DEVELOPMENT AND IMPLEMENTATION OF AIR MODULE ALGORITHMS FOR THE FUTURE THEATER LEVEL MODEL
by
Wang, Hua-Chung
March 1994
Thesis Advisor: S. H. Parry
Second Reader: P. A. Jacobs
Approved for public release; distribution is unlimited.
Development and Implementation of Air Module Algorithms for the Future Theater Level Model

Title and Subtitle:
- Development and Implementation of Air Module Algorithms for the Future Theater Level Model

Authors:
- Wang, Hua-Chung

Performing Organization Name(s) and Address(es):
- Naval Postgraduate School
 - Monterey, CA 93943-5000

Supplementary Notes:
- The views expressed in this thesis are those of the author and do not reflect the official policy or position of the Department of Defense or the U.S. Government.

Abstract:
This thesis designs, develops, and tests three models which comprise the dynamic air route selection package for use in the Future Theater Level Model (FTLM). Model I computes the portion of each square air grid covered by a selected characteristic radius of each ground unit. Model II uses Dynamic Programming and priority queue techniques to select ingress (and separate) egress routes from flight group air rendezvous points to a designated air grid which may be a target, reconnaissance area, or orbit location. Model III simultaneously selects a target from several candidates, selects a route and determines the implications of various escort aircraft levels in an optimal fashion, based on the measure of effectiveness (MOE) of minimizing the combined value of three factors (tactical difficulty, travel distance/time, and target priority). Comparison of different ground situations and weight sets associated with these three factors are presented to illustrate the flexibility and use of these models.
DEVELOPMENT AND IMPLEMENTATION OF AIR MODULE ALGORITHMS FOR THE FUTURE THEATER LEVEL MODEL

by

Wang, Hua-Chung
Lieutenant, Taiwan, R.O.C. Navy
B.S., Chinese Naval Academy, 1986

Submitted in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE IN OPERATIONS RESEARCH

from the
NAVAL POSTGRADUATE SCHOOL

March 1994

Author: Wang, Hua-Chung

Approved by:

S. H. Parry, Thesis Advisor

P. A. Jacobs, Second Reader

Peter Purdue, Chairman
Department of Operations Research
ABSTRACT

This thesis designs, develops, and tests three models which comprise the dynamic air route selection package for use in the Future Theater-Level Model (FTLM). Model I computes the portion of each square air grid covered by a selected characteristic radius of each ground unit. Model II uses Dynamic Programming and priority queue techniques to select ingress (and separate) egress routes from flight group air rendezvous points to a designated air grid which may be a target, reconnaissance area, or orbit location. Model III simultaneously selects a target from several candidates, selects a route and determines the implications of various escort aircraft levels in an optimal fashion, based on the measure of effectiveness (MOE) of minimizing the combined value of three factors (tactical difficulty, travel distance/time, and target priority). Comparison of different ground situations and weight sets associated with these three factors are presented to illustrate the flexibility and use of these models.
THESIS DISCLAIMER

The reader is cautioned that computer programs developed in this research may not have been exercised for all cases of interest. While every effort has been made, within the time available, to ensure that the programs are free of computational and logic errors, they cannot be considered validated. Any application of these programs without additional verification is at the risk of the user.
TABLE OF CONTENTS

I. INTRODUCTION .. 1

II. BACKGROUND .. 3
 A. GROUND NETWORK AND UNITS 4
 B. AIR NETWORK AND UNITS 5

III. AIR GRID COVERAGE MODEL (MODEL I) 7
 A. INTRODUCTION ... 7
 B. MODEL ALGORITHM 8
 C. MODEL DEMONSTRATION/VERIFICATION 13
 1. VERIFICATION 13
 2. DEMONSTRATION 17

IV. AIR ROUTE SELECTION MODEL (MODEL II) 19
 A. INTRODUCTION .. 19
 B. MODEL ALGORITHM 20
 C. MODEL DEMONSTRATION/VERIFICATION 25

V. DYNAMIC TARGET SELECTION MODEL (MODEL III) 32
 A. INTRODUCTION .. 32
 B. MODEL ALGORITHM 33
 C. MODEL RESULTS AND ANALYSIS 36
1. INDIVIDUAL FACTOR COMPARISONS .. 39
 a. EFFECT OF PK VARIATIONS ... 39
 b. SHORTEST ROUTE COMPARISON 40
 c. LEAST DIFFICULTY COMPARISON 40
2. EFFECTS OF AIR DEFENSE LETHAL RADII REDUCTIONS 41
3. EFFECTS OF WEIGHT SETS ... 42
VI. SUMMARY AND FUTURE RESEARCH AREAS 44
APPENDIX A. RESULTS (TABLES) OF DYNAMIC TARGET SELECTION
 MODEL .. 46
APPENDIX B. FACTOR COMPARISON OF DYNAMIC TARGET SELECTION
 MODEL RESULTS ... 89
APPENDIX C. LIST OF VARIABLES .. 104
APPENDIX D. SOURCE CODE OF AIR GRID COVERAGE MODEL
 (MODEL I) ... 107
APPENDIX E. SOURCE CODE OF AIR ROUTE SELECTION MODEL
 (MODEL II) ... 135
LIST OF REFERENCES .. 147
INITIAL DISTRIBUTION LIST .. 148
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>TABLE 1</td>
<td>Results of Cases 1-3</td>
<td>15</td>
</tr>
<tr>
<td>TABLE 2</td>
<td>Results of Cases 4-6</td>
<td>16</td>
</tr>
<tr>
<td>TABLE 3</td>
<td>Results of Combined Case</td>
<td>18</td>
</tr>
<tr>
<td>TABLE 4</td>
<td>Results of Difficulty Set 1</td>
<td>28</td>
</tr>
<tr>
<td>TABLE 5</td>
<td>Results of Difficulty Set 2</td>
<td>30</td>
</tr>
<tr>
<td>TABLE 6</td>
<td>Results of Difficulty Set 3</td>
<td>31</td>
</tr>
<tr>
<td>TABLE 7</td>
<td>PK set 2 of Node set 2</td>
<td>38</td>
</tr>
<tr>
<td>TABLE 8</td>
<td>Weight Sets</td>
<td>38</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

Figure 1. FTLM Architecture ... 3
Figure 2. Possible Movements Out of Grid 6 6
Figure 3. Numerical Integration Using Modified Trapezoidal Rule . 12
Figure 4. Ground Nodes : Cases 1-6 14
Figure 5. Ground Nodes : Multiple Coverage 17
Figure 6. TAC THUNDER Ingress/Engress Route 19
Figure 7. Routes to Target Grid 13 - Difficulty Set 1 27
Figure 8. Routes to Target Grid 25 - Difficulty Set 2 29
Figure 9. Routes to Target Grid 25 - Difficulty Set 3 29
Figure 10. Ground Node Set 1 .. 37
Figure 11. Ground Node Set 2 .. 37
THE PURPOSE OF THE RESEARCH PRESENTED IN THIS PAPER IS TO DESIGN, DEVELOP, IMPLEMENT AND TEST DYNAMIC AIR ROUTE SELECTION MODULES FOR USE IN THE FUTURE THEATER-LEVEL MODEL (FTLM) BEING DEVELOPED AT THE NAVAL POSTGRADUATE SCHOOL. FTLM IS A STOCHASTIC SIMULATION MODEL WHICH FOCUSES ON PERCEPTIONS DEVELOPED FROM DYNAMIC INTELLIGENCE REPORTS AND THE RESULTANT ACTIONS TAKEN BY EACH SIDE BASED ON THESE PERCEPTIONS. THE MODEL UTILIZES AN ARC-NODE REPRESENTATION FOR BOTH THE GROUND AND AIR PORTIONS OF THE BATTLEFIELD.

THREE MODELS COMPREHEND THE DYNAMIC AIR ROUTE SELECTION PACKAGE. MODEL I COMPUTES THE PORTION OF EACH SQUARE AIR GRID COVERED BY A SELECTED CHARACTERISTIC RADIUS OF EACH GROUND UNIT. IN ADDITION, IT COMPUTES AN ESTIMATE OF THE POTENTIAL LEATHALITY TO THE FLIGHT GROUP (DIFFICULTY LEVEL) BY THAT GROUND UNIT IN EACH AIR GRID FOR USE IN MODEL II. SEVERAL TEST CALCULATIONS ARE SHOWN TO ASSURE CORRECT GEOMETRY LOGIC, ESPECIALLY AT THE GRID BOUNDARIES.

MODEL II DYNAMICALLY SELECTS INGRESS (AND SEPARATE) EGRESS ROUTES FROM FLIGHT GROUP AIR RENDEZVOUS POINTS TO A DESIGNATED AIR GRID WHICH MAY BE A TARGET, RECONNAISSANCE AREA, OR ORBIT LOCATION. THIS SELECTION IS MADE USING DYNAMIC PROGRAMMING AND PRIORITY QUEUE TECHNIQUES CONSIDERING BOTH TRAVEL TIME OR DISTANCE AND DIFFICULTY LEVEL DUE TO PERCEIVED ENEMY AIR DEFENSE THREATS. AGAIN, SEVERAL TEST RUNS ARE SHOWN TO ASSURE THAT
the algorithms are behaving reasonably.

Model III simultaneously selects a target from several candidates, selects a route and determines the implications of various escort aircraft levels in an optimal fashion. The selection is made based on the relative weight assigned to travel time or distance, Difficulty Level, and Target Priority. Models I and II are run internally to Model III, with potential targets and their priorities as additional inputs.

Even though these models were developed primarily for use in FTLM, they can be very useful in a stand-alone mode for an Air Operations planner. Results and analyses are presented to illustrate a few of the many variants which these models can portray. The interested reader is encouraged to contact Professor Parry at the Naval Postgraduate School for the PASCAL codes.
I. INTRODUCTION

The purpose of the research presented in this paper is to design, develop, implement and test dynamic air route selection modules for use in the Future Theater-Level Model (FTLM) being developed at the Naval Postgraduate School. FTLM is a stochastic simulation model which focuses on perceptions developed from dynamic intelligence reports and the resultant actions taken by each side based on these perceptions. The model utilizes an arc-node representation for both the ground and air portions of the battlefield. A brief background and motivation for this research is given in Chapter II.

Three models comprise the dynamic air route selection package. Model I, described in Chapter III and Appendix D, computes the portion of each square air grid covered by a selected characteristic radius of each ground unit. In addition, it computes an estimate of the potential lethality to the flight group (Difficulty Level) by that ground unit in each air grid for use in Model II. Several test calculations are shown to assure correct geometry logic, especially at the grid boundaries.

Model II dynamically selects ingress (and separate) egress routes from flight group air rendezvous points to a designated air grid which may be a target, reconnaissance area, or orbit location. This selection is made using dynamic programming and priority queue techniques considering both travel time or distance and Difficulty Level due to perceived enemy air defense threats. Model II is presented in Chapter IV and Appendix
E. Again, several test runs are shown to assure that the algorithms are behaving reasonably.

Model III, described in Chapter V and Appendices A, B, simultaneously selects a target from several candidates, selects a route and determines the implications of various escort aircraft levels in an optimal fashion. The selection is made based on the relative weight assigned to travel time or distance, Difficulty Level, and Target Priority. Models I and II are run internally to Model III, with potential targets and their priorities as additional inputs.

Even though these models were developed primarily for use in FTLM, they can be very useful in a stand-alone mode for an Air Operations planner. Results and analyses are presented to illustrate a few of the many variants which these models can portray. The interested reader is encouraged to contact Professor Parry at the Naval Postgraduate School for the PASCAL codes.
II. BACKGROUND

Most theater-level combat models currently in use share common characteristics; they are low resolution, highly aggregated, and attrition-based; they also depict combat as a deterministic phenomenon. The shortcomings of these models are that their outputs generally do not represent the expected value results of combat engagements; they tend to exhibit large sensitivity to small changes in input; and they provide no measure of uncertainty in the outputs. Thus, the current theater-level models fail to represent the uncertainty inherent in predicting the outcome of a theater campaign. As scenarios grow increasingly uncertain, current models cannot support analyses that examine many different possible outcomes and their impact on national military policies. [Ref. 1:p 1]
In order to correct the deficiencies of current models, a research effort to develop the Future Theater-Level Model (FTLM) is ongoing at the Naval Postgraduate School. FTLM is a symbolic model characterized by its aggregated, stochastic, information-intensive, and dynamic nature [Ref. 2: p 23]. The thesis by Karl Schmidt [Ref. 3] currently provides the most complete description of FTLM in one document.

FTLM has several functional modules as shown in Figure 1. A paper by Mark Youngren [Ref. 4] includes additional details on the various modules.

A. GROUND NETWORK AND UNITS

All movements of ground and air forces in FTLM occur on two arc-node networks: ground and air. The ground network design has two different types of nodes: physical and transit. The reason for this representation is that a unit will always exist at a node at every point in time, and once a unit leaves a physical node, it will be processed as if it exists at the transit node. Physical nodes may be located at critical intersections, geographic points of interest, air bases, logistics facilities, probable defensive battle positions, assembly areas, etc. Transit nodes are surrogates for arcs in a usual network representation. Transit nodes have several attributes such as distance, on-road and off-road terrain characteristics, and size of mobility corridors. [Ref. 5: p 2]

Ground units, as well as physical nodes, also have many attributes. Those attributes of primary interest in this thesis are described by circles centered at either the actual or perceived unit location. These circles represent factors such as physical area.
occupied, maximum effects areas for direct fire weapons, maximum detection range of other ground units, maximum air defense radar range, lethal areas of air defense sites against various aircraft types, etc. Again, the reader is referred to Schmidt's thesis for additional details on the ground model.

B. AIR NETWORK AND UNITS

The goal of the Air Module design is to provide a dynamic representation of the functions required for air-air, air-ground, and ground-air activities at a level of resolution commensurate with the overall design objectives of FTLM. [Ref. 6:p 1]

The air network is a square grid system which is geometrically and logically related to the ground network. The size of the grid squares can vary depending on the resolution required and the fidelity of the ground network for each application. In any case, each air grid has the same area. The primary purpose for using an air grid is to facilitate a flight group's selection of ingress and egress routes to target and/or reconnaissance areas.

The paths of flight groups (which are made up of possibly several flights, each having any number of one aircraft type) are from center to center of air grids. Movement out of a grid may occur in any one of eight directions (see Figure 2 at p. 6). It is important to note that, even though a flight group is pictured at a grid center, the processing algorithms actually represent the flight groups in essentially continuous time. The overall ingress and egress routes of a given flight group are sequential lists of grids.
from the base of origin to the chosen destination, and back to a designated base, probably using a route different from ingress.

![Figure 2. Possible Movements Out of Grid 6](image)

Additional characteristics of the FTLM air model are given in Reference 3 (p. 71-82). Because the air portion is currently in the final design and initial implementation phase, changes occur on a daily basis. Therefore, additional general descriptions at this point in its development would not be productive.
A. INTRODUCTION

Recall that FTLM uses physical and transit nodes to represent locations and movement of ground units. Several characteristics of ground units are described by circles centered at the ground unit location, such as physical area occupied, maximum effects area for direct fire weapons, maximum detection range of other ground units, etc. Other characteristics similarly represented are maximum radar range for air defense (AD) sites acquiring air flight groups, maximum lethal areas of AD sites against various aircraft types, etc.

Because of the stochastic nature of FTLM, it is often required to compute the portion of a specified area (either air or ground) covered by a particular area characteristic of a unit at a ground node. For example, even though air flight groups are always located at the center of an air grid, the algorithms of FTLM process the groups as if they are continuously moving through the center of the grid. In order to assess effects of ground AD sites engaging flight groups, the portion of the air grid subject to AD detection and firing is required.

Given N ground units, each with a specified characteristic area, and M square air grids, Model I computes the portion of each air grid covered by each of the N ground units. In addition, the module computes an estimate of the potential lethality of that
ground unit against a flight group in each air grid; this estimate is called the Difficulty Level, for use in the Air Route Selection module (Model II) presented in Chapter IV.

B. MODEL ALGORITHM

Data in the form of perceived information concerning the location and characteristics of each ground unit are available as inputs to Model I. It is important to note that perceived data are used for planning processes (such as determining ingress and egress routes), while ground truth data are used when adjudicating combat outcomes.

The following variables are used in the module:

- \(PK[i,j] \) = the Probability of Kill of a target in air grid \(i \) with respect to ground unit \(j \)
- \(DL[i] \) = the Difficulty Level (Probability of Kill) of a target in air grid \(i \) with respect to all ground units, that is \(DL[i] = \sum PK[i,j] \)
- \(r_i \) = the radius of ground unit \(j \) for the desired characteristic
- \(TAC[i] \) = the total area of air grid \(i \) covered by all ground units
- \(AC[i,j] \) = the area of air grid \(i \) covered by ground unit \(j \)
- \(\text{Area} \) = area of each air grid

Let \(P[j] \) be the estimated probability of kill for the \(j^{th} \) ground unit against a potential target of interest. Because \(P[j] \) is a planning factor based on the perceived air defense capability of the \(j^{th} \) ground unit against a heterogeneous mix of aircraft types in a flight group, it is an input value which only depends on the type of air defense systems perceived to be in the \(j^{th} \) ground unit. Obviously, when attrition assessments are made
during actual flight, individual aircraft types and ammunition types are considered. Thus, PK[i,j] is computed by equation (1):

\[PK[i,j] = \frac{(P[j] \times AC[i,j])}{Area} \]

(1)

Definition of variables used in the PASCAL CODE for Models I and II are presented in Appendix C.

