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EATIONAL ARRONAUTICS AND SPACE ADMINISTRATION

NASA ™ X - T2003

OPTIMAL OUTPUT FEEDBACKX CONTROL OF LINEAR
SYSTENS IN PRESENCE OF FORCING AND MEASUREMENT NOISE

By Buresh M. Joshi

SUGURY

The prodlem of odtaining an optimal cootrol law, vhich is constreained to
be & feedback of the svailable mesasurements, is counsidered for both continuous
and discrete-time linear systeme subjected to additive vhite process noise and
aesssurenent noise. Becessary conditions are obtained for ainimizing a quadre~
tic performance fumctiocn for doth fiaite and {afinite terminal time cases. The
feeddack gaia matrices are coustrained to be constant for the iafinite terminal
Aine canes. Yor all the cases considared, algorithms are derived for generat-
ing sequences of feedback gain matrices which successively improve the perform-
ance function. A mmerical example is given for the purpose of demoastration.

Comntrol system desige for processes vhich suffer from process and msasure-
et scise 1s an iaportant problem. If the process Qynamics are linear, and if
the proeese noise and the messsuremsnt noise are Jauseisn and white, it 1s well
mown thet the comtrol lav which niainizes & quadratic performance function s
8 liacar fwaetion of thw optimal estimste of the state. Thus, the applicetion 57—
of this ecutrol law secessitates the use of en online stste estimator. Thise {?]
dasign appronch may a0t be stirsctive from a prectical viewpoint because of the -
high cost of the additional equipment required. In eddition, there exists a
dangarous poesidility of divergeuce of the state estimstor vhen the nofise input ]

. satriz, sad/or the means of the forcing and measursement noise processes ere mot s
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known accurately.

For this reason, the design of a satisfactory controller, vhich needs the
feedback only of the svailable plant measurements, is a problem of immense
practical importance. There have been numerous recent attempts in this ares.
These have proceeded mainly in two directioms: pole shifting techniques using
output feeddack; and minimization of a quadratic performance function using
output feeddack. The former procedure is necessarily confined to deterministic
systems, vhile the latter procedure is also useful for the practically impor-
tant stochastic case, in the sense that the apriori knowledge of the noise
statistics can be used to advantage. This paper considers the latter approach.

The noise~free version of the linear quadratic optimal output feedback
control problem was considered in references (1) through (4). The basic philo-
sophy was to minimize the performance degredatioso csused dy the coastraint on
the control lawv. The constrained optimal control lav depends op the initial
state; therefore, the approach was to ainimize the value of the performance
function averaged over the initial state (with apriori known statistics),
(references (3) and (A)); or to ainimise the "vorst” value of the performance
function, vhen the initial state is known to lie vithin & hyperellipsoid in the
state spece (ref. (2)); or to minimize the maximum ratio of suboptimal end op-
timal values of the performance functicas (ref. (1)). In all these cases, the
problen wvas finselly reduced to & complex noanlinear optimization probles.

In references (3) and (A), the noise-free cese was considsred, and the
algedreic necessary conditicne vere derived. In addition, design of optimal
Qynanic compemsators of a prespecified order was aleo discussed in reference
(V). In referemce (3), Axsiter comsidered the stochastic prodlem, with white
process noise, Yut no measurement noise, aad derived the necessary conditions
for optimality. MNclane (ref. (6)), considered the above problem, with state
and comtrol depemdent forcing noise, but 0o meesurement noise. All the efforts
described above comsidered only coatisuwous time systems. In addition, msasure-
aent a0ise vas assuned to e adeent. Ia prectice, however, msasuremsnt noise
1s almoet alvays present; therefore, it is important to consider the degreding
effect of the direct transmittal of msssurement noise through output feeddack.
1a reference (7), the discrete-time, finite terminal time probles was considered
aad necessary conditions were odtained using 4dynamic programing. BHowever, the
iafiaite tarnisal time prodlem wvas not considered, and & ninimizing algoritim
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was not developed.

