a)

The thermally imperfect equation of state for a dissociated or ionized
gas can be expressed as

T

PPy m TP TR T (%)

The calorically imperfect equation of state without dissociation or
ionization is given by

T
h = h(T) =f C(T) dr (8a)

[}

and with dissociation or ionization by
T

h = h(p, T) =] ¢ (p, T) ar ( 8b)
(o)

where

m = molecular weight of cold gas
m(p, T) = molecular weight of hot gas behind the shock
- L)
Z(p, T) = e, T 21 (9a)
or, for a single diatomic gas,
z =1+ op, T [1+x(p, T)) (9b)
where
x = degree of ionization

degree of dissociation
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and Z and h are tabulated in such standard references as Refs. 4, 35,
and 36, A plot of h(p, T) for a pure diatomic gas (Ref, 37} is shown
schematically in Fig. 2.2-6a, It should be noted that

Cp(p, T) = (bh/OT)p

Consequently, the slope of a curve at any point yields Cp(p, T). For

a diatomic gas with only translation and rotation excited, Cp is a con-

stant, that is, Cp = % = %% per unit mass, When the gas is fully

dissociated {no ionization) it is monatomic and the molecular weight is
-dh _5 R _5& . o .

halved, or Cp = 4T 20/ " m * The dissociation energy 1d is the

difference between the a = 0 and the a = 1 curves and is nearly constant

with temperature (except for the effect of vibrational energy), As noted

in Supplements B and C, the degree of dicsociation a increases with tem-
peracure and at a given temperature increases rapidly with decressing
pressure, At the lower pressures especially, the temperature changes
are small as 1d increases from zero to its full value and is typical of

the variation of enthalpy with temperature of 4 substance as the latent
heat 1 is added,

The effects produced by the excitation oi the inert degrees
of freedom can be clearly illustrated on a plot of h with T of which
Fig., 2.2-6b is a portion, For a strong shock (MS)C>1) thac¢ can produce

dissociation, V *2 s a small quantity, and from Eq., (6)
21

—“
nd
]
[
]

(
v

{6a)

=
-

[

n

X~ constant

Consequently, for a given hy = hs the excitation of the inert degrees
means a decrease in the translational temperature (Tzc < Toy < Toqa

where (a), (b), and (c) are assumed as possible equilibrium states}.
Similarly, vz/vl = pl/p2 = Pl2 . T21 . Z(pZ' TZ)’ Since P12 does not

change very much and T21 decreases rapidly as each new mode becomes
excited and outweighs any change in Z,

Yae < Vab < V2a

By assuming that the vibrational degree has achieved its full
molecular excitation energy of % per mode over most of the range for
Ms)£>;, taf curve of k = h(T) including vibration has & slope cof
Cp =3 * & - Under this rough approximation ¥ = 9/7, and
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v
2b 3 p s
;-2'—8 ~ I (see Yig. 2,2-6b)

The temperature, at a given pressure, at which dissociation
starts depends on *hc dissociation energy of the gas, At 1 atm hydro-
gen dissociates at approximately 2200°K, oxygen at 2400°K, and nitrogen
at 4400"X (Ref. 17). Figure 2,2-6c shows a normalized plot of h/ld

versus T/Bd which applies approximately for all diatomic gases (see
Ref., 3 and also Supplement C).

Six equations (Egs. (2), (5), (6), (7}, (8), and (9)) permil
the solution of the six unknowns py, py, Tg, w;, hy, and Z. This can-
not be done explicitly and an iteration procedure, which converges
quite rapidly, wmust be used as follows:

1. Compute Pi; and Hé} from Eqs, (5) and (6) for several values
of Vgl. ( Assume the Rankine-Hugoniot value for a given MS and
Yy , as a start and several lower values.) Note that
Vi& = HS - Ué} connects E?e steady and unsteady velocities be-
hind the shock wave, (vzl is always subsonic but Ui& can be

subsonic or supersonic,)

From thermodynamic tables and charts (Refs. 4, 35, and 36) ob-

tain T; and Z corresponding to the values of p; and hi obtained

in (1). Compute p; from Eq, (7).

Plot I, = Ez obtained from (2) as a function of ;l = —lr
21y 3 Vo)

assumed originally, The intercept of this curve with the line

[;3 = —%r gives the correct value of Vi; .

\F3

A sclution of the above equations for oxygen is shown in
Fiz., 2.2-7 for T1 = 218°K and P = 10-2 atmospheres (conditions at an
altitude ~100,000 ft).

The contributions by each degree of freedom to temperature
and density as the shock Mach number 'll = ls is increased are clearly

illustrated, Of special interest are the density curves., Curve (a)
fo)

from Fig. 2.2-7 is for the case where p = py and p—z--——>4;:-t——}- for
p 1 P

Yy = % , 2. 6 . If vibration is fully excited 7-—a>g-and -2 —p 8
Py Py

as shown for curve (b), It should be noted that the calcuiation of

curve (b) with ¥ = 9/7 is a vough approximation, since 7 in front of

the shock is not 9/7 but 7/5 and the Rankine-Hugoniot equaticrs cannot




A ] RS At e ttadnalil

2.2.2.1 NAVORD Report 1488 (Vol, 6, Sec. 18)

be applied directly. In curve (c) the density reaches a maximum at
MS ~ 20, when a ~ 80 per cent, and then the density decreases, The

* reason for this behaviour is given following Eq., (D-31) in Supplement D,

Of considerable interest is the entropy change (S2 - Sl)

across the shock front, In curve (ag from Fig, 2,.,2-7 the entropy is
computed from Subsec. 2.2.1, Eq. (14), using a constant ¥ = Yy < 7/5.

As the gas relaxes and achieves its vibrational energy through an in-
creasing number of collisions, the entropy is increased., Assuming that
the classical value of RT per mode is achieved, then curve (b) can be

plotted on the basis of 7 = Yl = 9/7, This is a rough approximation, g
: since y in front of the shock is 7/5, and Eq. (14) noted above does not T
' apply directly, i
L N
Finally, the entro»y change is a monotonically increasing 3
1 function of temperature given by curve (c). It becomes increasingly
; larger as the degree of dissociation (&} rises, or as the shock inten-

sity increases,

i et

It is seen that at MS = 20, the entropy change in oxygen for ]

an imperfect gas for the given initial conditions is more than double .
the perfect gas value, A simila. result applies to air (see Fig. 2,2-16 ]
for h = 100,000 ft), Why this comes about may be seen from the entropy
change between state (1) and any of the other states (2)

LTAR

o I

L
_dh R

:% das = T ™ d 1n p H

or 2 . 0

- = dh %, 2

2 S2 S1 J~ T (pz, T) m in Py
. (10) ‘
-5 - ar _ R, P2 *
S2 S1 .£ Cp (pz, T) T In By :

S is the entropy per unit mass, and the integration takes place over
any reversible path, The pressure integration can be done at low tem-
perature Tl so that dissociation is absent, otherwise m = m(p, T) and

the pressure integratior could not be written explicitly, Finally, the
temperature integration is performed from T1 to T2 at constant Py, The

reversible path of iategration for T or h corresponds to the constant
pressure curves of Fig, 2.2-6a for h versus T, The pressure p, does

not change very much in going from state (a) to state (c) behind a
shock front., As a result, the entropy rise on going from state 2(a) to
2(c) is given approximately by (Ref, 37)

ORI RN [T

’ 2¢ an(py, T

: - - gh
¢ Sgc ~ S2a 'J T .£ T

; 54
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The integration paths are shown on Fig, 2,2-6b, and it is
seen that for an identical change dh, the temperature T for the first
integral is always less than or equal to T for the second integral,
Since hy is the same for both paths, therefore SZ(c) > SZ(a)’ This

difference grows increasingly larger for a given set of initial condi-
tions, As the strength of the shock increases, t2(c) on the curve of

hz(c) changes little with increasing h2, whereas T2(a) increases very
repidly with h2’

Making use of Egs. (15), (16), and (19) in Subsec, 2,2.1, and
Eq. (7) above, one may express the shock relations in dimensionless
form, For vy = 1.4, they become

*

2 13 Toy (11)

which again may be solved by an iterative procedure,

The remaining quantities to be found in state (2*) are the
sound speed (a;) and the Mach number (M;). Since the usual perfect gas

relation for the sound speed (a2 = ¥YRT) no longer applies, it may be
determined for an imperfect gas in the following way. From the condi-
tion of iventropic flow, dS = 0, or

de + p dv = dh - v dp = 0 (16)

Therefore,

(%), = 5 (55),
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The speed of sound is now defined with the aid of Eq. (17) and the
thermally imperfect equation of state as

- *P- 2R ,2
(22 ) () TpT YELT R (18)
where
* _(oh (& 1lnp
v - (Be)s (a 1n p)s (19)
1 _ ({3 1ln p .
;_1‘(a1nzrs (20)
and
> - (2lng (21)
;_1 (,anTs

* *

The isentropic exponent ¥ = ¥ (p, T) for an imperfect gas is
not equal to the usual specific heat ratio (see Supplement B, Egs, (B-15),
(B-23), (B-24), (B-25), and (B-26)). It can be found graphically from
Mollier diagrams, by plottxng h against € or 1ln p agalnst 1n ZT along
isentropes, and where the local slopes give the value of y . Such re-
sults are given 1in Fig, 2,2-13 from Ref, 40. (Another approach using

a numerical method of computing a; can be found in Ref., 41, It might

also be noted that for single ionization (up Lo 25 per cent) ; can be
determined from Eq. (B-15), Supplement B.
Since Ui} is assumed as known now, therefore the flow Mar

number in the quasi-steady region (2*) can be calculated from the -
pression,

uy U
ME = ;; = *A—z-;l- (22)

A summary of jimperfect gas flow properties obtained from
graphical methods or those using computation machines is given on
Figs. 2,2-8 through 2.2-16, The marked increase in the density ratio
([&3), with increasing shock or flight Mach number (Ms) and decreasing

ambicnt pressure (pl) is very striking. The same applies to the large

The changes in the pressure
ratio (Pia) are not large for differcnt values of p; at a given M
(Fig. 2.2-9a), As a result they are often drawn as a single curve
(Figs. 2.2-8c and 2,2-12), The noticeable waviness in the plots of M

with temperature (Ti}), density ([‘l), compressibility factor (z2),

sound speed (AZ;), flow Mach number (M isentropic index (y)

decrease in flow temperature ratio (Tza).

steady
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Vo1

flow velocity ratio { ), and entropy change (SE - Sl) is brought

M
s
about by the addition of the energies of dissociation and first, seconaq,
and third degrees of ionization, respectively, (Additional data are
given in Tables 2,2-1 to 2.2-4.5 Of some interest is the variation of
entropy with flight Mach number for given altitudes (Fig. 2.2-16), It
is seen that at Ml = 19 the imperfect entrory change increases with al-

titude unt . at 200,000 ft it is double the perfect gas value, The
rise comes from the larger degrees of dissociation and ionization for
a given Ml with increasing height (or decreasing Py that is, about an

order of magnitude for every 50,000 ft). This increase in dissociation
and ionization means a larger disturbance (Piﬁ% anrd since the absolute

pressure or density is low, the number of collisions and time between
collisions (T = 2 1;, Eq. ({C-3), Supplement C) for an imperfect gas at

higher altitude are both increased for a given Mach number, Conse-
quently, the shock front is morc extended, the molecular readjustment
to the new state is more severe, and the entropy is greater; or roughly
speaking, the entropy varies directly with the totai relaxation dis-
tance or time under these conditions (Fig. 2.2-16),

Specialjzation to the Monatomic Gas,--The methods employed in
Supplement D for the solution of properties behind strong shock waves in
air can be uscd 1n a similar manner for monatomic gases, Assuming for
simplicity that only single i1onization is produced, then the equations
of continuity, momentum, encrgy, and state {(Eas, (2), (3). (4), (7)., and
{8)), an< the Saha equation (Eq. (B-12b), Supplement B) provide six
equations tor the six unknowns pZ, Pgy. T2' hZ’ x and u2 1n state (2+4):

PV = Py (w - u2) (23)

2
Py +01W2= Py * py (W - uy)” (24)
gviem =g v -up? e (25)
p=(1*x)p%T (26)

5 LR 1y
hz=§(l+x);1‘*x—a— (27)

or
2. p Yy

h2=i‘p+x-m_ (27a)

x = [3.04 x 108 po ol 16 x 107 VT 2, 1] (28)
T ie
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The two mailn techniques of solving these equations can be
used, That is, for thc cold gas Tl’ Mg, Y and ﬁl are known, Assume

a pa and TE and solve for x, hs, pa anu Vo (see Eq. (D-12) in Supple-
Cross plot the results for regular inter-
I1f tables or graphs arc available,

ment D), Obtain py and py.
vais of Py1/P, aS outlined above,
then the method of iteration using Eas, (10) to (14) can be used to ad-
vautage.,

Alternately, given state (1) and w, assume several values of '
ug and get Py from Eq. (23), Py from Eq. (245, h2 from Eq, (25) and x

from Eq. (27a), With the known values of Py and T2 obtain an indepen-

dent value of x from Eq. (28). Plot the difference of these two values
(Ax) against ug. When &x = 0, the correct value of ui iz found., This

procedure can be programmed for a computing machine,

Typical results for argon (from Refs. 42 and 43) are shown 1n
Figs, 2.2-17a to 2.2-17f and Figs. 2.2-18a to 2.2-18f.

Some worthwhile approximations {for a gas like Hz or DZ) can

be made for Eqs. (23) tc (27) by considering the shock wave as very
strong. Consequently p1 and el ahead of the shock may be neglected,

With p; ~ 0, then from Egs, (23), (24), and (25),

(29)

Py ug (W ~uy) = py

p
(w - u2) uy + % u22 = E% + eq (30)

Combining Eqs. (29) and (30),

(31)

The above interesting result shows that for the nonstationary case of
state (2), the internal energy and the kinetic energy of the gas per
unit mass induced by the shock are equal, Similarly, from Egq, (23), 3 .

since (w - u2)2 is small,

and (30) or from Eqs. (31) and (32),

From Fys, (29)

2 + e2) (w - uz) = Py Uy
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I1f the gas is fully dissociatea and is approaching full single ivniza-
tion, then per unit mass, (since p2/p2 = % Ty (1 + a) (1 + x))

. 1. 1
.2e d .3 P2 i d
®2 T g w T 21 ) v 2x 15, TP W W

and as X —p |

Applying Ed. (29)

Solving for ug (Ref, 44)

>

“2

Since

substituting Eq, (34),

I
(36)

Since the shock velociry 15 generally one of the quantaties that can be
measured, and 1 1s known for a given tas (assuming full single ioniza-
tion). then the propertices n state (2) can be found approximately trom
the above relations,  The translational temperatures behind the incident
and normal shock waves are ftound trom the cquataion

4(% kK Ty) + 1 = oy (37)
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*
where €9 and I' are the internal and dissociation plus ionization
A
encrgies per wolecule., Since I  is known (see Table 2,1-1 for hydrogen

I' = 2 x 13,54 + 4.48 = 31,56 ev) and ¢ can be found from Eq, (35),
T2 can be calculated,

oy

For the reflection of a shock from a rigid wall the mass mo-
tion is reduced to zero and the kinetic cnergy (Eq. 31) is converted
into internal energy, For a fully ionized gas like H2 or DZ’

E
b
' ' 4
+ - 3
6 k T5 1 2 2 (38) j
3
: :
i S T5 is found, For example, in order to raise the tcemperature of a -3
; “2 molecule to 3 ev, nearly full ionization, (1 ev = 11,600 degrees) a ;
E shock must impart an internal energy céﬂv'ﬁ x 3 + 32 =50 ev, and a §
» h
f kinetic cnergy of the same value (I/Z)u2 = 50 ev, or a total energy of 3
E 100 ev, If the shock is reflected kT ~ 11 ev, and a nearly fourfold :
L temperature rise results, which is quite significant,
. . &
F 2.3 The Wave System in a Simple Shock Tube :
t The nonisentropic shock wave and the isentropic rarefaction
ii and compression waves are the basic transition fronts which can be
Y generated in a shock tube, In addition, a contact front can also be A

formed, Ideally, it is represented as a discontinuity in temperature,
‘ density, cntropy, and internal energy. That 1is, it is a surface sepa-
: rating two thermodynamically different states which are moving at the ;
! same flow velocity and pressure. In a real gas, the heat conductivity 3
o (and diffusivity) provides a continuous transition front for the chang-
P ing flow properties. (In Ref, 45, it is shown that this front grows as
the square root of time.,)

Goat

The shock tube problem can be stated as follows: Given an 3
. inviscid, perfect gas at high pressure and another at low pressure that ]
: are separated by a diaphragm in an infinite tube of uniform cross section, 1
H what type of flow is gencratcd vhen the diaphragm is removed instantane-
' ously? The answer to such a pruoiem and many others can be deduced from ;
} a discussion of the transition relations fo. :.hocks and iscntropic waves
by utilizing the (p, u)-plane for their graphical representation (Ref, 1).
} 2.3.1 Usc of the (p, u)-Planc 1
3 It was shown in Subsec, 2,2.1 that the following relations ap-
o ply across an ideal normal shock wave:
p - -
1 Pp Vg =P vy = (1)
&l !
.| where i
S vy T (w - ul) and Vg = (w - u2)
al 2 2 i
+ v = + v 2 L
X Py * Py Ve Py * P vy (2) ;
!
-
60 1
1 .
4

- T : "-\, .
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r-1 P
y +1 Py

The above may be recomoined to give

U

2 1/2

f.(py) = (py = Py) -
rra oo (pl[(r-l)p1+(7+l)pzj/

2 \1//2
(v - Dpy + (v + 1)n1])

ﬂl(pz) = - ﬂz(pl) = (pl = p2)<
, Pz[

(8)

The equations are plotted in Fig, 2,3-1., The positive sign

applies to shock waves facing in the positive x-direction g'(forward
facing or P-wave)., A forward facing wave is one in which the particles
enter it from right to left. The opposite is true for a backward facing

or Q-wave 5, For example, by considering the particuiar state (2) shown
in the sketch, it is seen that this unknown state (2) is <onnected to

the known state (1) on its right, by a forward facing shock wave (.

In a similar manner for a rarefaction wave (Subsec. 2.1.3),

(9)

(10)
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ol
py\ 47
¥, (py) 21 -

Py B

2’> ( )

Wz(Pl) = y - L-l -

Pg

These curves are plotted in Fig. 2.3-2.

By combining Figs,., 2.3-1 and 2.3-2, the two diagrams on
Figs. 2.3-3 and 2.3-4 are obtained,

This combination is justified, since at the point of inter-

section (1},
9'(9 ) - W'(P ) = V L__
1'71 1'*1 'yPlpl

By(py) = ¥y (py) = - 151 - 3 21 173
(rpy) « Py

and the curves join at (1) in a smooth manner. Although

e e
Dl (pl) # Wl (pl)
this has little effect on a physical flow.

These dizgrams may now be applied to the shcck tube problem
in the following manner, Given a shock tube as shown in Fig. 2.3-5,
which has two gaseous states (4) and (1) separated by a diaphragm such
that Py > Py and u, = uy 0 at t = 0, plot the two states in the

(p, u)-plane and draw the waves for the left state (4) and the right
state (1) as shown in Fig. 2.3-6.

States of the type (2*) (Fig., 2.2-7(b)) are impossible be-
cause the two waves are approaching, This implies the existence of a
pressure discontinuity at infinity at t = 0, and is contrary to the
initial condition that at t = 0 the pressure discontinuity is at the
origin, The only physically possible solution is that given by
state (2) (Fig. 2.3-7(a)), that is, when the diaphragm is ruptured a
shock moves into the low pressure state (1) and a rarefaction wave into
the high pressure state (4), and a new state (2) is formed such that
Py > Py > Py and uy > g Uy 0, It will be noted that nothing is

learned about the possibility of the formation of a contact surface
from the (p, u)-plane because across the contact surface p and u were
assumed equal, Its existence is deduced from entropy considerations
of the shock and rarefaction waves., Thus, so far as the (p, u)-plane
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Performance of Simple Constant-Area Shock Tubes 2.3.2

is concerned, states (2) and (3) are equivalent, The ideal wave sys-
tem and quasi-steady states (2) and (3) that are produced in a shock
tube are shown in the (x, t)-plane on Fig, 2.3-8.

The (p, u)-plane method will be applied subsequently to the
analysis of other wave interactions in one-dimensional nonstationary

flow, 1Its validity has been well established by numerous experiments
(Ref, 46),

2,3.2 Basic Equations for the Wave System and Flow Quantities in
Perfect Inviscid Gases

In Subsec. 2,3.1 it was shown thai the wave system in a sim-
ple shock tube can be represented ideally as in Fig, 2.3-8. At t = 0
the diaphragm is at x = 0 and separates two infinice tubes (4) and (1)
containing gases of different thermodynamic state, which are at rest
and in thermal equilibrium, The diaphragm is ruptured at t = 0, and
the position of the waves at any subsequent time t = tl is obtained

from the (x, t)-plane as illustrated, The states (3) and (2) as pre-
dicted from the (p, u)-plane analysis in the previous section have
equal pressure and particle velocity. The (p, u)-plane analysis did
not predict the existence of a contact surface since across it p and u
are constant, A contact surface must be assumed for the coexistence
of the two states (3) and (2) which were formed by two different pro-
cesses and have different densities, temperatures, internal energies,
and entrcpies, The states (3) and (2) are assumed to be uniform since
changes of state occur through the waves,

The basic shock tube problem is to find the uuknown {low
parameters in states (3) and (2) in terms of the known quantities in
the initial states (4) and (1). This is done by matching the pressures

and velocities across the contact surface as a result of expansion

through the rarefaction wave and compression by the shock wave, that is,

ug u, (1)
p3 = pz (2)

For a backward facing or Q-rarefaction wave (Subsec, 2,1.4)

41
u3 2 by 4
WG, )

For a forward facing or P-shock wave (Subsec, 2.3.1)

2.(f2 ) 2 12 (4)
81 \Pg

71[(71 +1) %f— +(r - 1)]
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Consequently, there are tour equations for the four unknowns, Ug, Uy,
Py and Py. It should ko noted that, in general, 74 # 71, as the gas
in the chamber may "¢ different from the gas in the channel,

Equations (1) and (4) have the following dimensionless forms:

Uzg = A4 Uy (5)
Pgq = Pyy Py (6)
U, =—L_(1-p g (1)
34 Y4 34 34
P, - 1
- 21 = (8)

u
2y VBl gy v 1)

and they may be combined to form a relation between the shock pressure
ratio le and the known paramcters Pl4, A14, Y4 @nd Yy which may be

written as

By 74 1 =
(Pag Pyy) ~ * 3 Pa AP~V Y arars, vy " 170

(9)

Since
¥ B
1 1 (10)

ha® 7,V B, Fua
Equation (9) can be reduced to a simpler form,

By F14 By
(Ppy ~ VD Yarp,, v1* (PraPy) ~1=0 (11)

1t should be noted that this step is justified as long as no
dissociation or ionization occurs in a gas; otherwise it is imperative
to use the sound speed retio (see Supplement B), and A14 is therefore

a more basic parameter than the internal energy ratio E14.
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Fyuation (11) has a complex algebraic form and an explicit
solution, le = le (P14, El4’ 74, Tl), has not wveen obtain-d, The

following form is convenient for plotting curves of Eq, (11):

1/8
B, E 4

14 Pyy o Pgy ¥

Equation (12) gives a relation between the strength of the shock wave
(P21) produced in a shock tube as a function of the pressure ratio

across the diaphragm (P14), the specific heat ratios (74, Y ) and the
internal energy ratio (El4) of the gases used in the channel and the
chamber,

Some interesting mathematical limits may be derived from
Eq, (12). When P14 =0 (1.e., pl————-O or py—— >, conditions which

[le]pM:o m— y/ﬁr—; ( ) (13)

are not realistic physically),

This is the relation for the strongest possible shock wave that may be
produced in a simple shock tube with an infinite pressure ratio P14

across the diaphragm. It is seen that the strcngest waves are produced
for small values of

(c, T)l -
iC T$4

and immediately suggests the use of a combinatior such as Hz/A, Hz/Nz,

or He/Air for the production of strong shock waves even at rocm tempera-
ture (E14 is 0,0309, 0,0735, and 0,231 for the three combinations re-

spectively; see Tables 2,3-1 and 2.3-2).

For example, using the combination Air/Air at room tempera-

ture, E;, = 1 and [P = 44; for He/Air at room temperature,
' T14 21y, 4" 0
1
E14 = 0,231 and [pZI]p -0 = 132; and for HZ/N2 at room temperature,
14
E14 = 0.073% and [Pza = 574, The advantage of using such gas
=0

combinations for the production of strong waves is quite evident,

It may be worth noting that when E . < 1, a good approxima-
tion to Eg. (13) is

Q.