Model I is described below in pseudo-code. A complete listing of the Pascal code for Model I is given in Appendix D.

Input : Ground node/unit file (perceived information) of the opposing side consists of coordinates of the center point of a circle corresponding to the ground unit, radius of the circle of maximum effect area of the ground unit, and the estimated probability of kill for the ground unit.

Output : DL[i] and TAC[i] for i = 1..M

1. initialize DL[i], PK[i,j], TAC[i], and AC[i,j] to 0, \(\forall i = 1..M, j = 1..N \)

2. while (input file is not empty)

3. { read one data point j from the ground node/unit file

4. find the location of the center of the circle of the ground node j

5. if (center point of ground node j is inside a specific air grid S)

{for example, in Figure 4, the center point of case 3 is inside air grid 11, but center points of cases 1 and 2 are not inside an air grid; rather they are on the line shared by air grids 1 and 2}
6. if (area covered by the ground node j is totally inside the air grid S)
 {if the radius of case 3 is reduced below 0.5 (current radius is 0.7071) at Figure 2, it
 will be totally inside air grid 11; that is, S = 11. Code lines 7 - 10 perform the
calculation for this situation.}
 7. then AC[S,j] ← π * r_j^2
 8. PK[S,j] ← (P[j] * AC[S,j]) / Area

 {There will be some overlaps of area in the calculation of TAC[S] in code line 9 (or
TAC[i] in following lines of code) in some cases. For example, considering air grid 11
of Figure 4; it is covered by cases 3, 5, and 6. This result is correct since each is
generated from different ground units and each individual ground unit will have its own
effect on the air grid S (or i)}

 {Code lines 11 - 14 perform the calculation for the case that the center of ground node
j is inside a specific air grid S, but is not totally contained in air grid S. For example,
case 3 in Figure 4, S = 11 and i = 7, 10, 12 and 15. A modified TRAPEZOIDAL
RULE [Ref. 7: p. 336] is used to estimate the integral of the area covered for each air
grid i, except S. The covered area is divided into trapezoids with equal width, but the
height for each trapezoid is different from that of the Trapezoidal rule; the height at the
middle point of each individual trapezoid is used instead of the average height of the
curve. Grid 15 and case 3 of Figure 4 are used to show how the modified Trapezoidal
rule works (see Figure 3 at p. 12). This is also the most time consuming part of the
program, depending on the required accuracy of the result.)

11. else calculate $AC[i,j]$, $\forall i \neq S$
12. \[PK[i,j] \leftarrow (P[j] \ast AC[i,j]) / \text{Area} \]
13. \[TAC[i] \leftarrow TAC[i] + AC[i,j] \]
14. \[DL[i] \leftarrow DL[i] + PK[i,j] \]

{Code lines 15 - 18 are for the situation when the center of a ground node is either on
an air grid boundary or outside the entire air grid space (case 2 in Figure 4). The
portions of the areas outside the air grid system are omitted.}

15. else calculate $AC[i,j]$, $\forall i = 1..M$
16. \[PK[i,j] \leftarrow (P[j] \ast AC[i,j]) / \text{Area} \]
17. \[TAC[i] \leftarrow TAC[i] + AC[i,j] \]
18. \[DL[i] \leftarrow DL[i] + PK[i,j] \]

{Code lines 19 - 28 will perform the calculations for the remaining cases.}

19. if (area covered by the ground node is not totally inside air grid S)
20. if (center point of the ground node is inside an air grid S and area covered by
the ground node is not out of boundary)

{for example, in Figure 4, case 3 is not out of boundary and code lines 21 - 24 compute
the area for air grid S.}

21. then $AC[S,j] \leftarrow \pi \ast r^2 - \sum_{i \neq S} AC[i,j]$
22. \[PK[S] \leftarrow (P[j] \ast AC[S,j]) / \text{Area} \]
23. \[TAC[S] \leftarrow TAC[S] + AC[S,j] \]

\{If the radius of case 3, Figure 4, is expanded to greater than 1.5, the ground node will exceed the air grid space boundary. Code lines 25 - 28 consider this case.\}

25. \text{else calculate } AC[S,j] \text{ with boundary check procedure}

26. \[PK[S,j] \leftarrow (P[j] \times AC[S,j]) / \text{Area} \]

27. \[TAC[S] \leftarrow TAC[S] + AC[S,j] \]

29. \}

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{figure3.png}
\caption{Numerical Integration Using Modified Trapezoidal Rule}
\end{figure}
C. MODEL DEMONSTRATION/VERIFICATION

1. VERIFICATION

Several geometric cases of the location of ground unit areas relative to air grids arise. Six cases as shown in Figure 4 are used to verify the code (i.e., to compute the Difficulty Level (DL) and Total Area Covered (TAC) for all grids). This algorithm can take care of any geometric case as long as the center point is inside the grid system. As indicated in the pseudo-code, an adaptation of the Trapezoidal rule [Ref. 7: p. 336] is used with a 10 meter distance interval, Δd, which provides sufficient accuracy for the covered area computation. For this verification and demonstration, a 4 x 4 square air grid matrix is used, with each grid being 10 KM on a side; the grid is displayed in Figure 4.

Tables 1 and 2 present the results of the six verification cases, three cases per table. The notation used in these tables for the ground node is (X,Y,R,P) where X,Y is the ground unit center, R is the radius of the characteristic circle of interest, and P is the probability of kill. Two columns are shown for each air grid for each case: TA is total area covered and DL is the Difficulty level. Note that P[j] has been set to 1.0 for these verification runs. In each case, the computed area was checked by hand calculations to assure they were correct.
Figure 4. Ground Nodes: Cases 1~6
Table 1. Results of Cases 1-3

<table>
<thead>
<tr>
<th>grid #</th>
<th>CASE 1</th>
<th>CASE 2</th>
<th>CASE 3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>X</td>
<td>Y</td>
<td>R</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>10</td>
</tr>
<tr>
<td>1</td>
<td>0.79</td>
<td>78.50</td>
<td>0.79</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>11</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>12</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>13</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>14</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>15</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>16</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Table 2. Results of Cases 4-6

<table>
<thead>
<tr>
<th></th>
<th>CASE 4</th>
<th>CASE 5</th>
<th>CASE 6</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>X Y R P</td>
<td>X Y R P</td>
<td>X Y R P</td>
</tr>
<tr>
<td></td>
<td>30 9.999 10 1</td>
<td>20 20 28.284 1</td>
<td>10 20 20 1</td>
</tr>
<tr>
<td>grid #</td>
<td>DL TAC</td>
<td>DL TAC</td>
<td>DL TAC</td>
</tr>
<tr>
<td>1</td>
<td>0 0</td>
<td>1 100</td>
<td>0.91 91.30</td>
</tr>
<tr>
<td>2</td>
<td>0 0</td>
<td>1 100</td>
<td>0.91 91.30</td>
</tr>
<tr>
<td>3</td>
<td>0.79 78.54</td>
<td>1 100</td>
<td>0.32 31.50</td>
</tr>
<tr>
<td>4</td>
<td>0.79 78.54</td>
<td>1 100</td>
<td>0 0</td>
</tr>
<tr>
<td>5</td>
<td>0 0</td>
<td>1 100</td>
<td>1 1</td>
</tr>
<tr>
<td>6</td>
<td>0 0</td>
<td>1 100</td>
<td>1 1</td>
</tr>
<tr>
<td>7</td>
<td>0.79 78.54</td>
<td>1 100</td>
<td>0.91 91.30</td>
</tr>
<tr>
<td>8</td>
<td>0.79 78.54</td>
<td>1 100</td>
<td>0 0</td>
</tr>
<tr>
<td>9</td>
<td>0 0</td>
<td>1 100</td>
<td>1 1</td>
</tr>
<tr>
<td>10</td>
<td>0 0</td>
<td>1 100</td>
<td>1 1</td>
</tr>
<tr>
<td>11</td>
<td>0 0</td>
<td>1 100</td>
<td>0.91 91.30</td>
</tr>
<tr>
<td>12</td>
<td>0 0</td>
<td>1 100</td>
<td>0 0</td>
</tr>
<tr>
<td>13</td>
<td>0 0</td>
<td>1 100</td>
<td>0.91 91.30</td>
</tr>
<tr>
<td>14</td>
<td>0 0</td>
<td>1 100</td>
<td>0.91 91.30</td>
</tr>
<tr>
<td>15</td>
<td>0 0</td>
<td>1 100</td>
<td>0.32 31.50</td>
</tr>
<tr>
<td>16</td>
<td>0 0</td>
<td>1 100</td>
<td>0 0</td>
</tr>
</tbody>
</table>
2. DEMONSTRATION

This section demonstrates Model I when multiple ground areas cover the same air grid. Note from Figure 5 and Table 3 that the third unit (with radius 28.28) has been selected to cover the entire air grid matrix, while the first two cover portions of air grids 1 and 2. In this case, note that TAC can exceed the total grid area. Also, different values of P[ij] as noted in Table 3 are used for each ground area. The resulting values of Difficulty Level and Total Area Covered are given in Table 3. As before, these values were verified by hand calculations.

Model I is an important part of FTLM and is called many times during the course of a model run. The module has been implemented in FTLM by the contractor
programmer and has been verified in the model. It is currently used for assessing ground-to-air attrition and will be used for several other applications in the future.

Table 3. Results of Multiple Coverage

<table>
<thead>
<tr>
<th>PERCEIVED GROUND UNIT DATA</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>node 1</td>
</tr>
<tr>
<td>node 2</td>
</tr>
<tr>
<td>node 3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>grid #</th>
<th>DL</th>
<th>TAC</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.83</td>
<td>257.08</td>
</tr>
<tr>
<td>2</td>
<td>0.44</td>
<td>178.54</td>
</tr>
<tr>
<td>3</td>
<td>0.20</td>
<td>100.00</td>
</tr>
<tr>
<td>4</td>
<td>0.20</td>
<td>100.00</td>
</tr>
<tr>
<td>5</td>
<td>0.20</td>
<td>100.00</td>
</tr>
<tr>
<td>6</td>
<td>0.20</td>
<td>100.00</td>
</tr>
<tr>
<td>7</td>
<td>0.20</td>
<td>100.00</td>
</tr>
<tr>
<td>8</td>
<td>0.20</td>
<td>100.00</td>
</tr>
<tr>
<td>9</td>
<td>0.20</td>
<td>100.00</td>
</tr>
<tr>
<td>10</td>
<td>0.20</td>
<td>100.00</td>
</tr>
<tr>
<td>11</td>
<td>0.20</td>
<td>100.00</td>
</tr>
<tr>
<td>12</td>
<td>0.20</td>
<td>100.00</td>
</tr>
<tr>
<td>13</td>
<td>0.20</td>
<td>100.00</td>
</tr>
<tr>
<td>14</td>
<td>0.20</td>
<td>100.00</td>
</tr>
<tr>
<td>15</td>
<td>0.20</td>
<td>100.00</td>
</tr>
<tr>
<td>16</td>
<td>0.20</td>
<td>100.00</td>
</tr>
</tbody>
</table>
IV. AIR ROUTE SELECTION MODEL (MODEL II)

A. INTRODUCTION

Recall that Flight Groups in the FTLM air model fly from the center of a square air grid to the center of one of eight adjacent grids. Existing models, such as TAC THUNDER, compute the ingress route from the air base to the target grid as shown in Figure 6.

![Figure 6. TAC THUNDER Ingress/Engress Routes](image)
The forward-line-of-troops (FLOT) separates friendly and enemy territory. A line is drawn from the target perpendicular to the FLOT, giving the shortest distance flown over enemy territory. A straight line connecting the air base (or the air rendezvous point for the flight group) with that location on the FLOT completes the ingress route. That same route is also used for egress from the target. Some version of this method is used in other existing theater-level models.

The TAC-THUNDER approach is not appropriate for FTLM for the following reasons. First, there is no specific FLOT representation in FTLM, because anticipated future scenarios will likely not be FLOT oriented. Secondly, the approach does not consider the perceived location of possible air or ground air defense threats. Finally, there is no capability to represent a sequence of target areas.

The Air Route Selection Module (referenced as Model II in this paper) for FTLM will dynamically select ingress (and separate egress) routes from flight group air rendezvous points to designated target, reconnaissance, or orbit locations considering both travel time/distance and difficulty level due to perceived enemy air defense threats.

B. MODEL II ALGORITHM

Model II determines the route from any air grid to a designated destination air grid which is the optimal route based on the minimum weighted sum of distance, measured in air grid units (AGU), and cumulative difficulty, as determined by Model I. The algorithm, described later in this section, uses dynamic programming and priority queue techniques to determine the optimal route [Ref. 7:p. 515].

20
The objective function is the minimum cumulative weighted value of distance and difficulty from the current grid to the target grid [Ref. 8]. The measurement of distance in air grid units (AGU) means that the distance to an air grid adjacent horizontally or vertically is one unit; whereas the distance to an air grid diagonally adjacent is 1.414 units. For example, in Figure 7, P. 27, the distance of route path 1-6-11-16-21 would be 4.0, whereas the route 1-7-11-16-21 would be 4.828. This scaling is used so that the relative units of distance and difficulty are of the same order of magnitude. It should be noted that this scaling produces the same relative values of distance and difficulty for any air grid size. For example, if the grid of Figure 7 had grids 5 KM on a side (instead of 10 KM) the number of grids would increase to 100 (instead of 25). Any given route would then be twice as long as the original route (as measured in AGU) but the difficulty would also double since twice as many difficulties are being accumulated. Also, the normalization procedures described in Chapter V produce normalized values of distance and difficulty which are independent of air grid size. Thus, the same route would be selected for either air grid configuration.

The process begins at the target grid and uses a backward pass through the dynamic program. The structure of this problem is different from the usual dynamic programming and single-source shortest-paths problems. In regular dynamic programming, one optimal route is determined for a specific starting grid; but here an optimal route is determined from all air grids to the target grid. This algorithm is also different from single-source shortest-paths problems in which Dijkstra's algorithm [Ref. 7: p. 527] is used to find a shortest path from a given grid to all other grids. Here, a shortest path to a given target
grid from every other grid is required. This enhancement is needed in the case of multiple starting grids or when a sequence of target areas must be considered. Thus, a priority queue is used to keep track of the minimal cumulative weighted value of distance and difficulty as a sorting basis. The grid with the smallest value is explored first at each stage of the dynamic program. Several examples of the algorithm are given in Section C.

Model II is described below in pseudo-code. Note that the difficulty level for each air grid is computed by Model I and is input to Model II. Definition of the variables used in the algorithm precede the pseudo-code. The complete listing of the Pascal code is given in Appendix E.

- \(M \) is total number of air grids
- \(T \) is target grid
- \(w_1 \) is the weight of travel time/distance
- \(w_2 \) is the weight of Difficulty Level, where \(w_1 + w_2 = 1 \)
- \(\text{Hardness}[i] \) is the cumulative value of weighted travel time/distance and Difficulty Level, from air grid \(i \) to target grid \(T \), for \(i = 1, \ldots, M \)
- \(\text{visited}[i] \) is a boolean variable to indicate whether grid \(i \) has been explored or not, \(\forall i = 1, \ldots, M \)
- \(\text{next_choice}[i] \) is an integer variable to show what is the best move for the next step for grid \(i \), \(\forall i = 1, \ldots, M \)

The data for Hardness, visited, next_choice, and the distance between adjacent grids are stored in adjacency list form.

Input: value of Difficulty Level (DL) of each grid (result computed by Model I)
Output: Minimal value of Hardness[i] and the routes for all air grids i to target grid T, ∀ i = 1, ..., M

1. { Initialize : 1. PriorityQueue
 2. visited[i] := false, ∀ i = 1, ..., M
 3. next_choice[i] := M + 1, ∀ i ≠ T
 4. grid[T].next_choice := 0
 5. Hardness[i] := ∞, ∀ i ≠ T
 6. Hardness[T] := 0

2. put T into PriorityQueue
 {Air grid i, with smallest Hardness value, is placed at the top of the PriorityQueue; for details, see example in Section C and procedure InsertPriorityQueue of unit PriQTool in Appendix F, p.146}

3. while (PriorityQueue is not empty)
 {The process finishes if there is no entry inside the Queue; for details see function EmptyPriorityQueue of unit PriQTool in Appendix F, p.146}

4. { remove grid j from the front of the PriorityQueue

5. for (each grid i incident to grid j)

6. { if (j = T)

7. { grid[i].Hardness := w₂ * Hardness[T] + w₁ * (Distance between T and i)

8. next_choice[i] := T

9. visited[i] := true
10. put grid i into PriorityQueue
11. }
12. else
13. { min := \infty
14. choice := M + 1
15. if (visited[i] = false)
16. { for (each grid u incident to grid i)
17. { if (visited[u] = true)
18. { Hardness := Hardness[u] + w_2 \cdot DL[u] + w_1 \cdot \text{(Distance between u and i)}
19. if (Hardness < min)
20. { min := Hardness
21. choice := u
22. }
23. }
24. }
25. }
26. visited[i] := true
27. Hardness[i] := Hardness
28. next_choice[i] := choice
29. put grid i into PriorityQueue
30. }
C. MODEL DEMONSTRATION/VERIFICATION

Three different cases are used to demonstrate and verify Model II. In each case, a 5 x 5 air grid is used, each grid being 10 KM on a side. The values of the weights are set to $w_1 = 0$ and $w_2 = 1$ in order to verify that the minimum difficulty route (not considering distance) is chosen. In the next chapter, many runs with different values of w_1 and w_2 are described and analyzed. The results of each case are given in Tables 4, 5, and 6. Each table has four columns. Column 1 is the starting grid number; column 2 gives the difficulty for that grid computed by Model I; column 3 gives the optimal path to the target; and column 4 gives the total weighted value of distance and difficulty (which is only minimum difficulty for these cases). Cases 1 and 2 use the air grids shown in Figures 7 and 8, respectively, with Case 1 having grid 13 as the target and Case 2 using target grid 25. Case 3 uses the grid shown in Figure 9 which has different difficulties from the previous cases, and has grid 25 as the target grid. Note that the figures show the grid number and the difficulty computed by Model I in each air grid.