The purpose of this paper is to consider both continuous-time and discrete-
time linear systams vhich are subjected to both forcing and measurement noise.
The necessary conditions for optimality are derived for continuous-time systems
in the first part, using the matrix minimum principle (ref. (8)). Both finite
and infinite terminal time cases are considered, the control lav for the latter
case being constrained to be a constant feedback of the noisy measurements.
Algoritims are derived to give sequences of successively better control gains,
for both finite and infinite terminal time cases. The discrete-time case is next
considered. The necessary conditions are derived, using the discrete matrix
minimum principle, for both finite and infinite termianl time cases. For the
finite terninal time case, it is sbhown that the necessary conditions coincide
vith those derived in reference (7) using dynamic programing, vhile for the in-
finite terminal time case, the feedback gains are constrained to dbe constant.
Algorithms are developed for all cases to generste sequences of feeddback gains
vhich successively improve the performance function. A coatinuocus-time numeri-
cal example is give for the purpose of demonstration.

8YMBOLS

2 X D aystem matrix

8 X8 iaput metrix

Lz n output matrix

sxpected value opurstor

8 x L feeddack matrix

2 2 § matrix defined in the text
Bemi ltonian

| Lagrangian

1.3.2 indices

3,7 perfoarmance functions for the fimite and {afinite
terainal-tine cases

2 2 o costate matrix

a x n Lagrange multiplier amirix
teruinal time for the discrete case
2 2 o Riccati-type matrix
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Q 0 x n wveighting matrix for the state vector
R m x m velghting matrix for the input vector
8 n xn terminal state veighting matrix

™ Trace operator

t time

't terminal time

Q m-vector input

v B x n forcing noise covariance matrix

v n-vector forcing noise

v L x £ msessurement noise covariance matrix
v L-vector measurement noise

x n-dimensional state vector

Yy L-dimensional output vector

&(s) Direc delta functios

&(x) Krovecker delta functios

4 B X n state covariance matrix

} 4 steady-state value of [

The superscript "T° denotes the trenspose of & matrix, and “-1% denotes the
iaverse.

Fiaite Teruinal Tiae Case

The systanm 19 given Wy

8 o arernie) « Bledele) o wie) (1)
yit)e Cleix(e) o wit) (2)

where Alt), {t), C{s) sare n 2 5, s x &, and L x » matrices and x(t), u(t), end
7{8) are respeetively 2 2 1, » 3 1, and L x ) state vector, imput vector, sad
outpet vestor. v(t) amd v(i) are white noise processes, vith tero msans, end

ElvltlvT(t)]) = v(e)8(t-1) (3)




Elv(t)vi (1)) = W(t)8(t-1) (L)

vbere V(t) > 0, W(t) > O are n x n and 1 x % matrices, and 8(+) 1s the Dirac
delta function. Also,

Elv(tvi (1)) = 0 (5)
The initial state covariance matrix is assumed to be knowm:
E[x(o)x‘r(o)] = I(o) = I,

Consider the problem of minimizing the functiocnal
t
% ‘{‘T“r’”"“t)] . %EL ' [x’(z)q(z)xm . uT(UR(V.)u(L)] dt (6)

where Q(t) > O, R(¢t) >0, 8 >Oaren x n, » x &, and 0 x p matrices. Suppose
the control lav is reatricted to de a feeddack of the output.

ult) = Gie)yle)
s Gle)C{ednin) o Giviwlnj ¢4

where G{t) 1s the » x L output feeddack matrix.

This formulation allows for direct treanssitial of white noise (nto the
systen via feeddach. It is clearly seen thet the terw Elu’(tll(t)n(t)l is
iafinite, since l!v(t)v'h)l e W(t)8(2-t). Thie ces de svolded by including
only that part of the coatrol emergy vhich does oot conlain white ncise. Thus
the following modified performance functios is coasidered:

J e % !h’(\f)&(trﬂ

1}
* % EL ’{a"ctmmm . wmcmm))’a(u(o(t)cmxmI}u {8)

The sessurenent scise s aot directly isccluded 1o the performsnce functiom,
Wt the degrading effect decsuse of ite feedback is indeed taken {oto eccount
via the state coveriance evolution equatioa. Thus, sisce the state coverisoce
antrizs depends on the product of the feedback galn matriz and the seagsuresent
acise, the sessurement ncise-dependent part of the input signal wili be auto-




matically penaliszed in proportion to its covariance matrix W, as vill be seen
later. This formulation thus provides & design technique in vhich the knowledge
of the noise statistics can de used to advantage.