1
P &= + 1 (14)
[ 21]p -0 " ByEy

14
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It will be noted that from Eq, (13), when Ejy—0,
[le] —= o and when F, o= oo 6 |P —» 1, The mathematical
P =0 14 21 -
limits of 514 =0 or E14 = are physically impossible since they imply
that either T1 or T4 have zero or infinite values,

The criteria for strong shock waves are, therefore,

1, A very large diaphragm pressure ratio, P4l-—-—- o« ,

2, A gas combination which will give a small energy ratio across
the diaphragm, E14———— 0.

A graphical solution of Eq. (12) is shown on Fig. 2,3-9 for
the case of Air/Air. It is seen that the curves occupy the region be-
tween two straight lines which pass through the point (1, 1), These
lines correspond to the theoretical limiting values of El4’ that is,

when E14 =0, le = P41 and when E14--»oo, le = 1 regardless of the
value of P4l, and illustrate the previous discussion on the production

of strong shock waves, A similar plot is shown on Fig, 2,.3-10 for dif-
ferent gas combinations at the same temperature, (T14 =1).

Once the shock pressurc ratio (le) has been determined from

the given initial conditicons in the tube (Eq, 12), all other quantities
of the flow may be calculated as follows:

1. Density Ratios

Q) Poy

al + le

Pay—r >, lpi—-q

Speed cf Sound and Temperature Ratios

1/2
-a =[I§] =T
T
4
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when
Pyy=—=>0 , Agy—0
1/2 1/2
A = o2 :[.T_z] =7, /2 [p“(al . p“)] (18)
21 ay T1 21 T+ A P21
when

Pom™> 2, Ayy—* =, Tyy—= =

3. Velocity of the Shock Wave or Shock Mach Number

By definition, for stationary flow,

Ms= l;%:'————..ul-wl :.w_lzw

ay 8y 11
since
ril _ 1+ 2 le . oy .
B + P a; -
b U S I |
¥
when
Pppm—>® or Nj—w o, I'él—ral
therefore
- - 1/2
Wi1 T Mg ‘[51“ t oy l>21)] (19)
when
2 2
Poy >> 1, W /Py —+yby ~ 1, or Py~ ¥y
4, Particle Velocity or Contact Surface Velocity
u (Py, - 1)
- _2 _ 21
Uos = <2 = — (20)
21 " a 172
1 7—1['31(“1 Pgy * 1)]
when
Poar—" » Vg™ ™%
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For strong shocks

w v, By(a, Pyy + 1)
-1 2 11 _ 71 1'71 21
p21N l.(LT.). U21 y T T 5 (21)

21 21 -1
when
11
Py— oo , a;;—-»alﬁlvl =ry + /2
Y3 1 By
when

5. Speed of Head and Tail of Rarefaction Waves

For a backward facing rarefaction wave the head and tail of
the wave have the following characteristic speeds:

M- T -1 (23)

when
- 1 2
P“-—-O , C34—+m4- = -_;4—_—1- (24)
6. Local Mach Numbers
u U -8
3 _ 34 1 : 4
Mg = =2 = 32 =gl hqp, b, Y-t (25)
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Pu——v-O y Mg———e o

R Y P =1

2 M ’l[ﬁlpzl(al * "21’]”2

¥y

p_—-oo

21 Ug—" l}- = (ng T)
3 7 -

Some of the above relations may be transfcrmed into an alter-
nate form involving the shock Mach number (MS = wll). For example, the
diaphragm pressure ratio,

'1/34

? \
1 VETN )

1~1/ﬁ

For the special case of Air/Air, B,y = 1 , =195

Py " 3 [nsz - 1:| [1 -3 (MS - i‘;):l-7

Pyy——=c0, when M—=3 + V10 = 6.16

Similarly,
6M3 sy - L
5+ 3 8 L

Is-—— oo when Ms——¢-6.16

7 -1/2
u, = 5(u? - 1) [(7u52 -1) (w2 5)]
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Similar results may be obtained for other gas combinations.

It i8 of interest to examine the mathematical limits of the
above velations for very strong shock waves, The valucs appear in
Table 2,3-2 for three gas combinftions in the shock tube, 1In all cases
considered in Table 2,3-2, the diaphragm pressure ratio P4l = pé/pl is

taken as infinite; that is, Py 18 of order zero by comparison with the
magnitude of Py For Air/Air, when 514 = 1, the limiting shock strength
le = 44, and the pressure ratio acruss the rarcefaction wave

le P14 = P34 = 0. The spceed of the tail of the rarefaction wave in
state (3), C34, and the particle velocity in state (2), U2l' are both

equal to 5, the escape speed (see FEqs, (22) and (24) above), In other
words, the tail of the rarefaction wave coincides with the contact sur-
face, and state (3) 1is non-existent, At a first glance it appears as 1if
the conditions in the shock tube are violated at the contact surface,
since on the one hand a complete centred rarefaction wave results from
the assumption of P41——o-u>, and on the other hand the results show

that a shock wave pressure ratio le = 44 exists, It is recalled that

the shock tube equation (Eq, (11)) was developed with the conditions
that Py = Py and ug = uy exist at the contact surface, By assuming

that P41 = Py, then P34 = P14 le or p3/p4 = p2/p4 has in it
an assumption with regard to the order of magnitude, that is, pz, p3,
and pl are zero by comparison with Pyi and this tends to vionlate the

initial conditions that p, = py # 0. Therefore, the results from the

basic shock tube equation will apply except for the error in the order
of magnitude introduced by p4/pl——..q,, Thus, even if Pz/Pl = 44,

P34 = 914 P21 still applies because pz/p4 is also of order zero,
Physically, the condition that P4r—->°o is impossible. It could be
achieved by having Py = 0 and p4 finite, in which case a complete ex-
pansion wave only would result; or else p4-—4~m>and Py finite, in which

case the above discussion applies, that is, a shock is produced such
that Py = 44 Py but whose order of magnitude by comparison to Py is

zero. A centred rarefaction wave is also formed such that P3 is of
order zero by coumparison to p4, and therefore the complete centred rare-
faction wave solution is approfiched and yields the escape speed as the
particle velocity as noted in Table 2,3-2,

1f, in addition to p4r——»co, 314 =0, 1,e,, Tl = 0 or
Ty—=oc0, then the flow quantjties are as shown, for the case Air/Air,
The interesting limits are for [}l = py/py=6 and My = uy/a,—1.89
when le-——-ﬂn. Again, these conditions are not attainable physically,
For the case Air/Air, E;, = 0.1 could be obtained by having Ty = 300°K
and T, = 3000°K, Assuming ¥, constant, then

Pgy = 422 . Usg = A14 Ugy = 15.8/ V10 = 5 = C34
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Performance of Simple Constant-Area Shock Tubes 2.3,2

In this case as well, the tail of the rarefaction wave coincides with
2a
the contact surface and they move with the escape spcod ——-—_T of the

gas in the chamber. At room temperature (or equa) temperatures in the
chamber and channel) 214 = 1 for Air/Air, 514 = 0,231 for He,/Air and

Eig © 0.0735 for HZ/N2' The great advantage in using the latter two

combinations for the production of strong shock waves and high values
of the other flow quantities is fllustrated in Table 2,3-2, Subsec-
tion 4 gives a further discussion of the limitations of the simple
shock tube as a generator of strong shock waves, Various modifications
to the simple shock tube giving increased shock strength, such as driver
gns heating or tube cross-section area change, are considered in

Subscc, 4 in detail,

1f aerodynamic testing is required in the constant state re-
gion (3) and (2), then the best type of gas to be used ror the produc-
tion of high Mach numbers may be obtained by differentiating Egs. (12),
(25), and (26) with respect to the diaphragm pressure ratio (P41), and

obtaining the maximum limits when P41 = 1, that is, when very weak shock
wav¢8 are produced,

1 1
= (27)
oP
(: 411) E 1 + B E
Pgi® 1 1+ l/ilﬂ414 l 14 "14

(a“a B 1 . 1
3P, 1
41 = 8 vafl +
P, =1 4 4
41 746 * VR, ( Big E1g )

1

ERpp—

P,

41 (1 By Eqa 71(1 + VB Fra )
1 o

\]
|

where 814 = BI/B4

A comparison of the above derivatives when 941 = 1 gives a

good indication over most of the range of the important parameters re-

quired for the production of strong shock waves and high Mach number

flows, The derivative (ale/anl) shows that the greatest increase
P

=1
41
in shock strength with an increase in the diaphragm pressure ratio oc-
curs when E14———0-0 (i,e,, P21 = P4l, see Fig. 2,3-5), For strong shocks

the product (BE)14 must be made small by an appropriatc choice of a gas
combination, e.g., HZ/SFG or H2/A.
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Wt s o

oM
On the other hand, the derivative[ ap3 ] shows that for
41 p41:l
the production of a high Mach number flow in state (3), El4 should be

very large. Thus there is an opposing demand in this case for a gas
couwbination, say A/H, or SF6/H2, which will give weak shocks. The rea-

son for this may be secen from a plot of M3 versus P34 = Pl4 le

(Fig. 2.3-11). For the production of a shcck wave of reasonable
strength (PZI) it will require a very much larger diaphragm pressure

ratio (P4ll, when a gas combination is used which has a large value of
E14. Hence P34 = P14 le is very small, and as a result M3 is very

large, Although the values of ¥ for real gases do not .iffer very radi-
cally (¥ ranges from about 1,1 to 1,66), nevertheless the best result
for a high Mach number flow (M3) is obtained by using a gas combination

with a large value of E14 and a low value of Yq» which also implies a

large value of (BE)14. For example, the value of[-ggfi] for
P41=1

SF6,’H2 is 0,804, whereas it is only 0,497 for A/ﬂz. In this case the

low value of ¥ and 3 for SF6 has a telling effect, Furthermore, the

index of refraction of SF6 is considerably greater than that of A and

is advantageous for optical studies of the flow, The above is illus-
trated on Figs, 2.3-12 and 2.3-13.

oM
Inspection of the equation for the derivative[ 2 ]

shows that for hipgh Mach number flows in state (M2) it is important to

use a gas combination with a low value of (BE)14 and a low value of 14T
Combinations such as H2/A and H2/SF6 are very useful for the production
of strong snocks and high Mach number flow behind the shock wave, The

combination HZ/SF6 is much better than H2/A since it has a higher

oM
_2 value (0,8 and 0.5, respectively), Also for
BP41

SFG’ M2 max = 4,86 as compared to MZ max = 1,34 for argon, However,
the combination H2/A is useful for the production of strong shock waves

in a monatomic gas (A), Since it is not affected by disscciation, ioni-
zation phenomena may be studied much more vreadily, The variation of
M, with P, and E;, is shown for Air/Air on Fig. 2.3-14.

Although the above curves are useful for illustrating the
range of the parameters involved in the shock tube problem, they cannot
be utilized too readily for experimental comparisons, As a result the
curves are replotted so that they may be applied to actual problems;
Fig. 2.3-15 shows the variation of P,y versus Py, for the case Air/Air,

T14 =1, Tigure 2,3-16 shows the variation of P41 versus P21 for He/Air,
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Performance of Simple Constant-Area Shock Tubes 2.3.2

T14 = 1, The relations for the wave speeds in Air/Air as a function
of shock pressure ratio (P21) and diaphragm pressurec ratio (P41) appear

in Figs. 2.3-17 and 2,3-18. The variation of the flow parametecrs in
regions (3) and (2) as a function of shock strength (p21) are shown on

Figs. 2.3-19 and 2,3-20. The above graphs make it possible to determine
quickly the flow parameters in a shock tube as a function of shock
strength P21, diaphragm pressure ratio P41, or shock wave Mach number

W11' Similar curves f{or the case He/Air are shown on Figs., 2.3-21 and
= o

2.3-22. The values of Py, ]51, Ugq» and Ty (Tl 300°K) are also
plotted against wll in Fig., 2.2-23, as a ready reference for the shock
Mach number,

It will be noted that the curves which give the variation of
the physical quantities with shock pressure ratio P21 for air are not
extended beyond le = 33. The reason for this is that the specific heat

ratio y, can no longer be assumed as a constant and the properties across
the shoék front must be found by using the theory with imperfect gas ef-
fects,

For the strong shock range, further perfect gas results for
shock Mach number (up to 25) versus diaphragm pressure ratio are given
in Subsec. 4 for various values of y4 and yl, and a range of sound

speed ratio A41 (Figs. 4.1-1 to 4.1-7).

7. Reynolds Number

In order to compare some of the experimental results obtained
in various shock tubes on shock wave attenuation, boundary layer growth,
shock-boundary layer interactions, and model tests in the uniform state
regions, it is necessary to maintain dynamic similarity, and the flow
Reynolds number becomes one of the important non-dimensional parameters,
Strictly speaking, this implies that for two flows the Reynolds number
for corresponding points in the flow must be identical in order to
achieve dynamic similarity, Since the flow in a shock tube is assumed
as one~dimensional, a typical length dimension is not readily available,
unless the shock thickness or the mean free path is used, (A cross-
sectional dimension, boundary layer thickness, the product of a particle
transit time and its velocity, or a model dimension, could also be used
for actual flows,) However, for any point in the flow the mean free
path could be used as a fundamental length parameter and the Reynolds
number is given then by the relation

R, = 27;_A (28)

where p gas density
u = mass motion of the gas or the free stream velocity
A = equilibrium molecular mean free path of the gas

M4 = gas viscosity
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From the kinetic theory of gases

u

0,499 p c A~ 0.5p c A

where ¢ the mean molecular velocity( c = P #% a) and

where a = speed of sound of the gas,

Combining the above,

R, = 1.5 , y=1.4 (29)

Hence, for isentropic flow, the Reynolds number at a point depends only
on Mach number, The form that the Reynolds number usually takes is

R
N N it
Re = VAl 1'5<K) (30)

where K = A/1, Knudsen number,

Here 1 = an arbitrary linear dimension which fixes the scale,
For most shock tube work the Knudsen number is very small, and in order
to compare the Reynolds numbers in the uniform state regions (2) and
{(3), the Reynclds number per foot is arbitrarily used and is given by
Re/1 = pu/u . Thus, fcr state (3),

Re) _P3 Y3 (31)
(1 )3 g
or
I, U
Re Y4 34 34
( 1)3 Hy ay 41 *1 T346"6

where the viscosity as a function of temperature is assumed as

M3 0.76
— =T ¢ (33)
Hy 34
Similarly,
Re) .1 P1. f21Y
T vy - (34)
2 171 Tsy
¥or the case Air/Air, the Reynolds number ratio is
(Re) I T 0.76
3 -p, 34(21 (35)
(Rely 41 Ty \Tay
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Assuming an initial temperature in the shock tube of 15°C, and a pres-
sure in the channel pl = 1lmm Hg, then

o
T1 T4 = 288°K

a, a, 1117 ft/sec

My =M, = 3.7194 x 1077 slugs/ft-sec

Py = 3.13 x 10-.6 slugs/cu ft
Py = ] mm Hg

and the variation of the Reynolds number per foot in state (2) and the
Reynolds number ratio with diaphragm pressure ratio (Pdl) is as shown
in Table 2.3-3 and plotted in Fig. 2.3-24, i

It is seen that even at a low channel pressure (pl = 1 mm Hg)

the Reynolds number per foot is sizeable, The Reynolds number per foot
in state (3) is considerably greater than in state (2), and the ratio

(Re)
TiET" increases with increasing diaphragm pressure ratio, Thus, by
2

varying the channel pressure (p,) and the diaphragm pressure ratio
(941), it is possible to get a }arge range of Reynolds and Mach num-

bers in a shock tube for aerodynamic testing in the uniform state re-
glons, Although theoretically region (3) has the larger Mach and
Reynnlds number range, the gas temperature is low; in practice this
regiun passes over the jagged remains of the diaphragm and is found to
be quite turbulent, It is therefore not as useful for testing purposes
as state (2), It should be noted that the Reynolds number per foot
could just as well have been referred to state (4), and a curve similar
to Fig, 2,1-27 is obtained.

8, Total Temperatures

The total temperature behind the shock wave may be derived
from the energy equation,

(38)

A4bh9T () ) B
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For ¥ = 1,4, Eq. (37) may be expressed as

2

02 _ 4 . 1

) - 1) (37a)
1

3 (%11

From stationary flow considerations the stagnation temperature arising
from adiabatic deceleration is given by

(Wl = “2)

Therefore
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That is, the total temperature experienced by a model in the hot gas
behind a moving shock wave is considerably larger than the stagnation
temperature in a steady flow at the equivalent shock Mach numbers, An
examination of Egs, (36) and (38) shows that this increase in total
temperature arises from the fact that uy can be supersonic, whereas

w
(wl - u2) is always subsonic, It is worth noting that since h—l—l—z 1

21

Cd

as Py;—= , therefore (wl - uz)z—.-o, or from Eq. (38),

2 o~ 1
Vit

— C To=

) p 1

(O

that is, the enthalpy behind a strong shock front —=F Wy

The total temperatures available in state (3) is given by
(see Subsec, 2.1.4, Eq. (21))

Y4 1 2 p
_Tog 1+ ——— My

T = == = £ (40)
034 _ 2 :
4 Y4 1 ]
1+ =y :
i
TL:’-——D 2 as N, —— 00 :\
T, 74 - 1 3 : . oy
o
s’ﬁ
For b
Y4 = l.4 ’ T 3/1‘4_*5 k
Alternatively, !
I
ol R 3P ) V7T - 2| |1 - (p VT (40a) 1

'1‘4 34 34

A plot of Eqs, (39) and (40) versus Py, is shown in Fig, 2.3-25, where i
Fq. (37) has been restated as

T T T E

ToZl_ﬁz"’T:_z"’F% (41) :

9, Pitot Pressures :
5

For M2< 1 7_11 é

Poop = ;% = -:,‘2’—2 . i—i =<1 + L4 Wi M22>Y1 . Pyy (42) 3
0]
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For M, > 1, the Rayleigh relation appiies,

, Py o+
SRR R R S IV (R ke SR p
FRRl
(43)
For state (3), for M3 <1
[ % - 1 ]1/234
p l+——2——M
Pogq = 52 - 1/8 (44)
Py [ 7y - 1 4
1 + M ]
2 3
When Mg > 1,
1
v + 1 -‘28474
' v, + 1 4 M, 2
p'. o3 _ Tt 2 B 1
B 18 T [“'T“a]
(45) “
Equations (42) to {(45) are shown on Fig. 2.3-26 and in Table 2.3-4, ;
3
10. Mass Flow Ratios }
_Pa V2 _ :
Mor = pyay, - Tar v Va (46)
u M
A, =P3 3. 3

- (47)
Py %4 7 -1 @
1+ == M,
o

Relations (46) and (47) are shown on Fig. 2.3-27 and in Table 2,3-4,

ot el B At e M Mo

11, Dynamic Pressure

=1 2 _
Q172P 5 7 (48)
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Yy g

S1 Y 9 TM
Qy = 1) =38 , (49)
34  2P3%, "y Y - 1 -]1/;34
1+ ——— ¥

A plot of Eqs, (48) and (49} is shown on Fig. 2.3-28 and Table 2.3-4,
In order to illustrate the variation of the physical and thermodynamic
quantities of the flow in a shock tube, a particular case has been com-
puted for illustration and is showrn on Fig. 2,3-29, The initial condi-
tions are for a temperature T1 4= 288°K, a channel pressure

3

Py = 100 mm Hg, a diaphragm pressure ratio Pyy = 20, case Air/Air, for
= 1000 usec after rupturing the diaphragm., 'The pressure p, den-
sity p, temperature T, particle velocity u, Mach number M, Reynolds

number Re, éntropy %3 , and the conserved flow parameters, Cp To and
v

572:_T 34 , are shown along the tube length x, The actual values of
4

the quantities are also given and- were obtained from the previous graphs.

Referring to Fig, 2.3-29, it is of interest toc uote that at - 3
the contact surface only the particlz velocity and tie pressure are con- .
tinuous and all other parameters are discontinuous. Since the tempera- s,
ture and the density are discontinuous at the contact surface, there
exists a aolecular transfer of heat between region (3) and (25. It
should be noted that the greatest change in entropy exists at the con-
tact front and not at the shock front, and arises from the fact that
state (4), being a region of high pressure but at the same temperature PN
as state (1), has a very much lower entropy. 3

In order to solve the shock tube problem the particle veloci-
ties u, = ug and the pressures Py = p2 were matched, The process for

the rarefaction wave was shown to be unsteady and isent—opic. The dif-~ [ ;
ferential equations of continuity and motion defining tu.s flow werc not ‘.
solved directly; instead, the equatioas of the characteristics were

found, On the other hand, the shock wave process was shown to be equiva- ;!
lent to an irreversible adiabatic steady process. The integrated equas- 3

tions of coniinuity, momentum, and energy were applied directly for this

case, As a vesult of the matching of these two different flows, two con- vy

served flow parameters appear on Fig. 2.3-29 at the contact surface, i,e,, .x

~ 2
<5 To and 72—:—T a4 Due to the steady state process,

c, T = % wlz +Cp Ty = % (wq - u2)2 +C Ty

the stagnation enthalpy remains constant for regiors (1) and (2); but
due Lo the unsteady state process,

2a -
u o+ 2a 4 -

74“I=74‘1
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the constant of the P- family of characteristics applies to regions (4)
and (3) and throughout the Q-rarefaction wave,

It is interesting to note that the constant per unit wmass for
states (1) and (2) is an energy constant, and for (4) and (3) a momen-
tum constant, The above along with the distinctly different results
for the ''escape speed,'" total temperature, and pitot pressure illustrates
the fundamental difference between steady and unsteady flows,

2.3.3

Imperfect Gas Effects

The relations derived in Subsec, 2.3.2 apply when the gas is
thesmally and calorically perfect, If the gas is imperfect, then two
deviations will occur, First, consider the case when a gas in state (4)
is heated and a considerable amount of dissociation occurs, If the dia-
phragm is now ruptured, the high-temperature, high-pressure gas in the
chamber goes through the rarefaction wave and is cooled., Relaxation

and recombination take place giving rise to a flow with variable chemi-
cal properties, specific heat, and entropy (see Supplements B and C and
Subsec, 2.1,5). Consequently, the resulting flow will deviate from

that predicted by the perfect gas theory. That is, Eq, (11), Sub-

secc. 2.3.2, no longer applies,

Second, if the gas is imperfect, then the other relations in
Subsec, 2,3.2 for states (3) and (2) must be replaced by their equiva-
lent imperfect gas-flow properties, For example, all of the relations
for state (2) behind a shock wave in an imperfect gas developed in Sub-
sec. 2.2,2 apply.

In order to cope with the first deviation, the variable en-
tropy region can be neglected and numerical integration along an isen-

trope of Eqs, (1) and (2), Subsec, 2.1.5 can be done, that is, for a
P-wave the integral

. = a
i u—fpdp (1)

is evaluated along an isentrope, If a Mollier chart is available

(Ref. 36a), then this can be done in a step by step manner since the
state properties are known along an isentrope and the particle velocity
can be determined from

Au =

Hp (1a)

©(p

J In practice it is found (see Subsec, 4,3) that one may approxi-
. mate by neglecting the imperfect gas effects and use the perfect rarefac-~
tion wave relation (Eq, (22), Subsec, 2.3.2)

-1 - Bl
i T [1 (P14 Pay) ] = Aq Vg (2)

to obtain the diaphragm pressure ratio P14. To do this, yq must be the

value appropriate to the high temperature, h{gh pressure gas (including
dissociation cffects after combustion) and P21 and Uiﬁ are the appro-
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Performance of Simple Constant-Area Shock Tubes 2.4

priate imperfect shock wave values, For a given shock Mach number
w]l =N, Piﬁ and Uiﬁ are known., 1{ the chamber conditions have been

calculated for the given wmethod of heating, Y4 is known, Consequently,
Piy is found from Eq, (2).