To illustrate the algorithm in detail, the initial iterations for Case 1 are described. All of the locally optimal route possibilities to grid 13 are shown in Figure 7. There are two numbers in each individual grid; the top one represents the grid number, and the
bottom number indicates the Difficulty Level (DL) computed by Model I. The arrow in each grid represents the best choice for next step.

The process begins with those grids incident to target grid 13 and computes the Hardness for each one. Because of the data structure, grid 18 is the first grid processed (the order is immaterial). The optimal route is $18 \rightarrow 13$ and Total DL (Hardness) is $w_1 \cdot DL[13] + w_2 \cdot (\text{distance between 13 to 18}) = 1.0 \cdot 1.6 + 0.0 \cdot 1 = 1.6$. Grid 18 is put into the PriorityQueue with sorting index $1.6 + DL[18] = 1.6 + 0.3 = 1.9$. The same procedure is used for grids 19, 14, 9, 8, 7, 12, and 17. For example, the total DL of grid 19 is $1.0 \cdot 1.6 + 0.0 \cdot 1.414 = 1.6$; the optimal route is $19 \rightarrow 13$ and $1.6 + 2.5 = 4.1$ is used as the sorting index. After processing all grids adjacent to grid 13, the order of the Priority Queue (from smallest sorting index to highest sorting index) is $9 \rightarrow 18 \rightarrow 8 \rightarrow 17 \rightarrow 14 \rightarrow 12 \rightarrow 7 \rightarrow 19$. Next, select the first grid in the Priority Queue (grid 9) and process those grids incident to grid 9. Since grid 14 had been visited, the next grid considered is grid 15. The total DL of grid 15 is $1.0 \cdot 1.8 + 0.0 \cdot 1.414 = 1.8$; the optimal route is $15 \rightarrow 9 \rightarrow 13$ and grid 15 goes into the Priority Queue using $1.8 + 0.2 = 2.0$ as its sorting index. The current order of the Queue is $18 \rightarrow 15 \rightarrow 8 \rightarrow 17 \rightarrow 14 \rightarrow 12 \rightarrow 7 \rightarrow 19$. After all adjacent grids to grid 9 are processed, compute the Total DL for those grids incident to grid 18. This process is continued until all grids have been considered. The result (see Table 4, p. 28) is the optimal route from any starting grid to target grid 13.
Figure 7. Routes to Target Grid 13-Difficulty Set 1
Consider the route with starting grid 10 of Difficulty Set 3 (see Figure 9 and Table 6), and note that an extremely long distance route is selected. However, since only difficulty is considered, the route selected minimizes the total difficulty. This illustrates the fact that the user can investigate various extremes in route selection, as well as combinations of distance/difficulty weights.
Figure 8. Routes to Target Grid 25-Difficulty Set 2

Figure 9. Routes to Target Grid 25-Difficulty Set 3
Table 5: Results of Difficulty Set 2

Case 2: Target Grid is 25

<table>
<thead>
<tr>
<th>STARTING GRID (i)</th>
<th>DL[(i)]</th>
<th>ROUTE TO TARGET</th>
<th>TOTAL DL</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.9</td>
<td>1 → 6 → 12 → 18 → 24 → 25</td>
<td>3.8</td>
</tr>
<tr>
<td>2</td>
<td>1.6</td>
<td>2 → 6 → 12 → 18 → 24 → 25</td>
<td>3.8</td>
</tr>
<tr>
<td>3</td>
<td>0.4</td>
<td>3 → 9 → 15 → 20 → 25</td>
<td>3.6</td>
</tr>
<tr>
<td>4</td>
<td>0.6</td>
<td>4 → 9 → 15 → 20 → 25</td>
<td>3.6</td>
</tr>
<tr>
<td>5</td>
<td>0.3</td>
<td>5 → 9 → 15 → 20 → 25</td>
<td>3.6</td>
</tr>
<tr>
<td>6</td>
<td>0.1</td>
<td>6 → 12 → 18 → 24 → 25</td>
<td>3.7</td>
</tr>
<tr>
<td>7</td>
<td>2.2</td>
<td>7 → 12 → 18 → 24 → 25</td>
<td>3.7</td>
</tr>
<tr>
<td>8</td>
<td>0.7</td>
<td>8 → 9 → 15 → 20 → 25</td>
<td>3.6</td>
</tr>
<tr>
<td>9</td>
<td>0.2</td>
<td>9 → 15 → 20 → 25</td>
<td>3.4</td>
</tr>
<tr>
<td>10</td>
<td>0.8</td>
<td>10 → 15 → 20 → 25</td>
<td>3.4</td>
</tr>
<tr>
<td>11</td>
<td>0.2</td>
<td>11 → 12 → 18 → 24 → 25</td>
<td>3.7</td>
</tr>
<tr>
<td>12</td>
<td>0.3</td>
<td>12 → 18 → 24 → 25</td>
<td>3.4</td>
</tr>
<tr>
<td>13</td>
<td>1.6</td>
<td>13 → 18 → 24 → 25</td>
<td>3.4</td>
</tr>
<tr>
<td>14</td>
<td>1.3</td>
<td>14 → 20 → 25</td>
<td>3.2</td>
</tr>
<tr>
<td>15</td>
<td>0.2</td>
<td>15 → 20 → 25</td>
<td>3.2</td>
</tr>
<tr>
<td>16</td>
<td>0.2</td>
<td>16 → 22 → 23 → 24 → 25</td>
<td>3.6</td>
</tr>
<tr>
<td>17</td>
<td>1.2</td>
<td>17 → 23 → 24 → 25</td>
<td>3.4</td>
</tr>
<tr>
<td>18</td>
<td>0.3</td>
<td>18 → 24 → 25</td>
<td>3.1</td>
</tr>
<tr>
<td>19</td>
<td>2.5</td>
<td>19 → 25</td>
<td>3.0</td>
</tr>
<tr>
<td>20</td>
<td>0.2</td>
<td>20 → 25</td>
<td>3.0</td>
</tr>
<tr>
<td>21</td>
<td>0.1</td>
<td>21 → 22 → 23 → 24 → 25</td>
<td>3.6</td>
</tr>
<tr>
<td>22</td>
<td>0.2</td>
<td>22 → 23 → 24 → 25</td>
<td>3.4</td>
</tr>
<tr>
<td>23</td>
<td>0.25</td>
<td>23 → 24 → 25</td>
<td>3.1</td>
</tr>
<tr>
<td>24</td>
<td>0.1</td>
<td>24 → 25</td>
<td>3.0</td>
</tr>
<tr>
<td>25</td>
<td>3.0</td>
<td>25</td>
<td>0.0</td>
</tr>
</tbody>
</table>

At this point, Models I and II determine the optimal route from any starting air grid to a designated target grid using user selected weights, \(w_1\) and \(w_2\). In the next chapter, several possible target grids and target priorities are added, resulting in Model III.
Table 6: Result of Difficulty Set 3

<table>
<thead>
<tr>
<th>STARTING GRID i</th>
<th>DL[i]</th>
<th>ROUTE TO TARGET</th>
<th>TOTAL DL</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.1</td>
<td>1 → 6 → 11 → 16 → 22 → 23 → 24 → 25</td>
<td>3.3</td>
</tr>
<tr>
<td>2</td>
<td>0.1</td>
<td>2 → 6 → 11 → 16 → 22 → 23 → 24 → 25</td>
<td>3.3</td>
</tr>
<tr>
<td>3</td>
<td>0.0</td>
<td>3 → 2 → 6 → 11 → 16 → 22 → 23 → 24 → 25</td>
<td>3.4</td>
</tr>
<tr>
<td>4</td>
<td>0.1</td>
<td>4 → 3 → 2 → 6 → 11 → 16 → 22 → 23 → 24 → 25</td>
<td>3.4</td>
</tr>
<tr>
<td>5</td>
<td>0.6</td>
<td>5 → 4 → 3 → 2 → 6 → 11 → 16 → 22 → 23 → 24 → 25</td>
<td>3.5</td>
</tr>
<tr>
<td>6</td>
<td>0.1</td>
<td>6 → 11 → 16 → 22 → 23 → 24 → 25</td>
<td>3.2</td>
</tr>
<tr>
<td>7</td>
<td>2.6</td>
<td>7 → 11 → 16 → 22 → 23 → 24 → 25</td>
<td>3.2</td>
</tr>
<tr>
<td>8</td>
<td>1.8</td>
<td>2 → 6 → 11 → 16 → 22 → 23 → 24 → 25</td>
<td>3.4</td>
</tr>
<tr>
<td>9</td>
<td>0.3</td>
<td>9 → 3 → 2 → 6 → 11 → 16 → 22 → 23 → 24 → 25</td>
<td>3.4</td>
</tr>
<tr>
<td>10</td>
<td>0.2</td>
<td>10 → 4 → 3 → 2 → 6 → 11 → 16 → 22 → 23 → 24 → 25</td>
<td>3.5</td>
</tr>
<tr>
<td>11</td>
<td>0.2</td>
<td>11 → 16 → 22 → 23 → 24 → 25</td>
<td>3.0</td>
</tr>
<tr>
<td>12</td>
<td>3.0</td>
<td>12 → 16 → 22 → 23 → 24 → 25</td>
<td>3.0</td>
</tr>
<tr>
<td>13</td>
<td>3.7</td>
<td>13 → 19 → 25</td>
<td>3.1</td>
</tr>
<tr>
<td>14</td>
<td>0.5</td>
<td>14 → 20 → 25</td>
<td>3.0</td>
</tr>
<tr>
<td>15</td>
<td>0.7</td>
<td>15 → 20 → 25</td>
<td>3.0</td>
</tr>
<tr>
<td>16</td>
<td>0.1</td>
<td>16 → 22 → 23 → 24 → 25</td>
<td>2.9</td>
</tr>
<tr>
<td>17</td>
<td>2.5</td>
<td>17 → 23 → 24 → 25</td>
<td>2.8</td>
</tr>
<tr>
<td>18</td>
<td>2.0</td>
<td>18 → 24 → 25</td>
<td>2.8</td>
</tr>
<tr>
<td>19</td>
<td>0.4</td>
<td>19 → 25</td>
<td>2.7</td>
</tr>
<tr>
<td>20</td>
<td>0.3</td>
<td>20 → 25</td>
<td>2.7</td>
</tr>
<tr>
<td>21</td>
<td>0.1</td>
<td>21 → 22 → 23 → 24 → 25</td>
<td>2.9</td>
</tr>
<tr>
<td>22</td>
<td>0.1</td>
<td>22 → 23 → 24 → 25</td>
<td>2.8</td>
</tr>
<tr>
<td>23</td>
<td>0.0</td>
<td>23 → 24 → 25</td>
<td>2.8</td>
</tr>
<tr>
<td>24</td>
<td>0.1</td>
<td>24 → 25</td>
<td>2.7</td>
</tr>
<tr>
<td>25</td>
<td>2.7</td>
<td>25</td>
<td>0.0</td>
</tr>
</tbody>
</table>
V. DYNAMIC TARGET SELECTION MODEL (MODEL III)

A. INTRODUCTION

In real world generation of air missions, planners simultaneously consider target priority, anticipated travel distance to target, and expected aircraft survivability along the route and in the target vicinity. In current models, the target selection planning process is separate from specific consideration of the route. Some models contain factors such as expected aircraft attrition associated with a given target type, representing possible air defenses in the target vicinity. To the author's knowledge, no current model attempts to select a target, a route, and determine the implications of various escort aircraft levels simultaneously, and do it in an optimal fashion. That is precisely what Model III accomplishes as will be explained in this chapter, along with the results and analyses of several model runs.

Briefly, Model III begins with a list of potential targets and their priorities computed based on current perceptions of those possible targets. Possible methods for computing these priorities for different mission types are currently being developed by two students at the Air Force Institute of Technology (AFIT). It is anticipated that their research results will be used to determine potential targets and priorities.

As a result of whatever scheme is used to compute target priority, each target is assigned a priority value on the interval \([0,100]\), which becomes an input to Model III. Because target priority, as well as distance and difficulty, are normalized using the
largest values of each, the scales become dimensionless values. As later discussed, the magnitude of the scale chosen for target priority is closely related to the weight assigned to that attribute. For each target on the list, Model II determines the optimal route from any starting grid to that target. The user specifies three weights (distance, difficulty, and target priority) to be used. These weights are likely to be situation dependent and may well be dynamic user inputs during a run of FTLM. The result is the selection of that target with the minimum weighted sum of distance, difficulty, and (100 minus) target priority. The details are given in the next section.

B. MODEL ALGORITHM

Model III has two primary inputs, in addition to those inputs required for Models I and II, as follows:

1. Weights

 - $w_1 =$ weight assigned to total distance to target, where distance to target is in air grid units (AGU) along a route.
 - $w_2 =$ weight assigned to the total difficulty of a route.
 - $w_3 =$ weight assigned to target priority
 - $w_1 + w_2 + w_3 = 1$

2. Priority

 - $TPRIOR[k] =$ priority of target k on the interval $[0,100]$, where 100 is the highest priority.

 The computational steps of Model III are given below.

 a. The current perceived difficulty of each air grid is computed by Model I.
b. A list of possible targets, including their perceived location and priority determined by the target priority algorithm, is input.

3. For each target on the list, compute the optimal route to the target from Model II, using the weights, w_1^* and w_2^*, for distance and difficulty, computed as follows:

$$w_1^* = \frac{w_1}{(1-w_3)} \quad (2)$$

$$w_2^* = \frac{w_2}{(1-w_3)} \quad (3)$$

This computation scales the original weights so that the weights, w_1^* and w_2^*, used in Model II sum to 1.0. Recall from Chapter IV that distance is in air grid units (AGU) and difficulty is the sum of the lethal area contribution (weighted by the estimated kill probability associated with that lethal area) of each ground node to each air grid, accumulated for all air grids on the route.

4. Compute the normalized value of distance across all targets by dividing each distance by the largest distance to a target, producing normalized distances on the interval [0,1]. For a given node set, PK set, and weight set, the actual distance and difficulty to each target for each percent reduction of initial lethal radii of air defense sites is first computed. The largest of these actual distances and difficulties are used to compute the normalized distance and difficulty. The target values are also normalized by dividing by the largest target priority value. Normalization of these values is required because each is measured on a different dimensionality scale. The determination of the
Combined Value of each target for a specified PK, node, and weight set is made on a relative basis. For example, if the longest route computed was 5.0 AGU’s, then all other route distances must be expressed as a percentage of the longest route, and similarly for difficulty and target priority. This normalization is required in order to correctly apply the weights w_1, w_2, and w_3, to each factor. Determination of the largest distance, difficulty, and target priority used for normalization is illustrated in a later section. The Combined Value, CV, for each target is then computed as follows:

$$CV[k] = w_1 \times \text{NDIST} + w_2 \times \text{NDIFF} + w_3 \times (1 - \text{NPRIOR})$$

where

$\text{NDIST} = \text{Normalized distance for target, } k,$

$\text{NDIFF} = \text{Normalized difficulty for target, } k,$

$\text{NPRIOR} = \text{Normalized priority for target, } k.$

The target selected, along with the route from a specified starting grid to the target, is determined by the minimum CV for the targets. The factor $(1 - \text{NPRIOR})$ is used because the objective is to determine the minimum value of CV.

5. The computations in Steps 3 and 4 are made using the current estimate of the air defense threat with no suppression of those enemy assets by friendly assets. In order to estimate the effects of adding escort aircraft for suppression of enemy air defense, the process of steps 3 and 4 is repeated for various postulated escort packages. Currently, Model III accomplishes this by reducing the lethal radius of each air defense site by a specified percentage. There is no attempt in this thesis to relate a given percent
reduction in air defense threat with specific numbers and types of escort aircraft required to accomplish that level of reduction. Also, all air defense sites are reduced by the same percentage. Future enhancements to Model III should address these areas.

C. MODEL RESULTS AND ANALYSIS

The results of several variations of node sets, probability of kill (PK) sets, and weight sets are presented in this section. Two different configurations of ground nodes were designed and are shown in Figures 10 (Ground Node Set 1) and Figure 11 (Ground Node Set 2). Node set 2 presents a more difficult problem to the flight groups than node set 1, and was chosen for that reason. The difficulty for each air grid depends on which PK set is used.