The evolution of the covariance matrix of the state x(t) can be easily de-
rived as

%ﬁl-uomc)tox(komc)rom'ra?ov (9)

vhere I{t) = E[x(th’(t)]. I(o) = to and the symdol *(t) is dropped for con-
venience.

The performance fumction of equation (8) can also de vritten as

Je %‘b(ﬁ!(tt)l

| 4
. %J; * wriq + cT6Taoc)z) ae (10)

It is reguired %o minimise the J in (10) with respest to G sudject to the
coastraiat (9).

It is sow possible to apply the setrix mintmus priaciple (ref. (8)).
Define the Hamiltonian

s(r.0.x) s d {M Qo c'o'tnc)tl}
orr[ o B0C)L ¢ I(a o 30C)T
o 0w o v’x’] (11)

vhere K(t) 1o @8 & = o matriz of costate variables. The isitial state co-
varisace [(0) = L, aad the mstrices V(i) and V(t) are casumed to b kmowm
spriori. Usiag the setriz siaisum priseiple, and the gredieot matrices de-
rived ia refurence (8], the necessary eceditions for optimality cen be derived
as

poczc? « a¥rict - afrmov « 0 (12)

g bt -[(A . nc)'v ¢ P(A > W) (Q- c"o'mc)] (13)




%%-. (A *# BGC)L » L(A + BGC)T + BGUGTBT + Y (1k)
I(o) = I, (15)
P(tr) = S (16)

In these equations, P(t) = 2K(t), and the symmetry of P(t) and K(t) is cbtained
during the derivation because of the symmeiry of the right-hand side of (13},
and because 8 = 8. Equations (12} to (16) describe & nonlinear two-point
boundary value problem. Por a given G(tv), equaticns {13) and (14) are linear
in P and I, vhile for given P and I, equatioa (12) ts limear ia G. It is inter-
esting to note that, although the measuremen't nojse-depecdent portion of the
control signal was not weighted in the performsance function, the measurement
covariance matrix W does tend to reduce the feedback gain G in equation (12),
a8 expected. Por the case vith perfect messurements (¥ = 0}, the necessary
conditions reduce to those of Axsater (ref. (5)}), vhile for the noise~free case
(V= 0, ¥a 0}, the necessary consditions reduce tc those due to levire, Johnson,
and Athans (ref. (&)).

Infintre Snretion Cese

The secessary conditions ocdtalced edove reguire ibe solution of a complex,
two-point boundary value prodlem, end the Teedbach gain 5{(t} oblained i¢ time-
veryiag. A catural sxtemsion of 'bLils probles is ibe constasti-coelficlent,
infinite terninal time case, with G :oastrelned %o %3¢ & timw-ipverient satrix.
Under these clircumetances, with A, 8, C, ¥, ¥ conetant, Tor ¢ stadliiting out-
put feeddach galn Sstris %, 1t Is well Rmcwn At %he covariance msatriz I{(t)
tends %0 o comstant matris £ 2 0 as % = = [n the treatment beiov, 11 ir as-
sumed that, for the ¥, O, V, snd the dymamice under coasiderstion, [ exlsts and
1o o positlive definite satrizn. This would iodeed bLe true 17 [V o acuc?e’i ie
poeitive definite.