It can be noted that under ordinary temperatures (300°K) the
effects of variable specific heat through the rarefaction wave have a
very small influence, However, hydrogen is an exception since at moder-
ate pressures at 300°K it has a value of y = 1,40, whereas at low pres-
sures and a temperature of 50°K, ¥ = 1.66 (Ref. 43. That is, rotation
is practically de-excited and hydrogen behaves like a monatomic gas. It
should also be noted that even for the case of Air/Air at 300°K, with a

diaphragm pressure ratio of 1.3 x 105, the temperature behind the rare-
faction wave for a perfect gas is 0.08 x 300 = 24°K. This temperature
is considerably below the boiling point of nitrogen and oxygen, and lig-
uefaction should occur, Under such conditions the effects of variable
specific heat can be quite significant. However, as will be noted in
Subsec. 3.1.3, the temperature in the rarefaction region (3), in a real
flow, is usually muck above the ideal temperature, and it is doubtful if
such extreme low temperatures would be attained. However, a recent cal-
culation (Ref. 55) on hydrogen as an imperfect-gas driver shows that the
high-pressure effects (50 to 125 atm) compensate for the gas imperfec-
tions, and using ¥ = 1.4 (perfect gas) gives very good agreement for

P41 vs wll'

Figure 2.3-30 shows a plot of shock Mach number wll with dia-

phragm pressure ratio (P4l) for Air/Air when ¥ = 1.4, and when air is

considered as an imperfect gas behind the shock wave (perfect gas in
chamber and vibrational energy included behind the shock wave). The
properties behind the shock wave are those calculated in Ref. 11. It is
seen that a higher diaphragm pressure ratio P41 is required to produce u

given shock speed wll for an imperfect gas, The reason for this lies in

the fact that the shock wave in an imperfect gas has a higher pressure
and particle velocity than in the perfect gas case, At high shock Mach
rumbers, the deviation becomes quite significant., For example at
“11 = 4,3, a P41 = 8§ x 104 is required for a perfect gas, and a
P41 = 8 x 104 for an imperfect gas, an increase of over 30 per ccnt in
P41. If a P4l = 6 x 104 was used in both cases, then the iwmperfect gas

“11 = 4,24 as compared to 4,30 for the perfect gas case, Very little

]

gain 1s achieved with air as & driver at high diaphragm pressure ratiocs,

Typical curves of the state properties for air in equilibrium
in state (2*) as compared to the ideal values given for state (2) in
Subsec, 2.3.2 are shown in Figs. 2.3-31 to 2,3-41, inclusive, The above
plots are taken from Ref. 36a. The effects of dissociation and ioniza-
tion at low pressure are quite evident,

2.4 Effects of One-Dimensional Wave Interactions and Finite Tube
Length

In the previcus subsections the chamber and the ~hannel were As-
sumed to be of infinite length, In actual shock tube work the chamber
and the channel are of finite length with open or closed ends, As a re-
sult, after a short time (milliseconds, depending on the channel length)
the flow in a shock tube becomes quite complex due to the easuing inter-
actions,
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When the diaphragm in a shock tube is ruptured, the shock
wave proceeds along the channel, and if it strikes a closed end, it
undergocs normal reflection in a non-linear manner, I1f the channel is
open. the shock wave undergoes diffraction and reflection, If the flow
behind the shock wave is subsonic, M2 < 1; theoretically, a rarefaction

wave is reflected back into the channel. (Actually, due to the complex
three-~dimensional flow that takes place, a shock wave is also reflected
back into the channel, Real flows at open chamber and channels will be
discussed in Subsec, 3,) When the flow behind the shock wave is super-
sonic M2 > 1, then theoretically a rarefaction wave cannot be reflected

back from the open end of the channel,

In the case of the rarefaction wave which is propagated into
ihe chamber: if it encounters a closed end, then it undergoes normal
reflection as a rarefaction wave; if it strikes an open chamber, then
theoretically a reflected compression wave steepening into a shock wave
enters the chamber. Again, owing to the three-dimensional effects,
this is modified somewhat for a real flow (see Subsec, 3),

Eventually, the reflected waves will interact with the con-
tact surface and with each other and will give rise to a very complex
flow pattern in the shock tube, As a result the reflected waves will
determine the duration of the steady state flows in regions (3) and (2)
and will control the selection of the theoretical lengths of the cham-
ber and channel of a finite shock tube for aerodynamic testing, Some
of these interactions now will be considerea in some detail, It should
be noted that the final states resulting from these interactions can be
predicted from the (p, u)-plane solutions as outlined in Subsec., 2.3.1.
Numerical and graphical solutions may be found in Ref, 7,

2.4.1 Normal Reflection of a Shock Wave or a Rarefaction Wave

2.4.1.1 Shock Wave Reflection

Figure 2.4-1 shows a simple shock tube with both ends closed
and the resulting normal reflection of the rarefaction wave at the end
of the chamber and the normal reflection of the shock wave at the end
of the channel, From Eq. (20) in Subsec, 2.3.2, the particle velocity
behind the incident shock wave for constant ¥ is given by

_ Py ~ 1

= —== (L)
vy[B1loy Py + 1] 2

The boundary condition at the closed end of the channel is that the
particle velocity, after the head-on reflection, must be zero, If this
condition is to be satisfied, then the particle velocity behind the re-
flected shock wave travelling into a gas at rest must be equal to the
particle velocity behind the incident shock wave also entering a gas at
rest,

Ugp =

mI:
- o

Hence,
uy = ug (2)
and -
Ugp = Usy 49y (3)
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1/2
. T \ [52_1("1‘“"21’;‘
21 = 1/ T +a, P

n[ %o Psp * 1] 172

71[131(011 Py, + 1| /2 71["1“”1 Pgy * 1)]

. 12
Py - 1 Psg = 1 [le‘“l”’zlﬂ
2 21
1/2 o le J

(5)

a, + 2 - P
1 12
P., = (6)
32 1+ ay Pl2

Equation (6) gives the variation of the pressurec ratio across the re-
flected shock wave in terms of the pressuvre ratio across the incident
shock wave., It is seen that for an incident Mach wave le = 1 and

p52 = 1, When the incident shock wave le-—-oo, then Psz-—v- a o+ 2.

Thus for air, assuming a constant ¥ = 1,40, the strongest possible re-
flected wave P52 = 8, (The iimits of the absolute value of le obtain-

able i? a simple shock tubz, as outlined in Table 2,3-2, should be
noted,

The excess pressure ratio is defined as

Pg - Py Py (1 + @
—= =1+ 35— (7)

Pg ™ Py 217 @

For a Mach wave, le—-—o-l and the excess pressure ratio —w2, which
1s the acoustic result fcr sonic reflection, If le--—cn , then the

excess pressure ratio-———P52-——>8, as for Eq, (6).

The density ratio 1;2 and the temperature ratio T52 are ob-
tained from Subsec., 2.3.2, Eqs. (16) and (18),

r. - 1+ oy Pgq

g = (8)
52 a; + Pgo

o - P52l * Psp)
i A Bl -
52 + ap Pgo

h LA AR N A mr Sty el 4 Ay e A e MR- - S
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Thus, these ratios for 1 ¢ 1‘52 <. 8 are identiral with the values given
for 1 £ Pyy < 8 on Fig. 2.3-19,

The limiting values of the ahove ratios when PZI-——uw and

psz———-a, for air (assumirng constant specific heat), are

[Igz]pu__ _ = 3.50

T
[ 52] o= 2,29
Pa1

The variation of these flow parameters with the initial shock wave Mach
number wll is shown on Fig, 2.4-2, for constant ¥ (and for an imperfect

gas with vibrational specific heat only included).

The ratio of the incident shock wave velocity wll to the re-
flected shock wave velocity W21 may be determined in a similar manner,
The incident wave speed (Eq. (19), Subsec. 2.3,2) is given by

w
) . - 1,2

—

The reflected wave speed, if the gas in state (2) were at rest, would
be given by

Ve . 1/2
"_2 = [Bl(l + o P52)] / (11)

From this, the particle velocity u2/n1 must be subtracted to obtain the

absolute velocity |W21| , which is directed along the negative x-axis,
Thus "
w We - u w a u
2 2 2 _ 2 2 2
- w = —E s L. _& -y (12)
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Performance of Simple Constant-Area Shock Tubes 2.4.1.1

Substituting for Pgq from Eq. (6),

then
Poy(vy = 1) + 1 . 2+ (- 1) P,

Wy, = —E— or W - -
21 ; 1/2 21 1,2
71["1("1 Pgy + 1)] [(nl1 +1) Py (o + PIJ]

(14)
and
;-2-1 - 221()’1 = l) + 1 or w_2l - 2+ (Ql = 1) P12 (15)
n 14l Pyt 1) "1 @+ Py
For weak shock waves PZI——~— 1 and —%% —_—1.
For infinitely strong shock waves PZI——ooc and
————l 2
= (16)
Py —= 1
For air with constant specific heat Y= 1.4, o = 6 and
w
(vz-l = % (17)
p 11 Py —

The reflected shock wave has a speed equal to the incident wave when
they arc both Mach waves (sound waves). Thc speed ratio of the re-
flected to incident shock waves then decreasces as the incident wave
strength increases until it reaches thc value of one third the incident
wave velocity as le-—ow For the case of Air/Air with EM =1,

< > = 0.351, which is the minimum value of the wave speed
Py ———*-44

ratio, and w21 0.351 x 6,16 = 2,16. It is important to realize that
in a plot of VI21 versus 'lu, the curve exhibits a minimum., In the case
of an ideal gas, Yy 1.40, (w21)m1n = 0,94 when "‘11 = 1,39 (see

Fig., 2.4-2), and is due to the nonlincar relation betwcen particle ve-
locities and shock speeds,
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It is ot iutcrest to note that in case of normal reflection
i - i Woye W i 0]
the ratios p52’ [%2. 132. ind 21,W11 remain finite when P21———¢-

These may be comparcd wiii the equivalent ratios in Table 2,3-2, for
the incident shock wave,

In the case of variable specific heats, the methods of Sub-
sec, 2.2.2 are applied to the equations of motion with respect to the
reflected shock wave Wy as foliows,.

Let the veciocities with respect to the reflected shock wave

(‘WE) be
v o= u ot owgy (18)

and with respect to the incident shock wave (WT),

voEu - oW (19)

The condition for normal reflection is that the reflected shock must
bring the gas particles to rest,

ug = 0 (20)

Consequently,

where

The continuity equation becomes, in nonstationary co-ordinates,
Pg Wg = Dz(uz + wz) (21)

and in stationary co-ordinates,

P5 V5 = Palvg ~ vy * vg) (21a)
Momentum,
2 _ 2
Py * Pg We' = p2 + pz(u2 + wz) (22)
2 _ 2
Ps * P5 V5 = Py + Pylvy vy + vg) (22a)
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Performance of Simple Constant-Area Shock Tubes 2.4,1.,2
Energy,
3 %o+ hg = F (uy v wy)? ey (23)
% v52 + hg - % (v2 vyt VS)Z + hy (23a)
Thermally imperfect equation of state,
p=2pRT (24)
Calorically imperfect equation of state,
T
nene o= [ e Gl ar (25)
(o)

Equations (21), (22), (23), (24), and (25) and the equation for Z (Sup-
plement B) are six relations for the sclution of the six unknowns Psg,

Psg Ts, Z5, h5, and wz. A solution for air without dissociation using

the computation methods of Subsec, 2.2.2 is shown on Fig, 2.4-2, A
solution for air including dissociation anc¢ other states in chemical
equilibrium is shown in Figs. 2.4-3 to 2.4-8, iaclusive (Ref, 3ga),

Similar plots for Argon, from Ref., 42, arc <hown: ..n
Figs, 2.4-9 to 2.4-13, inciusive,

2.4.1.2 Rarefaction Wave Reflection

The rarefaction wave which is tormed when the diaphragm is
ruptured travels along the chamber and undergoes normal veflection at
the closed end (see Fig. 2.4-1).

It is shown in Ref., 47, that a steady state (6) is theoreti-
cally still possible behind the reflected rarefaction wave if the
initial diaphragm pressure ratio produces a rarefaction wave such that

the speed of the tail of the wave %% < 2a4 for a diatomic gas and

g%—.s ay for a monatomic gas, At the limiting value of %% , after an
infinite time, a total vacuum is produced in state (6) and Py = 0. 1In
practice, owing to the ensuing wave interactions, a uniform high vacuum
state would be very difficult to achicve,

The physical quantities in state (6) behind the reflected
rarefaction wave may be determined from the following considerations,

For a backward facing or Q-rarcfaction wave (Subsec. 2.1.4),

2a3 2a4

u + s T u ¥z = (26)
3 T4 1 4 /4

Similarly for a forward facing or P-rerefaciion wave,
2“6 Za3
Y6 T 7, -1 V3 Ty, -1 (27)
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The boundary conditions are that initially uy = 0, and finally ug = 0

behind the reflected rarefaction —ave, Subtraction of the above two
equations yields

3 2
p = = (ay, + ag) (28)
Y4 i Y4 1 '94 6
or
a 22
6 _ 3 _
3, ", 1 7 (29)
Y,-1
but 74-1 4
- 1270
i:(T_T.)l/z - (&) rz(r_) * (30)
44 4 Py Py
Therefore 8
By By 4
Peg =2 Pgy -~ 1= 2(P14 PZl) -1 (31)
Simiiarly ‘ P
1/2 _ 4
T64 = 2 P34 -1 (32)
a4 _ By
1’64 =2 Py 1 (33)

Thus the flow quantities in state (6) may be determined from the known
pressure ratio (li’.M = P14 P21) across Lhe incident rarefaction wave,

Also from Egs, (26) and (27)

2u <a - a \
3 2 4 6
_— = — —_—— (34)
23 g - 1 a3/
Substituting Fg3, (29) ag
2 (177
M3 =3’—4-:_f ag (35)
1+ 2
24
2 - M
7y - 1 3 1-(vﬂ)4u3
Aes | T3 TITTOR, N (36)
?Z—:—T + M 4 73
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or from Eq. (30)

1 - (vB) y My 178,
Poa = | T7 GAT, 1y (37)

—

) 1 - (YB)4 Md]z

Tea = | T+ (87, Wy (38)
1 .
P RGP (vB) 4 _,
64 = T—;—T;Byz—ﬁg (39) i
q
k
It is worth noting that (Subsec., 2.1.4)
1/8
= S Ny 4
Pgy - [1 3 (a4t + 1)} (40) ]
From Eq, (31), when
) 1/34 :
Pgg =0 . Pyy = (3) (41)
From Egs. (40) and (41), p
!=a(a4-1) (42)
t 4\ 7T 1
For a monatomic gas j
a, =4 and (5) = a (43)
4 teasn 4
For a diatomic gas
a= 6 and(l) = 2a (44)
t tail 4

That is, a diatomic gas needs a greater incident rarefaction wave tail

slope or greater expansion {(1/2)7 } than a monatomic gas {(1/2)5 } to
achicve a hypothetical vacuum in state (6) after an infinitely long

time, For tail slopes greater than the above values, this state is
never achieved,
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In the case of Air/Air, this limiting value may be obtained
when P34 = (1/'2)7 = 0,00781, or from Eq. (12) when M3 = 5, This occurs
at a diaphragm pressure ratio P41 = 1620 when the shock pressure
P21 : 12,93 for the case Air/Air, ¥ = 1.40, at E14 = 1, The values of

the flow quantities in state (6) are plotted on Fig, 2,4-14, The di-
nensionless time (16) of formation of the steady state (6) is given in

Ref. 47 for the case of a monatomic gas in the chamber as

_ 1/5 2/5

. - a te } 1 2 Pyy + 2 P34 (o

34

and 1 v ° diatomic gas in the chamber as

2/1 _ 1/7,2
% - E Ve s R 2l {;’7 5 ~ we)
L _ /1
(2 Pay 1) (2 Pgy 1)

where L ° chamber length, and tg (time state (6)) forms at the instant

the d:aphragm is ruptured., For example, case Air/Air, with P41 = 10.5
and le = 2,90, the tail of the rarefaction wave has a slope

2% = 0 and My = 1. If ay = 1130 ft/sec (22°C) and L = 1 ft, then

tg = 3.82 millisec; for Pyy = 100, P21 = 6,35, g = 71.1 millisec, The

variation cf t6 with P41 for the combinations He/Air, A/Air, and Air/Air
is shown on Fig, 2.4-15,

The duration of state (6) will be governed by the reflection
of the refracted rarefaction wave which gives rise to a reflected rare-
faction or shock wave from the contact surface; or, in the case of a
short channel, by the reflected shock wave, Herce the duration must be
determined for a given experiment when state (8) is to be investigated.

The effects of heat addition and gas imperfection arising
from condensation and de-excitation, respectively, should be considered
if they are sizeable.

2.4.2 Head-on Collision of Shock Waves or Rarefaction Waves

One-dimensional wave interactions may be analysed by using
the method of the (p, u)-plane outlined in Subsec, 2.3.1, The result-
ing waves and states are predicted and they may be plotted in the physi-
cal (x, t)-plane,

The head-on collision of two shocks, two rarefaction waves,
and of a shock and a rarefaction wave will be considered below, It can
be noted that the normal reflections treated in Subsec, 2,4.1 are par-
ticular cases of the head-on collision of two shock waves and two rare—
faction waves of equal strength.
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2.4.2.1 Head-on Collision of Two Unequal Shock Waves

This problem is illustrated in Figs, 2.4-16 and 2.4-17.
States (1), {2), and (5), and the two approaching shock waves are given,
The final states and receding shock waves are obtained from the (p, u)-
plane, The contact surface is deduced from physical considerations.
The solution in the (p, u)-plane shows that the pressure ratio of both
receding shock waves, with respect to the initial state, has been in-
creased,

An exact algebraic solution can be obtained by making use of
the shock equations and the fact that across the contact surface

Pa = Py and u3 = uy

Tne strength of the two shocks, P45 and P32, is given in terms
of state (1) and the initial shocks P,y and Pg) as (Ref, 46)

-

P P - P
Jpn— | . 12 P45 = Py5 &
P45 =y1 al P45 IA C [B + ] + 1

VP59 Prg Pys * Pys)
(1)
where
L. _LoPis _ P 1
V1o Py V1 + ay Py
(2)
and

e —

1200 * Ppp) " Tay Pyg + 1)

c =‘/(°’1 Pig * 1 Pyglay + Pyg)
P

Since p32 = 945 . P12 . p51’ then for the casée¢ of equal
shocks where P15 = p12’ the two roots of Eq. (1) yield the following
solutions:

For the positive root
Pys = (2 + @ - Ppg)/1 + q Pyg) (3)

This is identical with Subsec, 2.4.1, Eq, (6), It indicates that the
head-on collision of two equal shocks is equivalent to the normal re-
flection from a solid boundary, and no contact surface will be observed
in the flow.
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The negative root of Eq. (1) yields Py5 = P15, which applies

to acoustic reflection, Equation (1) may also be applied to the inter-
action of a sound wave with a shock wave,

2.4,2.2 Head-on Collision of Two Unequal Rarefaction Waves

The interaction is illustrated in Figs. 2.4-18 and 2.4-19,
From the (p, u)-plane it may be seen that the pressure in state (3),
after the two rarefaction waves have receded, is the lowest existing
pressure, The problem has been solved in a closed form for a monatomic
and diatomic gas even in the region of penetration using Riemann's
method of integration (Ref, 47), Because the waves are isentropic,
only one thermodynamic state (3) results, which may be computed from
the following. Given the initial state (1) and the strength of the
two colliding rarefaction waves P41 and le, then

By By
Ugy = (1/?1:31) (941 - Py ) (4)

By By 8
Pgy TPy *PBy -1 (5)

If the waves are of equal strength, then P41 = le, and
= 0, resultiug in

By By

P =2p, -1 (6)

31

Equation (6) is identical to Subsec. 2.4.1, Eq, (31) for the
normal reflection of a rarefaction wave from a solid boundary,

2.4.2.3 Head-on Collision of a Shock Wave and a Rarefaction Wave

This collision is illustrated in Figs. 2.4-20 and 2.4-21.
From the (p, u)-plane it is seen that the particle velocit; in
states (3) and (4) is greater than that in state (5). 1t is found
that the pressure ratio across the receding shock wave is increased;
that is, it is a stronger shock wave, but with a lower absolute pres-
sure behind it (p3 < ps). Similarly, the rarefaction wave pressure

ratio is increased; that is, it is a weaker wave, but is advancing into
a higher pressure region (ps > p4).

It should be noted that because the shock wave is increasing
in strength as i. penetrates the rarefaction wave, the entropy behind
it is continuously increasing. Consequently, a contact region rather
than 2 surface separates the receding waves,

The algebraic solution for the interaction is given in
Ref. 48, Given state (1) and the strength of the shock (P51) and
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Performance o1 Simple Constant-Area Shock Tubes 2.4.3.1

rarefaction wave (pIZ)’ the strength of the receding shock (P32) and
rarefaction wave (P45 = Pgg ¢ Py * P15) is obtained from

1 1
o+l a,+1
Py =1 V14 Paz{D‘E[(psz Pig) T - (pyg) ) ]

where 1 1

a,+1 P -1 +1
12 =l tVay 1)1 - p12°’1
V1+ o Pgy

D=P

E=’°1+1V‘;51[("1+P51)/(1+“1 "51)] (8)

Although Eq, (7) makes it possible to calculate the final states and
wave strengths from the initial conditions, it is not sufficient to give
the path of the curved shock wave, A procedure for doing this is given
in Ref. 48. Equation (7) also provides a means of computing the colli-
sion of an acoustic pulse with a rarefaction wave,

2.4.3 Normal Refraction of a Shock Wave or a Rarefaction Wave at a
Contact Surface

The one-dimensional refraction of shock waves or expansion
waves 1s pictorially analogous to the same probiem in light or acous-
tiecs., It will be shown that when a finite amplitude pressure wave re-
fracts at a contact surface, the non-linear interaction gives rise to
a transmitted wave, which can have a higher or lower pressure ratio
than the incident wave, The reflected wave may be of the same type as
the incident wave, a Mach wave, or of a kind opposite to the incident
wave., Consequently, it is possible tuv raise or lower the pressure ratio
across the refracted wave, as well as increase or decrease the particle
velocity by a suitable choice of gas compbinations at the contact sur-
face. These properties are useful in the studies of wave attenuation
or amplification, chemical kinetics, and in the design of hypersonic
shock tunnels,

2.4.3.1 Refraction of a Shock Wave at a Contact Surface

This interaction is illustrated in the (p, u)-plane in
Fig, 2.4-22, Three cases are predicted, It is possible to have a re-
flected shock wave, a Mach wave (when states (2), (3), and (4) are co-
incident), or a rarefaction wave after the interaction of the shock
with the contact surface. Which case occurs depends on the shock
strength (P45) and the internal energy ratio (EIS)'

The -~ame interactions appear on Figs, 2.4-23 and 2.4-24, in
the (x, t)-plane for the moving and stationary contact surfaces, The
analysis applies to both contact surfaces since they differ only by a
velocity component, In closed form the interaction for the stationary
contact surface is described by the following equations (Ref, 49).

93

e

oo

‘A‘.*“

-y

i it e ittt Lt WK R R b in

-

AT Rt B A Bt int

& oadl

ol LA, Lol



SEiTl BTy NE Ed

bt My 384

o}

2.4.3.1 NAVORD Report 1488 (Vol, 6, Sec. 18)

For the case of a reflected shock wave,

2
+ Pey Paa b Pu. - 1
. | 54 43 K VP . - 33 (1)
157 (1 - p., P2 43 —
54 Y43 Vs * P43

where

L I
Aatae L LT

T T = MRS et

h = (a5 Pgy + 1)/(ag + Pgy)

Lol
!

(2)

Ejs £ (o + Pgy)/(ag + Pgy)

It may be seen from Fig. 2.4-22 that the absolute pressure and the pres-
sure ratio across the trarnsmitted shock wave are increased. In the

1imit, as E15——*0,

2+ ag - P54

Pya = (3)
43 1 + ag P54

for the positive root, and

Py3 = Pgy (4)

is the acoustic result for the negative root,

Equation (3) is identical with Eq. (6), Subsec, 2,4.1, and
shows that for very large energy ratios E15 the contact surface behaves

as if it were a rigid wall and remains stationary. This has an impor-
tant application in generating high temperatures through multiple shock
reflection from the contact surface at the end of a closed channei in a
shock tube, The limit of E15———a-0 is, of course, not possible to at-

tain in practice,

The condition for a reflected Mach wave is that across the
contact surface

I BT
F15 T ag T Py o)

In this case the incident shock strength is unchanged.

The case of a reflected rarefaction wave is given by

Bg 35 Eig
P + f (Pgy - P )‘/-—~———————-—— -g-1=20 (6)
34 34 54 oy P34 + Ps4
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Performance of Simple Constant-Area Shock Tubes 2.4.3.2

where

o)
|

= [("5 + Pgy)/lag Pyy + 1)] 2

]
|

1/
= (1 - Pgy) [35/("5 Psq * 1)] 2
(7

Eys 2 (& + Pgy)/(ag + Pgy)

As seen from Fig, 2.4-22, the absolute pressure and the pressure ratio
across the refracted shock wave are both reduced, By using a gas com-
bination across the contact surface such as Air || Hy or Air| He, a con-

siderable attenuation of the shock strength is possible, Conversely,
a combination such as Air|| A or Air [[CO, will give an amplified shock
strength,

2.4,3.2 Refraction of a Rarefaction Wave at a Contact Surface

When a rarefaction wave refracts at a contact surface, three
wave systems are possible. A rarefaction wave is always transmitted,
but the reflected wave can be a rarefaction wave, a Mach wave, or a
compression wave that steepens into a shock wave, Since weak shock
waves have the same properties as compression waves, the analysis will
assume that the shock wave equations apply for both shock waves &and
compression waves, With this assumption, the varying entropy field be-
hind the forming shock front is also neglected and is taken as a con-
stant, The type of wave that is reflected after the interaction de-
pends on the internal energy ratio E15 and the strength of the incident
rarefaction wave P45.

Figure 2.4-26 shows the interaction in the (x, t)-plane for
the case of a moving contact surface, and Fig, 2.4-27 for the case of
a stationary contact surface, The analysis applies to both cases and
they differ by a velocity component only.