Recall that PK is defined as the probability of kill of an aircraft, given that the aircraft is within the lethal radius of the air defense site. PK set 1 assumes the probability of kill for all lethal areas is 1.0. PK set 2 assigns different probabilities of kill to each ground node in Node set 1, which is the only node set for which PK set 2 is used (see Table 7).
Figure 10. Ground Node Set 1

Figure 11. Ground Node Set 2
Table 7: PK Set 2

<table>
<thead>
<tr>
<th>GROUND NODE</th>
<th>PK</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.9</td>
</tr>
<tr>
<td>2</td>
<td>0.6</td>
</tr>
<tr>
<td>3</td>
<td>0.8</td>
</tr>
<tr>
<td>4</td>
<td>0.7</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
</tr>
</tbody>
</table>

Table 8: Weight Sets

<table>
<thead>
<tr>
<th>WEIGHT SET</th>
<th>DISTANCE</th>
<th>DIFFICULTY</th>
<th>PRIORITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>0.33</td>
<td>0.33</td>
<td>0.33</td>
</tr>
<tr>
<td>4</td>
<td>0.50</td>
<td>0.25</td>
<td>0.25</td>
</tr>
<tr>
<td>5</td>
<td>0.25</td>
<td>0.50</td>
<td>0.25</td>
</tr>
<tr>
<td>6</td>
<td>0.25</td>
<td>0.25</td>
<td>0.50</td>
</tr>
</tbody>
</table>

Six weight sets as defined in Table 8 are used for the analysis. Note that w_1 is the weight for travel distance, w_2 for difficulty, and w_3 for target priority.

The analyses presented in this section utilize the results displayed in the tables in Appendix A. The notation used to distinguish the various cases is (a,b,c) where a is the Node set number (1,2); b is the PK set number (1,2) and c is the weight set number (1,2,3,4,5,6). Each of the tables in Appendix A shows the optimal route to each of three
targets (21,23,25); the actual and normalized values of distance in AGU, difficulty, and target priority; the combined value, CV, for each target; the target selected and its CV. Three decimal place accuracy for the CV of each target is displayed because the model is indifferent between targets when values of their CV are within 0.01. These factors are presented for each of eleven percent reduction categories of the air defense sites, where the percent reduction is the percentage of the initial lethal radius of each site used for that computation.

To illustrate the determination of the largest value used for normalization, consider Table A.1 in Appendix A. Note that the largest actual value of Difficulty is 4.80 for target 25 with zero percent reduction. This value is used to normalize Difficulty for all cases in Table A.1.

Tables A.1 and A.2 use node set 1 to demonstrate the effect of reduced PK values (PK set 2). All other tables use PK set 1. Tables A.3 through A.8 use node set one across the six weight classes, while Tables A.9 through A.14 are for node set 2. The figures grouped in Appendix B are in two categories. Figures B.1 - B.8 show the changes in CV for each target across percent reduction for a specified node set and weight set. Figures B.9 - B.14 present the CV variations for node set 2 across weight sets for specified values of percent reduction.

1. **Individual Factor Comparisons**

 a. **Effect of PK variation**

 Consider the zero percent reduction results from Tables A.4, case (1,1,2) and A.2, case (1,2,2). That is, compare (for node set 1, weight set 2) the two
PK sets. Note that the difficulty values are smaller for PK set 2, as is expected. Because of the smaller difficulty for PK set 2, the route selected to Target 25 is longer by over one AGU than for PK set 1. This is because weight set 2 weights difficulty 1.0, and hence the least difficult route is chosen, with no regard for distance or target priority. Target 21 is selected for PK set 1 and target 25 is selected for PK set 2.

b. Shortest route comparison

When weight set (1,0,0) is specified, the shortest distance route is selected, with no consideration of difficulty or target priority. Tables A.3, case (1,1,1) and A.9, case (2,1,1) show that target 21 is always selected for both node sets, since the distance to target 21 is 4.0 AGU.

c. Least difficulty comparison

When weight set (0,1,0) is selected, no consideration is given to distance or target priority in the selection of a target or route. Note from Table A.4, case (1,1,2), that target 21 is selected for node set 1 until the percent reduction reaches 50%. At this point the difficulty of routes to all targets has been reduced to 0.20, and hence the model shows indifference between the three targets. For node set 2 given in Table A.10, case (2,1,2), some interesting results occur. Note the extremely long route taken to target 21 in order to minimize difficulty. Until 50% reduction is reached, the model is indifferent between targets 23 and 25. At 50% reduction, the radii of all air defense sites have been reduced to zero, thus the model is indifferent to all targets.

In sections C.2 and C.3 which follow, several observations from results given in the tables and figures are presented. These by no means represent a total
analysis of all combinations of factors, but are provided to give the reader insights into
the capabilities of the model package developed for this thesis.

2. Effects of air defense lethal radii reductions

First, consider Table A.5, case (1,1,3) and Figure B.1, the equal weight set. At zero percent reduction, note that target 23 has the most difficult route, and that the
model is indifferent between targets 21 and 25 (difference is less than 0.01), with a CV
value of 0.65. At 10 % reduction, the difficulty to target 21 reduces substantially (3.24
to 2.32) because of the reduction in ground node 5 in Node set 1 (Figure 8), and hence
target 21 is selected with a CV value of 0.58. At 40 % reduction, two interesting
observations are noted. Target 23 changes to a longer route (from 30 % reduction) in
order to get a less difficult route. Because distance and difficulty are equally weighted,
the reduction of difficulty from 1.92 to 0.64 more than compensates for the increase in
distance from 4.83 to 5.41. Thus, at 40 % reduction the model is indifferent between
targets 21 and 23. At 60 % reduction, all difficulties are getting small, thus the trade-off
is essentially between distance and target priority, and all targets are equally desirable.
At 70 % reduction and above, however, target priority begins to dominate, and hence
target 25 is selected.

Next, consider case (2,1,3) shown in Table A.11 and Figure B.13 which is
the equal weight set for node set 2. Target 25 is uniquely the best choice except at 40
% and 50 % reduction. For 30 % reduction, target 25 has a distance of 6.24 and
difficulty of 0.57, while target 23 has a distance of 4.83 and difficulty of 0.83. The
higher priority for target 25 causes it to be selected over target 23. At 40 % reduction,
target 25 has a shorter route distance, 5.66, and higher difficulty, 0.99, while target 23 has a different route but the same distance as before and a smaller difficulty of 0.59 when compared to the 30 % reduction case. The CV value for target 25 increased slightly from 30 % reduction, while it decreased for target 23, making these two targets essentially equal. At 60 % and above reduction level, the priority of target 25 again dominates and causes it to be selected.

Now, consider weight set 6 (0.25, 0.25, 0.50) for node sets 1 and 2 (see Tables A.8 and A.14; Figures B.4 and B.8). Note that target priority dominates, no matter which level of reduction is considered. The differences between the three targets are large, especially for node set 2, which leads to an important observation. The magnitude of the differences in target priority must be considered when selecting the weight to assign to target priority in order to achieve the desired results. This will likely require experimenting with various weight combinations for the actual node set being used.

For example, considering cases (2, 1, 5) and (2, 1, 6) shown in Figures B.7 and B.8, respectively, target 25 is always selected. In fact for node set 2 and weight sets 5 and 6, the target whose ratio of target priority to other targets is greater than 1.33 will be selected. This observation obviously changes for different node and weight sets.

3. Effects of Weight Sets

Considering node set 2 (Figures B.9 - B.14 and Tables A.11 - A.14) target 25 is selected in most of the cases. For 0 % and 20 % air defense lethal radii reductions (Figures B.9 and B.10) the only case for which target 25 is not selected is for weight set
4 (0.50, 0.25, 0.25), in which case target 23 is selected. For 40% reduction (Figure B.11) target 23 is selected for weight sets 3 and 4, but the difference between targets 23 and 25 for weight set 3 is very small (within 0.01). The first time that target 21 becomes one of the choices for weight set 4 is at 60% reduction (Figure 20) in which targets 23 and 21 are within 0.01 in CV value. Target 21 is slightly preferred at 80% reduction for weight set 4, because the effect of difficulty becomes very small and the trade-off between distance and priority makes target 21 the best choice. The other major reason for that result is because weight set 4 gives distance the largest weight. At 100% reduction, difficulty is zero for all routes, and the combined values for weighted distance and priority select target 21, again because distance is weighted twice that of priority.

The analyses presented above were selected to illustrate the flexibility and multi-dimensional nature of the three models. Suggestions for further enhancements to the existing models are given in the next chapter.
VI. SUMMARY AND FUTURE RESEARCH AREAS

Three models have been developed to provide the air operations planner with a method for simultaneous consideration of air base and target location, target priority, distance to target area, and difficulty of the routes arising from various air defense threats. These models, when utilized as a single package, provide the optimal route to a target for various escort aircraft capabilities.

These models, although designed for implementation in FTLM, may be equally useful in a stand-alone mode or in concert with other models of military conflict. This package represents a unique capability which, to the author’s knowledge, does not currently exist.

Because this thesis represents the initial research and implementation of a dynamic air planning algorithm, several areas for refinement and enhancement of the current package exist. First, the air reconnaissance mission selection process must be refined, particularly in the specification of area priorities for gathering intelligence. In that regard, the current package needs to be expanded to allow for multiple destination areas during the same flight mission.

Secondly, the prioritization of targets for combat engagement must be developed, based on research results from Air Force Institute of Technology. Thirdly, the notion of percent reduction in air defense threat in Model III must be related to specific characteristics of various escort aircraft types. Also, that percent reduction currently
reduces only the perceived lethal radius of each air defense site. Enhancements are required to consider escort jammers against air defense radars, in addition to lethal suppression. Finally, the counter-air threat, even though covered conceptually in the current package, needs additional research related to the various types and activities of counter-air threats.

This document represents an initial attempt to provide a dynamic tool for planning air operations. The author hopes that other individuals will be motivated to continue research in this very important area.
APPENDIX A

RESULT (TABLES) OF DYNAMIC TARGET SELECTION MODEL

This appendix contains data tables for various cases of node, PK, and weight sets. Selected outputs of node set 1 for PK sets 1 and 2; weight sets 1-6, are given in Tables A.1-A.8. For node set 2, PK set 2 associated with weight sets 1-6 are given in Tables A.9-A.14. Notation used for the tables is as follows:

- W_1 is the weight of travel distance.
- W_2 is the weight of difficulty.
- W_3 is the weight of target priority.
- $W_1 + W_2 + W_3 = 1$
- $W_1^* + W_2^* = 1$
- W_1^* is the weight of travel distance used in the Air Route Selection Model (Chapter IV).
- W_2^* is the weight of difficulty used in Chapter IV
- $W_1^* + W_2^* = 1$
- W_1^* is the actual value of the parameter.
- W_2^* is the normalized value of the parameter.

All weight values are given at the top of each table. When the difference between the smallest combined values is less than 0.01, these targets are considered equally desirable.
TABLE A.1: BORE SET 1. PK SET 2. WEIGHT SET 1

FOR \(W_1 = 1.00 \) \(W_2 = 0.00 \) \(W_3 = 0.00 \)

\[W_1^* = 1.00 \quad W_2^* = 0.00 \]

FOR 0 PERCENT REDUCTION IN AIR-DEFENSE LETHAL RADIUS.

<table>
<thead>
<tr>
<th>TARGET ROUTE</th>
<th>DISTANCE</th>
<th>DIFFICULTY</th>
<th>PRIORITY</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ACT</td>
<td>NOR</td>
<td>ACT</td>
</tr>
<tr>
<td>21 1-6-11-16-21</td>
<td>4.00</td>
<td>0.71</td>
<td>3.16</td>
</tr>
<tr>
<td>23 1-6-11-17-23</td>
<td>4.83</td>
<td>0.85</td>
<td>3.84</td>
</tr>
<tr>
<td>25 1-7-13-19-25</td>
<td>5.66</td>
<td>1.00</td>
<td>4.80</td>
</tr>
</tbody>
</table>

\(W_1 \quad W_2 \quad W_3 \quad 21 \quad 23 \quad 25 \) TARGET SELECTED COMBINED VALUE

\[1.00 \quad 0.00 \quad 0.00 \quad 0.707 \quad 0.853 \quad 0.999 \quad 21 \quad 0.71 \]

FOR 10 PERCENT REDUCTION IN AIR-DEFENSE LETHAL RADIUS.

<table>
<thead>
<tr>
<th>TARGET ROUTE</th>
<th>DISTANCE</th>
<th>DIFFICULTY</th>
<th>PRIORITY</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ACT</td>
<td>NOR</td>
<td>ACT</td>
</tr>
<tr>
<td>21 1-6-11-16-21</td>
<td>4.00</td>
<td>0.71</td>
<td>2.25</td>
</tr>
<tr>
<td>23 1-6-11-17-23</td>
<td>4.83</td>
<td>0.85</td>
<td>3.11</td>
</tr>
<tr>
<td>25 1-7-13-19-25</td>
<td>5.66</td>
<td>1.00</td>
<td>4.15</td>
</tr>
</tbody>
</table>

\(W_1 \quad W_2 \quad W_3 \quad 21 \quad 23 \quad 25 \) TARGET SELECTED COMBINED VALUE

\[1.00 \quad 0.00 \quad 0.00 \quad 0.707 \quad 0.853 \quad 0.999 \quad 21 \quad 0.71 \]

FOR 20 PERCENT REDUCTION IN AIR-DEFENSE LETHAL RADIUS.

<table>
<thead>
<tr>
<th>TARGET ROUTE</th>
<th>DISTANCE</th>
<th>DIFFICULTY</th>
<th>PRIORITY</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ACT</td>
<td>NOR</td>
<td>ACT</td>
</tr>
<tr>
<td>21 1-6-11-16-21</td>
<td>4.00</td>
<td>0.71</td>
<td>1.50</td>
</tr>
<tr>
<td>23 1-6-11-17-23</td>
<td>4.83</td>
<td>0.85</td>
<td>2.47</td>
</tr>
<tr>
<td>25 1-7-13-19-25</td>
<td>5.66</td>
<td>1.00</td>
<td>3.46</td>
</tr>
</tbody>
</table>

\(W_1 \quad W_2 \quad W_3 \quad 21 \quad 23 \quad 25 \) TARGET SELECTED COMBINED VALUE

\[1.00 \quad 0.00 \quad 0.00 \quad 0.707 \quad 0.853 \quad 0.999 \quad 21 \quad 0.71 \]

FOR 30 PERCENT REDUCTION IN AIR-DEFENSE LETHAL RADIUS.

47
<table>
<thead>
<tr>
<th>TARGET ROUTE</th>
<th>DISTANCE</th>
<th>DIFFICULTY</th>
<th>PRIORITY</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ACT</td>
<td>NOR</td>
<td>ACT</td>
</tr>
<tr>
<td>21 1- 6-11-16-21</td>
<td>4.00</td>
<td>0.71</td>
<td>0.89</td>
</tr>
<tr>
<td>23 1- 6-11-17-23</td>
<td>4.83</td>
<td>0.85</td>
<td>1.89</td>
</tr>
<tr>
<td>25 1- 7-13-19-25</td>
<td>5.66</td>
<td>1.00</td>
<td>2.74</td>
</tr>
</tbody>
</table>

W_1, W_2, W_3, 21, 23, 25 TARGET SELECTED COMBINED VALUE

1.00 0.00 0.00 0.707 0.853 0.999 21 0.71

FOR 40 PERCENT REDUCTION IN AIR-DEFENSE LETHAL RADIUS.

<table>
<thead>
<tr>
<th>TARGET ROUTE</th>
<th>DISTANCE</th>
<th>DIFFICULTY</th>
<th>PRIORITY</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ACT</td>
<td>NOR</td>
<td>ACT</td>
</tr>
<tr>
<td>21 1- 6-11-16-21</td>
<td>4.00</td>
<td>0.71</td>
<td>0.43</td>
</tr>
<tr>
<td>23 1- 6-11-17-23</td>
<td>4.83</td>
<td>0.85</td>
<td>1.43</td>
</tr>
<tr>
<td>25 1- 7-13-19-25</td>
<td>5.66</td>
<td>1.00</td>
<td>2.05</td>
</tr>
</tbody>
</table>

W_1, W_2, W_3, 21, 23, 25 TARGET SELECTED COMBINED VALUE

1.00 0.00 0.00 0.707 0.853 0.999 21 0.71

FOR 50 PERCENT REDUCTION IN AIR-DEFENSE LETHAL RADIUS.

<table>
<thead>
<tr>
<th>TARGET ROUTE</th>
<th>DISTANCE</th>
<th>DIFFICULTY</th>
<th>PRIORITY</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ACT</td>
<td>NOR</td>
<td>ACT</td>
</tr>
<tr>
<td>21 1- 6-11-16-21</td>
<td>4.00</td>
<td>0.71</td>
<td>0.18</td>
</tr>
<tr>
<td>23 1- 6-11-17-23</td>
<td>4.83</td>
<td>0.85</td>
<td>0.97</td>
</tr>
<tr>
<td>25 1- 7-13-19-25</td>
<td>5.66</td>
<td>1.00</td>
<td>1.39</td>
</tr>
</tbody>
</table>

W_1, W_2, W_3, 21, 23, 25 TARGET SELECTED COMBINED VALUE

1.00 0.00 0.00 0.707 0.853 0.999 21 0.71

FOR 60 PERCENT REDUCTION IN AIR-DEFENSE LETHAL RADIUS.