I thie cane, LIf the teruinal "imm t,
wvill be lafisite, siace "he ilstegrand tends %o & conetant velue. Therefore, it

ie seaningful %o aisisize *he “coet rete”

- =, the perforsance function of (10)

)
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or 1. :} Tr{(Q . cTcTnGc)t} (18)

vhere I is the steady state (positive definite by assumption) solution of the
covariance equation (9). Thus, the problem reduces to a static optimization
problem. Defining the Lagrangian

BE0.8) = £ [t + cTo%hoc)t]
» rr[{(t + BGC)E o T(a + m(:)T
v BOWGTBT ¢ v}ﬁ’] (19)

vhere K 15 & 0 x o constant matriz of Lagrange multipliers, the necesssry con-
ditions for o niniwmm are

2! s Q, % s 0, 2!' s Q (20)
) 4 of
waich finally reduce to the steady-stats forss of equatioas (12), (13), end (14),

untn.mdn!.mr-a-r" Thus the necessary conditions for the

iafiaite teruinal time prodlem, with cootrol gains constrained to be constant,
are simultanecus sonlinear setrix elgedreic equations. It should de noted that
the soise-free case 1o Aot & simple axtansion of these results since, in that
case, I © 0 for & stable G.
A Bunerical Algoritbm
Cossideriag first the fiaite termisal time case, let 0°(t) and G (t) be two
feedbaak gaine, cuch that

ﬁ'ﬂ ctas ot e tta e i) o winw!ht oy (21)
$o0,1
0
€. -[u ¢ %)% ¢« % e m%) 0 q e c'a“m"c] (22)

Afver & loaghhy algetruic mmaipulstiocon ss outlined i» Appendix A, it cen
e proved \dat




J(G°) - J(Gl) =

t
%Tr L t [{RcocxlcT + BPOtcT o BTPOBGlu}TR‘l

{RcocxlcT + BPOicT & BTpoaolw}

- {nclcz:lc'r + BP0t BTpomlw}Ta’l
{Rclctlc'r + 87P%cT » BTpoaclw}](czlcT)'l at
’ %Tr j “r [(co- ¢*)Tep0%(c0- ¢? )]u at (23)
(+]
Thus, {f Gl is chosen to satisfy
acterte” + 7P T + BTPO8clw = 0 (24)

ve have
36% - 3ty > 0 (25)

Thus, & ainimizing algoritm s

(s) choose an inttiar GO(¢)

(v) obtatn Po(e) using (22}

() sclve (24) eand (21) simultanecusly for t and G

{4) go to (b) after increasing the superscript by unity

Thus, & successive reduction in J is obtained. In the proof of the algo-
rithm, it bas been sssumed that I(t) > 0. This will be true if L(0) > O;
however, it is 0ot necessary that I(0) be poeitive gcﬂnue for L(t) to be
positive definite.

Por the infinite terminal time cese, after & similar manipulation (given
ta the Appendix A}, it cen be shown that equatiocn (23) holds with the integral
signs removed and rl replacing tx Therefore, the algorithe given in steps
() - (@) will etill dold, with equations (21) and (22) replaced by their
steady-state versions, if eech G is stadle, I > O at each stage.

1




A NUMERICAL EXAMPLE

The following continuous-time system is considered for the pus ...
demonstration of the technique developed:

- - p- g p- -
x - 2 0
. 1 3 Xl 0 1 ul Vl
wlxl=ly -5 1 x, | +]1 o0 + v,
u
2
x 0 0 -3
A 3_ i J -X3J 0 1 V3
[ x
yl 1 0 0 1 w
y2 0 1 0 s v,
3 ']
with 0.25 0 0
V=}0 0.1 0
0 0 0.0k
r0.01 0
W=
0 0.01

The performance function to be minimized was that in equation (17), with

10 0 L o
Q=] o0 10 ol, R=
0 10 01

The algorithm developed in the text wvas used. At each iteration, the simulvan-
ecus nonlinear equations in I and G (equation (12) and the steady-stat: versic:
of equation (1h)) were solved using Newton's method. The initial feedback gain
matrix was:

-9.9 -6.7

-0.279 0.02

10




The choice was arbitrary, the only restriction being the stability of the matrix
‘ (A + B3°C).
The program converged after five iterations, to:
~6.879 E-01 -5.196 E-01

G =

At sach iteration, it wvas verified that (A + BGC) was stable. Positive
definiteness of ¥ followed because of the positive definiteness of V. The value
of the performance function for the initial G vas 3.466, vhich vas reduced to
0.3443 at the final iteration.