Consider the stationary case and the algebraic equations for
the case of a reflected rarefaction wave as given by (Ref, 50):

8 8 2
_ (8y/Bg) [‘P34 Pyg) © - 2 (Pyg) O+ 1]_

15
'RE
1 - (Pgq Pyg)

Bg 2 8y 2
Eys S (8y/8) [(1 - pgs ) fl1 - By ) ] (9)

E (8)
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:
i From Fig. 2.4-25, it can be seen that the absolute pressure behind the
4 refracted rarefaction wave is reduced, or a stronger rarefaction wave
, . is transmitted. It can be noted that when 315-——-»0,
Be Be 1
Poa P -2 (P +1=0
( 34 45) ( 45) (10) ;
]
Equation (10) is identical to Eq, (31), Subsec, 2.4.1, and shows that

when 315-—-0, the transmitted wave behaves as if it were reflected i

from a rigid wall, and the contact surface is stationary, The limit
Els—'O is physically not attainable,

&b,

For a reflected Mach wave, states (2), (3), and (4) are co- %;
incident and this condition is given by ;

By {1 P52
- P
! 45 !
®15 7 B, B (11) '
1 - p45

and the rarefaction wave strength is unchanged. The reflected Mach
waves form a fan of parallel lines,

For a reflected compression wave that steepens into a shock
wave, the solution is-'given by

e-i B[V (- pyg)] %
|

s et et el it s e, i SR e e kit Sl i e il

P + P -1
: Bs - 49 Vay Pgy + 1 4 (12)
] -BI 15 ~ Bl
: [“’34 Pgs) - 1]
8 3,72
Bys 2 (8,/85) | (1 - pyg )1 = s (13)

From Fig., 2.4-25 it can be seen that the absolute pressure behind the
transmitted rarefaction wave has been increased or the wave strength
has been attenuated, i

s i e s A b b oL 4 e i b i

2.4.4 Overtaking of Shock Waves or Rarefuction Waves

The problems of overtaking waves are not only of interest in .
themselves but they also affect the operation of conventional shock ;
tubes and hypersonic shock tunnels. They may also be used to generate
ideal contact surfaces, shock waves, ana centred rarefaction waves with- !
out being affected by the diaphragm of the shock tube, Such ideal wave )
elements are sometimes very necessary in the study of the wave transition i
properties or wave interactions, i
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Porformance of Simple Constant-Area Shock Tubes 2.4.4,2

2.4.4.1 The Overtaking of Two Similarly Facing Shock Waves

The interaction in the (p, u)-plane is shown on Fig. 2.4-28.
It is seen that three cases can take place, A transmitted shock always
occurs, The reflected wave can be a shack wave, a Mach wave, or a rare-
faction wave, It is shown in Ref, §1 that for all real gases (¥ £ 5/3),
a rarefaction wave is always reflected, whereas for a gas with ¥y > 5/3
a reflected shock is possible,

The algebraic equation for the case of a reflected rarefac-
tion wave (Fig., 2.4-29) for all real gases is giver by

‘/ Ay (1 + & Pys) (Poys - B )I/“’ls”"l) Pys
(ay + Pyg) (g Pyg+ 1) Py 1734 7 "14 Pig *t o Py

 Py5 + 1 A
T (Pas " VY Tva E,, (1 Pyg)| v Pyt - 120

Pgq = Pyy * Py (2)

It is of interest to note that after the two waves overtake,
the wave diagram in the (x, t)-plane appears just like the one for the
ideal shock tube problem, and the wave elements can be studied as such,
This fact is also borne out by Eq., (2), where P4l is the eguivalent

diaphragm pressure ratio, Consequently, the final strength of the trans-
mitted shock wave le is always less than the combined strengths of the

two overtaking waves P41. However, the particle velocity u2 = u3 is
greater than that behind the two shock waves (u4) due to the accelera-
tion across the reflected rarefaction wave,

2.4.4.2 Non-Overtaking of Two Rarefaction Waves

Although the initial conditions can readily be illustrated in
the (x, t)-plane (Fig., 2.4~30), the two waves can never overtake and no
interaction resuits, The reason may be seen by considering the above
figure, State (2) is common to bhoth P-rarefaction waves and as it is a
uniform region, the head (H) of Rz must travel with the identical ve-

locity as the tail (T) of Rl. Consequently, they cannot overtake.

The problem can be drawn in the (p, u -ylane as shown in
(2

Fig, 2.4-30, 1t is seen that in a sense state is merely the con-
dition on any characteristic line which includes (H) of Rz and (T) of

Rl, and the two waves can be joined to form one single rare¢faction wave
of pressure ratio p3l = P32 . le. That is, state (3) on the left 1is
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connected to state (1) on the right by the same rarefaction wave locus,
E 4 and state (2) can be considered as just another Mach line in the rare-

faction wave fan, Congequently, there is no interaction between the
two waves, -

2.4,4.3 Overtaking of a Shock Wave by a Rarefaction Wave

This interaction is shown in the (g, u)-plane (Fig. 2.4-31)
for the case of a weak overtaking rarefaction wave, It is seen that
three wave systems are possible. A weoakened or decayed transmitted s
shock wave always occurs (le < P51). However, u reflected rarefaction "

wave, Mach wave, or compression wave steepening intoc a shock wave can N
result,

tropy change across it diminishes, This gives rise to a variable en- b -
tropy field in the form of a contact region rather than a contact surface
(Fig., 2.4-32), which moves to the right,

} As the shock wave decays, its strength decreases and the en-
! If the overtaking rarefaction wave is strcng, it will decay -
the shock to an extent that finally it becomes one of the Mach lines of
[ the rarefaction wave fan, Consequently, the wave system can consist of
i a transmitted rarefaction wav~ and either a reflected rarefaction wave, o
1 Mach wave, or compression wave s.eepening into a shock wave, 3
The three possible wave systems are shown in Figs, 2,4-33 and

2.4-34, The contact surface in these cases moves to the left, It is
also possible to have a transmitted Mach wave as well as a transmitted .
and a reflected Mach wave occurring simultaneously as limiting cases, : f b

}
|
‘é‘ A method for computing this type of interaction is outlined b
li in Ref., 1. In the case where uniiorm states result afte: the inter- .
action, it is possible to obtain an algebraic solution in closed form
i as for the other interactions given above, Such solutions are given S
| in Ref, 51la, .

2.4.4.4 Overtaking of a Rarefaction Wave by a Shock Wave )

In this case as well, the wave system is determined by the

strength of the overtaking shock wave, For a weak shock, Fig, 2.4-35 .

shows that a transmitted rarefaction wave always occurs. However, the Y

reflected wave can be a rarefaction wave, a Mach wave, or a compression
. wave steepening into a shock wave, From Fig, 2.4-36, it is seen that
. the overtaking shock is decayed until it becomes one of the Mach lines
in the rarefaction wave fan. The decaying shock gives rise to a vari-
able entropy field in the form of a contact region moving to the left,

If the pursuing P-shock wave is very strong, it goes right s
through the P-rarefaction wave (Fig, 2.4-37), It comes out weaker :
(le < P45). However, the reflected wave is turned into a Q-wave and

o I'i -

it can be either a rarefaction wave, a Mach wave, or compression wave
which steepens into a shock wave, The interaction is also shown in the ’

(x, t)-plane on Fig, 2.4-38. It has been shown in Ref, la that only
reflected compression waves steepening into shock waves are possible _
for all physical gases (1€ r < 5/3). Algebraic solutions in closed 3 _
form can also be obtained for the above cases, For further details see
Ref. 51b., E ‘
t
98 :
’ r
8

 carma s e
B =t




ey = e

X

e

3

fader G

ff

gibesAbaptspon

o e

Performance of Simple Constant-Area Shock Tubes 2.4.5
2.4.5 Application of One-Dimensional Wave Interactions to a Shock
Tube of Finite Length

The previous results are very useful for the determination of
optimum chamber and channel lengths that may be required for aerodynamic
testing in a shock tube of constant cross section or in a hypersonic
shock tunnel, and for chemical kinetics and wave interaction problems,

For example, consider the wave system in a shock tube of
finite length in the (x, t) or thc nondimensional {X,T)-plane

§Fig. 2.4-39), The relatiouns that determine the points (x 3),
X.» tc) and (x t ) are developed in detail in Ref, 52.
By _ Paay
Xg = (ag =1 - ay Pgy °) Pyy (1)
_ Byqy
= 2
T3 = Pyy (2)
o -
X, =2 (ok -1) (1 - Ps4 ) Psy (3)
T, =2 TS (4)
Xg = w11 A14 Ts (5)
L=eF —2+A':Al tf‘ Voo (6)
21 21 11

The relations for A14, 521’ wll’ and U21 are given by
Egs, (10), (18), (19), and (20), Sutsec, 2.3.2,

Equations (1) to (6) are plotted in Figs, 2.4-40 to 2.4-43
for different gas combinations against the diaphragm pressure ratio
P41 for the same chamber and channel temperature (T

14 = 1).

It is interesting to note that the position where the head
of the refiected rarefaction wave will overtake the shock wave has a
minimum value at a low diaphragm pressure ratio, which in the case of
Air/Air, 941" 4; and for He/Alr, P41’* 5. For a chamber length of

one foot, the minimum channel length occurs for Air/Air at about 15 ft,
and for He/Air at 4 ft, For diaphragm pressure ratios appruaching one
or infinity, the overtaking process theoretically takes place at an in-
finite distance. If shock wave studies are conducted at the lower dia-
phragm pressure ratios, they should be made before the overtaking
process takes place in order to prevent shock wave decay, This is
especially important for gas combinations such as He/Air or H2/A1r.

It may be seen from Fig, 2,4-44 that the maximum flow dura-
tion Axa for the uniform state (3) occurs at Xy for all diaphragm pres-

sure ratios P41 for which M3 >1, I1f M, <1, then the maximum occurs

at X = 0, Similarly the maximum Kzz for region (2) occurs at XC.
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These values may be obtained from the above figures, If aerodynamic

testing is to be done in regions (3) or {2), then the maximum testing
time for a set of initial conditions is obtained by placing the mode.
at x3 and XC, respectively, In order to eliminate the possibility of

the reflected shock wave decreasing the maximum flow duration Azé for
region (2), the channel should be of a length (XS) such that the re-

flected shock wave meets the head of the reflected rarefaction wave at
the contact surface, i.e., the point (Xc, 1&). The length X, may be

determined as follows, The dimensionless time Tc it takes for the

shock wave to hit the end of the tube, reflect, and interact with the
contact surface follows at once from geometrical considerations:

7 Xs Xs - XC (7)
= +
© Wi Ma Wap Ay

Solving for xs, one obtains the required channel length,

% A14 * xc/"2l :
X = (8)
5 l/w11 + l/w21

where "11 and w21 are the absolute magnitudes of the incident and re-

flected shock speeds as given by Eq, (19), Subsec, 2,.,3,2 and Eq, (14),
Subsec. 2.4.1. Again, T, is given by Eq, (4).

In order to avoid excessive channel lengths when region (3)
is under investigation, it is sufficient to use a length X§ such that

the reflected shock wave strikes the contact surface when the head of
the reflected rarefaction wave overtakes the tail of the incident wave,
i.e,, the time 13. This practical! simplication eliminates the neces-

sity of solving the complex shock-contact surface interaction, Since
from Eq. (4) 1% =2 Th, therefore

o1
2=2% (9)

The variation of x5 with the diaphragm pressure ratio P41 is
plotted on Fig. 2.4-45. It is seen that x5 is only slightly greater
than xc for the higher diaphragm pressure ratios (Figs, 2.4-40 to
2.4-43) because the reflected shock speed w21 decreases as P, in-

creases, If the channel length is increased beyond that required for
maximum A13 and Atz, then these values are unaffected; if they are de-

creased, the testing time is reduced by the wave interactious,
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Performance of Simple Constant-Area Shock Tubes

Another useful method of calculating Atz directly in micro-

seconds for strong shock waves in air (as a perfect or imperfect gas)
in the form of nomograph, is shown in Fig., 2.4-46 (Ref. 53). It should
be noted that in practice the testing time is reduced due to imperfect
gas effects as well as viscous effects., The boundary layer attenuates
the shock wave, and the contact front spreads and accelerates sco that
the test time interval is reduced. Since the test time, in seconds,
per foot of channel is given by

1
Aty = =— - = = = — (10)
2wy vy ulyy vy (g - 1)

then, at the higher shock strengths when 151 for an imperfect gas can

readily be twice the perfect gas value, the flow duration is halved
due to real gas effects alone, The viscous effects noted above can in
addition reduce the flow time by half again at higher shock strengths,
Consequently, the expected flow duration might be about a quarter of
the perfect gas value, or less,
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Pertformance of Simple Constant—-Area Shock Tubes Supplerment A

SUPPLEMENT A

Equation of State for Thermally Imperfect Gases

Thermally imperfect gases do not follow the relation between
p, p, and T as stated in Eq., (5) of Subsec. 2.1.1, except at very low
density (large specific volumes), Many equations of state, some em-
pirical, others based on molecular properties, have been proposed for
imperfect gases., Van der Waals' equation is typical and is given by

(p+2g) (v-b)-m

v
(a-1)
or = 1 __,ap
P pRT(l-bp+RT)
where
a 27 a  _ _ Ve RTc _ 8
B 8 fler (272, PTF, pnmT3

All real (imperfect) gases can be liquified. The highest temperature
at which this occurs is known as the critical temperature Tc; the cor-

responding critical pressure and density are given by P, and [ These

critical quantities are characteristic of the gas and depend on inter-
molecular forces, It is seen that when p is very small (or v is very
large) then Eq. (A-1) reduces to Eq. (5) of Subsec, 2.1.1 for a ther-
mally perfect gas, It should be noted that equations for a real gas of
the type given in Eq, (A-1) can be written in terms of a "compressi-
bility™ factor Z as (Ref. 4)

A\
ﬁLT = 7(p, T) (A-2)
where Z = 1 + 6 and 0 is a small quantity, usually,

The deviation 8§ is due to intermolecular forcec at low tem-
perature and high pressure, undcr which conditions the van der Waals
forces are important, At sufficiently high temperature and low pres-
sure the van der Waals forces are usually unimportant, but dissociation
and ionization processes may take place in the gas, As a result of dis-
sociation, for example, the number of particles per unit volume increases,
If the mixture of undissociated and dissociatea particles is assumed to
be a mixture of two thermally perfect gases, then Dalton's law of partial
pressures applies, and it is easily shown that

-1 +a=2 (4-3)
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wvhere a is the degree of dissociation or the fraction of the original
number of particles which are dissociated, If ionization takes place
at still higher tewperatures, then for a single diatomic gas, for ex-
ample,

g% =(1+a) (1 +x) =2 (A-4)

where x is the degree of ionization, It will be noted from Egs. (A-3)
and (A-4) that the dissociated or ionized mixture itself does not be-
have as a thermally perfect gas even though the component gases of the
mixture are assumed thermally perfect,

If the heat required to dissociate a unit mass of gas at con-
stant p and T is given by ld, the ratio ld/R = Bd has the dimensions of

temperature and may be termed a characteristic temperature for dissocia-
tion, For example, ml, = 118,000 cal/mole for ¢ (Ref, 5) and

84 = 118,000/2 = 59,000°K for 0, (see Fig. 2.2-6a), The heat of dis-
sociation 1d is a function of T, However, its variation with T can
often be neglected, It should be noted that 1d is related to inter-

atomic forces that hold the atoms together in a molecule, whereas the
latent heat of vaporization 1v is related to the forces that hold the

molecules together (van der Waals forces). Consequently, Cv<3(1d and,

p as stated above, van der Waals forces are usually unimportant at tem-
E peratures giving dissociation effects (for 0y, ml, = 1640 cal/mole at

] 90°K, whereas ml, ~ 118,000 cal/mole). As for dissociation, a charac-
teristic temperature 9i = li/R may be defined for ionization, where 1i

is the heat required to ionize a unit mass of gas. For atomic oxygen,

fcr example, m1i = 284,000 cal/mol. for single ionization, i,e,, removal

of one electron from the outer shell, and 8, = 316,000/2 = 158, 000°K
(see Table 2,1-1). *
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SUPPLEMENT B

Gas Imperfections at Low Pressures and High Temperatures

It was stated in Subsec., 2,1.1 that a perfect gas (thermally
and calorically perfect) obeys the thermal equation of state p v = RT
and has constant specific heats Cv and Cp. It was also noted that in

gas dynamics, high-pressure low-temperature {lows, where van der Waals
intermolecular forces exist, are seldom encountered, Consequently,
this Supplement will consider caloric and thermal imperfections result-
ing from high temperature effects only, i.e., from molecular vibration,
dissociation, ionization, and electronic excitation,

Consider first a monatomic gas like helium at a temperature
such that the internal energy consists of translational energy only,
Each atom has three degrees of freedom, i.,e.,, the three co-ordinates
defining its position in physical space (Fig, 2.1-3). According to the
classical law of equipartition of energy, each degree of freedom will
contribute on the average an amount 1/2 kT to the total kinetic energy,
where k is Boltzmann's constant and T is the absolute temperature, Thus
the internal energy per unit mass will be

_ 3 NkT _
e—i——m = RT

where N is Avogadro's number, m is the molecular weight, and R is the
gas constant per unit molecular weight., The heat capacity per unit mass
at constant volume is then

de

If helium is now heated (the same result applies if work in
the form of adiabatic compression is done on the gas) at constant volume,
the gas temperature increases (AT = AQ/CV) and the kinetic energy of the

atoms 1ncreases, The atomic collisions add quanta of energy to the elec-
trons and increase their energy. The electrons move from their ground
state to outer orbits and the atom is now electronically excited., When
the electrons fall to their original stable orbit or minimum energy
level in a single-step transition ur in a multi-step transition, they
return their acquired quanta of energy by emitting photons of radiation
whose frequencies will depend on the energy acquired during a collision
and in the manner the transition to the ground state is made, If more
heat is added, the kinetic energy of atoms becomes sufficieuntly large
to knock out an electron from an atomic orbit, The gas is said to be
ionized, and consists of a gaseous mixture (plasm2) of neutral atoms,
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ionized atoms, and electrons, Atom-atom collisions are not very effec-
tive in producing ionization (Ref, 10). Once enough free electrons are
generated, they complete the ionization process very efficiently since
they are light, small, travel at high velocity, and provide a long
enough collision contact, During this process millions of atoms are
involved and many electrons are recaptured, and the electrons transit
to the ground state radiating at every conceivable frequency.

If the energy required to ionize an atom is V., electron volts

i
(ev), the ionization potential of that atom is said to be Vi volts. In
the case of helium, V., = 24,58 volts., This is the highest known ioniza-
tion potential, and helium is the most difficult gas to ionize, The

velocity Ve that an electron of mass m, must acquire to produce ioniza-

tion of helium is found from 1/2 LR ve2 = 24,58 ev = 24,58 x 1,60 x 10-19
joules, The electron mass mg = 9,1 x 10-31 k gm giving Vo T 2.94 x 106

meterz/sec, The rare earths by comparison to helium are much easier to
ionize, For example, the ionization potential of Na is V, = 5,14 volts,

and v, = 1.3 x 106 meters/sec,

If sufficient heat is added, then more than one electron can
be removed by collision (second degree ionization), Entire electron
shells can be stripped, and the gas can become fully ionized (Ref, 10a),
Ionized atoms emit their own particular spectra,

From the above, 1t is seen that the contributions to the in-
ternal energy of an atomic gas come from the following sources:

1, Kinetic energy of atom translation (et)
2. Energy of electronic excitation (ee)
3. Energy of ionization (ei)

For a polyatomic gas the contributions to the internal energy
come from the following sources:

1. EKinetic energy of molecular translation (et)
2, Kinetic energy of molecular rotation (er)

3, Energy of molecular vibration (ev)

4, Energy of molecula.s dissociation (ed)

5. Energy of electronic excitation (ee)

6. Energy of ionization (ei)

Therefore, in the general case,

(B-1)
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The above energy contributions arise in the following manner: '

A molecule that consists of n atoms will require 3n co-ordin-
ates to describe its state, A linear wmolecule like Hz or CO2 (Fig., 2.1-3)

has 3 translational degrees of freedom which are described by co-ordin-

ates x, y, z of its mass centre, It can also rotate about Z axes

(xl, yl), and these wmodes of motion are described by O and f. Conse-
quently, 2 linear type molecule has (3n - 5) additional degrees or energy
sinks, 1i.e., Hz has 1 and CO, has 4, as shown on Fig, 2.1-3, The energy

DMl o 0SS € S D Kbt rsaa .

sinks help to reduce the gas temperature, For example, with a given heat %
addition AQ, for tramslation AT = AQ/%— R and for rotation and trans-

lation AT = AQ/5 R. Ccnsequently, the temperature rise is reduced by ?
'2- ’

a factor of 3/5 with rotation. A nonlinear polyatomic molecule possesses
3 degrees of rotation and consequently has (3n - 6) vibrational degrees
(for example, SFg has 15 modes), ;

The rotational degrees are fully excited even at low tempera- 3
tures and contribute 1/2 Kk each to Cv' The vibrational modes are due to 3

the oscillations of the atoms of the molescule about their equilibrium
position arising from the forces of attraction (valence forces) and re- 3
pulsion (matter resists penetration), The vibrating molecule may be ;
treated approximately as a quantum mechanical harmonic oscillator, That
is, the vibrating atoms are assumed to obey Hooke's law and the atomic

i forces to vary linearly with distance, In the limit at very high tem-

i peratures, the kinetic and potential energy terms each contribute

1/2 R + 1/2 R = R per mode to C , which is the classical value for a

particle executing simple harmonic motion, However, at high tempera-
tures the oscillations are no longer small, and the motion is anharwonic,

The quantum harmonic oscillator energy per wmode e; is given by

j
1 L]
b
y
|
‘::
‘ i
3 (Ref. 11), i i
| i i

e! = RT —2 (B-2) i
e -1 ! 5
_ )
where z = 2% - 1.438 % ; %
Pt
F=1 , wave number, or waves/cm i
) Vg
|
A= wave length in cm ' s

h = Planck's constant (4.135 x 10-15 ev sec) ;

k = Boltzmann's constant (86,1 x 10-6 av/deg)
-15 10 _ =
(Since € = AV, therefore 7 = 4:135 x 10 X 36" 100 xV . 438 %’ ¢)
86.1 x 10 T ]

It is seen that in the limit as T—=0, e/—e0 and as T—s =, e,—=RT,
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The vibrational constant-volume specific heat per mode is

2
’ = i ’ ! - z —_Z -
Cyib = 3T (Syin) ©F Cyyp = Re ( z ) (B-4)
v e” -1
= hy =Y - hy -
Quite often 2 = kT is expressed as 2 T where ev m is a charac

teristic vibrational temperature. Consequently,

2 8. /T
r E! e
Cvib = AT ( 8,/T )’2 (B-5)
e -1

The above cquation is shown in Fig. 2.1-4 for oxygen (v = 1570 waves/cnm
and 8, = 2260°K).

All the vidbrational modes will make their own contribution to

1
&

30-6 / 2
= 2 : z Z -
Cyjpe In genmeral, C ., =R e ke—z—-—> (B-6)
1

For example, SF6 has the following 15 modes: 1 x 31 at 775 cm-l

r

2 x ;2 at 664 cm-l, 3 x ;3 at 960 cm-l, 3 x 54 at 615 cm—l, 3 x ;5 at

524 cm-l, and 3 x ;6 at 363 cm !, At 30.00°C or 303.16°K, the respec-
tive contributions are as follows: cvib/R = 0,360 + 0,968 + 0.705

+ 1,542 + 1,836 + 2.356 = 7,769, As expected from Eq, (B-6) the largest
contributions come from the low frequencies, Therefore SF6 at 30.00°C

= =3 3 =
has a C, = C, +C_ +C ., = ) R+35R+ 7.,769R, or C/ 21,398 cal/gm
mole, Cp 23.385 cal/gm mole, and y= 1,093,

If the molecules are heated still further, when an atom
reaches the highest quantum vibrational energy level, the molecular

binding forces are overcome and the molecule dissociates iato atoms.
Therefore, at high temperatures a dissociational heat capacity exists,

Consider the case of a diatomic molecule like 02. The dis-
sociation equation is given by 20 ====0,. If the degree or per cent

dissociation is «, then pv = %%»(1 + ), where® is the universal gas

constant, and m - the molecular weight, 1If K(T) is the equilibrium
canstan?! . s dj iation (dimensions of pressure) derived from the law
of mu.. actio- (nef. 3), then

K(T) . _ 4" (B-7)
P 1 -
or
o =) %
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That is, & increases with decreasing pressure and increasing tempera-
ture, It is highly temperature dependent, A plot of o against T/Gd

] from Ref. 3 is shown on Fig. 2,1-5a, where ed is the characteristic

temperature for dissociation. It was noted in Su?plement A that for
Oy, ml, = 118,000 cal/mole, or 6,4 = 14/R = 59,000°K. This reduced or

normalized plot makes it possible to use a single graph (approximately)
for all diatomic gases (see Eq. (B-12)).