<table>
<thead>
<tr>
<th>TARGET ROUTE</th>
<th>DISTANCE</th>
<th>DIFFICULTY</th>
<th>PRIORITY</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ACT</td>
<td>NOR</td>
<td>ACT</td>
</tr>
<tr>
<td>21 1- 6-11-16-21</td>
<td>4.00</td>
<td>0.71</td>
<td>0.11</td>
</tr>
<tr>
<td>23 1- 6-11-17-23</td>
<td>4.83</td>
<td>0.85</td>
<td>0.61</td>
</tr>
<tr>
<td>25 1- 7-13-19-25</td>
<td>5.66</td>
<td>1.00</td>
<td>0.89</td>
</tr>
</tbody>
</table>

W_1, W_2, W_3, 21, 23, 25 TARGET SELECTED COMBINED VALUE

1.00 0.00 0.00 0.707 0.853 0.999 21 0.71

FOR 70 PERCENT REDUCTION IN AIR-DEFENSE LETHAL RADIUS.

<table>
<thead>
<tr>
<th>TARGET ROUTE</th>
<th>DISTANCE</th>
<th>DIFFICULTY</th>
<th>PRIORITY</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ACT</td>
<td>NOR</td>
<td>ACT</td>
</tr>
<tr>
<td>21 1- 6-11-16-21</td>
<td>4.00</td>
<td>0.71</td>
<td>0.10</td>
</tr>
<tr>
<td>23 1- 6-11-17-23</td>
<td>4.83</td>
<td>0.85</td>
<td>0.60</td>
</tr>
<tr>
<td>25 1- 7-13-19-25</td>
<td>5.66</td>
<td>1.00</td>
<td>0.89</td>
</tr>
</tbody>
</table>

W_1, W_2, W_3, 21, 23, 25 TARGET SELECTED COMBINED VALUE

1.00 0.00 0.00 0.707 0.853 0.999 21 0.71

FOR 80 PERCENT REDUCTION IN AIR-DEFENSE LETHAL RADIUS.

<table>
<thead>
<tr>
<th>TARGET ROUTE</th>
<th>DISTANCE</th>
<th>DIFFICULTY</th>
<th>PRIORITY</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ACT</td>
<td>NOR</td>
<td>ACT</td>
</tr>
<tr>
<td>21 1- 6-11-16-21</td>
<td>4.00</td>
<td>0.71</td>
<td>0.10</td>
</tr>
<tr>
<td>23 1- 6-11-17-23</td>
<td>4.83</td>
<td>0.85</td>
<td>0.60</td>
</tr>
<tr>
<td>25 1- 7-13-19-25</td>
<td>5.66</td>
<td>1.00</td>
<td>0.89</td>
</tr>
</tbody>
</table>

W_1, W_2, W_3, 21, 23, 25 TARGET SELECTED COMBINED VALUE

1.00 0.00 0.00 0.707 0.853 0.999 21 0.71

FOR 90 PERCENT REDUCTION IN AIR-DEFENSE LETHAL RADIUS.

<table>
<thead>
<tr>
<th>TARGET ROUTE</th>
<th>DISTANCE</th>
<th>DIFFICULTY</th>
<th>PRIORITY</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ACT</td>
<td>NOR</td>
<td>ACT</td>
</tr>
<tr>
<td>21 1- 6-11-16-21</td>
<td>4.00</td>
<td>0.71</td>
<td>0.10</td>
</tr>
<tr>
<td>23 1- 6-11-17-23</td>
<td>4.83</td>
<td>0.85</td>
<td>0.60</td>
</tr>
<tr>
<td>25 1- 7-13-19-25</td>
<td>5.66</td>
<td>1.00</td>
<td>0.89</td>
</tr>
</tbody>
</table>

W_1, W_2, W_3, 21, 23, 25 TARGET SELECTED COMBINED VALUE

1.00 0.00 0.00 0.707 0.853 0.999 21 0.71
<table>
<thead>
<tr>
<th>TARGET ROUTE</th>
<th>DISTANCE</th>
<th>DIFFICULTY</th>
<th>PRIORITY</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ACT NOR</td>
<td>ACT NOR</td>
<td>ACT NOR</td>
</tr>
<tr>
<td>21 1- 6-11-16-21</td>
<td>4.00 0.71</td>
<td>0.06 0.01</td>
<td>40.00 0.50</td>
</tr>
<tr>
<td>23 1- 6-11-17-23</td>
<td>4.83 0.85</td>
<td>0.34 0.07</td>
<td>60.00 0.75</td>
</tr>
<tr>
<td>25 1- 7-13-19-25</td>
<td>5.66 1.00</td>
<td>0.50 0.10</td>
<td>80.00 1.00</td>
</tr>
</tbody>
</table>

For 80 percent reduction in air-defense lethal radius.

<table>
<thead>
<tr>
<th>TARGET ROUTE</th>
<th>DISTANCE</th>
<th>DIFFICULTY</th>
<th>PRIORITY</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ACT NOR</td>
<td>ACT NOR</td>
<td>ACT NOR</td>
</tr>
<tr>
<td>21 1- 6-11-16-21</td>
<td>4.00 0.71</td>
<td>0.03 0.01</td>
<td>40.00 0.50</td>
</tr>
<tr>
<td>23 1- 6-11-17-23</td>
<td>4.83 0.85</td>
<td>0.16 0.03</td>
<td>60.00 0.75</td>
</tr>
<tr>
<td>25 1- 7-13-19-25</td>
<td>5.66 1.00</td>
<td>0.23 0.05</td>
<td>80.00 1.00</td>
</tr>
</tbody>
</table>

For 90 percent reduction in air-defense lethal radius.

<table>
<thead>
<tr>
<th>TARGET ROUTE</th>
<th>DISTANCE</th>
<th>DIFFICULTY</th>
<th>PRIORITY</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ACT NOR</td>
<td>ACT NOR</td>
<td>ACT NOR</td>
</tr>
<tr>
<td>21 1- 6-11-16-21</td>
<td>4.00 0.71</td>
<td>0.01 0.00</td>
<td>40.00 0.50</td>
</tr>
<tr>
<td>23 1- 6-11-17-23</td>
<td>4.83 0.85</td>
<td>0.04 0.01</td>
<td>60.00 0.75</td>
</tr>
<tr>
<td>25 1- 7-13-19-25</td>
<td>5.66 1.00</td>
<td>0.05 0.01</td>
<td>80.00 1.00</td>
</tr>
</tbody>
</table>

For 100 percent reduction in air-defense lethal radius.
TABLE A-2: SIMILAR SET 1, PX SET 2, WEIGHT SET 2

For $w_1 = 0.00$, $w_2 = 1.00$, $w_3 = 0.00$

$w_1^* = 0.00$, $w_2^* = 1.00$

For 0 Percent Reduction in Air-Defense Lethal Radius.

<table>
<thead>
<tr>
<th>TARGET ROUTE</th>
<th>DISTANCE</th>
<th>DIFFICULTY</th>
<th>PRIORITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>21 1- 6-11-16-21</td>
<td>4.00 0.54</td>
<td>3.16 0.82</td>
<td>40.00 0.50</td>
</tr>
<tr>
<td>23 1- 6-11-17-23</td>
<td>4.83 0.65</td>
<td>3.84 1.00</td>
<td>60.00 0.75</td>
</tr>
<tr>
<td>25 1- 2- 3- 4-10-15-20-25</td>
<td>7.41 1.00</td>
<td>2.86 0.74</td>
<td>80.00 1.00</td>
</tr>
</tbody>
</table>

w_1, w_2, w_3, 21 23 25 TARGET SELECTED COMBINED VALUE

0.00 1.00 0.00 0.823 1.000 0.745 25 0.75

For 10 Percent Reduction in Air-Defense Lethal Radius.

<table>
<thead>
<tr>
<th>TARGET ROUTE</th>
<th>DISTANCE</th>
<th>DIFFICULTY</th>
<th>PRIORITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>21 1- 6-11-16-21</td>
<td>4.00 0.54</td>
<td>2.25 0.59</td>
<td>40.00 0.50</td>
</tr>
<tr>
<td>23 1- 6-11-17-23</td>
<td>4.83 0.65</td>
<td>3.11 0.81</td>
<td>60.00 0.75</td>
</tr>
<tr>
<td>25 1- 2- 3- 4-10-15-20-25</td>
<td>7.41 1.00</td>
<td>2.28 0.59</td>
<td>80.00 1.00</td>
</tr>
</tbody>
</table>

w_1, w_2, w_3, 21 23 25 TARGET SELECTED COMBINED VALUE

0.00 1.00 0.00 0.586 0.810 0.594 21/25 0.59

For 20 Percent Reduction in Air-Defense Lethal Radius.

<table>
<thead>
<tr>
<th>TARGET ROUTE</th>
<th>DISTANCE</th>
<th>DIFFICULTY</th>
<th>PRIORITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>21 1- 6-11-16-21</td>
<td>4.00 0.54</td>
<td>1.50 0.39</td>
<td>40.00 0.50</td>
</tr>
<tr>
<td>23 1- 2- 3- 4-10-15-20-25-24-23</td>
<td>9.41 1.27</td>
<td>2.31 0.60</td>
<td>60.00 0.75</td>
</tr>
<tr>
<td>25 1- 2- 3- 4-10-15-20-25</td>
<td>7.41 1.00</td>
<td>1.77 0.46</td>
<td>80.00 1.00</td>
</tr>
</tbody>
</table>

w_1, w_2, w_3, 21 23 25 TARGET SELECTED COMBINED VALUE

0.00 1.00 0.00 0.391 0.602 0.461 21 0.39

For 30 Percent Reduction in Air-Defense Lethal Radius.

50
<table>
<thead>
<tr>
<th>TARGET ROUTE</th>
<th>DISTANCE</th>
<th>DIFFICULTY</th>
<th>PRIORITY</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ACT NOR</td>
<td>ACT NOR</td>
<td>ACT NOR</td>
</tr>
<tr>
<td>21 1-6-11-16-21</td>
<td>4.00 0.54</td>
<td>0.89 0.23</td>
<td>40.00 0.50</td>
</tr>
<tr>
<td>23 1-6-11-16-22-23</td>
<td>5.41 0.73</td>
<td>1.43 0.37</td>
<td>60.00 0.75</td>
</tr>
<tr>
<td>25 1-2-3-9-15-20-25</td>
<td>6.83 0.92</td>
<td>1.35 0.35</td>
<td>80.00 1.00</td>
</tr>
</tbody>
</table>

\[W_1 \ W_2 \ W_3 \ 21 \ 23 \ 25 \ \text{T A R G E T \ S E L E C T E D \ C O M B I N E D \ V A L U E} \]

\[0.00 \ 1.00 \ 0.00 \ 0.232 \ 0.372 \ 0.352 \ 21 \ 0.23 \]

FOR 40 PERCENT REDUCTION IN AIR-DEFENSE LETHAL RADIUS.

<table>
<thead>
<tr>
<th>TARGET ROUTE</th>
<th>DISTANCE</th>
<th>DIFFICULTY</th>
<th>PRIORITY</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ACT NOR</td>
<td>ACT NOR</td>
<td>ACT NOR</td>
</tr>
<tr>
<td>21 1-6-11-16-21</td>
<td>4.00 0.54</td>
<td>0.43 0.11</td>
<td>40.00 0.50</td>
</tr>
<tr>
<td>23 1-6-11-16-22-23</td>
<td>5.41 0.73</td>
<td>0.61 0.16</td>
<td>60.00 0.75</td>
</tr>
<tr>
<td>25 1-6-11-16-22-23-24-25</td>
<td>7.41 1.00</td>
<td>0.61 0.16</td>
<td>80.00 1.00</td>
</tr>
</tbody>
</table>

\[W_1 \ W_2 \ W_3 \ 21 \ 23 \ 25 \ \text{T A R G E T \ S E L E C T E D \ C O M B I N E D \ V A L U E} \]

\[0.00 \ 1.00 \ 0.00 \ 0.112 \ 0.159 \ 0.159 \ 21 \ 0.11 \]

FOR 50 PERCENT REDUCTION IN AIR-DEFENSE LETHAL RADIUS.

<table>
<thead>
<tr>
<th>TARGET ROUTE</th>
<th>DISTANCE</th>
<th>DIFFICULTY</th>
<th>PRIORITY</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ACT NOR</td>
<td>ACT NOR</td>
<td>ACT NOR</td>
</tr>
<tr>
<td>21 1-6-11-16-21</td>
<td>4.00 0.54</td>
<td>0.18 0.05</td>
<td>40.00 0.50</td>
</tr>
<tr>
<td>23 1-6-11-16-22-23</td>
<td>5.41 0.73</td>
<td>0.18 0.05</td>
<td>60.00 0.75</td>
</tr>
<tr>
<td>25 1-6-11-16-22-23-24-25</td>
<td>7.41 1.00</td>
<td>0.18 0.05</td>
<td>80.00 1.00</td>
</tr>
</tbody>
</table>

\[W_1 \ W_2 \ W_3 \ 21 \ 23 \ 25 \ \text{T A R G E T \ S E L E C T E D \ C O M B I N E D \ V A L U E} \]

\[0.00 \ 1.00 \ 0.00 \ 0.047 \ 0.047 \ 0.047 \ 21/23/25 \ 0.05 \]

FOR 60 PERCENT REDUCTION IN AIR-DEFENSE LETHAL RADIUS.

<table>
<thead>
<tr>
<th>TARGET ROUTE</th>
<th>DISTANCE</th>
<th>DIFFICULTY</th>
<th>PRIORITY</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ACT NOR</td>
<td>ACT NOR</td>
<td>ACT NOR</td>
</tr>
<tr>
<td>21 1-6-11-16-21</td>
<td>4.00 0.54</td>
<td>0.11 0.03</td>
<td>40.00 0.50</td>
</tr>
<tr>
<td>23 1-6-11-16-22-23</td>
<td>5.41 0.73</td>
<td>0.11 0.03</td>
<td>60.00 0.75</td>
</tr>
<tr>
<td>25 1-6-11-16-22-23-24-25</td>
<td>7.41 1.00</td>
<td>0.11 0.03</td>
<td>80.00 1.00</td>
</tr>
</tbody>
</table>

\[W_1 \ W_2 \ W_3 \ 21 \ 23 \ 25 \ \text{T A R G E T \ S E L E C T E D \ C O M B I N E D \ V A L U E} \]

\[0.00 \ 1.00 \ 0.00 \ 0.029 \ 0.029 \ 0.029 \ 21/23/25 \ 0.03 \]

FOR 70 PERCENT REDUCTION IN AIR-DEFENSE LETHAL RADIUS.

<table>
<thead>
<tr>
<th>TARGET ROUTE</th>
<th>DISTANCE</th>
<th>DIFFICULTY</th>
<th>PRIORITY</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ACT NOR</td>
<td>ACT NOR</td>
<td>ACT NOR</td>
</tr>
<tr>
<td>21 1-6-11-16-21</td>
<td>4.00 0.54</td>
<td>0.11 0.03</td>
<td>40.00 0.50</td>
</tr>
<tr>
<td>23 1-6-11-16-22-23</td>
<td>5.41 0.73</td>
<td>0.11 0.03</td>
<td>60.00 0.75</td>
</tr>
<tr>
<td>25 1-6-11-16-22-23-24-25</td>
<td>7.41 1.00</td>
<td>0.11 0.03</td>
<td>80.00 1.00</td>
</tr>
</tbody>
</table>

\[W_1 \ W_2 \ W_3 \ 21 \ 23 \ 25 \ \text{T A R G E T \ S E L E C T E D \ C O M B I N E D \ V A L U E} \]

\[0.00 \ 1.00 \ 0.00 \ 0.029 \ 0.029 \ 0.029 \ 21/23/25 \ 0.03 \]
<table>
<thead>
<tr>
<th>TARGET ROUTE</th>
<th>DISTANCE</th>
<th>DIFFICULTY</th>
<th>PRIORITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>21 1- 6-11-16-21</td>
<td>4.00</td>
<td>0.54</td>
<td>0.06 0.02</td>
</tr>
<tr>
<td>23 1- 6-11-16-22-23</td>
<td>5.41</td>
<td>0.73</td>
<td>0.06 0.02</td>
</tr>
<tr>
<td>25 1- 6-11-16-22-23-24-25</td>
<td>7.41</td>
<td>1.00</td>
<td>0.06 0.02</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>w_1, w_2, w_3, 21, 23, 25</th>
<th>TARGET SELECTED</th>
<th>COMBINED VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00</td>
<td>1.00</td>
<td>0.00 0.016 0.016 0.016</td>
</tr>
</tbody>
</table>

FOR 80 PERCENT REDUCTION IN AIR-DEFENSE LETHAL RADIUS.

<table>
<thead>
<tr>
<th>TARGET ROUTE</th>
<th>DISTANCE</th>
<th>DIFFICULTY</th>
<th>PRIORITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>21 1- 6-11-16-21</td>
<td>4.00</td>
<td>0.54</td>
<td>0.03 0.01</td>
</tr>
<tr>
<td>23 1- 6-11-16-22-23</td>
<td>5.41</td>
<td>0.73</td>
<td>0.03 0.01</td>
</tr>
<tr>
<td>25 1- 6-11-16-22-23-24-25</td>
<td>7.41</td>
<td>1.00</td>
<td>0.03 0.01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>w_1, w_2, w_3, 21, 23, 25</th>
<th>TARGET SELECTED</th>
<th>COMBINED VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00</td>
<td>1.00</td>
<td>0.00 0.008 0.008 0.008</td>
</tr>
</tbody>
</table>

FOR 90 PERCENT REDUCTION IN AIR-DEFENSE LETHAL RADIUS.