DISCRETE-TIME SYSTEMS
Pinite Terminel Time Case
Consider the discrete-time system
x(k+1) = A(k)x(k) + B{k)u(k) + v(x) (26)
y(k) = C{x)x(x) ¢ w(kx) (21)

Notations and dimensions are the same as in the continuous case. v(k) and w(k)
are zerc mean, wiite noise processes, with

Elv(x)vT(1)] = V(k)6(kat) (28)

Elw(x)vT (1)) = W(k)&(k~1) (29)
and

Elv(xv' (1)) « 0 (30)

E(x(o)x’(o)] e I(o) = E (given)

where §(°) 4s the Kromecker delts function.
v(x) > 0, W(x) >0

The performance function to bde minimiszed is




B ————

=1
I %e{ z {x’(x)q(x)xm . ur(k)k(k)u(k)}]* g- Elx(¥)8x(N)) (31)
k=0

subject to (26), (27), end the restriction that

u{k) = G(x)y(x)

= G(x)C(x)x(k) ¢+ G(k)w(k)
Q(x) > 0, R(x) >0,8>0 (32)
The Kromecker delta function is mathematically well defined; thus the performance

function of equation (31) can be simplified as given below:

| 81
J -% I [{qm . c’(x)o’(t)a(x)c(nc(x)} zu)]
ks0

81 r
I el (x)n(x)o{x)¥(x))
k=0

*

] o

+ 2 oe(8z(n)]) (33)

N

It 1is cagy to show that the coveriance matrix L(kx) = E(x(x)x"(u)l evolves
ecconrding to

I(ke1) @ (A + BOC)Z(R)(A + 30C)T + BOWD®DT o ¥ (34)

In writisg (34), the symbol *(k) has been 4ropped for convenience in most of the
right-hand side veriables. Tihus, the prodlem reduces to the minimization of J
in (33) subject to the comstraint (38), with I(0), ¥(x) and V(kx) known apriori.
™e "tiscrete matrix minimm principle” given in reference (8) can be readily
uwsed. Define the Bamiltonisa

R(Z(x),0(x),K(x*1))

- %'h' ’(Q(t) . C’(:)O'(k)n(k)o(k)c(k))t(k)‘ * %rr go'r(x)n(h)o(x)v(k)

. uB((um + sxlotxlc))E()(atx) + x)0xIC(N))T

. mmnmx)o’mn’m . v(u)—:(x* Kr(hl)} (35)

ig




F_ -

In the treatment below, all the variables at time k are denoted without °(k),
vhereas the variables at time (k+l) are denoted with °(k+l).

In (35), K(k*1) is the p x n matrix of “"costate variables". Applying the
discrete matrix minimum principle and the gradient matrix formu.ae of reference
(8), the necessary conditions are

6 » -(r + B'P(xe1)B) B P(xe1 )AL (c2CT ¢+ W) (36)
P(x) = Q ¢ CTGTRGC + (A + BGC)TP(k+1)(A + BGC) (37)
T(xel) = (A + BGC)T(R)(A + BGC)T « BGWG'BT + V (38)
P(N) = 8 (39)

I(0) = I, (40)

where, a8 in the continucus time case, P(k) = 2K(k) = PT(k). Bote that in the
discrete-time case, it bas been possidle to obtain G explicitly im (36). (It
1s assumed that I(kx) is positive definite, C has renk £, so that Ct(k)CT. is
positive definite. A sufficient condition for I{x) to be positive definite for
k > 0 is that I(0) is positive definite, although this is not necessary.)

Bquations (36) to (30) deftne & nonlinesr matrix two point boundary-value
problam. It can De verified that these conditiouns are equivalent to those od-
tained in refarence (7) using ¢ymamic progreming.