At higher tewperatures electronic excitation and ionization
set in, giving rise to the specific heat contributions Ce and Ci‘ For

example, for the hydrogen atom in the ggound state, an electron re-
volves at an orbit whose radius roﬂ‘0.5 . It requires an energy of

y 10.20 ev to move the electron to the next energy level or first ex-
cited state, To remove the electron completely ar energy of 13,58 ev

! is required, To dissociate a hydrogen molecule it requires 4.477 ev

] and to ionize it 15.42 ev (Ref, 5). Consequently, the contribuvtions by
1 electronic excitations to the molecular specific heat is negligible be-
‘ cause dissociation will set in first, However, such contributions to

! the atomic specific heat are not insignificant (Ref, 12).

. In general, the separation between the lowest state and the
Y first excited state is 2 to 10 ev for electronic energies, 0,2 to 2 ev

fur vibrational energies, and about 10-5 to 10~3ev for rotational ener-
gies, An electronic transition will therefore also generate entire
series of vibrational and rotational bands and spectral lines,

]
The specific heats of dissociation and ionization can be de-
termined by very similar methods. Consider the case vi a monatomic gas

a

like argon. The single ionization reaction is given by A\“'—'—-—-.-‘A+ + elec-
tron., If K is the equilibrium constant for single ionization and x the
degree or fraction of the gas that is ionized, then (Ret, 3)

p=p&1(1+x) (B-8) ]

P

and .

K. __53_2 (B-9) ; ;

P 1-x o

or »
= K :

X = P+ K (B-9a) ;

i

I

A plot of x with T/, is shown in Fig. 2,1-5b, It is seen that in this J
case the normalized plot does not apply to all gases, Hydrogen is an lq

|

1

|

i

+

i

N

exception, but helium and argon agr2e very well, The reason is given
later on (Eq, B-12),

TR

It is shown in Refs, 11 and 12 that in general for the reac-
tion A + B===AB, that is, 2022550, + 1 or A’ + e===A + 1, the

equilibrium constant KAB is given by

o G WS B0

Ty e
e
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v 3/2 P, P
{ k) - A
o h AB
where
vo T
Il (1 + o)k P (for dissociation)
o
vo T
- (1 + x)k B (for ionization)
o
Kpg = 40? (for dissociation)
1 -
x2
KAB = IT:Z- (for ionization)
] N
A" o
m = ——— , = = particles/cc
my + my Vo
Da
m = = atomic mass, in the case of a diatomic molecule (mass of
hydrogen atom = 1.673 x 10.'24 gm)
m = m, = electron mass, in the case of ionlzation m, >n
N -28 on e
(me = 9,1066 x 10 gm)
1 = heat of dissociation (ld) or ionization (1,)
p = pressure in dynes/cm2 (1 atm = 1.0132 x 106 dynes/cmz)
T = temperature in °K
h = Planck's constant = 6.624 x 10-27 erg sec (4,135 x 10-15 ev sec)
k = Boltzmann's constant = 1,3805 x 10"16 erg/°K (8.616 x 10-5 ev/°K)

pAB’ PA, PB are the partition functions or statistical weights of the

mclecule and atoms in the case of dissociation, aand of the atom (a),
ion (i), and electron (e) in the case of ionization,

The partition functions are highly temperature dependent and
mildly density dependent for dissociation equilibrium (Ref, 12), They
are sometimes assumed as constant for the case of ionization by neglect-
ing higher excited electronic levels, and such values for typical ele-
ments are given in Table 2,1-1. At high temperatures or low densities,
the more accurate values should be used to avoid significant errors.
(The error is generally small for x 2 0.25; see Ref, 13a for a discussion,)
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Equation (B-10) may be rearranged for the case of dissocia-
tion of a diatomic gas, using Eq, (B-7), as

-1/2
8./T
d
a= |A(p, T) e + 1]
[p5. ™ 287
where (B-11)

3 P

A(p, T) = r— v

(e 5e) o2 A

I+t is worth noting that o may be plotted against the reduced or norma-
lized temperature T/ed. For a given value of T/Od, the temperature T

will vary with the gas ed. If for two or more different gases the ratio

A(p, T)/’I‘S/2 remains constant, then a nosmalized plot of « versus '1‘/6d

for varying p will produce a set of curves that are identical for each
p (this 1is approximately true for diatomic gases as shown in Fig, 2,1-5a),

Similarly, for the case of ionization,

-1/2

8,./T
x =|A(p, T) el +1 ] (B-12)
[+ ™
where 3
[ 3p
h a a
Alp, T) = ———lym—%73 - =
(27 me) k P; P Py Pe

Equation (B-12) is also known as Saha's equation (Ref, 13)., Some typi-
cal values for 1,, P, and x are listed in Table 2,1-1. If x is very

small, then Eq. {B-12) may be written by neglecting unity in the bracket
as

/4 e, /21

~ . ©
T V2

The previous remarks regarding a universal set of curves for monatomic
gases on a plot nof x against T/O1 for various p apply to helium and

{B-12a)

argon but not to hydrogen, where A(p, T)/T5 varies considerably from
the others, If p is in atmospheres and 11 is ia volts, then from
Eq. (B-12)

[ 6 1.16 x 10* v, ,r P T2
x =13.04 x 10 —5972«.»‘ x 1"'—’—+1]
T pi pe

(B-12b)
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P

1
For the case of argon 2 - , V, = 15,76 volts, and
P, P, 12 i
[ 5 1.83 x 1050 _ | V?
x =|2.54 x 10 —?—2 elePv X + l] {B-12c)
T /

In order to illustrate how the specific heats are determined
with the aid of the above equations, consider the case of single ioniza-
tion. A relation derived from the First Law of thermodynamics and the
condition of isentropic flow is given by

¢, (g%)v dp + C, (g%)p dv = 0 (B~13)
Since
T =5 I x
(8), <[5 - 8] /P - = (38)]

From Eq. (B-13), and a“ = (QE) = ;pv, by definition,

op/g
C
= - .p(or ory _ .1 (op -
(8), - - 2(8) [(3), - - %(2), (310
and
» C
Y=L 1 (B-14a)
S T - (=
vl X (‘91’)1
From Eq. (B~12), if the partition functions are assumed as constant,
then

-1/2

‘ 8./T
x = [A T—g’n- e ¥ &+ 1] (B-14b)

where A = constant,

Consequently,
: (_G_X)z_l‘xgl'le
6PT 2 P
.i
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1 and C
»
; VxR _.L__z (B-15)
v 2+ x-x

®
Equation (B-15) shows that the isentropic index or exponent ¥ of an
ionized gas depends on the degree of ionization, It is equal to
specific heat ratio only when x = ¢ or x = 1, W¥hen x-——se1, Eq, (B-15)
is no longer correct as the higher electronically excited states have
been omitted, A discussion of this particular point is given in
Ref. 13a with numerical examples,

The internal energy per unit mass of ionized gas is given by

! e=g~(1+x)R’I‘+1x (B~16)

p i

i Similarly, the enthalpy per unit mass is given by f

{ 5 ’
h=e+pvs=y(l+x) RT +1x (B-17) *

The specific heats are defined by

G ARG 3w

i ¢ = (3—%)v = % R(1 + x) + (%)v (1, + % RT) (B-18)
| ; 1
Cp =(g—.?.)p = % R(1 + x) + (g%)p (1, + -g- RT) (B-19) ;

For x = x(p, T) and p = %; (1 + x), it can be shown that

ox Ox
T +p(5_l51~

Assuming Eq. (B-14b)

el

[

{

) i

(g%)p =3 -ah G (8-21) 3

and S
2 !

2). - -%x(l x ) C (m22)
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Substitution of Eqs, (B-21) and (B-22) into Eq, (B-20) gives

@), - =3 +)

Further substitution into Eqs. (B-18) and(B-19) gives

2
0
%R(l+x) + Rx {1—}1:; <%+Ti'> (B-23)
2
;]

(B-24)
% .3

For -:r->>~2» and x<<1 the specific heat per unit mass at constiant wolume

may be written as

I 3(912
C, —IR+-2-RX+'Z\—T— b3 (B-23a)

The first term is a contribution arising from the translational energy
of the nonionized gas, The second term is the contribution to the
translational energy of the additional particles formed by ionization.
The last term is essentially due to the addition of the heat of ioniza-
tian,

Although Eqs, (B-23) and (B-24) apply only for small ioniza-
tion, i.e,, at low temperature and not too low densities, they indicate
qualitatively how the specific heats vary with temperature, The contri-
bution to Cp or Cv from iouization is initially zero st sufficiently low

temperature (x = 0), increases with increasing temperature (increasing x)
to a maximum which can be much larger than % R, and then decreases asymp-
tetically to % Rsfor very high temperature (x-——w-1), Correspondingly,

¥ is initially 3 for x = 0, decreases to a minimum as x increases, and
then increases towards 3 as X —]

Similar considerations for dissociation show that for a di-
atomic gas

* C
yeR., —2 (B-25)

v 2+ a- o

However, owing to rotation and vibration, Cv and C_ become more complex;
for example, P

2
-3Q - R 2(_ 2
=380+ 1 a)m{1+e(z_l)}
2

e

e
L R R

e” -1
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Z

6
d 1
For ¢ >>35 - %,

the last term of Eq. (B-26) may be written as

CT;.: %:g( ) (B-27)

A plot of Eq. (B-27) for 0y is shown on Fig, 2.1-6, and
typical values of X, a, and Cg are given in Table 2,1-2, Similarly,
the contribution C; of the ionization terms of Eq. (8-23) involving

x for atomic hydrogen is shown in Fig. 2.1-7 (Ref. 15). It can be
secn that C; behaves somewhat like C (Fig. 2.1-6). At T = 10, 000°K,

the C contribution is nearly the same as for the nonicnized gas
(5. 57 x lO erg/cm3 deg). The value of C, rises with T until at

20,000°K it achieves a maximum of about 100 times the nonionized value,
It then falls steadily to the nonionized value with increasing tempera-
tures as the gas approaches complete single ionization, An extensive
treatment of specific heats may be found in Ref, 16 and additional

data on dissociation phenomena in Ref, 17. An excellent summary is
given in Ref. 12,

Although the above contributions to the internal energy of the
gas were treated for clarity as separate processes, it should be noted
that they vary continuously with temperature and may be present together

in varying degrees, At the higher temperatures, dissociation, electronic

excitation, and ionization become increasingly dominant, In the case of
a gas mixture like air, these processes occur at different temperacures,
depending on the gas constituent, and the possibility of chemical reac-
tions of the various components is present. For example, in air at Mach

numbers between 12 and 20 one can expect to find RO, N02, N20, N0+, 02,

O, N, 0-, 0+, N+, and electrons as gas components behind normal shock
waves (Refs. 18 and 35),

115

s T =

L e P T

o

it it Tk A N

A

i b

B e sk Zin i 3 P a1

e

Bl _safr .

RPNy

s



S Alas 16 T FRTEM I IR T R RTR aaeRDHI), CIETRRCRRT A R TN LT e T e T AT rr e mmn st mem e ¥

Performance of Simple Constant-,rca Shock Tubes Supplement C

SUPPLEMENT C

Relaxation Effects in Gases

If hweat is slowly added or removed from a container
(Fig., 2.2.-8a, graphs (a) and (c)) the equipartition of energy takes
place without disturbance (that is, the molecules are able to adjust
in a reversible manner) by means of molecular collisions, as was noted
in Supplement B. The number of collisions required to achieve equilib~
rium differs for each degree of freedom, It requires only a few col-
lisions to achieve translational (1 or 2) and rotational (2 to 6) equi-
librium, but many orders of magnitude more for other degrees, However,
if heat is added or removédd so rapidly that only the translaticnal de-
grees can come into equilibrium (Fig. 2.1-8a, graphs (b) and (d)), the
gas is disturbed, and it takes some time for the other degrees of free-
dom to catch up and attain their portion of energy by collision, The
time it takes to reach equilibrium for a particular degree of freedom
is known as the relaxation time v . The approach to equilibrium of any
degree of fr=edom is nearly exponential, or the final state is reached
without oscillation when subject to a step change,

Under these simplifying assumptions, it can be shown (Refs. 11,
14, and 19) that the ratc of decrease with time of the translational
temperature T in Fig, 2.1-8b behind the shock wave is proporticnal to
the deviation from the final equilibrium value TE. That is,

ar _[T_‘Tl] (c-1)
dt T
The solution of Eq. {C-1) is
T=T§+(Ty~T§) /7 (c-2) _
i
]
when t = 0, T =T,
2 9
-7 - 1 i
t=¢, T = Ti + 2 (T2 - Ti) E
&
The transition curves for pressure, density, and flow velocity exhibit a 3
similar exponential approach to equilibrium (Ref. 14) for every internal 3
degree of freedom, 1
The rapid aisturbance followed by relaxation causes an irre- j

versible adjustment, and such transfer of energy shows up as an increase
in the entropy ot the gas, The entropy change depends on the magnitude
of the disturbance (which can be characterized by the pressure ratio
and other thermodynamic quantities across a shock wave, for example)
and the total nu: ber of collisions required to bring the gas to the new
equilibrium molecular velocity distribution, The transfer of energy
therefore depends on the number of collisions which a molecule under-
goes, At a given temperature the number of collisions per unit tine
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varies directly as the gas pressure, and the relaxation time T there-
fore varies inversely as the pressure, The above may be stated roughly
as (Ref. 12)

vT=2 Tc {C-3)
where Z° = pure number that measures the number of collisions required
to achieve (1 - %) of the equilibrium conditions and is in-
dependent of density.
T} = time between collisions and depends strongly on density,

(TC'V 2 x 10-10 sec at NT P, or 5 x 109 collisions/mole-
~ule/sec; T ~/1/a or T ~ 1/pVT)

At a given temperature the time between collisions will decrease at
higher density as there are more molecules present, If the temperature
is now raised the molecular speed is also increased and the collision
time is decreased.

The exchange between rotation and translation is very effi-
cient and under standard conditions only a few collisions are required,

so that Z_~ 2 to 6 andifrfv 10_9 sec, Hydrogen is an exception, with

Zr'\'ISO and T;ﬁv 4 x 10—8 sec, The values of Zv and Tv for vibrational

equilibrium given in Table 2,1-3 are taken from Ref, 14, It is seen
that there is a very wide range in Zv or 1r, and heavy gases have small

vibrational relaxation times, Some impurities, like water, are very ef-
fective in reducing the number of collisions Zv by many orders of magni-
tude (Ref, 19),

An increase in the temperature and densities of the gas
(e.g., behind the normal shock wave) reduces Y. and T. It can be

sihiown that for temperatures less than 1000°K (Refs. 20 and 21)

e \/3
in%¥ = - (ﬁ) + constant (C-4)

where ¢ = characteristic energy. A plot of InT versus T—l/s shows
gnod agreement for Ny and Oy but only fair agreement for Co, (Ref. 21).

Vibrational and dissociational relaxation times measured in a shock
tube (Refs, 18 and 21) are given in Table 2,1~4 and Fig., 2.1-8b,

Quite often it is of interest to know the distance or path
leng*th over which the relaxation process extends over a body or a model
in order to determine the validity of exact simulation of flow proper-
ties, This length is known as the relaxation distance L or path length,
In terms of L, Egqs. (C-1) and (C-2) may be rewritten as

- (T - T%)
& - L“5 (C-1a)
T =T§ + (T,- T4) e */L (C-2a)
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For example, if a body is travelling at M = 10 or 10,000 ft/sec and the
relaxation times are of the crder of 10-7, 10—5, and 10-3 sec, then the

relaxation distance L is of the order of 10 3, 10 l, and 10 ft, An
actual computation is given in Ref, 18 and i3 listed in Table 2,1-5.
Recent experimental data from interferometric measurements in a shock
tube are given in Refs., 21a and 54,

From the above considerations it can be concluded that tbhe
entropy change across a shock wave will be increased as each new de-
gree of freedom such as vibration, dissociation, or ionization becomes
excited since more moleculur collisions are required to bring the ve-
locity distribution of the unshocked molecules up to that found behind
the shock front, The magnitude of the entropy change will increase
with the intensity of the shock wave,

Equation (C-1) also applies to chemically reactive flows
(such as with dissociation or recombination) and results in a chemical
relaxation time tK given by

g% = %i (x - xe) (C-1b)

where x = instantaneous concentration (or energy of excitation of ex-
ternal or internal degrees as in Eq, {C-1) and X, = equilibrium value

of x, Denote the time for a gas particle to flow a characteristic dis-
tance (e,g., model length)bth. Then, if

7. << rK (c-5)

the flow is said to be frozen, The flow time of the gas particle about
the model is too short for any chemical reaction to occur, The flow is
said to be in equilibrium when

TK << Z'F (C'S)

For a diatomic gas like oxygen, for example, the chemical relaxation
time at the same pressure and shock Mach number can be orders of magni-
tude greater than the vibrational relaxation time (Ref, 21a),
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SUPPLEMENT D

An Alternative Developmwent of Shock-Wave Equations

for Real Gases

Subsection 2.2.2 presents a development of the shock-wave
equations, Another approach used to determine the properties behind
normal shock waves is given. in Ref. 11. The equations of motion
(Subsec., 2,2.1) are rewritten as

¥
b

4
{
Ny
‘.

3 pV=pp vy = m (p-1)
3 p = % (D-1a)
._z
§ P+mv=p, +mv, =my (D-2)
:
3 p=m(V-v) (D-2a) :
, Py (020, '
= + v hed
Py V1 1
- 2 -
' V/ay = (1 + ¥, M) /v u_ (D-2¢)
% =(V-v)v (D-3) -é
3 1 .2_, P1.1_2_1.2 _ |
k E% tg vt o= Bl EI +tgvi=3cC (D-4)
i 2 _ 2 Py : _ -
'3 c® = vyt 231 EI (D-4a) ‘?
! where ?
e I i (0-5)

-]
n

stagnation sound speed

sound speed where locally M =1

e S G i Moo s o Y
o
n

B = enthalpy parameter (enthalpy divided by g = 393)
or
n=ée (D-6)

For a perfect gas:

.o yl Py B. = yl
ng = ~rl—:—r . ;)—1 or 1y —T1 (D-7)
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The internal energy, :
= h = 2 = -1 E D~
e ) (B ) R (D-8) %
for a perfect gas ;%
= 1 P “.
e = . D-8a E B
7 -1°p ( ) ;
i
That is, only for a perfect gas can Bl be expressed in terms of 71. 3
The equation of state is given by {
pP-z8 -
- z3 T (p-9) i
) 1

7
Y Inserting Eq, (D-3) in Eq, (D-4) yields ; ‘
j 1
B(V -v) v+ % v2 = % C2 (D-10) 5
A
1
E or ;
4 gv s VB2 V2 - (38 - 1) c? :
Fi v = ‘i—e‘ =1 (D~10a) i
E Since 1
: v v :
: 1 2 i
: = =M_ =W and = =V 1
r\ 24 s 11 ay 21 [

The positive root gives

) 2 2 2

1+ 7, M 1+7, M N\

ls +/<' ls -2 -1<“2+ 2)
7, W, B, ¥, M, 31) (28 - 1)\ ¥, -

TR, - 1

(D-11)

ot e A A AP S T s

That is, v+j>a1, or the flow is supersonic in front of the shock, The

negative root gives the local particle velocity at any point behind the
shock wave divided by the free stream scund speed ahead of the shock
front (or v_<ay, the flow is subsonic behind a sharp fronted shock).

E:
{ In particular, we choose the equilibrium values after the relaxation )
H zone,
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2 2 RN
mi_B - \/ l_:._y.l.-}:’.iﬁ - (2B - 1) i 2 + —i—
* 71 Ms )’1 MS s )’1 +1
Vo1 = 75 - 1
(D-12)
As * N
A\ v pP
Yaa 2 P B}
MS_’OO , MS = ‘1 pi -2——1—[3 — (D l?a)

. From Eq. (D-12) when B =8 1,then for a perfect gas, constant ¥

¢ 1°
1
: 2 7, -1 1>
\Y = = M + — (D"l3)
! ‘ 21 71 + 1 < 2 s M
ana when Ms—o o
; v v Y, -1
21 2 .42 1
¥ e m al T e (D-lsa)
: Mg Vi P2 7+ 1
or
U 7, -1
21 1 - 2 R
= =1 - = (D-13b)
Mg 7’1 + 1 Yt 1

Consequently, the density ratio or the velocity ratio across the shock
approaches a finite limit,

From Eqs, (D-1) and(D-2)

r =, (D-14)
21 s’ 21
2
* 1+ 7’1 M *
=7 .——-—L - -
Pa1 = 71 ¥ < VW Va1 (D-15)
when
. = 2
Mg, Po1™ N Mg
p." 1+ 7, M2
*o- 21 (1 s _,*
2Ty, = FZTI =7 v21< T v21> (D-16)
o * o yl «
M To1™ 7 Va1 ¥

123

R LTS ST

E i

Bt b P mailide 34

[PV




PR o,

g T e el

Supplement D NAVORD Report 1488 (Vol. 6, Sec, 18)

Furthermore, from Eq, (D-10a), the sum of the roots,

vy + v = - 5B (D-17)
1 2 -1
The product of the roots,
« 2
Y1 V2 TIp-1 (p-13)

vi? - 2(8, - 1) a12
vy Vg = 231 -3 (D-19)
From Eq. (D-4) when
Vo T ay = a
then
71 -1 9 2312 -3
sq_¢—T vt ;q_:_T = a (D-20)
or 2 2
- v,® + 2(8; - 1)a Py - P
vov =z2.0 1 1 _ P27 P (D-21)

Equation (D-21) is the Prandtl form of the energy equation for a perfect
gas, Alvernately, for very strong shocks, vl:£>a1rv Vp/p, then from
Eqs. (D-2b) and (D-4a), Vr~ C ~ vy, or from Eq, {D-18)

vo = v /(28 - 1) (D-22)
and from Eq. (D-1)
*
Pa o1 (9s- -
Py i (28 - 1) (D-23)

Similarly, from Eqs, (D-2a) and (D-23)

2p1 Vl2 (B-1)

Py = by vy (vp = vy) = I ¥ (D-24)
Py z 81} 2’ (6 - 1 (D-25)
-— = = ______.2_ -
pg m2 o (28-1)
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or
- 27 Ms2 (8 - 1)
2
Y 2 ‘)’1 MS (B - 1)
Ty, = (D-27)

z(2 8 -1)°

The above eQuations reduce to the forms given in Subsec., 2.2.1 for a
perfect gas and are summarized below for the case Mé——.nw, for a per-
fect and imperfect gas.

oo ! Ya. 1
v, 1t 1 1 28 -1
_ 7 +1 [-* =9
by =5=7 91 = 28 -1
2 2 2
N1 2 * "1 Mg (B-1)
P,, = M P, =
21 Yt i%s 21 268-1
2
B LR ANUERY
- R
AL 21 2(26- 1)

(D-28)

Consider the special case of air at M, = 20. The value of

these parameters for a perfect and imperfect gas can be compared. If
7 = constant, then Bl = 3.5, Assume an enthalpy parameter value of

B8 = 10,1 for the imperfect gas, then (Ref. 34):

*

V21 = 3.375 > Vg9q ¢ 1.053

x *
Upy = (Mg = Vgy) = 16,620 < Uy = (Mg = Vp;) = 18,947

- < *
T, = 5.926 le 18.988
*
P,, = 466.50 < Py, = 531.51
* —
T,y = 78.722 > zr, = 27.992

!
|
i
f

L;
L i ot i & 2 s manas 1

Db ol it s oticht

oo S

A 1 il o1 SIS i o e T e < ot e M

Franm s ad Bl




Supplement D NAVORD Report 1488 (vol, 6, Sec. 18)

The above numerical results illustrate what is shown graphically in
Figs. 2.2-8 to 2,2-12, The very large drop in temperature ratio behind
the shock front for the imperfect gas as compared to the perfect case
is quite evident. The correspondingly large density increase because
of the cooling effect is also very noticeable, The increase in pres-

*
sure and now:-stationary particle velocity (U,4) is not too large,
21 €

A systematic solution of Egs, (D-12), (D-14), (D-15), and (D-16)
can be done as follows:

1. For a given set of initial conditions the unshocked air is cold,
and 31 and vy are known from Tl independently of Py for any M .

2. Choose T2 and p2 and obtain Bz and Z from tables or plots of the
thermodynamic properties as above,

3. Solve for Vé; from Eq, (D-12),

*
4, Calculate rél from Eq. (D-14) and obtain py directly,
Py RTl

* -
Calculzte P21 from Eq, (D-13) and Py = - .

The above alternate method ot choosing the thermodynamic quan-
tities behind the shock wave and calculating P has the advantage of

eliminating successive approximations (Ref, 35), A drawback is that P
cannol be given in advance, However, by choosing pz/p =10, 1, 10 l,
etc. (p, = standard reference density at 273.2°K and 1 atmosphere,

p, = 1. 2931 x 1073 gm/emd = 2.511 x 1073 slugs/t), T, = 273.2°K and T,

takes on the range of temperatures given in the thermodynamic tatles.

* *
5, For each value of M and range of T;, plot a graph of le, T21,
and fbl with p,/p .