<table>
<thead>
<tr>
<th>TARGET ROUTE</th>
<th>DISTANCE</th>
<th>DIFFICULTY</th>
<th>PRIORITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>21 1- 7-11-16-21</td>
<td>4.83</td>
<td>0.65</td>
<td>0.01 0.00</td>
</tr>
<tr>
<td>23 1- 6-11-16-22-23</td>
<td>5.41</td>
<td>0.73</td>
<td>0.01 0.00</td>
</tr>
<tr>
<td>25 1- 6-11-16-22-23-24-25</td>
<td>7.41</td>
<td>1.00</td>
<td>0.01 0.00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>w_1, w_2, w_3, 21, 23, 25</th>
<th>TARGET SELECTED</th>
<th>COMBINED VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00</td>
<td>1.00</td>
<td>0.00 0.003 0.003 0.003</td>
</tr>
</tbody>
</table>

FOR 100 PERCENT REDUCTION IN AIR-DEFENSE LETHAL RADIUS.

<table>
<thead>
<tr>
<th>TARGET ROUTE</th>
<th>DISTANCE</th>
<th>DIFFICULTY</th>
<th>PRIORITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>21 1- 6-11-16-21</td>
<td>4.00</td>
<td>0.54</td>
<td>0.00 0.00</td>
</tr>
<tr>
<td>23 1- 6-12-17-23</td>
<td>4.83</td>
<td>0.65</td>
<td>0.00 0.00</td>
</tr>
<tr>
<td>25 1- 6-12-17-23-24-25</td>
<td>6.83</td>
<td>0.92</td>
<td>0.00 0.00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>w_1, w_2, w_3, 21, 23, 25</th>
<th>TARGET SELECTED</th>
<th>COMBINED VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00</td>
<td>1.00</td>
<td>0.00 0.000 0.000 0.000</td>
</tr>
</tbody>
</table>
Table A.3: Score Set 1, PK Set 1, Weight Set 1

For $W_1 = 1.00$, $W_2 = 0.00$, $W_3 = 0.00$

$W_1^* = 1.00$, $W_2^* = 0.00$

For 0 percent reduction in air-defense lethal radius:

<table>
<thead>
<tr>
<th>Target Route</th>
<th>Distance</th>
<th>Difficulty</th>
<th>Priority</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Act NOR</td>
<td>ACT NOR</td>
<td>ACT NOR</td>
</tr>
<tr>
<td>21 6-11-16-21</td>
<td>4.00</td>
<td>3.24</td>
<td>60.00 0.50</td>
</tr>
<tr>
<td>23 6-11-17-23</td>
<td>4.83</td>
<td>3.92</td>
<td>60.00 0.73</td>
</tr>
<tr>
<td>25 7-13-19-25</td>
<td>5.66</td>
<td>5.39</td>
<td>80.00 1.00</td>
</tr>
</tbody>
</table>

W_1, W_2, W_3, 21 23 25 Target selected combined value

1.00 0.00 0.00 0.707 0.853 0.999 21 0.71

For 10 percent reduction in air-defense lethal radius:

<table>
<thead>
<tr>
<th>Target Route</th>
<th>Distance</th>
<th>Difficulty</th>
<th>Priority</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Act NOR</td>
<td>ACT NOR</td>
<td>ACT NOR</td>
</tr>
<tr>
<td>21 6-11-16-21</td>
<td>4.00</td>
<td>2.32</td>
<td>40.00 0.50</td>
</tr>
<tr>
<td>23 6-11-17-23</td>
<td>4.83</td>
<td>3.18</td>
<td>60.00 0.73</td>
</tr>
<tr>
<td>25 7-13-19-25</td>
<td>5.66</td>
<td>4.65</td>
<td>80.00 1.00</td>
</tr>
</tbody>
</table>

W_1, W_2, W_3, 21 23 25 Target selected combined value

1.00 0.00 0.00 0.707 0.853 0.999 21 0.71

For 20 percent reduction in air-defense lethal radius:

<table>
<thead>
<tr>
<th>Target Route</th>
<th>Distance</th>
<th>Difficulty</th>
<th>Priority</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Act NOR</td>
<td>ACT NOR</td>
<td>ACT NOR</td>
</tr>
<tr>
<td>21 6-11-16-21</td>
<td>4.00</td>
<td>1.55</td>
<td>40.00 0.50</td>
</tr>
<tr>
<td>23 6-11-17-23</td>
<td>4.83</td>
<td>2.52</td>
<td>60.00 0.73</td>
</tr>
<tr>
<td>25 7-13-19-25</td>
<td>5.66</td>
<td>3.89</td>
<td>80.00 1.00</td>
</tr>
</tbody>
</table>

W_1, W_2, W_3, 21 23 25 Target selected combined value

1.00 0.00 0.00 0.707 0.853 0.999 21 0.71

For 30 percent reduction in air-defense lethal radius.

53
DISTANCE DIFFICULTY PRIORITY

<table>
<thead>
<tr>
<th>TARGET</th>
<th>ROUTE</th>
<th>DISTANCE</th>
<th>DIFFICULTY</th>
<th>PRIORITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>21</td>
<td>1- 6-11-16-21</td>
<td>4.00</td>
<td>0.71</td>
<td>0.92</td>
</tr>
<tr>
<td>23</td>
<td>1- 6-11-17-23</td>
<td>4.83</td>
<td>0.85</td>
<td>1.92</td>
</tr>
<tr>
<td>25</td>
<td>1- 7-13-19-25</td>
<td>5.66</td>
<td>1.00</td>
<td>3.08</td>
</tr>
</tbody>
</table>

\[W_1, W_2, W_3 \] 21 23 25 \textbf{TARGET SELECTED COMBINED VALUE}
1.00 0.00 0.00 0.707 0.853 0.999 21 0.71

FOR 40 PERCENT REDUCTION IN AIR-DEFENSE LETHAL RADIUS.

<table>
<thead>
<tr>
<th>TARGET</th>
<th>ROUTE</th>
<th>DISTANCE</th>
<th>DIFFICULTY</th>
<th>PRIORITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>21</td>
<td>1- 6-11-16-21</td>
<td>4.00</td>
<td>0.71</td>
<td>0.46</td>
</tr>
<tr>
<td>23</td>
<td>1- 6-11-17-23</td>
<td>4.83</td>
<td>0.85</td>
<td>1.46</td>
</tr>
<tr>
<td>25</td>
<td>1- 7-13-19-25</td>
<td>5.66</td>
<td>1.00</td>
<td>2.32</td>
</tr>
</tbody>
</table>

\[W_1, W_2, W_3 \] 21 23 25 \textbf{TARGET SELECTED COMBINED VALUE}
1.00 0.00 0.00 0.707 0.853 0.999 21 0.71

FOR 50 PERCENT REDUCTION IN AIR-DEFENSE LETHAL RADIUS.

<table>
<thead>
<tr>
<th>TARGET</th>
<th>ROUTE</th>
<th>DISTANCE</th>
<th>DIFFICULTY</th>
<th>PRIORITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>21</td>
<td>1- 6-11-16-21</td>
<td>4.00</td>
<td>0.71</td>
<td>0.20</td>
</tr>
<tr>
<td>23</td>
<td>1- 6-11-17-23</td>
<td>4.83</td>
<td>0.85</td>
<td>0.99</td>
</tr>
<tr>
<td>25</td>
<td>1- 7-13-19-25</td>
<td>5.66</td>
<td>1.00</td>
<td>1.57</td>
</tr>
</tbody>
</table>

\[W_1, W_2, W_3 \] 21 23 25 \textbf{TARGET SELECTED COMBINED VALUE}
1.00 0.00 0.00 0.707 0.853 0.999 21 0.71

FOR 60 PERCENT REDUCTION IN AIR-DEFENSE LETHAL RADIUS.

<table>
<thead>
<tr>
<th>TARGET</th>
<th>ROUTE</th>
<th>DISTANCE</th>
<th>DIFFICULTY</th>
<th>PRIORITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>21</td>
<td>1- 6-11-16-21</td>
<td>4.00</td>
<td>0.71</td>
<td>0.13</td>
</tr>
<tr>
<td>23</td>
<td>1- 6-11-17-23</td>
<td>4.83</td>
<td>0.85</td>
<td>0.63</td>
</tr>
<tr>
<td>25</td>
<td>1- 7-13-19-25</td>
<td>5.66</td>
<td>1.00</td>
<td>1.00</td>
</tr>
</tbody>
</table>

\[W_1, W_2, W_3 \] 21 23 25 \textbf{TARGET SELECTED COMBINED VALUE}
1.00 0.00 0.00 0.707 0.853 0.999 21 0.71

FOR 70 PERCENT REDUCTION IN AIR-DEFENSE LETHAL RADIUS.

<table>
<thead>
<tr>
<th>TARGET</th>
<th>ROUTE</th>
<th>DISTANCE</th>
<th>DIFFICULTY</th>
<th>PRIORITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>21</td>
<td>1- 6-11-16-21</td>
<td>4.00</td>
<td>0.71</td>
<td>0.13</td>
</tr>
<tr>
<td>23</td>
<td>1- 6-11-17-23</td>
<td>4.83</td>
<td>0.85</td>
<td>0.63</td>
</tr>
<tr>
<td>25</td>
<td>1- 7-13-19-25</td>
<td>5.66</td>
<td>1.00</td>
<td>1.00</td>
</tr>
</tbody>
</table>

\[W_1, W_2, W_3 \] 21 23 25 \textbf{TARGET SELECTED COMBINED VALUE}
1.00 0.00 0.00 0.707 0.853 0.999 21 0.71

54
<table>
<thead>
<tr>
<th>Target Route</th>
<th>Distance</th>
<th>Difficulty</th>
<th>Priority</th>
</tr>
</thead>
<tbody>
<tr>
<td>21-6-11-16-21</td>
<td>4.00</td>
<td>0.71</td>
<td>0.07</td>
</tr>
<tr>
<td>23-6-11-17-23</td>
<td>4.83</td>
<td>0.85</td>
<td>0.35</td>
</tr>
<tr>
<td>25-1-7-13-19-25</td>
<td>5.66</td>
<td>1.00</td>
<td>0.56</td>
</tr>
</tbody>
</table>

$w_1, w_2, w_3, 21, 23, 25$
Target Selected Combined Value
1.00 0.00 0.00 0.707 0.853 0.999 21 0.71

For 80% Reduction in Air-Defense Lethal Radius.

<table>
<thead>
<tr>
<th>Target</th>
<th>Route</th>
<th>Distance</th>
<th>Difficulty</th>
<th>Priority</th>
</tr>
</thead>
<tbody>
<tr>
<td>21-6-11-16-21</td>
<td>4.00</td>
<td>0.71</td>
<td>0.03</td>
<td>0.01</td>
</tr>
<tr>
<td>23-6-11-17-23</td>
<td>4.83</td>
<td>0.85</td>
<td>0.16</td>
<td>0.03</td>
</tr>
<tr>
<td>25-1-7-13-19-25</td>
<td>5.66</td>
<td>1.00</td>
<td>0.25</td>
<td>0.05</td>
</tr>
</tbody>
</table>

$w_1, w_2, w_3, 21, 23, 25$
Target Selected Combined Value
1.00 0.00 0.00 0.707 0.853 0.999 21 0.71

For 90% Reduction in Air-Defense Lethal Radius.

<table>
<thead>
<tr>
<th>Target</th>
<th>Route</th>
<th>Distance</th>
<th>Difficulty</th>
<th>Priority</th>
</tr>
</thead>
<tbody>
<tr>
<td>21-6-11-16-21</td>
<td>4.00</td>
<td>0.71</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>23-6-11-17-23</td>
<td>4.83</td>
<td>0.85</td>
<td>0.00</td>
<td>0.01</td>
</tr>
<tr>
<td>25-1-7-13-19-25</td>
<td>5.66</td>
<td>1.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
</tbody>
</table>

$w_1, w_2, w_3, 21, 23, 25$
Target Selected Combined Value
1.00 0.00 0.00 0.707 0.853 0.999 21 0.71

For 100% Reduction in Air-Defense Lethal Radius.

<table>
<thead>
<tr>
<th>Target</th>
<th>Route</th>
<th>Distance</th>
<th>Difficulty</th>
<th>Priority</th>
</tr>
</thead>
<tbody>
<tr>
<td>21-6-11-16-21</td>
<td>4.00</td>
<td>0.71</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>23-6-11-17-23</td>
<td>4.83</td>
<td>0.85</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>25-1-7-13-19-25</td>
<td>5.66</td>
<td>1.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
</tbody>
</table>

$w_1, w_2, w_3, 21, 23, 25$
Target Selected Combined Value
1.00 0.00 0.00 0.707 0.853 0.999 21 0.71
TABLE A.4: HOME SET 1, PK SET 1, WEIGHT SET 2

For $W_1 = 0.00$, $W_2 = 1.00$, $W_3 = 0.00$

$W_1^* = 0.00$, $W_2^* = 1.00$

For 0 percent reduction in air-defense lethal radius.

<table>
<thead>
<tr>
<th>TARGET ROUTE</th>
<th>DISTANCE</th>
<th>DIFFICULTY</th>
<th>PRIORITY</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ACT</td>
<td>NOR</td>
<td>ACT</td>
</tr>
<tr>
<td>21 1-6-11-16-21</td>
<td>4.00 0.54</td>
<td>3.24 0.83</td>
<td>40.00 0.50</td>
</tr>
<tr>
<td>23 1-6-11-17-23</td>
<td>4.83 0.65</td>
<td>3.92 1.00</td>
<td>60.00 0.75</td>
</tr>
<tr>
<td>25 1-6-12-18-24-25</td>
<td>6.24 0.84</td>
<td>3.70 0.94</td>
<td>80.00 1.00</td>
</tr>
</tbody>
</table>

W_1, W_2, W_3, 21, 23, 25: Target selected combined value

0.00 1.00 0.00 0.827 1.000 0.944 21 0.83

For 10 percent reduction in air-defense lethal radius.

<table>
<thead>
<tr>
<th>TARGET ROUTE</th>
<th>DISTANCE</th>
<th>DIFFICULTY</th>
<th>PRIORITY</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ACT</td>
<td>NOR</td>
<td>ACT</td>
</tr>
<tr>
<td>21 1-6-11-16-21</td>
<td>4.00 0.54</td>
<td>2.32 0.59</td>
<td>40.00 0.50</td>
</tr>
<tr>
<td>23 1-6-11-17-23</td>
<td>4.83 0.65</td>
<td>3.18 0.81</td>
<td>60.00 0.75</td>
</tr>
<tr>
<td>25 1-6-12-18-24-25</td>
<td>6.24 0.84</td>
<td>3.06 0.78</td>
<td>80.00 1.00</td>
</tr>
</tbody>
</table>

W_1, W_2, W_3, 21, 23, 25: Target selected combined value

0.00 1.00 0.00 0.592 0.811 0.781 21 0.59

For 20 percent reduction in air-defense lethal radius.

<table>
<thead>
<tr>
<th>TARGET ROUTE</th>
<th>DISTANCE</th>
<th>DIFFICULTY</th>
<th>PRIORITY</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ACT</td>
<td>NOR</td>
<td>ACT</td>
</tr>
<tr>
<td>21 1-6-11-16-21</td>
<td>4.00 0.54</td>
<td>1.55 0.40</td>
<td>40.00 0.50</td>
</tr>
<tr>
<td>23 1-6-11-16-22-23</td>
<td>5.41 0.73</td>
<td>2.50 0.64</td>
<td>60.00 0.75</td>
</tr>
<tr>
<td>25 1-2-3-4-10-15-20-25</td>
<td>7.41 1.00</td>
<td>2.53 0.65</td>
<td>80.00 1.00</td>
</tr>
</tbody>
</table>

W_1, W_2, W_3, 21, 23, 25: Target selected combined value

0.00 1.00 0.00 0.395 0.638 0.645 21 0.40

For 30 percent reduction in air-defense lethal radius.

56
<table>
<thead>
<tr>
<th>TARGET ROUTE</th>
<th>DISTANCE</th>
<th>DIFFICULTY</th>
<th>PRIORITY</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ACT</td>
<td>NOR</td>
<td>ACT</td>
</tr>
<tr>
<td>21 1-6-11-16-21</td>
<td>4.00</td>
<td>0.54</td>
<td>0.92</td>
</tr>
<tr>
<td>23 1-6-11-16-22-23</td>
<td>5.41</td>
<td>0.73</td>
<td>1.46</td>
</tr>
<tr>
<td>25 1-6-11-16-22-23-24-25</td>
<td>7.41</td>
<td>1.00</td>
<td>1.46</td>
</tr>
</tbody>
</table>

W_1, W_2, W_3 21 23 25 TARGET SELECTED COMBINED VALUE
0.00 1.00 0.00 0.235 0.372 0.372 21 0.24

FOR 40 PERCENT REDUCTION IN AIR-DEFENSE LETHAL RADIUS.

<table>
<thead>
<tr>
<th>TARGET ROUTE</th>
<th>DISTANCE</th>
<th>DIFFICULTY</th>
<th>PRIORITY</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ACT</td>
<td>NOR</td>
<td>ACT</td>
</tr>
<tr>
<td>21 1-6-11-16-21</td>
<td>4.00</td>
<td>0.54</td>
<td>0.64</td>
</tr>
<tr>
<td>23 1-6-11-16-22-23</td>
<td>5.41</td>
<td>0.73</td>
<td>0.64</td>
</tr>
<tr>
<td>25 1-6-11-16-22-23-24-25</td>
<td>7.41</td>
<td>1.00</td>
<td>0.64</td>
</tr>
</tbody>
</table>

W_1, W_2, W_3 21 23 25 TARGET SELECTED COMBINED VALUE
0.00 1.00 0.00 0.117 0.163 0.163 21 0.12

FOR 50 PERCENT REDUCTION IN AIR-DEFENSE LETHAL RADIUS.