Infinite Duretion Case

As in the comtinucus time case, if A, B, C, V, V, and G are constant and
(A + 3GC) 1s stable, it can e shown that the state covariance matrix [, + 1>
0 a8 k * ® and satisfies (38) witd Lvl - t. Purthermore, it is assumed that
T 1s positive definite for the V, ¥, and O and the dynamice under considerstion.
Tais would indeed de true if (V ¢ m’n’) is positive definite. As in the
comtinuous cese, the modified performance function is

B=1
y Yeum 31 Lelx"miamix) ¢ wT(k)Ru(k)] (81)
Bew " gm0

13




m

or Ja- -]-'2-1'1' {(Q N cTcTRoc)t} . %Tr(GTRGU) (42)

Por this static optimization problem having the comstraint (38) with
%1 = tk - i. define the Lagrangian as

8(,0,k) - %Tr [(Q + c’c’mc)!] + %MGTRGH]

N n[{u + 30C)T(A + BGC)T + BGWGTB® + V - !} ET] (43)

vhere I is the n x n matrix of Lagrange multipliers. The necessary conditions
are odtained by equating o % and L):A to zero:

o ¥ R
6= -(R + BTPB) 1aTRANCT(ckcT o W)t (bk)
PeQeCTOTRC + (A + BGC)TP(A ¢ BGC) (45)
e (AsB0CIT(A « BGC)T oV o BOWG B (L6)

wvhere, a8 in the comtinucus case, P = R e P‘r. This is a set of p"‘near

matrix algebraic equations. Since R > 0, £ > 0 and renk (C) = £, the inverses
in (Mh) exist.
A Mumerical Algoritim
Considering first the finite terminal time case, let 0°(k) and G'(k) be
two fesddack gains, such that

tixe1) » (4 + 0i0) (2)(A + 20ic)T « oiwoiTET 4 v, 120,12 (&7)

ad
?%(x) = @ + cT6"Tma% + (4 + 20%) P (x+1)(a + 8c%) (48)

After & lengtly manipulstion &8s outlined in Appendix B, it can be proved

that
-1
3a°) - 3(a*) = 3 1 a-[(cz‘c’ + V) ;(o" + )R ¢ BTP (ke1)B)( + g)
k=0
- @+ ©)T(m + pP%ce1) (0 c)] (b9) .
Yhere

b1 ]




‘ g (R + 87 (xe1)B) " BT (ko1 )artcT(crteT + Wyt (50)

In writing equations (47) through (50), (k) has been dropped in most places for
convenience, except vhen required for clarity. Letting

G" = -g (s1)

in (49), we have
J(Go) - J(Gl) >0 (52)

Thus, & minimizing algorithm is
(a) choose initial GO(x)
(b) obtain Po(t). k= 0...,8 from the linear equation (L8)
(¢) odtain 21(!) by solving the nonlinear difference equation obtained
' by subetitution of (S1) in (&7T)
(4) obtain Gl(h) using Po(hl) and tl(k) determined {n the above steps
(e) go to (b), with the superscript raised by unity
Thus & successive reduction i{n J is obtained. For the infinite terminal
time case, after & similar manipulation (given in the Appendix B), it can be
shown that

HEC) - Jed) - :i,-'rr[(c!‘c’ . v){(c° o &)T(R + BTFPB)P « g)

- e o)fn s BPB)0! ¢ 0] (53)
vhere 2’1 and Po satisfy the static versions of (&7) and (48), and
6 = (R + 3'P%) 2T cT (ct2cT + W)t (sk)

Thas J(Ol) < J(Oo) vith 01 = -.g, and the resulting sequence of Gi'n

improves the value of J successively if each (A ¢ BOC) is stable, and each
£>o.

Thus, & mumerical algorithm eimilar to that for the finite terminal time
case is odtained.

15




COBCLUSIONS

The practically important problem of odbtaining an optimal output feedback
control lav for linear systems sudbjected to both forcing and measurement noise
was considered. Necessary conditions for optimality vere obdtained for continu-
ous~time snd discrete-time systems, using the matrix minimus principle. Both
finite and infinite terminal time cases vere considered for each problem. Al-
goritims vere derived for obtaining sequences of feedback gsins vhich guarantee
& mopotonic improvement of the performance function. The method developed
provides s poverful and practically feasible design technique in vhich the a-
priori knowledge of the noise statistics is used to advantage.