6, Choose regular intervals of pl/p0 =1, 10—1& 1072, etc., and
cross-plot the ratios T21 and f' against p21' Since P21 is
nearly independent of Py ©r Py (see Eq, (D- 15), as V21 is small
for strong shocks), the graph of M with P21 can be drawn ap-
proximately as a single curve, The results as shown on
Fig, 2.2-12 are taken from Ref, 35,

]
It is worthwhile noting that the quantity ¥ , which is de-
fined in Ref, 35 in order to preserve the form of the shock relations
for perfect and imperfect gases as

y =1+ l% (D-29)
is equivalent to,
v = 7_;3_—1‘ (p-30)
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;

or

y' i

‘3 T —p— (D-30a) i

vy -1 .

Consequently, some of the limits for the imperfect gas have an appear-
ance similar to the perfect grs case, For example. as

[ LR

" + 1 . ) " .1 P
Moo, Ly—e g1 e Nyj—e2s-1) = L

.

An inspection of Table 2,2-2 for 3 for a given p/pO with in- ;

creasing temperature shows that it is not a monotonic function, For ex-
ample, consider the column for p/p = 10-6. At low temperatures (273°K)

B8 = 3.5. As the temperature increases f rises to 4= 12,5 at 5000°K;
falls and rises to 11,9 at 8000°K; falls and is rising to 10.5 at

‘ 24,000°K. The reason for this may be seen from the enthalpy of a dis-
sociating diatomic gas (see Supplement B and Subsec., 2,1.5),

A

h=232R T+ (1-a) +al

d
(]
h  _ _ 5 + o Uv 1 -« a d
! P CTEive RTC U a TTea T (03D

As the gas reaches a high degree of dissociation the first term in 8
remains almost stationary, the second term is practically zero, and the .
third (largest) term falls with increasing translational temperature T, 8
Consequently, 3 decreases, When ionization sets in 3 again rises, and
the process is repeated as new degrees of ionization are excited, giving
the cheracteristic waviness to the plots of the thermodynamic quantities
as a function of increasing temperature, For excmple, since
‘ [;3———-(23 - 1), the density ratio can be less for a more intense shock,

In the above case when p/p = 10-6, [;; = 24 at 51000°K and 20 at 24, 000°K. f

As the modes become fully excited the heat - ink is removed, The gas cau-
not then be cooled down and consequently iunc density can be lower for the
stronger shock wave,

Typical values for Z and S are given in Tables 2,.2-3 and 2,2-4
(Ref, 35). As expected both of these quantities increase for the low
densities at a given temperature, as new particles are formed and the
disturbance caused by the strong shocks becomes increasingly greater,

Some simplification in the calculations arise when the only i
excited inert mode is vibration. In this case Z = 1 and# is only de- -
pendent on T, The continuity, momentum, and energy equations are com- ;.
bined to give \

»
vl(v;2 + RTz) = v;(vl2 + RTl) {(D-32)
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* *9 2 _
Let
v v
vy = ;% v; = gv;,where g = ;% (D-34)
From Eq. (D-32) - ot
o2 o My - 8Ty (D-35)
2 - 8(8 - I)
From Eq, (D-33) g * 8 )
2R(AT, - T
vy? = £ 1.1 (D-36)
g -1
Solving for g from Eqs, (D-35) and (D-36)
T (D=-37)
g€ = b+ b2 + T%
2
where
PP _1 -
b = (B g) T; (B1 f) (D-38)
From Eq, (D-36)
2b + 1 - T /T
v;2 = RT' 2 (D-39)
OR
where
R = ®/m
or .
y 2b +1 - T
v21 = 7 (D-40)

<V21>

For calculation puUrposes assume Bl ~3.5 at 'I‘1 for the cold gas, Choose
2, and 8 is known, Calculate v2 from Eq. (D-39), vy from Eq. (D-34),
p2 from Eq. (D-1), and p2 from Eq, (D-9) with 2 = 1,

The methods employed above for the solution of properties be-
hind strong shock waves in ajir can be used in a similar wmanner for mon-
atomic gases,
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Table 2.1-2

Equilibrium constant (K},

degree of dissociation (@), and

dissociational portion of specific heat at constant
volume (C;/R) for oxygen at 1,0 atm as a function of

the translational temperature (T)
(Values of K from Ref, 17)

T °K Kitm a C;/R
2000 5.38 x 107 | 3.67 x 107% 0.159
2400 8.74 x 107° | 4.67 x 1073 1.40
2800 3.35 x 1073 | 2.89 x 1072 6.45
3200 5.18 x 10”2 0.106 16.9
3600 0.437 0.315 34.3
3800 1.07 0.461 38.9
4000 2,41 0.613 37,1
4200 5.01 0.745 29.8
4400 9.76 0.842 20.6
4800 31.3 0.941 7.91
5000 52. 4 0.965 4.54
Table 2.1-3

Vibrational relaxation in gases at normal density
and temperature (Ref. 14)

Exp. Zv T Calc, Cv
Cas _ (Ref. 14) v (Ref. 20)
o, 2 x 107 3 x 1073 3.8 x 107
c1, ax10% |4.2x10° 6.8 x 104
co, 5.2 x 10 [6.6 x 1078 9.6 x 104 ()
bethyl-chloride 1400 1.8 x 1077 1700 (?)
hethyl-alcohol 200 2.3 x 1078
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Performance of Simpie Constant-Area Shock Tubes Fig, 2.1-10

t

7 prp

Fig. 2.1-9, Riemann variables in the (x,t)-plane for a steady
flow through a duct of constant cross section; ¥ = 1,4,

—_—

R

Fig. 2,1-10, Riemann variables in the (x,t)-plane for a rarefac-
tion type of pressure wave generated in a quiescent gas in a
duct of constant cross sectivn; ¥ = 1.4,
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Fig. 2.1-11. A compression front moving to the right in a duct
of constant cross section; ¥ = 1,4,

4 Fig. 2.1-12, Collision of a Q-rarefaction wave with a
j} P-compression wave,
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Fig. 2.1-14, Vave syvstem produced by a piston instantaneously
accelerated from rest to a uniform velocity; uy = us.
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Fig., 2.1-16, Q-centred rarefaction waves in the
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Fig. 2.1-19. Variation of the temperature ratio through a
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Fig., 2.1-22, Vvariation of the Mach number through a i
Q-centred rarefaction wave; ¥ = 1,4, i
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Fig. 2.1-23, Varjation of the mass flow ratio through a
Q-centred rarefaction wave; ¥ = 1.4,
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Fig. 2.1-24. Variation of the total temperature ratio through
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Fig. 2.1-25, variation of the isentropic pressure ratio
through a Q-centred rarcfaction wave; v = 1.4,
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Fig.,

2.1-27
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Fig. 2.1-27., Variation of the Reynolds number per foot and
the dynamic pressure through a Q-centred rarefaction

wave; ¥ = 1.4,

169

ek N .

-

vt bl wdendAauMIS L

a

L -

e

tia s

.

e ahua al .

st (0 Ut ot el i e £



X e LT R - - - S 1

- ——

Fig. 2,1-28 NAVORD Report 1488 (Vol, 6, Scc, 18)
L a
c" ay
l
1 /
r
]
b L]
>
QL
4]
Q
.‘_ L~

10
. 3

{3
®

N U -8
4
-9
.t o [} 2 k1 < s

Fig. 3.1-28. Variation of the Riemann invariants P and Q
through a Q-centroed rarefaction wave; ¥ = 1.4,
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Fig. 2.1-51. Rarefaction wave and compression wave with
relaxation effects,
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Fig. 2.1-32., The flow about a double-wedge model in a shock tube,
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Perforsance of Simple Constant-Area Shock Tubes Table 2,3~1 N

Table 2.2-1

Initial conditions (Ref., 40)

Altitude, Pressure, | Density, |Temperature, Dimensionless Dimensionless
ft Py 208 3 Ty enthalpy, entropy,
- (o]
atm slugs/ft R hl/RoTo S,/R
) 1.0 2.38x10"3| s19 3.70 23.6
50, 000 0.1145 | 3.62x10"%| 202.4 2.195 25.0
100, 000 0.0106 3.31x10°°{ 392.4 2.795 27. ¢
150, 000 0.00142 | 3.05x10°%| s73.3 4.085 30.9
200, 000 0.000314 | 6.2x10"' | 619.4 4.41 32.7
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Fig. 2.3-1 NAVORD Report 1488 (Vol, 6, 8ec, 18)
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(L = shock thickness about 20 mean free paths at Ug~ 1.1 and

4 mean frfe paths at M_~ 2 for monatomic and diatomic gases,
Reto 260

Fig. 2.2-2. Schematic transition profiles through a weak shock ) X
front with constant specific heats, '
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X
(a) Transitior profiles for a very weak shock wave.
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. (2)
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(b) Transition profilea for a strong shock wave.
P 4
@

(I)—L;q""_‘ﬂ'—'

v - X
{¢) Tranaition profiles for an extremely strong shock.

L; ° Relaxstion distance due to iner degreeas
L‘ * Relaxation distance due to active degrees.

Ag ° Complete equilibrivm adisbatic for final atate.

Agy * Rankine-Hugoniot adiabatic for states evaluated by considering
the active degreea only and inert Jegrees are considered as
"frosen. "
7 *» 8/3 for monatomic moleculs.
y » 7/8 for linear molecule.
7 = 4/3 for other molecules.

Fig, 2.2-3. Shock transitions in a gas with relaxation effects,
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Fig. 2.2-5b, Transition through a shock front in oxygen at
lll = 20 showing the approach tc equilibrium of the ac-

tive and inert degrees of freedom (after Ref, 37).
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Fig. 2.2-6a. Vvariation of enthalpy E%— with temperature (T)
o

and pressure (P) for a diatomic gas, oxygen (after
Ref, 17).
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Schematic enlargement of the variation of h with

Fig. 2.2-6b,
T for a diatomic gas (after Ref. 37).
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Fig.

1.4L

2,3-6c. Dimensionless enthalpy va temperature for a

atomic
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dissociating diatomic gas (Ref. 3).
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704 (b) Molecular (t+r+v)
{c) Dissoclation (t+r+v+d)
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Fig. 2.2-7. Normal shock wave parameters in oxygen; py = 10.2
atm, T, = 218°K, h ~ 100,000 tt (Ref, 37).
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Fi‘; 2.2-7

82 'Sl

®wm

Fig. 2.2-7 (continued),

[ 0 P

e ———e ¢ e+ ammiam = e e =

10,
-2

8L p, » 10 atm
6 T, = 318°K

(h ~ 100, 000 ft )
a4l
2]
° it
20, .
18 () S=8,
18]
4]
124 ()
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s} — (a) =5,
sl
4]
2L
0 i ' _y [ 3 i " Ml

Normal shock wave parameters in oxy-
gen; py = 10 % atm, T, = 218°K, h ~ 100,000 ft (Ref. 37).
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'* rig, 3.3-9a NAVORD Report 1488 (Vol. 8, Sec, 18) :
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tnltiol Shock Tube Pressure (p,) os o Porameter
T* 300k
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Fig. 2.3-9a, Pressure ratio (pz/pl) across moving normal
shock vs shock velocity (\vl), equilibrium air,
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Fig. 32.2-0b

Initiol Shock Tube Prassure (p.) ot o Poramaeter
T*300°k

(Ref. 36a)
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Fig. 2.2-9b, Density ratio (pz/pl) across moving normal

shock ve shock velocity ('1)' equilibrium air,
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Fig. 3.3-8¢ NAVORD Report 1488 (vul. 6, Sec. 18)

Initiol Shock Tube Pressure (p) ot o Forameter
T, 300° K

(Ref. 36a)

Lt eamdl
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Fig. 2.3-1. Locus of all states (2) that may be connected with a
given atate (1) by a forward or backward facing shock wave, H
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Fig, 2.3-3. Locus of all states (2) that may be connected with a
knuwn state (1) by a forward or backward facing rarefantion

wave.
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Performance of Simple Constant-Area Shock Tubes Fig. 2.3-7

- Diaphragm
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Fig. 2.3-5. 1Initial conditions in a sheck tube.

g

Fig. 2.3-6. The shock tube problem in the (p,u)-plane,
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!
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Fig, 2.3-7. Possible wave systems in a shock tube following
the rupturing of the diapanragm.
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Fig., 2.3-9. Variation of the shock pressure ratio (P12) with
the diaphragm pressure ratio (P14) ard the internal eaergy
ratio (E14) across the diaphragm; case air/air,
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Fig. 2.3-10, Variation of the shock pressure ratio (p12) with
the diaphragm pressure ratio (Pl4) for the different gas
combinations at the same temperature (T14 =1).
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Fig, 2.3-12
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Fig. 2.3-12. variation of Mach number in state (3) with the
diaphragm pressure ratio (914) for differeut energy

ratios (E14) across the diaphragm,
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Fig. 2.3-13, Variation of Mach number in state (3) with dia-
phragm pressure ratio (P14) and internal energy ratio

(El4) across the diaphragm at Ty, = 1.
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Fig. 2.3-14, Variation of Mach number in state (2) with the
diaphragm pressure ratio (P14) for different internal

energy ratios (E“) across the diaphragm.

234

e T
. MEY




T RS e T Sy T R SRR T T R L S T R e v e L e e T

‘ -
{ |
Performance of Simple Constant~Area Shock Tubes Fig. 2,3-15
108
{ b
3
k
i* 3
! A
{
] 3
L
i
11
~ i
!
| |
1 k i
= i
| X
: bma : SRR = &
H 13 t = 3 - M \
f M |
i - {
| i ,
A P
. '
g
A
]
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Fig., 2.3-23. Variation of flow quantities behind a shock wave
in air; ¥ = 1,4,
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Fig., 2.3-24, Variation of Reynolds number per foot in the uniform
states (2) and (3) with the shock pressure ratio (

Pyq);
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Fig. 2.3-30. vVariation of shock wave Mach number ('ll) with
diaphragm preasure ratio (Pdl) for constant and variable
specific heats; case air/air (vibrational excitation only).
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Perforpwance of Simple Conatant-Area Shock Tubes Fig, 2.3-31

Tnlital Shock Tube Pressure Qfaoﬁmmmr RN eri i im LN
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N aF E SN
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T (Ref. 38a) paiEs -
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28
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Fig. 2.3-31, Pressure ratio (pa/pl) for standing normal shock
vs shock velocity ('l)' equilibrium air,
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Fig., 2.3-32 NAVORD Report 1488 (Vol, 6, Sec, 18)

Initial Shock Tube Pressure {p,] as o Parametar
T=300°K

£ o189 x16%gm/emd |
1 4694 X 16 b/ ind :
« 804> x 16% /10

£ 2.490 X10% auga/r®

W), mm/u sec

Fig. 2.3-32. Deasity ratio (ps/pl) for standing normal shock
vs shock velocity (wl), equilibrium air,
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| Fig., 2.3-34 NAVORD Report 1488 (Vvol. 6, Sec. 18)

Initial Shock Tube Pressure (p| } as a Parameter
T= 300°K

-

(Ref. 36a)
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;
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A

1

Fig, 2.3-34, Temperature ratio (Ts/TI) for standing normal 1

shock vs shock velocity (wl), equilibrium air,
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performance of Simple Corstant-2area Shock Tubes Fig, 2.3-35

Initia! Shock Tube Pressure (p|) as o Pargmeter
T, = 300° K

PlemmHgl B /RT,

<1 3e3al
10 1834
20 18313
a0 38308
76 36292

W, mmjssec

Fig. 2.3-55. Enthalpy ratio (hs/hl) for standing normal
shock vs shock velocity (wl), equilibrium air.
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Fig., 2.3-36. Velocity ratio (us/al) across standing normal

bow shock vs shock velocity (wl), equilibrium air.
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Performance of Simple constant-Area Shock Tubes Fig. 2.3-37

- —

Initiai Shock Tube Pressure {p,) cs o Paorameter
T2 300°K

36a)

4 (Ref.
ik

izt

ﬂ—
i
i o siiliiih

4

~

W, (mm/usec)

Fig. 2.3-37. Pressure ratio (pt/pl) at stagnation point vs

shock velocity (wl), equilibrium air.
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Fig. 2.3-38

NAVORD Report 1488 (vol. 6, Sec. 18)
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tnitial Shock Tube Pressure (p,) as o Porameter
T|= 300°K
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16C
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80k
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20 ¢
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W, {mm /e sec)

2.3-38., Density ratio (pt/'pl) at stagnation point vs

shock velocity (wl), equilibrium air,
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Fig., 2.3-39

tnitial Shock Tube Pressure (p,) as
T2 300°K
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Fig. 2.3-39. Compressibility (Zt) at stagnation point vs
shock velocity (wl), eyuilibrium air,
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(nitial Shock Tube Pressure (p, ) as o Porometer
T.= 300° K
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262
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2.3-40. Temperature ratio (Tt/Tl) at stagnation point
vs shock velocity (\»1), equilibrium air,
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Performance of Simple Constant-Area Shock Tubes Fig., 2.3-41

Intiol Shock Tube Pressure (p,) as o Porameter

120
: T2 300°K
o
100 |-+
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Lol
. RN W {Ref. 36a)
B N : . g
9C [ttt el
80 |+
10 |-
B rimng) R/RT,
o 38321
RN 10 jade
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h il e rexs
N 38202
....... o
< g 5 4 o 6 -
wolmm/p sec
Fig, 2.3-41. FEnthalpy ratio {(h, hl) at stagnation point vs
shack velocity (w,), cquilibrium air,
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NAVORD Report 1488 (Vol, 6, Sec, 18)

Fig. 2.4-1. Normal reflection of a shock wave and rarefactiocn wave,
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Fig. 2.4-5 NAVORD Report 1488 (Vol. 6, Sec., 18)

Initia) Shock Tube Pressure (p,) as o Porameter
T2 300°K

(Ref. 36a) L

f:.001cmHg

w 1 JMm/y sec

Fig. 2.4-5. Compressibility (Z5) for reflected normal shock

vs shock velocity (wl), equilibrium air.
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2.4-6

Initigl Shock Tube Pressure {p) as o Porometer
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Fig. 2.4-6. Temperature ratio (T5/Tl) for reflected normal
shock vs shock velocity (wl)’ equilibrium air,
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Fig, 2.4-7, Enthalpy ratio (h5/h1) for reflected normal -9
shock vs shock velocity (wl), equilibrium air,
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Performance of Simple Constant-Area Shocuk Tubes Fig. 2.4-16
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Initial Conditions Final Conditions
Fig. 2.4-16, Head-on collision of two unequal shock waves
in the (u,p)-plane,
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Head-on collision of two unequal shock waves

in the (x,t)-plane,
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Fig. 2.4-18.
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Fig. 2.4-19 NAVORD Report 1488 (Vol, 6, Sec. 18)
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Fig. 2.4-19, Head-on collision of two unequal rarefaction
waves in the (x, t)-plane,
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Fig. 2.4-20

faction wave in the (u,p)-plane,
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Fig., 2.4-20, Head-on collision of a shock wave and a rare- é
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Fig. 2.4-21

NAVORD Report 1488 (Vol. 6, Sec.

18)
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Fig., 2.4-21,

Head-on collision of a shock wave and a rare-
faction wave in the (x,t)-plane,
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Overtaking of two similarly facing shock waves
in the (x,t)-plane,
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Fig. 2.4-39 NAVORD Report 1488 (Vol, 6, Sec. 18)

ga

N

(a) Point (xe, ts) where the steady state region (6)
fcrms behind the reflected rarefaction wave.

{b) Pcint (Xa, z 3) where the head of the reflected
rarefaction wave overtakes the tail of the
incident rarefaction wave.

(¢} Point (X , tc) where the t.cad of the reflected
ra refacﬁon wave overtakes the contact surface.

(d) Point (X, z'q) where the head of the reflected
| rarefaction wave overtakes the shock wave. o

(e) Point (XS' tS) where the steady state region (5) o
forms Lehind the reflected shock wave.

1he point (X, te) is givenby ( -1, ts). Th= value of tﬁ as a function of the diaphragm
pressure ratlo P4 is shown on Fig. 2.4-i5 for different gas combinations.

Fig. 2.4-39. Points in the (X,7T)-plane where the head of the
reflected rarefaction wave overtakes the tail of the in- 3
.dent rarefaction wave (Xs,‘r3), the contact surface v

3 (X, TC), and the shock wave (XS, ZS) (L4 is the chamber
length) .,
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Fig. 2,4-40. variation of X3, X, and X_ with the pressure

Cl
ratio (P41) across the diaphragm for air/air; T14 =1

or E14 = 1.
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Fig. 2.4-41 NAVORD Report 1488 (Vol, 6, Sec, 18)
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Fig. 2.4-42. Variation of 13, T;, 2; with the pressure |
ratio(P41)across the diaphragm for air/air; '1'14 =1

or E14 = 1.
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A
AZ’_, = Maximum fiow duration for state (3) c
Az'z = Maximum flow duration for state {2)
Fig. 2.4-44, Points of maximum flow duration X3 and X, for }
regions (3) and (2), respectively,
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Fig., 2.4-45, Variation of x5 and X2 with the pressure ratio

(P4l) across the diaphragm for different gas combinations,
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P Nomograph for calculating the time interval between the arrival of the shech
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been carried out considering air as an ideal gas ( Y+ 1.4) and a4 in equi- x
H librium at all times (recombination rate infinitely fast). For equilibrium air [
;i the teating time is greatly reduced. -
Enter abecissa at shock Mach number and find inteseection with initial pres- ' .
1 sure curve. Find values of left hand ordinates, $/L , at the latter in“>r-
pJ section. Line up the value of €/ with the length of the shock tube on the 3
'l right hand ordinate and read the testing time, { , on the center ordinate.

Experimentally, the values of 1t  are found to be approximately -50% of the j -
values thus calculatsd.

Fig. 2.4-46. Testing -ime as a function of shock Mach
number 2nd initial preesure (Rcf. 53).
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Observed Flow in a Constant-Area Shock Tube 3.1.1
3. Observed Flow in a Constant-Area Shock Tube
3.1 Comparison of Idealized Theory with Experiment

In the previous section the wave elements and the wave system
that might be produced in a simple shock tube of constant area for per-
fect and imperfect inviscid gases were considered in some detail. The
present section wilil endeavour to compare the experimental results with
the theoretical predictions, It will be found that viscosity and heat
transfer effects in the wail boundary layer modify the idealized wave
system and the physical quantities in the uniform states, The magnitude
of these effects depends mainly on the strength of the incident shock
wave, the initial conditions, the type of boundar; layer, and the area
and length of the shock tube channel,

3.1.1 Wave System Produced by Diaphragm Removal

Plate 1,1-1 is typicai of the schlieren photographs taken at
the origin, These are presented and analysed in Ref, 1, Under pressure
the cellophane diaphragm becomes a curved surface, When it ruptures,
three~dimensional effects are introduced in the form of shock-wave re-
flection arising from shock curvature, Shock diffraction and vortices
are also produced by the jagged remains of the diaphragm, As a result,
the assumption of one-dimensional inviscid flow at the origin is not
realized,

All the records are typical, in that the shock wave at the
origin appears to be formed within a network of converging characteris-
tic lines representative of a compression wave, However, closer exam-
ination of the optical records reveals that the method of characteris-
tics cannot be applied in order to predict the birth point of the shock
wave because the apparent compression wave is in fact composed of a num-
ber of coalescing shock fronts, These overtake, accelerate, and combine
to form the primary shock wave, The wave is initially curved, but the
resulting regular and Mach reflections form the mechanism that produces
a plane primary shock wave (Ref, 2), It was also noted that the reflec-
tions give rise to a train of transverse waves that follow the primary
shock wave down the tube (even as far as 50 tube hydraulic diameters).
They also propagate upstream of the diaphragm. Eventually the trans-
verse waves become sound waves, However, they form a dissipative mecha-
nism that extracts energy from the flow, and thus they contribute to the
total shock-wave attenuation and to the fluctuation of physical quanti-
ties in the two uniform regions separated by the contact front,

It is shown in Ref, 1 that even for a weak shock wave (P21< 3)

contact surface accelerations of the order of 7 x 107 ft/sec may be pro-
duced during the first 10 usec, and in this respect the rupturing proc-
ess approximates the ideal case of infinite acceleration.