<table>
<thead>
<tr>
<th>TARGET ROUTE</th>
<th>DISTANCE</th>
<th>DIFFICULTY</th>
<th>PRIORITY</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ACT</td>
<td>NOR</td>
<td>ACT</td>
</tr>
<tr>
<td>21 1-6-11-16-21</td>
<td>4.00</td>
<td>0.54</td>
<td>0.20</td>
</tr>
<tr>
<td>23 1-6-11-16-22-23</td>
<td>5.41</td>
<td>0.73</td>
<td>0.20</td>
</tr>
<tr>
<td>25 1-6-11-16-22-23-24-25</td>
<td>7.41</td>
<td>1.00</td>
<td>0.20</td>
</tr>
</tbody>
</table>

W_1, W_2, W_3 21 23 25 TARGET SELECTED COMBINED VALUE
0.00 1.00 0.00 0.051 0.051 0.051 21/23/25 0.05

FOR 60 PERCENT REDUCTION IN AIR-DEFENSE LETHAL RADIUS.

<table>
<thead>
<tr>
<th>TARGET ROUTE</th>
<th>DISTANCE</th>
<th>DIFFICULTY</th>
<th>PRIORITY</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ACT</td>
<td>NOR</td>
<td>ACT</td>
</tr>
<tr>
<td>21 1-6-11-16-21</td>
<td>4.00</td>
<td>0.54</td>
<td>0.13</td>
</tr>
<tr>
<td>23 1-6-11-16-22-23</td>
<td>5.41</td>
<td>0.73</td>
<td>0.13</td>
</tr>
<tr>
<td>25 1-6-11-16-22-23-24-25</td>
<td>7.41</td>
<td>1.00</td>
<td>0.13</td>
</tr>
</tbody>
</table>

W_1, W_2, W_3 21 23 25 TARGET SELECTED COMBINED VALUE
0.00 1.00 0.00 0.033 0.033 0.033 21/23/25 0.03

FOR 70 PERCENT REDUCTION IN AIR-DEFENSE LETHAL RADIUS.

<table>
<thead>
<tr>
<th>TARGET ROUTE</th>
<th>DISTANCE</th>
<th>DIFFICULTY</th>
<th>PRIORITY</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ACT</td>
<td>NOR</td>
<td>ACT</td>
</tr>
</tbody>
</table>

57
<table>
<thead>
<tr>
<th>Target Route</th>
<th>Distance</th>
<th>Difficulty</th>
<th>Priority</th>
</tr>
</thead>
<tbody>
<tr>
<td>21 1- 6-11-16-21</td>
<td>4.00</td>
<td>0.54</td>
<td>0.07 0.02</td>
</tr>
<tr>
<td>23 1- 6-11-16-22-23</td>
<td>5.41</td>
<td>0.73</td>
<td>0.07 0.02</td>
</tr>
<tr>
<td>25 1- 6-11-16-22-23-24-25</td>
<td>7.41</td>
<td>1.00</td>
<td>0.07 0.02</td>
</tr>
</tbody>
</table>

W, W, W, 21 23 25 Target Selected Combined Value

0.00 1.00 0.00 0.018 0.018 0.018 21/23/25 0.02

For 80 percent reduction in air-defense lethal radius.

<table>
<thead>
<tr>
<th>Target Route</th>
<th>Distance</th>
<th>Difficulty</th>
<th>Priority</th>
</tr>
</thead>
<tbody>
<tr>
<td>21 1- 6-11-16-21</td>
<td>4.00</td>
<td>0.54</td>
<td>0.03 0.01</td>
</tr>
<tr>
<td>23 1- 6-11-16-22-23</td>
<td>5.41</td>
<td>0.73</td>
<td>0.03 0.01</td>
</tr>
<tr>
<td>25 1- 6-11-16-22-23-24-25</td>
<td>7.41</td>
<td>1.00</td>
<td>0.03 0.01</td>
</tr>
</tbody>
</table>

W, W, W, 21 23 25 Target Selected Combined Value

0.00 1.00 0.00 0.008 0.008 0.008 21/23/25 0.01

For 90 percent reduction in air-defense lethal radius.

<table>
<thead>
<tr>
<th>Target Route</th>
<th>Distance</th>
<th>Difficulty</th>
<th>Priority</th>
</tr>
</thead>
<tbody>
<tr>
<td>21 1- 6-11-16-21</td>
<td>4.00</td>
<td>0.54</td>
<td>0.01 0.00</td>
</tr>
<tr>
<td>23 1- 6-11-16-22-23</td>
<td>5.41</td>
<td>0.73</td>
<td>0.01 0.00</td>
</tr>
<tr>
<td>25 1- 6-11-16-22-23-24-25</td>
<td>7.41</td>
<td>1.00</td>
<td>0.01 0.00</td>
</tr>
</tbody>
</table>

W, W, W, 21 23 25 Target Selected Combined Value

0.00 1.00 0.00 0.003 0.003 0.003 21/23/25 0.00

For 100 percent reduction in air-defense lethal radius.

<table>
<thead>
<tr>
<th>Target Route</th>
<th>Distance</th>
<th>Difficulty</th>
<th>Priority</th>
</tr>
</thead>
<tbody>
<tr>
<td>21 1- 6-11-16-21</td>
<td>4.00</td>
<td>0.54</td>
<td>0.00 0.00</td>
</tr>
<tr>
<td>23 1- 6-12-17-23</td>
<td>4.83</td>
<td>0.65</td>
<td>0.00 0.00</td>
</tr>
<tr>
<td>25 1- 6-12-17-23-24-25</td>
<td>6.83</td>
<td>0.92</td>
<td>0.00 0.00</td>
</tr>
</tbody>
</table>

W, W, W, 21 23 25 Target Selected Combined Value

0.00 1.00 0.00 0.000 0.000 0.000 21/23/25 0.00
Table A.5: Mode Set 1, PK Set 1, Weight Set 3

For $w_1 = 0.33 \quad w_2 = 0.33 \quad w_3 = 0.33$

$w_1^* = 0.50 \quad w_2^* = 0.50$

For 0% Reduction in Air-Defense Lethal Radius.

<table>
<thead>
<tr>
<th>Target Route</th>
<th>Distance</th>
<th>Difficulty</th>
<th>Priority</th>
</tr>
</thead>
<tbody>
<tr>
<td>21 1- 6-11-16-21</td>
<td>4.00</td>
<td>0.64</td>
<td>3.24</td>
</tr>
<tr>
<td>23 1- 6-11-17-23</td>
<td>4.83</td>
<td>0.77</td>
<td>3.92</td>
</tr>
<tr>
<td>25 1- 6-12-18-24-25</td>
<td>6.24</td>
<td>1.00</td>
<td>3.70</td>
</tr>
</tbody>
</table>

$w_1 \quad w_2 \quad w_3 \quad 21 \quad 23 \quad 25 \quad \text{Target Selected Combined Value} \quad 0.33 \quad 0.33 \quad 0.33 \quad 0.655 \quad 0.674 \quad 0.647 \quad 25/21 \quad 0.65$

For 10% Reduction in Air-Defense Lethal Radius.

<table>
<thead>
<tr>
<th>Target Route</th>
<th>Distance</th>
<th>Difficulty</th>
<th>Priority</th>
</tr>
</thead>
<tbody>
<tr>
<td>21 1- 6-11-16-21</td>
<td>4.00</td>
<td>0.64</td>
<td>2.32</td>
</tr>
<tr>
<td>23 1- 6-11-17-23</td>
<td>4.83</td>
<td>0.77</td>
<td>3.18</td>
</tr>
<tr>
<td>25 1- 6-12-18-24-25</td>
<td>6.24</td>
<td>1.00</td>
<td>3.06</td>
</tr>
</tbody>
</table>

$w_1 \quad w_2 \quad w_3 \quad 21 \quad 23 \quad 25 \quad \text{Target Selected Combined Value} \quad 0.33 \quad 0.33 \quad 0.33 \quad 0.577 \quad 0.611 \quad 0.593 \quad 21 \quad 0.58$

For 20% Reduction in Air-Defense Lethal Radius.

<table>
<thead>
<tr>
<th>Target Route</th>
<th>Distance</th>
<th>Difficulty</th>
<th>Priority</th>
</tr>
</thead>
<tbody>
<tr>
<td>21 1- 6-11-16-21</td>
<td>4.00</td>
<td>0.64</td>
<td>1.55</td>
</tr>
<tr>
<td>23 1- 6-11-17-23</td>
<td>4.83</td>
<td>0.77</td>
<td>2.52</td>
</tr>
<tr>
<td>25 1- 6-12-18-24-25</td>
<td>6.24</td>
<td>1.00</td>
<td>2.62</td>
</tr>
</tbody>
</table>

$w_1 \quad w_2 \quad w_3 \quad 21 \quad 23 \quad 25 \quad \text{Target Selected Combined Value} \quad 0.33 \quad 0.33 \quad 0.33 \quad 0.512 \quad 0.555 \quad 0.556 \quad 21 \quad 0.51$

For 30% Reduction in Air-Defense Lethal Radius.
<table>
<thead>
<tr>
<th>TARGET ROUTE</th>
<th>DISTANCE</th>
<th>DIFFICULTY</th>
<th>PRIORITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>21 1- 6-11-16-21</td>
<td>4.00 0.64</td>
<td>0.92 0.23</td>
<td>40.00 0.50</td>
</tr>
<tr>
<td>23 1- 6-11-17-23</td>
<td>4.83 0.77</td>
<td>1.92 0.49</td>
<td>60.00 0.75</td>
</tr>
<tr>
<td>25 1- 2- 8-14-20-25</td>
<td>6.24 1.00</td>
<td>2.07 0.53</td>
<td>80.00 1.00</td>
</tr>
</tbody>
</table>

\[W_1, W_2, W_3, 21, 23, 25 \] TARGET SELECTED COMBINED VALUE

\[0.33, 0.33, 0.458, 0.504, 0.509, 21, 0.46 \]

FOR 40 PERCENT REDUCTION IN AIR-DEFENSE LETHAL RADIUS.

<table>
<thead>
<tr>
<th>TARGET ROUTE</th>
<th>DISTANCE</th>
<th>DIFFICULTY</th>
<th>PRIORITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>21 1- 6-11-16-21</td>
<td>4.00 0.64</td>
<td>0.64 0.12</td>
<td>40.00 0.50</td>
</tr>
<tr>
<td>23 1- 6-11-16-22-23</td>
<td>5.41 0.87</td>
<td>0.64 0.16</td>
<td>60.00 0.75</td>
</tr>
<tr>
<td>25 1- 2- 8-14-20-25</td>
<td>6.24 1.00</td>
<td>1.31 0.33</td>
<td>80.00 1.00</td>
</tr>
</tbody>
</table>

\[W_1, W_2, W_3, 21, 23, 25 \] TARGET SELECTED COMBINED VALUE

\[0.33, 0.33, 0.419, 0.427, 0.444, 21/23, 0.42 \]

FOR 50 PERCENT REDUCTION IN AIR-DEFENSE LETHAL RADIUS.

<table>
<thead>
<tr>
<th>TARGET ROUTE</th>
<th>DISTANCE</th>
<th>DIFFICULTY</th>
<th>PRIORITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>21 1- 6-11-16-21</td>
<td>4.00 0.64</td>
<td>0.20 0.05</td>
<td>40.00 0.50</td>
</tr>
<tr>
<td>23 1- 6-11-16-22-23</td>
<td>5.41 0.87</td>
<td>0.20 0.05</td>
<td>60.00 0.75</td>
</tr>
<tr>
<td>25 1- 7- 8-14-20-25</td>
<td>6.24 1.00</td>
<td>0.79 0.20</td>
<td>80.00 1.00</td>
</tr>
</tbody>
</table>

\[W_1, W_2, W_3, 21, 23, 25 \] TARGET SELECTED COMBINED VALUE

\[0.33, 0.33, 0.397, 0.389, 0.400, 23/21, 0.39 \]

FOR 60 PERCENT REDUCTION IN AIR-DEFENSE LETHAL RADIUS.

<table>
<thead>
<tr>
<th>TARGET ROUTE</th>
<th>DISTANCE</th>
<th>DIFFICULTY</th>
<th>PRIORITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>21 1- 6-11-16-21</td>
<td>4.00 0.64</td>
<td>0.13 0.03</td>
<td>40.00 0.50</td>
</tr>
<tr>
<td>23 1- 6-11-17-23</td>
<td>4.83 0.77</td>
<td>0.63 0.16</td>
<td>60.00 0.75</td>
</tr>
<tr>
<td>25 1- 7-13-19-25</td>
<td>5.66 0.91</td>
<td>1.00 0.26</td>
<td>80.00 1.00</td>
</tr>
</tbody>
</table>

\[W_1, W_2, W_3, 21, 23, 25 \] TARGET SELECTED COMBINED VALUE

\[0.33, 0.33, 0.391, 0.394, 0.387, 25/21/23, 0.39 \]

FOR 70 PERCENT REDUCTION IN AIR-DEFENSE LETHAL RADIUS.

<table>
<thead>
<tr>
<th>TARGET ROUTE</th>
<th>DISTANCE</th>
<th>DIFFICULTY</th>
<th>PRIORITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>21 1- 6-11-16-21</td>
<td>4.00 0.64</td>
<td>0.13 0.03</td>
<td>40.00 0.50</td>
</tr>
<tr>
<td>23 1- 6-11-17-23</td>
<td>4.83 0.77</td>
<td>0.63 0.16</td>
<td>60.00 0.75</td>
</tr>
<tr>
<td>25 1- 7-13-19-25</td>
<td>5.66 0.91</td>
<td>1.00 0.26</td>
<td>80.00 1.00</td>
</tr>
</tbody>
</table>

\[W_1, W_2, W_3, 21, 23, 25 \] TARGET SELECTED COMBINED VALUE

\[0.33, 0.33, 0.391, 0.394, 0.387, 25/21/23, 0.39 \]
For 80 percent reduction in air-defense lethal radius:

<table>
<thead>
<tr>
<th>Target Route</th>
<th>Distance</th>
<th>Difficulty</th>
<th>Priority</th>
</tr>
</thead>
<tbody>
<tr>
<td>21 1-6-11-16-21</td>
<td>4.00</td>
<td>0.64</td>
<td>0.07</td>
</tr>
<tr>
<td>23 1-6-11-17-23</td>
<td>4.83</td>
<td>0.77</td>
<td>0.35</td>
</tr>
<tr>
<td>25 1-7-13-19-25</td>
<td>5.66</td>
<td>0.91</td>
<td>0.56</td>
</tr>
</tbody>
</table>

\(w_1 \), \(w_2 \), \(w_3 \), 21 23 25 Target selected combined value

0.33 0.33 0.33 0.386 0.371 0.349 25 0.35

For 90 percent reduction in air-defense lethal radius:

<table>
<thead>
<tr>
<th>Target Route</th>
<th>Distance</th>
<th>Difficulty</th>
<th>Priority</th>
</tr>
</thead>
<tbody>
<tr>
<td>21 1-6-11-16-21</td>
<td>4.00</td>
<td>0.64</td>
<td>0.01</td>
</tr>
<tr>
<td>23 1-6-11-17-23</td>
<td>4.83</td>
<td>0.77</td>
<td>0.04</td>
</tr>
<tr>
<td>25 1-7-13-19-25</td>
<td>5.66</td>
<td>0.91</td>
<td>0.25</td>
</tr>
</tbody>
</table>

\(w_1 \), \(w_2 \), \(w_3 \), 21 23 25 Target selected combined value

0.33 0.33 0.33 0.381 0.344 0.308 25 0.31

For 100 percent reduction in air-defense lethal radius:

<table>
<thead>
<tr>
<th>Target Route</th>
<th>Distance</th>
<th>Difficulty</th>
<th>Priority</th>
</tr>
</thead>
<tbody>
<tr>
<td>21 1-6-11-16-21</td>
<td>4.00</td>
<td>0.64</td>
<td>0.00</td>
</tr>
<tr>
<td>23 1-6-11-17-23</td>
<td>4.83</td>
<td>0.77</td>
<td>0.00</td>
</tr>
<tr>
<td>25 1-7-13-19-25</td>
<td>5.66</td>
<td>0.91</td>
<td>0.00</td>
</tr>
</tbody>
</table>

\(w_1 \), \(w_2 \), \(w_3 \), 21 23 25 Target selected combined value

0.33 0.33 0.33 0.380 0.341 0.302 25 0.30
Table 8.4: More Case 1, PK Set 1, Weight Set 4

For $W_1 = 0.50$, $W_2 = 0.25$, $W_3 = 0.25$

$W_1^* = 0.67$, $W_2^* = 0.33$

For 0 Percent Reduction in Air-Defense Lethal Radius.