Although the necessary conditions for a minimum were obtained, the question
of existence is still unanswered, and needs further attention. Also, the con-
vergence properties of the sequences of feeddback gains genersted deserve more
attention.

For the infinite terminal time case, it vas assumed that I > 0. The case
2 @ 0 vill de & simple extensicn of the work of Mclane (reference (6)); however,
the case [ > 0 needs further investigation. Also, the technique developed in
this paper can be easily modified for the design of optimal dynamic compensators,
by following a procedurs similar to that by Levine et. al. (reference (4)).




APPERDIX A

ALGORITHM POR SUCCESSIVE REDUCTION OF THE
PERFORMANCE FUNCTION: CONTINUOUS TIME CASE

8ince

0 0 a,0 a0 .0 0 ap°
%i&(t-tl)!’;-'!‘r[a?(t-t)f?]*‘!‘r[(t-tl)-d—t-] (A-1)

After simplification using equation (21) and (22) and integrating both sides

betveen 0 and tt’

3(6°%) - J(6*) = f‘ (8(c°- 6ticclp?) ae
(¢}
R %‘b f T 26T re% - cT6*Trelc)) at

3 4
. %Tr { ! 86T - ¢lwolT)pTO a¢ (A=2)

Using the trace 1dentities in reference (8), 1t can be proved that
equations (A-2) and (23) are equivalent.

Infinite Terminal Time Case

In this cass, the equations (13) and (1k) take on their stesdy-state forms
with I replacing L. Bow,

or(0-p7) « 2 ((2%- t)o] = 0 (A-3)
Bt
(A + 20%)2°% « 20 + 20%)T + 20 wgTH"
- [a + poPc)t! « Ba » malc)T + BolwalTHT) = o (A-4)
and
-(a » 20%)%P% - #%(a + B6%) - (q + cTare%) = o (A-5)
17
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Replacing the first and second null matrices in (A-3) by left-hand sides
of (A~4) and (A-5), respectively, after simplification,

3(6%) - 3(et) = e(B(c®- 6M)eTP?) + 2 or(FH (6T Re % - 6 TRele))

o 2 1e (186%™ - chws!T)8T1P0) (A=6)

Similar to the finite terminal time case (A-6) can be shovn to be equivalent to
(23), wvith integral signs removed, and ! replaced by )l

18
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APPENDIX B

ALGORITEM FOR SUCCESSIVE REDUCTION OF THE PERFORMAKCE
FUNCTION: DISCRETE-TIME CASE

The expression
rr{ (2P(xe1) - 2 (xe1))P%(x01)] - e (£%k) - 22 (x))PO(x))

ced be shown to be equal to the folloving expression, after substitution for
(to(k*l) - tllh*l)] from (b7) and for Po(k) from (k8), respectively, in its
first and second terms, and after some manipulation:

r(3(0%T - oMo T TP (xe1)) - 2 TelazicT(c0- 1) TR0 (k1))

- wr{ 22 (6 TR P (xe2)m6? - 6OTBTPO(xe1)860)C)

- (2% - (T’ « Q)

After summing the twe expressions above from k = 0 to N - 1, and after
scme manipulstion, the following equatioa is obdtained

-1
36% - staty < 3 1 rr( (30%0 778" - 20*wolTsT)P%(xe1))
=0

-1
- ¢t e(artctie® - o})TTP%(xe1))
x=0

51
.-;- T (et (0% P %(xe1) 260 - o TRTPO(xe1) Bot)C)
K=0

1
. -:- t (et (0®ne® - o Trel)c)
X0

-1
t (6" na® - ¢1Tro?)w)

i
L 4
2 o0
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Using the trace identities in reference (8), it can be shown that (B-1)}
and (49) are equivalent.
Infinite Terminal Time Case
In this case equations (37) and (38) become equations (45) and (46),
respectively. Nowv,
0 1
e ((F0-T1)6°) - w1 (F0-2)pY)

Substitution for (-2-0_ fl) in the first term using equation (L6), and for F in
the second term, using equation (bS), and proceeding exactly as for the infinite
terminal time case, equatiocn (53) can be obtained.
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