Plate 1.1-1 also shows that the contact front is in fact a
region which, in a matter of 18 in., has grown to a thicknass of over
3 in, 1In a long tube it can grow to several feet, and this seriously
affects the available test time when the shock tube is used as an aero-
dynamic facility,

The region behind the contact front and the rarefaction wave
is filled with striations that are indicative of turbulent and eddying
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flow, The rough flow is caused by the passage of the gas from the cham-
ber over the jagged remains of the diaphragm,

Lo

Since the ideal case of an instantaneous plane shock wave is
not attained at the origin, the rarefaction wave is not centred there,
The head of the wave appears prominently on Plate 1,1-1, but not the
tail of the wave, The nonappearance of this characteristic line cannot
be attributed entirely to the fact that the rarefaction wave is not cen-
tred, since the order of magnitude of the density derivative which re-
sponds to a schlieren system is not too different for the head and tail
of the wave, However, when a centred rarefaction wave is produced by
means of shock wave refracticn, the tail can also be seen in a schlieren
photograph (see Subsec, 2, Ref, 31),

ot A B . P et g+ bt

-
-

Plate 1,1-1 indicates that after some distance from the dia-
phragm the shock wave becomes well fcrmed, This distance depends on
the tube cross-section, the diaphragm material, and the pressure differ-
ence across the diaphragm, In Ref, 1, it is noted that for a 3 x 3-in,
shock tube the shock velocity was uniform after about 4 to § hydraulic )
diameters (4A/C) when the diaphragm was loaded near its bursting strength, ¢ o
If the diaphragm was not well loaded, the shock formation process was ) i .
longer and the contact front was thicker, Improved shock velocities are - o
obtained with proper diaphragm loading, especially at higher shock
strengths, where the formation distance can be an order of magnitude
greater (see Ref. 38).

3.1.2 Wave Speed Measurements

Since the head of a rarefaction wave travels into a quiescent
gas with the speced of sound, this property can be utilized to determine
the sound speed in a gas (Ref. 3). The method makes use of a schlieren
record of the (x, t)-plane, such as Plate 1,1-1. The rate of advance -
of any wave is given by w = v tan a/u (where v is the film speed, o« is -
the acute angle between the t-axis and the wave element, and 4 is the -
optical magnification factor of the x-axis), In the limit, a weak shock b
approaches a sound wave, This »nrinciple can also be used to wmeasure
sound speed (Ref. 4).

The results presented in Refs. 3 and 4 are summarized in
Table 3,1-1. It is seen that these values are in excellent agreement

with the acoustic result a2 =Y RT, where 7Y is based on equilibrium of
active and inert degrees of freedom, when applicable, This is to be
expected, as the measurements of the head of a rarefaction wave pro-
duced by breaking a diaphragm in a shock tube would probably not reveal
relaxation effects (in the form of a higher sound speed very close to
the origin, Subsec. 2.1.5) since the wave is not centred, Consequently,
the flow would probably be in equilibrium since any particle path would
have a long effective flow time,

e e

From the relations given in Subsec, 2.3, it might be concluded -
that once the initial conditions in a shock tube were given, the final- 3
state properties and wave speeds could be found, Alternatively, if the
shock speed is known (see Subsec., 7.4 for measurement methods), then the
properties behind it can be calculated. Optical devices made it rela- 3
tively easy to measure this quantity even in the early days of shock
L tube development, Investigators found that when the shock wave was weak
and travelled over relatively short distances in tubes that were not of
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Observed Flow in a Constant-Area Shock Tube 3.1.2

small diameter, then agreement with theory was quite good. However, as
soon as the above quantities were accentuated, it was found that the
shock strength attenuated (Refs, 1, 2, 5, 6, 7, and 8).

Some typical results are shown in Figs. 3.1-1 and 3,1-2,

It has been found (Ref, 1) that the total attenuation in a
shock tube can be described as in Fig, 3.1-3a. When the diaphragm rup-
tures, the compression waves overtake to form a shock front, which gains
in strength until it reaches a maximum velocity at Xg, the formation

distance. Beyond that, the shock front attenuates with increasing dis-
tance, Consequently, the formation decrement and the distance attenua-
tion make up the total attenuation at any given station. Some investi-
gators do not agree that a formation decrement really exists (Ref, 5),
However, the results of Refs, 1 and 7 tend to confirm this model. Re-
cently, the work of Ref, Ta has substantiated the type of curve shown
in Fig. 3.1-3a for shock waves produced in air by helium or hydrogen

in the chamber, Some results appear in Figs. 3.1-3b and 3.1-3c, which
show the variation of the shock Mach number MS with distance x from the

diaphragm station, The value of MS given in the tables on the figures

was calculated by using imperrect gas effects behind the shock in accord-
ance with Subsec, 2,3,3., It is seen that in the case of hydrogen, the
formation decrement is almost zero, whereas for helium a formation in-
crement appears to result, It is seen from Fig, 3.1-3b that the effect
of increasing the initial air pressure from 5 to 100 mm Hg appears to be
small, For shocks of the same strength, Fig. 3.1-3c indicates that the
attenuation rate with distance is very much greater (double) for hydro-
gen than for helium as a driver gas., The latter would be preferable

for aerodynamic testing. It is worthy of note that the formation dis-
tance in these cases is very large, that is, about 20 ft or 64 hydraulic
diameters, (Recent attenuation studies reported in Ref. 19 substantiate
the trend of the curves given in Ref, Ta,)

Experimenters realized that the above results are probably due
to the boundary layer growth in the shock tube, Figure 3.1-4 is a sche-
matic diagram of the flow in a shock tube at a time t = tl. It is seen

that a boundary layer exists between the head of the rarefaction wave
and the shock front, It starts growing at these two faces (which effec-
tively are leading edges) and increases in thickness until it reaches a
maximum at the contact region, Due to the condition of no slip at the
wall, the contact front would extend right back to the diaphragm station,
It is seen that the boundary layer consists of three mein regions, In
state (2), which is hot with respect to the tube walls, the growth occurs
in a uniform unaccelerated region (if the boundary layer is thin), 1In
state (3), which is cold with respect to the tube walls, the boundary
layer growth is similar, but it takes place at a higher free-stream
Reynolds number and Mach number. In the rarefaction zone the boundary
layer is subjected to a monotonically decreasing pressure and increasing
velocity. As indicated in the diagram, at the contact surface where the
two main boundary layers meet, the flow would be still wore complex. In
a real flow this effect 1s even more pronounced owing to the wide extent
of the contact region, As time goes on, the leading edges have raced
along the tube in opposite directions, transition to turbulent flow oc-
curs, the boundary layer becomes thicker, and the assumption of a zero
pressure gradient in the uniform regions becowes invalid, Finally, after
a long enough time has elapsed (assuming the shock tube is of sufficient
length), the boundary layer fills the tube and the flow comsists predom-
inantly of a turbulent pipe flow,
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A review of the early attempts to account for the boundary
layer cffects is given in Ref, 8, Recently, the theoretical work of
Refs, 9, 10, 11, and 12 have given a means of predicting not only the
shock attenuvation effects, but also the resulting deviations in the
flow quantities that one might expect to arise as & result of the bound-
ary layer growth, Basically, the two theories postulate the continuous
generation of nonstationary compression and expansion waves by the
boundary layer, These pressure waves traverse the flow and change its
properties as well as the speed of the shock wave and the contact zone,
Consequently, there are no uniform flow regions, All flow properties
become a function of x and t. However, the mechanisms for generating
the pressure waves are different, Trimpi and Cohen consider that the
pressure waves are generated by skin friction and heat transfer effects,
whereas Mirels takes the view that they are essentially generated by the
vertical velocity at the edge of the boundary layer, that is, a piston-
like effect, Both theories predict an attenuation that varies with
shock strength, the distance the shock has travelled from the diaphragm,
the houndary layer type and profile, the initial conditions across the
diaphragm, and the tube cross-section,

In Ref, 12 (p. 46) it is pointed out that for thin boundary
layers with an isentropic core the theory developed by Mirels should
apply, whereas for thick boundary layers or pipe flow the theory of
Trimpi and Cohen can be used since viscous shear affects the entire
cross section, (In their theory they averaged the viscous effects over
the cross section,) 1In Ref. 10 (p. 85) some concurrence on this point
is also expressed., So far, an integrated and critical comparison of
these two theories with experiment has not been made, However, the at-
tenuation results of many investigations do agree quite well where the
theory of Ref. 9@ was applied,

A good account of this procedure is given in Ref, 8, from
which Fig, 3.1-1b has been reproduced, It is seen that the results of
Fig, 3.1-1a tend to lie on curves based on the theory of Ref. 9, which
assumes a turbulent boundary (compressible or incompressible) layer

over the entire flow (Tc, Tic’ T), rather than a laminar layer (Lc, Lic)'

It was noted above that the contact surface becomes an eddying
zone in a real flow that can stretch over many feet, depending on the
length of the shock tube or the flow duration, Consequently, one might
expect from the previous remarks regarding the boundary layer effects
that the velocity of the contact front would not agree with the ideal
particle velocity., The behaviour of the front of the contact zone, as
recorded by (x, t)-schlieren photographs (Ref, 1), is indicated sche-
matically on Fig, 3.1-5. When the ... ,.nragm is pierced, a jet of air
strikes the gas in the channel, The front of this jet moves at a ve-
locity greater than the idcal U2l‘ When the shock is formed at Xe, it

has decelerated to a value which is still higher than the ideal UZI’ ard

from there on the front of the coatact region speeds up with distance
along the tube (Fig. 3,1-6). The theory of Ref, 12 predicts an increase
in the contact front veliocity. However, a quantitative comparison has
not been made to date,

3.1.3 Uniform States Separated by the Contact Region

A fairly detailed study of the rarefaction wave and state (3)
behind it (in air) was made in Ref, 13, using a piezo gauge and a hot-
wire anemometer; and in Ref., 14, using a chrono-interferometer. The
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results are shown in Figs. 3.1-7 to 3.1-11 and in Table 3.1-2. It is
seen that the rarefaction wave for diaphragm pressure ratios P4l > 1.5

is much weaker thar predicted by theory, The experimental values of
Ref, 13 satisfy the isentropic relation P34 = Igz. However, as showr

in Fig. 3.i-11, the Riemann invariants P and Q are not satisfied, It
was shown in Subsec. 2,1.2 (Egs. (9) and (10)) that P and Q remain in-
variant for a tube of constant cross section in an inviscid fiow. When
a boundary layer forms in a real flow, heat transfer and friction (which
are relsted to the normal component of the velocity at the edge of the
boundary layer) act on the entire flow so that P and Q become functions
of heat transfer and skin friction at any x and t., Consequently, it
would not be surprising that the relations P = 5A34 + U34 and

Q= 5A34 - 034 might not be satisfied in a flow where viscous effects
are present, However, in this case, since the isentropic relation
P34 32 is satisfied, it is rather anomalous that the Riemann invar-

iants are not satisfied, A reasonuble explanation of the above has not
been given to date,

Other investigations in Refs. 15, 16, and 17 show very marked
deviations in the physical properties of the flow right frum the shock
wave to the head of the rarefaction wave as shown on Figs, 3.1-12 to
3.1-15. The theories of Refs, 9 and 12 indicate that such flow changes
can be expected to occur. The measured values of density and pressure
(Figs. 3.1-14 and 3.1-15, Refs, 14 and 16) and calculated vulues of tem-
perature (Fig. 3.1-16), entropy, velocity, and mass flow (Refs, 15 and
17) over large portions of the shock-tube flow indicate that the average
pressure and density at a cross section increase as a function of time,
However, the temperature has a tendency to decrease in state (2) and in-
crease in state (3). It is seen that in Fig. 3.1-13, where the density
variation with time is compared with the theory of Trimpi and Cohen,
quantitative agreemcnt is only fair although the slope of the theoreti-
cal curve corresponds closely to that of the experimental data,

The mass flow and the particle velocity (Fig, 3.1-12) never
appear to reach their maximum ideal values and show a tendency to in-
crease with distance betwecen the shock and the rarefaction wave,

Typical measurements of the Mach numbers in states (2) and (3)
in air for lower shock wave pressure ratios or shock wave Mach numbers
which were determined from schlieren photographs of the oblique shock
wave attached to a wedge of known angle (Ref, 2), are shown on
Figs. 3.1-16a and 3.1-16b, It is seen that The Mach number in state (2)
for lower diaphragm pressure ratios P41 is in good agreewent with ideal

theory. However, the Mach number in state (3) appears to reach a limit-
ing value as P41 rises. Other experimenters did not find such a limit

(Ref. 18)., An experimental decision on this matter is still required.

Some experimental results of the flow Mach number M2 for

stronger shock waves in air are shown in Figs. 3.1-17a and 3.1-17b from
Refs. 19 and 19a, respectively., Imperfect gas effects were used to de-
termine the flow velocity and flow sound speed or the flow Mach angle
Hy: It is seen that the Mach angles ﬂz, measured in a manner indicated
on the figures, or the flow Mach numbers MZ’ derived from the experimen-
tal measurements of Hy, show good agreement with the theory for air
treated as an imperfect gas, The perfect gas limit for M2 = 1,89 is ex-

ceeded, of course, as the initial pressure Py is decreased for strong
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shocks, (The reader is referred to Ref. 38 for recent measurements of
physical quantities behind strong shock waves in nitrogen, Direct and
other measurements have just been reported in Refs, 41, 42, and 43.
Very good agreement with theory is indicated in Refs. 42 and 43 for
temperatures behind shock waves in air, oxygen, nitrogen, and argon;
in the latter case, up to $000°K.)

It may be stated that in due course, as the physical quanti-
ties throughout the shock tube flow will become better known, it should
be possible to put the theories of Ref, 9 and 12 (if they are extended
to strong shock flows) to a decisive test with regard to shock wave at-
tenuation and the variation of the physical flow quantities in a shock
tube (see Refs. 39 and 40 for a recent survey of this problem).

3.1.4 Wave Interaction Results

Not all of the one-dimensional wave interactions considered
in Subsec. 2.4 have been tested experimentally, However, those that
have been tested agree quite well with the theoretical predictions and
lend considerable weight to a (p, u)-plane type of analysis
(Subsec, 2.3.1).

A large number of results on the normal reflection of shock
waves in argon, nitrogen, and carbon monoxide is given in Ref, 20
(Fig. 3.1-18). When imperfect gas effects and boundary layer effects
are taken into account, the results appear quite consistent with theory,
(The calculated values tor the curves in Fig. 3.1-18 are listed in
Table 3.1-3 and were kindly supplied by Greene, Ref. 20a.) A more
critical evaluation is given in Subsec, 3.2.%.

In comparison to the above, very little experimental informa-
tion is available on the normal reflection of rarefaction waves or the
uniform state (6) that can be formecd behind it,

Some results for the head-on collision of two shock waves and
a shock and ravefaction wave (Subsec, 2, Ref. 48) are shown in
Figs. 3.1-19 and 3,1-20, It is scen that for this range of experiments
the agroement with theory is quite gcod.

Experimental data on the cullision of two rarefaction waves
is not yet available, Some (x, t)-plane schlier~n records of this in-
teraction and of the normel reflectiun of A rarefaction wave wmay be
found in Ref. 46, Subsec. 2. Hot-wire anemometer and plezo-pressure
gauge records of the latter are given in nef, 13,

One-dimensional refraction of shock waves and rarefaction
waves has been investigatod {Refs. 21 to 23), and tae results agree
quite well with the theory outlined in Subsec, 2.4, Typical experi-
mental data are given in Figs. 3,1-2° to 3.1-27,

The Air || A contact surface in Fig. 3.1-21 was established
by using a microfilm of nitrate dope to separate the two gases. Its
effect on the interaction could be taken into account (Ref. 21), An
increase in shock pressure rat.) (amplification) after refraction is
evident,

For the single and double refraction problems illustrated in
Figs. 3.1-22 to 3,1-24, a slide technique was used to separate the gases,
The slide was withdrawn when the shock was generated in the tube, per-
mitting it to interact with the new gas, it can be seen that significant
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decrease in shock pressure ratio (attenuation or absorption) can take
place in a gas like helium or hydrogen, However, the layer of gas
(Air || He || Air) is not suitable for shock attenuation because, far
enough away from the layer, overtaking shock waves strengthen the emer-
gent shock and bring its pressure ratio back towards the original value
(Fig, 3.1-24).

Figure 3.1-25 illustrates the refraction problem at a moving
contact surface generated in a shock tube by using He |l Air, It will be
seen that at an incident wave Mach number wll'" 3.4 the gas behind the

rarefaction wave is cold enough to change the energy ratio across the
Airll He contact surface so that it is below the critical value, and now
the yressure ratio across the transmitted shock wave is increased. This
gives rise to a reflected shock wave after refraction as shown, This
shock wave undergoes normal reflection and refraction, 1t then over-
takes the originel transmitted shock wave and increases its strength in
a manner similar to Fig. 3.1-24. The agreement with theory is quite
good. This type of refraction forms the basis for the tailored-
interface hypersonic shock tunnel (Subse~, 5.1.2.3).

The above problems involving overtaking shock waves indirectly
verifies this type of interaction. The overtaking shock problem has
also been studied in Ref, 23, and good agreement with theory is indi-
cated.

The refraction of a rarefaction wave at a contact surface was
investigated in Ref. 13. Piezo-gauge cata of the interaction are shown
in Figs. 3.1-26 and 3,1-27 for Airll A and Air || He, respectively, The
agreement with theory is very satisfactory, providing the actual rare-
faction, not the one computed from the diaphragm pressure ratio, is
used for comparison, A typicel hot-wire anemometer trace and piezo-
gauge record are shown in Fig, 3.1-28, It should be noted that the hot
wire total temperature measurements were found to be close to the theo-
retical value, whereas the mass flow results showed a considerable
scatter (Ref. 13). From a measurement of pressure, mass flow, and
total temperature, all other flow quantities can be calculated. For-
tunately, the mass flow has a weak effect on the calculations, However,
the piezo-pressure garuge measurements across the various states in them-
selves are quite convincing,

3.2 Boundary Layer Effects

The present Section will consider in more detail the boundary
layer that forms on the shock tube walls between the head of the rare-
faction wave and the shock wave (see Fig. 3.1-4)., It was noted in Sub-
sec, 3.1 that it is this boundary layer which induces the deviations in
the wave speeds and the physical quantities in a shock-tube flow,

3.2.1 Laminar Boundary Layer

For a laminar boundary layer with zero pressure gradient, the
problem was initially considered as analogous to Riyleigh's analysis
(Ref, 24) of an infinite flat plate that has been instantly accelerated
from rest to a uniform velocity u, at t = 0, This was the methcd
adopted in Ref, 25 in order to estimate shock wave attenuation, It was
assumed that the defect in mass flow at the contact surface expressed
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as a function of the pressure ratio across the shock could be equated
to the mass flow defect derived from the viscous incompressible equa-
tions of motion (Ref, 1). With this assumption, it is possible to ob-
tain the strength of the attenuated shock wave, The validity of this
analogy was not verified and the agreement with experiment for stronger
shocks was poor, (It is showa in Ref., 28 that, for weak shocks, by
neglecting second order terms, the analogy is exact,)

In Ref, 26 a historical note describes the work that led to
the correct formulation and solution of the zero-pressure-gradient, com-
pressible, laminar boundary layer with heat transfer in the region be-
hind a moving shock wave as given by Hollyer (Ref, 27). This work was
extended by Mirels (Ref, 28), who showed that for weak shock waves the
boundary layer is equivalent to the Rayleigh problem and that an ana-
lytical soluticn is possible, For the stronger shock waves a numerical
solution is given for velocity and temperature profiles, recovery fac-
tors, and skin friction and heat transfer coefficients. This problem
has also been studied in Refs., 29 and 30, with special application to
wall surface temperature and heat transfer,

An examination of Fig. 3.1-4 shows that it would be possible
to put the two nonstationary boundary layers with their moving leading
edges at the shock front and at the rarefaction wave head into a steady-
flow frame of reference by fixing a set of co-ordinate axes to the wave
front., This imposes no difficulty at the shock but requires an assump-
tion that the rarefaction wave fan can be replaced by a single plane
(expansion shock). This assumption becomes progressively worse as the
pressure ratio across the diaphragm increases, In the limit, for a per-
fect gas, state (3) disappears (see Subsec, 2,3.2), and the rarefaction
wave fan occupies a length which is sixfold greater (for Air,Air,
¥ = 1,4) than the region occupied by state (2), between the shock and
the contact surface, The two boundary layers in steady and unsteady co-
ordinates are shown in Figs, 3.2~1 and 3,2-2, The gas thermal boundary
layer and the wall thermal layer appear in Fig, 3.2-3, (The notation
used in Subsec, 2, above, has been retained; that is, for a shock wave
V] T W, Vg = W - Uy, Vv Ve = pg/py, and 1 g PPy £ 6 for 1 g vi/a s«
for v = 1,4. Similarly, for an expansion wave vy T ay and v2 = ay + Ug.

For ¥ = 1,4, in the range ( u 5 a,, 1 V.V 1/6.) 1t is seen
3893 1'Ve 2

that, in steady co-ordinates, the wall now has a velocity equal to the
wave velocity (v1 = vw). The expansion wave profile is reminiscent of

a boundary layer with slip flow, while behind the shock wave the profile
has the largest velocity at the wall and smallest in the free stream,

Following the method used in Refs., 28 and 31, the Prandtl
boundary layer equations are applied (except at the leading ~dges of

the two waves) to the compressible flow for x > 0 with the assumption
dp/dx = 0,

Continuity:

Momentum:

3u ._:l_‘d_(ﬂ)
an Vay T p oy Moy (2)
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Observed Flow in a Constant-Area Shock Tube 3.2.1

Energy:
2
FY ﬂ):i( iT_) (ﬂ)
PCy (“ ax ~ Vay ay \F oy )t M oy (3)
State:
p = pRT (4)

Boundary conditions for shock wave (Fig. 3.2-1):

u(x,0) = v = vy (zero slip)
v(x,0) = 0 (5)
T(x,0) = T, (constant wall temperature)

(It was shown in the above references that Tw = Tl except for stronger
shocks,)

u( x,©)

|
—_
(=4
™
L}
]
]
~—
]
{
<
o

L)
=

Boundary conditions for the expansion wave (Fig. 3.2-1):

u(x,0) = ag = vy
v(x,0) =0 (6)
T(x,0) = T, (constant wall temperature)

(1t was also shown that Tw:v T4 = T, for all expansions.)

1
u(x,x) = ag ¥ ug = vy

T(x,x)

1
-3
w

{Note: The typec 'v'" signilies a relative velocity in the x-direction,
whereas the written "y is the actual velocity component in the
y- lirection.)

The assumption of constant wall temperature was shown to be valid for
a laminar boundary layer in Ref. 31. It has also been substantiated
experimentally in Ref, 26, Even for a turbulent boundary layer, al-
though the temperature varies with dista:ce behind the shock, the ap-
proximation is good except possibly for stronger shocks,
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Numberical soiuticns to the above equations in the range
05 vl/v2 S 6 are given in Refs, 28 and 31, The case of vl/v2 = 0 is

the Blasius solution for the incompressible flow past a fixed, semi-
infinite plate, When vl/v2 = 1 + € (where € is a small quantity,

e <<1; otherwise when ¢ = 0, vl/v2 =1, uy = 0, and a boundary layer

is not possible, see Fig. 3.2-2) an analytical solution involving the
first order in (vl/v2 - 1) is possible, which reduces to the Rayleigh

relation for the nonstationary boundary layer:

v, - v v
L I 2 Yy - y

2 =M - oertl ¥ = ert (7)

vy Vo u, N 2 2'/""1,21

A boundary layer parameter 7 is defined as

|/ 2 (" T
n=2_uw>c£ T (8)

The boundary layer thickness 0 is defined as that value of y when y = 0
or 7 = 7g, and at that point

Vy v v
1

L =0,99 or X =0.99 + 0.01 — (9)
Vi~ Ve Vo Vo

v
(The plus sign is used for 1 & 71- £ 6 and the minus sign for
v 2
0= v—l & 1,) The variations of v/v2 with 77 are given in Refs 28 and
2
31. Consequently, when v/vy assumes the value of Eq. (9), Ng is known,
vV, = Vv

and the reduced Gguantities 1)/716 versus 7
Rayleigh case, we write

can be plotted. For the

vV, =V
1 -
e i erf (K - 71/176) (10)
1 Z
where K = constant.
When v, - v
- 1 = n
n =7 , ———— =0.99 and K ~1.8
b vy Vo
or
v, - Vv
1 -
= = erf (1.8 + 1/ng) (10a)
1 2
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Observed Flow in a Constant-Area Shock Tube 3.2.1

Equation (10a) along with the reduced values for the Blasius (vl/v2 = 0)
and the strong shock cases (vl/v2 = 6) are shown on Fig, 3,2-4, It is

seen that the velocity profiles encountered in a shock tube on the whole
lie closer to the Rayleigh profile, except for strong expansions which
are closer to the Blasius profile (with the assumption of an expansion
shock). On this plot, it is seen that the slope of the profile at the
wall increases from the Blasius to the Rayleigh to the strong shock case,
and the curves are also in this order,

From Eq. (8), when y = 6, 0 = 7y and T = Ty,

I
el»-l
1

For the Blasius case, when v/v2 = 0.99, Ny = 3.5. For T2/T1 =1,

X T,
5 = s5)/-2
2
(This is the incompressible result for the boundary layer growth,)
From Eq, (7) for the Rayleigh case

o
H
by
X 1]
b.'F
-
oo
i
(=]
.
‘o
0

or
XV
5 = 3.6) =2
2
Yor the strong shock case (vl/v2 = 6), g; = 1,05 and Ng = 1.55
or
T XU
2 W
6 = 2.2 =\/—
Tw v2

_ du _ l/ Vo "
Tw - (” 3;) = Ay Vo 2 XV, £ (0 (11)
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A
The friction f (0) is tabulated in Refs. 28 and 31. If the local skin
friction is defined as

Ty tw (12)
C = = l
! %pw(vl-vz)i‘ %pW‘;z
and the Reynolds number as
2
Vg X v
V2 ( 1)
Re = —=— (1 - == (13)
Vw V2

(The reason for this definition of Re is given in Eq. (26) below,)

then

C; VRe = v (14)
v—‘ll
172

From Ref, 31, when

<

b

=0 , £ (0) = 0.4696

<

2

or
Cs VRe = 0.664

the incompressible~flow Blasius value,

When

<

|
[

=1, f"(0)=V%’(%-l)

and Cf VRe = 1,128, the Rayleigh value,

Finally, when

v "
A-6, ¢ (0)=8101 ana ¢, yRe = 2.291
2

Thus, the Rayleigh value of Cfl’Re is greater than the corresponding

Blasius value by a factor of 1.70, and the strong shock value is
greater by a factor of 3.45,
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Expressions for the recovery factor and heat transfer func-
tions and their numerical values are also given in the above references
1
Ve
covery factor r rises frem r = 0,845 (Blasius) to r = 0,885 (Rayleigh)
tor = 0,920 for vl/v2 = 6.

over the range 0 £ €6 for a Pr = 0,72. 1t is shown that the re-

In addition, it is shown in Ref. 31 that the thermal boundary
layer in the wall of the tube can be described in a manner similar to
the Rayleigh gas velocity boundary layer, The problem is that of bring-
ing two media (the gas and the wall) at different uniform temperatures
into contact at a time t = (Q, and is given by the one-dimensional heat
conduction equation (Fig. 3.2-3):

{ .
| oT _ i_az_'r (15)
F X \4 2
1
I - where
(16) E

w ;

! is the diffusivity of the wall wmaterial, The boundary conditions for i

x > 0 are given by

T(x, 0) =T,

(17)

I

——

v
P

)

ko) o
~—— <
i, bttt BN M 01 . e kbR s i il S 1D

T(x, =) = Tl and T(x, - = Ty

P

for the shock wave and expansion wave, respectively.

The solution of Egqs, (15) to (17) is given by

T—‘T_‘—: erf—-‘v— (18)
w 1 Xa,
2¥+—
1 2

bl

For a Prandtl number = 1, the recovery temperature and the total tem-
perature are identical (for Pr < 1, 0.9 Tr/To £1 for & 2M 21: that

is, the ratio is less than unity). Consequently, from Ref, 31 and Sub- 1

sec, 2.3.2, for vy = 1.4, for vl/v2 >1,

i X

]

—:-1=%(w112-1) (19)
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and for vl/v2 <1,

T

'r—:‘ " 1=-2 [3 (Pgg) /" ‘2] [1 - “’34)1/7] (20)

Since W112 >1, Tr/'l'1 > 1 and heat transfer always occurs from the gas
to the wall behind the shock wave, From Eq, (20) or Figs. 2.1-24 and
2.3-25, it is seen that in the range -1 { N £1; 12 P34 pd (2/3)7;

0 SM3 < 2.5 (see Subsec, 2.1.4, Eqs, (30) and (31)), T./Ty <1, and

heat transfer occurs from the wall to the cold gas., For stronger ex-
pansion waves Tr/T4 > 1, and heat is transferred from the cold gas to

the tube walls, Therefore, it is possibie for stronger expansion waves
to have heat transfer into the gas for the initial portion of the {an
(N = 1) and into the tube wall for the latter portion of the fan (N > 1)
at the same time,

The temperature rise is given in Ref, 31 as

T - T T
w 1 _ ( r )
—_— = Al =1 (21)
T1 1 T
for Vi/vg > 1
where
X, Ky
A, ~ 2.1 (22)
1 L kw
and
T =T T
w 4 _ ( r )
L. S L | (23)
T4 4 T4

for vl/v2 <1

where
l/"’w kg
A4 ~n @ R (23a)

If k < T and C, = constant, then k/ya is independent of T (depends on

yp)for a given gas, (Typical values of « cmz/sec at ~18°C are:
gold = 1,209, silver = 1,700, air at 1 atm = 0.179, mild steel = 0,173;

for air k = 0.000055 cal cm/sec cm2 °C, for mild steel (1 per cent car-

bon) k = 0.107 cal cm/sec cm2 °C -- Ref. 32.) Consequently A ~0,0005,
With this value of A, Eq. (21) shows that the wall temperature will re-
main within 1 per cent of its original value behind the shock up to
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Observed Flow in a Constant-Area Shock Tube 3.2.2

shock Mach numbers wllrv 8. For the entire range of expansion waves

it wiil remain up to 0.2 per cent of its initial wall temperature, Be-
cause the heat conductivity of metals is several orders greater than
that of the gas, the metal acts as a very large sink and its tempera-
ture remains essentially constant, Mirels (Ref, 31) also shows that
the thickness ratio of the metal thermal boundary layer (AT) and the

gas thermal boundary layer (OT) in the Rayleigh case are of order
unity for a gas like air in a steel shock tube (i,e., A./6,.~ Vﬁw/al).

The theory (independent formulations of Refs. 26 and 28) for
the laminar compressible boundary layer (with heat transfer) developed
on the wall behind a plane shock has been substantiated by the work of
Ref, 26, where the density profiles were measured with an interferom-
eter, By assuming that the Crocco relation (Subsec. 2, Ref., B) applies,
the velocity profiles can be calculated, The results of Ref, 26 appear
in Fig, 3.2-5, The discrepancy at the larger values of 7 is attributed
to the thin boundary layer (0.3 to 0.6 mm) and other uncertainties,
However, the agreement is considered as '"moderately good."

From a computation of the momentum thickness the skin fric-
tion can be found, An independent determination of the skin friction
was also made from the measurements of a 2-micro-inch film heat gauge
(Subsec. 7,3.1), The values checked quite well over the range of the
experiments,

3.2.2 Transition

The problem of predicting transition from a laminar to a tur-
bulent layer is more complex in the case of boundary layers developed
behind travelling shock waves or expansion waves than in steady flows,
owing to the nonstationary nature of the problem, The boundary layer
itself in this case generates disturbances which are propagated by the
characteristic lines throughout the flow, Where the boundary layer
occupies a sizeable fraction of the tube area, the isentropic portion
of the flow is no longer uniform,

However, the transition from a laminar to a turbulent boundary
layer can be studied experimentally using optical methods (shadowgraph,
schlieren, and interferometer) and by means of the thin-film heat gauge
(see Subsec, 7.3.1; a historical note of its development is given in
Ref. 26)., It was noted above tha“ for the laminar boundary layer the
wall temperature remains constant. This is indicated by the flat por-
tion of the heat gauge trace (Fig. 3.2-6). When transition to turbulent
flow occurs at the wall, then the curve suddenly rises and becomes some-
what wavy, The time between the pass%ge of the shock over the gauge and
transition to turbulence is given by = (t3 - t2), and the phenomenon

moves along with the shock speed w, The flow particle which first goes
turbulent on hitting the gauge has been in motion for a total flow time
At = (t, - tl). From the figure,

At _a+ b _ % T *tuylt
= a - W T
or (24)
w v
At:l_1=_l.t=r'r
Wy T Uy v 21

[
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That is, the particle transition time is equal to the gauge transition .
time multiplied by the stationary velocity factor Vl/v2' In the case f

of the Rayleigh boundary layer, when v /vy, = 1, then At = Y, i.e., the

b

two transition times are equal, since all particles start instantly,
For the strong shock case, in a perfect gas (y = 1,4) it is sixfold e
greater,

It is now possible to define a transition Reynolds number ReT

based on this particle time, The characteristic distance is the par-
ticle time multiplied by the external flow velocity Uy, and is equiva-

lent to the distance b from the leading edge to the transition point in
the steady case, Tlhat is, in both cases it is the distance that the
particle has moved with respect to the wall before undergoing transition,

Therefore,

Re, = " (25)

or
2 v 2
— (25a)

It should be noted that this Rep is greater by a factor of
vl/v2 than that based on the Rayleigh flow,

Frcm the point of view of the co-ordinates fixed in the shock
wave, an appropriate Reynolds number Rex for any distance x measured

behind the shock wave can be defined because X = a is the distance be-
tween the shock and the particle path in question at that station.

Since

therefore

Rey =2 o ol.x o f2X (o) (26)

Equation (26) was derived by Mirels in Ref, 31,

Boundary layer transition has been observed in Refs, 26, 33,
and 34, Studies of transition are reported in Refs, 35 and 36, From
Ref, 35 it appears that ReT based on the Rayleigh relation and free-

stream kinematic viscosity (ReT = uzz‘r/l@) has a constant value of
Re, = 3.2 x 105 for shock strengths of Py, = 2.1, 3.2, and 5,5 for
initial Py = 40 mm Hg to 760 mm Hg, From Ref, 36 it appears that Re
“22" Y1 6
based on ReT = =3 » —= Fas a value of 1/4 to 2 x 107, The above
2 V2

g

1

vy
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results appear to lie in the same range as steady flow transitions, con-
sldering the surface finish and tube geometry that might influence these
results, The large heat transfer to the wall that occurs for stronger
shocks would have a stabilizing effect on the boundary layer and corres-
pondirgly larger transition Reynolds numbers can be expected,

In Ref, 34, it is noted that Rey, as measured from schlieren

and shadowgraph records of the boundary layer, was approximately twice
the value obtained from the microfilm heat gauge, This is not surpris-
ing, perhaps owing to the aifficulty in fixing the transition point on
a photograph of the boundary layer, Very little experimental work has
been done on the boundary layer behind the rarefaction wave, Some
shadowgraphs of the boundary layer development in this region are given
in Ref. 8.

It may be concluded that at the present time the information
on boundary layer transition in the shrock tube is still limited,

3.2.3 Turbulent Boundary Layer

Solutions for the turbulent boundary layer behind moving
shock waves are given in Ref, 31. The same concept is used, i,e., that
it is possible to reduce the problem to a steady-flow case by fixing
the reference axes to the shock front, The ysurl empirical, semi-
infinite flat-plate theory without pressure gradient is applied to the
apparently moving wall in the shock tube,

The integral form of the momentum equation is given by

o«
T
W _ d pv v _ d6
F o= 1 - — )jdy = == (27)
Py v22 dx Pg Vo ( Vg ) dx

0

where 6, as defined by Eq. (27), is the momentum thickness of the bound-
ary layer, (Note, as above, the typed "v" is now the average relative
velocity (w1 - u) whereas the written "' is the average velocity com-

ponent in the y-direction in the boundary layer.) If the boundary layer
thickness is given as 0§, then a turbulent similarity parameter can be
defined as ¢ = y/6. The velocity profile relative to the shock-tube
wall is assumed to follow a power law expressed by

V“’1_|=r[l‘.; for 0 ¢ <1
2 -l =
and (28)
MG U I
Vg - V1 =

The above assumes that the actually existing boundary-layer profile in
the shock tube in region (2) or (3) can be expressed by

1
n

S

ﬁ; =¢ or ﬁt = {28a)
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In what follows, region (2) will be used for illustration, but the same
procedure also applies to region (3). A value of n = 7 is usuaily ac-
cepted for work in steady flow, However, the data of Ref, 34 indicate
that n = 5 gives a somewhat better fit for shock-tube velocity profiles,

Similarly, the thermal boundary-layer profile is expressed as
a function of ¢ by using Crocco's relastion {usually used for laminar
boundary layers) which assumes that Pr = 1, or T0 = T,, or that the
thermal and velocity profiles have the same thickness (see the biblio-
graphy and remarks in Ref, 34),

1 1
P T — o
for
0< ¢ <1
and
%2-=¥—=1 for ¢ 21
2
where
Tr ) (Tr >T2 (29)
b =& - , € ={ & - - 2
T2 T2 Tw
It is shown in Ref, 31 that
Tw ~ Tl
T ~10% for M_ = Wi > 1
1
when

(

Consequently, even for moderately strong shocks, Twrv Tl. Thus 1y Wy
be replaced by Tl’ and Tr by To in the above equations, (Since for
air Pr~ 0,72, Tr is usually retained to give a "better" estimate o>
T/Ty.)

x v, 0.3 4
7 ) . “'11 < order of 10
2

Since by definition

o
o = [ - (30)
b P2 V2
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Observed Flow in a Constant-Area Shock Tube 3,2.3

and from Eq. (27)

o
= 2 (1-X)a
° J‘Pz"z( v/ (v

A substitution of Egs. (28) and (29) into Egs, (30) and (31) yields

* nT v v
6 _ 2 1
G o1 ([ ()]

T v \4 v v
8. 12( -1\ sy, (-2
T, (1 vz) [vz Ip-1 ? (1 2 vz) 1, (1 vz)ln*-l] (33)

where the I's are functions of b and ¢ and are defined by the integral,

2% dz

1 f —zd (34)
0

1 + bz - cz

where a = (n - 1), n, and (n + 1),

The following results have been developed in Refs. 31 and 34:

3/4 1/4
Tw Y1 "1 ")
—_— 0,0225 9 (1 - 7-2‘) )1 - 7; (7;-5) (35)
Py V2
for
" 1/4 T, 3/4
- = m )
)

1/2,,, /8
(%) -~

411/5
T v, /P (1 - vy /vy)
/5 _ (we 1 )m(m 17v2
C, Re = 0,0920 a — - . poy (38)
f T2 &1 v17v2 v, \Pyw |] v17v2|

1 - vl/v2 4/5 vy
6=0'0574<__—W l-"',—z'

where

T, = 0.5 (T, + Tg) + 0.22 (T, - Tp) (39)
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e LT

. v vy 3 7 iy \1/8
w = - e— - omtm—
—* = 0,0488 8 (1 "2) (1 < <v—-5> (40)
Py Vg 2 2
for
1/3
n=5 , 8 ( ) ( ) (41)
1= vy /v 3/4 v, 2 v, 1/4 \
= 0.130{ & —g75— ll-;; (V—z—x «x (42)
3 1/4 (l - v, /v )
o174 1772
C = 0,195 — 3- 1—-—'7— _ vy 2'
(43)
T -T
- w r -2/3
Q = Cp,m v pr,m Ty (44)
2 (1 - _)
T, _ T(O)
R () o
} - “3
r(0) = Pr’m (4%)

Typical experimental results from Ref, 34 for a 2 x T-in.
shock tube are shown in Figs. 3.2-7 to 3,.,2-11, For these data, the
boundary layer thickness § was defined as the value of y where
u/ug = 0.99 or py/p = 0.996. Since it is difficult to determine &

accurately, the ratios T/T2 and n/u2 are plotted ageinst y/6 in

Figs. 3.2-7 and 3,2-8 to avoid scatter, as 5" is an integrated quantity,
and variations in & do not affect it strongly. The temperature profiles
are obtained directly from the interferometric density measurements and
the velocity profiles are obtained with the aid of Eq. (29). It is seen
that the experimental values tend to follow the 1/5 rather than the 1/7
powver law for the given initial conditions, This in itself may not be
too indicative, The important point is that the analysis is substan-
tiated by the experimental results, The plots of §, 6' and O appear on
Figs., 3.2-9 and 3,2-10, The experimental points are closer to the 1/5
power law profile for §, but there is orly a small difference between
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the 1,5 and 1/7 power law for the theoretical values of 6' and 8, Fror

the stronger shock wave (P21 = 8), the scatter in the experimental re- E
*

sults are about 25 to 30 per cent for 6 and 6 at the higher Re (108), i

and may be due to the fact that the measurements were close to the i

eddying contact region, At a fixed Rex, the theoretical values of 6* E

are approximately the same for both cases; 6 is greater for le = 2.75; 4
® and 8/6 are greater for Py © 8.

In Fig. 3.2-11 the local skin friction Cf shows the typical
decline with increasing Reynolds number Rex as the boundary layer
thickens, For a given Re , the theoretical skin friction decreases
somewvhat with an increase in vl/v2 from 2 to 3.5. The agreement with
theory shown in Fig, 3.2-11(a) is very good for vl/v2 = 2, (U21 = 0,79,
Mg = 9.87, Ty/T, = 1.38). The experimental poiats for vy Vg = 3.5,
(Uzl = 1.88, Mg = 1,25, T2/Tw = 2.3) are higher than that predicted by
theory and are close to the values obtained for vl,v2 = 2.

1t can be corncluded that the experimental work of Ref., 34 sub-
stantiates the analysis of Ref, 31 of the zero-pressure~-gradient, com-
pressible, turbulent boundary layer developed on the wall of a shock
tube behind a plane shock wave, Similar data for the [low behind a
rarefaction wave are not availuble as yet., From these results 1t might
be inferred that the variation of the physical quantities in the flow,
and the shock wave attenuation induced by a thin boundary layer in a
shock tube, should be predictable from the analysis of Refs, 11 and 12,

3.2.4 Boundary-Layer Closure

¢f some interest is the distunce behind the shock wave when
the wall boundary layers have grown to such an extent that they mect
and a turbulent pipe flow results, This may be illustrated by refer-
ring to Fig. 3.2-6G and by assuming that thc boundary layer closes at
distance "'a" behind the shock wave, It is seen that the total toest
time that would be available with a case of uniform flow is given by ¥,
Consequently, there is nothing gained by making the channcl longer ithan
(a + b), that is, this particular particle path now becomes the contact
surface. As a result, the ratio of the total channc¢l length to the
boundary layer closing distance is given by

1 = 2
1 - Uy Wy Py

{24a)

»
<
[
t
S
e
™~

ThLis ratio has a value of unity for very weak shocks, and a value of
six ftor strong shocks, in air, considercd as a perfect gas, For an i1m-
perfect gas, the ratio p2'pl depends on tne initial pressure and can

exceed six by sizeable factors (see Subsec. £, Supplement B),
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From Eqs, (37) and (42), it is seen that

bx bx
5 = = (47)
2/(n+3) o
Rex Rex

"1
b=b(§ + Py oo Tl)

is a function of the shock velocity ratio and the initial conditions,
The parameter « depends on the power index n., If the Reynolds number
is now changed so that it is based on the hydraulic diameter, then

Tl— Re 1L 1
~a { Re ~o -«
% = (%) <—bD > or % = c (%) (48)

where

where

The results derived from Figs. 3.2-9 and 3.2-10 have been replotted on
Fig, 3.2-12 for a 2 x T-in, shock tube with D ~ 3 in, It is seen that
for the case of P21 = 2,75 and the given initial conditions in the

channel, Eq. (48) is satisfied using n = 5 as the power index, or
(1 - a = 0.75. For le =8 1-a~0.6, or n ~2; however, since

the boundary layer density {velocity) measurements check the n = §
power law, it can be concluded that for le = 8 the boundary layer

thickness measurements cannot be considered as reliabie as the profiie
measurements themselves, Additional experimental results from Ref, 37
(of the boundary layer thickness obtained from schlieren records, in a
1.5 x 2.5-in, shock tube, wherc the 2,5 in, was used as D, instead of

D ~2 in,) show that for stronger shocks (7 < wll < 12, Py = 0.1 atm.)

(1 - a)~0,2 or n ~17, This apparent power index is rather high for
a turbulent layer,

Under the assumption of a flat plate with zero pressure
gradient, the boundary layer would close at a distance behind the shock
when 5 = 1/2 D, or from Eq, (48),

1
) T

From Fig. 3.2-12 it 3is seen that the closing distance lies in the range
of 20 < x/D < 140 for the shock strengths and initial conditions con-
sidered here, It appears that the closing distance is smaller for
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stronger shocks, A more detailed plot for a range of initial condi-
tions and several power laws might be more revealing, However, :in

view of the existing pressure and velocity gradi-rts in an actual £low,
it is doubtful whether the boundary layer growth would follow the pre-
dictions of Eqs, (37) and (42), and the above results can be taken . ..y
as a rough indication of the clgsing distance for shock tubes of hydrau-
lic diameters.of 2 to 3 in. and the initial conditions given above,

3.2.5 Reflected Shock-Wave Boundary-Layer Interactions

If the channel is closed, the incident shock wave refiects
and interacts with the bcundary layer that it initially induced in the
hot gas. Later, the reflected shock wave refracts at the contact re-
gion and interacts with the boundary layer in the cold region induced
by the rarefaction wave,

The interaction with the boundary layer in the hot region
does not appear to be as severe as that with the eddying region and
the turbulent boundary layer of the cold gas which has passed through
the diaphragm station, Examples of the latter interaction can be seen
on the wave-speed records of Refs, 2 and 10, Subsec. 1; Refs, 48 and
49, Subsec., 2; and Refs, 1, 22, and 22a, Subsec. 3. The instantaneous
spark schlieren photographs and interferograms of the interaction in
the cold region shown in Ref, 22a are especially noteworthy, From the
experimental records one can conclude that even for a relatively weak
reflected shock wave its interaction with the boundary layer in the
cold region leads to severe separation and generates a multiple shock-
wave system similar to that of steady supersonic flow in ducts (Ref, 8,
Subsec, 2; Ref, 22b, Subsec., 3); whereas such a multipie shock-wave
system does not appear to have been observed in the hui region, where
the flow Reynolds number per [foot is smaller, and more severe viscous
effects might have been expected (Ref. 31, Subsec., 2). However, stabi-
lizing effects due to cooling would be greater in the hot gas, as it
has a higher recovery temperature.

™

it it

The interaction of the reflected shock wave and the boundary
layer in the hot gas has recently been studied theoretically and experi-~
mentally by Mark (Ref, 20c). The problem is analyzed in a co-ordinate
system fixed to the reflected shock wave, Consequently, the shock tube
walls and the closed erd move with the apparent velocity of the re-
flected shock wave, A simpliilying ascsumption is made by considering
the entire boundary layer &as havir ns5e properties that occur at the
cold wall, That is, a cool jet- ream moving against the reflected
shock wave,

A

i

It is shown that in the laminar case, which lends i1tself to a
theoretical treatment, three interaction regions exist over the range
of incident shock Mach numbers (Ml) that are strongly dependent on the

specific heat ratio for a perfect gas (¥). These regions depend on ]
whether or not the boundary layer stagnation pressure (in the steady b
co-ordinate system) is greater or less than the flow pressure in the
hot region behind the rcflected shock wave, In the range i
1.33 € My < 6.45, for Y= 1,4, the boundary layer stagnation pressure

is less, and consequently the gas in this jet-like layer rolls up be- :
hind the shock wave and grows with time in a pattern that remains geo- ¢
metrically similar, This configuration gives rise (o a severe inter- 1
action that causes a rapid attenuation of the reflected shock wave and
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gives rise to variable flow properties behind it., Above and below this
limiting shock Mach number range, the stagnation pressure of the layer
is greater and the stream can pass under the foot of thc shock wave, and
a mild type of interaction occurs, The reflected shock wave arnd the
state properties behind it are not affected very much, A similar mild
interaction occurs for the turbulent boundary layer (analogous to the
steady type of shock-wave boundary-layer interactions), as it can make
up for any stagnation pressure deficiency by drawing additional energy
from the free stream. In the case of monatomic gases (¥ = 5/3), the
criticai shock-wave Mach number region shrinks to 1,6 < Ml < 2.8, Con-

sequently, this region is more difficult to observe experimentally, and
the disturbing effect or *he reflected shock wave and the changes in

state properties behind it would be correspondingly small in a monatomic
gas, Reccent experimental resuits (Ref, 20b) appear to substantiate the
above analysis. However, sizeable accelerations occur after reflection,
especially in a triatomic gas (coz). where the shock has a large bifur-

cation; this has as yet not been resolved.

A similar analysis for the boundary layer in the cold region
has not been done to date, Su-h theoretical and experimental work
would be very useful in understanding the severe interactions encoun-
tered in this region, as noted in the above references,

Enough data exists to indicate that one must proceed with
some caution (Ref. 20b) vhcn using the hot, ideally-stationary gas be-
hind a reflected shock wave for spectroscopic studies or other real gas
flow investigations, Similarly, if the hot gas behind the reflected
shnck wave is used to run a hypersonic shock tunnel, additional devia-
tion in flow properties can be expected over and above those which al-
ready exist behind the incident shock wave, These effects will depend
on the type of gas and the state ¢f the boundary layer,
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Table 3.1-1

Speed of sound in gases

Cco,

20

a =VIRT ft [sec

ay = Sound speed from head of rarefaction wave

ag Sound speed from weak shocks
As calculated at the given temperature
Pressure in chamber was approx. 3 atm

Pressure in chamber was 750 mm Hg
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Tabie 3.1-2

Deviations in state (3) behind the rarefaction wave
generated in a shock tube

(a) Measured Results

Theory Experiment % Deviation
Py, . 285 . 430 +37
To34 . 833 .814 -2
N3y .332 .230 -30
r 34 .410 .545 +36

(b) Calculated from (a) (see Ref. 13)

Theory Experiment %o Deviation
T34 .70 .79 +13
.—-\34 . 838 . 89 +6
U34 .81 .33 -60
M3 .98 .39 -60
P = 544,+Uqy 5 4.78 -