<table>
<thead>
<tr>
<th>Target Route</th>
<th>Distance</th>
<th>Difficulty</th>
<th>Priority</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Act</td>
<td>Nor</td>
<td>Act</td>
</tr>
<tr>
<td>21 1-6-11-16-21</td>
<td>4.00 0.64</td>
<td>3.24 0.83</td>
<td>40.00 0.50</td>
</tr>
<tr>
<td>23 1-6-11-17-23</td>
<td>4.83 0.77</td>
<td>3.92 1.00</td>
<td>60.00 0.75</td>
</tr>
<tr>
<td>25 1-6-12-18-24-25</td>
<td>6.24 1.00</td>
<td>3.70 0.94</td>
<td>80.00 1.00</td>
</tr>
</tbody>
</table>

W_1, W_2, W_3 21 23 25 Target Selected Combined Value

0.50 0.25 0.25 0.652 0.699 0.736 21 0.65

For 10 Percent Reduction in Air-Defense Lethal Radius.

<table>
<thead>
<tr>
<th>Target Route</th>
<th>Distance</th>
<th>Difficulty</th>
<th>Priority</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Act</td>
<td>Nor</td>
<td>Act</td>
</tr>
<tr>
<td>21 1-6-11-16-21</td>
<td>4.00 0.64</td>
<td>2.32 0.59</td>
<td>40.00 0.50</td>
</tr>
<tr>
<td>23 1-6-11-17-23</td>
<td>4.83 0.77</td>
<td>3.18 0.81</td>
<td>60.00 0.75</td>
</tr>
<tr>
<td>25 1-6-12-18-24-25</td>
<td>6.24 1.00</td>
<td>3.06 0.78</td>
<td>80.00 1.00</td>
</tr>
</tbody>
</table>

W_1, W_2, W_3 21 23 25 Target Selected Combined Value

0.50 0.25 0.25 0.593 0.652 0.695 21 0.59

For 20 Percent Reduction in Air-Defense Lethal Radius.

<table>
<thead>
<tr>
<th>Target Route</th>
<th>Distance</th>
<th>Difficulty</th>
<th>Priority</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Act</td>
<td>Nor</td>
<td>Act</td>
</tr>
<tr>
<td>21 1-6-11-16-21</td>
<td>4.00 0.64</td>
<td>1.55 0.40</td>
<td>40.00 0.50</td>
</tr>
<tr>
<td>23 1-6-11-17-23</td>
<td>4.83 0.77</td>
<td>2.52 0.64</td>
<td>60.00 0.75</td>
</tr>
<tr>
<td>25 1-6-12-18-24-25</td>
<td>6.24 1.00</td>
<td>2.62 0.67</td>
<td>80.00 1.00</td>
</tr>
</tbody>
</table>

W_1, W_2, W_3 21 23 25 Target Selected Combined Value

0.50 0.25 0.25 0.264 0.610 0.667 21 0.54

For 30 Percent Reduction in Air-Defense Lethal Radius.

62
<table>
<thead>
<tr>
<th>TARGET ROUTE</th>
<th>DISTANCE</th>
<th>DIFFICULTY</th>
<th>PRIORITY</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ACT</td>
<td>NOR</td>
<td>ACT</td>
</tr>
<tr>
<td>21 1-6-11-16-21</td>
<td>4.00</td>
<td>0.64</td>
<td>0.92</td>
</tr>
<tr>
<td>23 1-6-11-17-23</td>
<td>4.83</td>
<td>0.77</td>
<td>1.92</td>
</tr>
<tr>
<td>25 1-7-13-19-25</td>
<td>5.66</td>
<td>0.91</td>
<td>3.08</td>
</tr>
</tbody>
</table>

\[W_1, W_2, W_3, W_4, 21, 23, 25 \] TARGET SELECTED COMBINED VALUE

\[0.50 \quad 0.25 \quad 0.25 \quad 0.504 \quad 0.572 \quad 0.650 \quad 21 \quad 0.50 \]

FOR 40 PERCENT REDUCTION IN AIR-DEFENSE LETHAL RADIUS.

<table>
<thead>
<tr>
<th>TARGET ROUTE</th>
<th>DISTANCE</th>
<th>DIFFICULTY</th>
<th>PRIORITY</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ACT</td>
<td>NOR</td>
<td>ACT</td>
</tr>
<tr>
<td>21 1-6-11-16-21</td>
<td>4.00</td>
<td>0.64</td>
<td>0.46</td>
</tr>
<tr>
<td>23 1-6-11-17-23</td>
<td>4.83</td>
<td>0.77</td>
<td>1.46</td>
</tr>
<tr>
<td>25 1-7-13-19-25</td>
<td>5.66</td>
<td>0.91</td>
<td>2.32</td>
</tr>
</tbody>
</table>

\[W_1, W_2, W_3, W_4, 21, 23, 25 \] TARGET SELECTED COMBINED VALUE

\[0.50 \quad 0.25 \quad 0.25 \quad 0.475 \quad 0.543 \quad 0.601 \quad 21 \quad 0.48 \]

FOR 50 PERCENT REDUCTION IN AIR-DEFENSE LETHAL RADIUS.

<table>
<thead>
<tr>
<th>TARGET ROUTE</th>
<th>DISTANCE</th>
<th>DIFFICULTY</th>
<th>PRIORITY</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ACT</td>
<td>NOR</td>
<td>ACT</td>
</tr>
<tr>
<td>21 1-6-11-16-21</td>
<td>4.00</td>
<td>0.64</td>
<td>0.20</td>
</tr>
<tr>
<td>23 1-6-11-17-23</td>
<td>4.83</td>
<td>0.77</td>
<td>0.99</td>
</tr>
<tr>
<td>25 1-7-13-19-25</td>
<td>5.66</td>
<td>0.91</td>
<td>1.57</td>
</tr>
</tbody>
</table>

\[W_1, W_2, W_3, W_4, 21, 23, 25 \] TARGET SELECTED COMBINED VALUE

\[0.50 \quad 0.25 \quad 0.25 \quad 0.458 \quad 0.513 \quad 0.553 \quad 21 \quad 0.46 \]

FOR 60 PERCENT REDUCTION IN AIR-DEFENSE LETHAL RADIUS.

<table>
<thead>
<tr>
<th>TARGET ROUTE</th>
<th>DISTANCE</th>
<th>DIFFICULTY</th>
<th>PRIORITY</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ACT</td>
<td>NOR</td>
<td>ACT</td>
</tr>
<tr>
<td>21 1-6-11-16-21</td>
<td>4.00</td>
<td>0.64</td>
<td>0.13</td>
</tr>
<tr>
<td>23 1-6-11-17-23</td>
<td>4.83</td>
<td>0.77</td>
<td>0.63</td>
</tr>
<tr>
<td>25 1-7-13-19-25</td>
<td>5.66</td>
<td>0.91</td>
<td>1.00</td>
</tr>
</tbody>
</table>

\[W_1, W_2, W_3, W_4, 21, 23, 25 \] TARGET SELECTED COMBINED VALUE

\[0.50 \quad 0.25 \quad 0.25 \quad 0.454 \quad 0.490 \quad 0.517 \quad 21 \quad 0.45 \]

FOR 70 PERCENT REDUCTION IN AIR-DEFENSE LETHAL RADIUS.
<table>
<thead>
<tr>
<th>TARGET ROUTE</th>
<th>DISTANCE</th>
<th>DIFFICULTY</th>
<th>PRIORITY</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ACT</td>
<td>NOR</td>
<td>ACT</td>
</tr>
<tr>
<td>21 1- 6-11-16-21</td>
<td>4.00</td>
<td>0.64</td>
<td>0.03</td>
</tr>
<tr>
<td>22 1- 6-11-17-23</td>
<td>4.83</td>
<td>0.77</td>
<td>0.16</td>
</tr>
<tr>
<td>25 1- 7-13-19-25</td>
<td>5.66</td>
<td>0.91</td>
<td>0.25</td>
</tr>
</tbody>
</table>

\[W_1, W_2, W_3, 21, 23, 25 \] TARGET SELECTED COMBINED VALUE

\[0.50, 0.25, 0.25, 0.447, 0.460, 0.469, 21, 0.45 \]

FOR 80 PERCENT REDUCTION IN AIR-DEFENSE LETHAL RADIUS.

<table>
<thead>
<tr>
<th>TARGET ROUTE</th>
<th>DISTANCE</th>
<th>DIFFICULTY</th>
<th>PRIORITY</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ACT</td>
<td>NOR</td>
<td>ACT</td>
</tr>
<tr>
<td>21 1- 6-11-16-21</td>
<td>4.00</td>
<td>0.64</td>
<td>0.03</td>
</tr>
<tr>
<td>22 1- 6-11-17-23</td>
<td>4.83</td>
<td>0.77</td>
<td>0.16</td>
</tr>
<tr>
<td>25 1- 7-13-19-25</td>
<td>5.66</td>
<td>0.91</td>
<td>0.25</td>
</tr>
</tbody>
</table>

\[W_1, W_2, W_3, 21, 23, 25 \] TARGET SELECTED COMBINED VALUE

\[0.50, 0.25, 0.25, 0.447, 0.460, 0.469, 21, 0.45 \]

FOR 90 PERCENT REDUCTION IN AIR-DEFENSE LETHAL RADIUS.

<table>
<thead>
<tr>
<th>TARGET ROUTE</th>
<th>DISTANCE</th>
<th>DIFFICULTY</th>
<th>PRIORITY</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ACT</td>
<td>NOR</td>
<td>ACT</td>
</tr>
<tr>
<td>21 1- 6-11-16-21</td>
<td>4.00</td>
<td>0.64</td>
<td>0.03</td>
</tr>
<tr>
<td>22 1- 6-11-17-23</td>
<td>4.83</td>
<td>0.77</td>
<td>0.16</td>
</tr>
<tr>
<td>25 1- 7-13-19-25</td>
<td>5.66</td>
<td>0.91</td>
<td>0.25</td>
</tr>
</tbody>
</table>

\[W_1, W_2, W_3, 21, 23, 25 \] TARGET SELECTED COMBINED VALUE

\[0.50, 0.25, 0.25, 0.446, 0.449, 0.452, 21/23, 0.45 \]

FOR 100 PERCENT REDUCTION IN AIR-DEFENSE LETHAL RADIUS.
Table A.7: More Set 1, PK Set 1, Weight Set 5

For $W_1 = 0.25$, $W_2 = 0.50$, $W_3 = 0.25$
$W_1^* = 0.33$, $W_2^* = 0.67$

For 0 percent reduction in air-defense lethal radius.

<table>
<thead>
<tr>
<th>Target Route</th>
<th>Distance</th>
<th>Difficulty</th>
<th>Priority</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ACT NOR</td>
<td>ACT NOR</td>
<td>ACT NOR</td>
</tr>
<tr>
<td>21 1-6-11-16-21</td>
<td>4.00</td>
<td>0.54</td>
<td>3.24</td>
</tr>
<tr>
<td>23 1-6-11-17-23</td>
<td>4.83</td>
<td>0.65</td>
<td>3.92</td>
</tr>
<tr>
<td>25 1-6-12-18-24-25</td>
<td>6.24</td>
<td>0.84</td>
<td>3.70</td>
</tr>
</tbody>
</table>

W_1, W_2, W_3 21 23 25 Target Selected Combined Value

0.25 0.50 0.25 0.673 0.725 0.683 21/25 0.67

For 10 percent reduction in air-defense lethal radius.

<table>
<thead>
<tr>
<th>Target Route</th>
<th>Distance</th>
<th>Difficulty</th>
<th>Priority</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ACT NOR</td>
<td>ACT NOR</td>
<td>ACT NOR</td>
</tr>
<tr>
<td>21 1-6-11-16-21</td>
<td>4.00</td>
<td>0.54</td>
<td>2.32</td>
</tr>
<tr>
<td>23 1-6-11-17-23</td>
<td>4.83</td>
<td>0.65</td>
<td>3.18</td>
</tr>
<tr>
<td>25 1-6-12-18-24-25</td>
<td>6.24</td>
<td>0.84</td>
<td>3.06</td>
</tr>
</tbody>
</table>

W_1, W_2, W_3 21 23 25 Target Selected Combined Value

0.25 0.50 0.25 0.556 0.631 0.601 21 0.56

For 20 percent reduction in air-defense lethal radius.

<table>
<thead>
<tr>
<th>Target Route</th>
<th>Distance</th>
<th>Difficulty</th>
<th>Priority</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ACT NOR</td>
<td>ACT NOR</td>
<td>ACT NOR</td>
</tr>
<tr>
<td>21 1-6-11-16-21</td>
<td>4.00</td>
<td>0.54</td>
<td>1.55</td>
</tr>
<tr>
<td>23 1-6-11-17-23</td>
<td>4.83</td>
<td>0.65</td>
<td>2.52</td>
</tr>
<tr>
<td>25 1-6-12-18-24-25</td>
<td>6.24</td>
<td>0.84</td>
<td>2.62</td>
</tr>
</tbody>
</table>

W_1, W_2, W_3 21 23 25 Target Selected Combined Value

0.25 0.50 0.25 0.458 0.547 0.545 21 0.46

For 30 percent reduction in air-defense lethal radius.

65
<table>
<thead>
<tr>
<th>TARGET</th>
<th>ROUTE</th>
<th>DISTANCE</th>
<th>DIFFICULTY</th>
<th>PRIORITY</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>ACT NOR</td>
<td>ACT NOR</td>
<td>ACT NOR</td>
</tr>
<tr>
<td>21</td>
<td>1- 6-11-16-21</td>
<td>4.00</td>
<td>0.54</td>
<td>0.92</td>
</tr>
<tr>
<td>23</td>
<td>1- 6-11-16-22-23</td>
<td>5.41</td>
<td>0.73</td>
<td>1.46</td>
</tr>
<tr>
<td>25</td>
<td>1- 6-11-16-22-23-24-25</td>
<td>7.41</td>
<td>1.00</td>
<td>1.46</td>
</tr>
</tbody>
</table>

$W_1, W_2, W_3, 21, 23, 25$ TARGET SELECTED COMBINED VALUE

0.25 0.50 0.25 0.377 0.431 0.436 21 0.38

FOR 40 PERCENT REDUCTION IN AIR-DEFENSE LETHAL RADIUS.

<table>
<thead>
<tr>
<th>TARGET</th>
<th>ROUTE</th>
<th>DISTANCE</th>
<th>DIFFICULTY</th>
<th>PRIORITY</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>ACT NOR</td>
<td>ACT NOR</td>
<td>ACT NOR</td>
</tr>
<tr>
<td>21</td>
<td>1- 6-11-16-21</td>
<td>4.00</td>
<td>0.54</td>
<td>0.20</td>
</tr>
<tr>
<td>23</td>
<td>1- 6-11-16-22-23</td>
<td>5.41</td>
<td>0.73</td>
<td>0.20</td>
</tr>
<tr>
<td>25</td>
<td>1- 6-11-16-22-23-24-25</td>
<td>7.41</td>
<td>1.00</td>
<td>0.20</td>
</tr>
</tbody>
</table>

$W_1, W_2, W_3, 21, 23, 25$ TARGET SELECTED COMBINED VALUE

0.25 0.50 0.25 0.285 0.271 0.276 23/25 0.27

FOR 50 PERCENT REDUCTION IN AIR-DEFENSE LETHAL RADIUS.

<table>
<thead>
<tr>
<th>TARGET</th>
<th>ROUTE</th>
<th>DISTANCE</th>
<th>DIFFICULTY</th>
<th>PRIORITY</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>ACT NOR</td>
<td>ACT NOR</td>
<td>ACT NOR</td>
</tr>
<tr>
<td>21</td>
<td>1- 6-11-16-21</td>
<td>4.00</td>
<td>0.54</td>
<td>0.13</td>
</tr>
<tr>
<td>23</td>
<td>1- 6-11-16-22-23</td>
<td>5.41</td>
<td>0.73</td>
<td>0.13</td>
</tr>
<tr>
<td>25</td>
<td>1- 7- 8-14-20-25</td>
<td>6.24</td>
<td>0.84</td>
<td>0.51</td>
</tr>
</tbody>
</table>

$W_1, W_2, W_3, 21, 23, 25$ TARGET SELECTED COMBINED VALUE

0.25 0.50 0.25 0.277 0.262 0.276 23 0.26

FOR 70 PERCENT REDUCTION IN AIR-DEFENSE LETHAL RADIUS.
<table>
<thead>
<tr>
<th>TARGET ROUTE</th>
<th>DISTANCE</th>
<th>DIFFICULTY</th>
<th>PRIORITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>21 1-6-11-16-21</td>
<td>4.00</td>
<td>0.54</td>
<td>0.07 0.02</td>
</tr>
<tr>
<td>23 1-6-11-17-23</td>
<td>4.83</td>
<td>0.65</td>
<td>0.35 0.09</td>
</tr>
<tr>
<td>25 1-7-13-19-25</td>
<td>5.66</td>
<td>0.76</td>
<td>0.56 0.14</td>
</tr>
</tbody>
</table>

\[W_1, W_2, W_3 \mid 21, 23, 25 \mid \text{TARGET SELECTED COMBINED VALUE} \]

0.25 0.50 0.25 0.269 0.270 0.262 25/21/23 0.26

FOR 80 PERCENT REDUCTION IN AIR-DEFENSE LETHAL RADIUS.

<table>
<thead>
<tr>
<th>TARGET ROUTE</th>
<th>DISTANCE</th>
<th>DIFFICULTY</th>
<th>PRIORITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>21 1-6-11-16-21</td>
<td>4.00</td>
<td>0.54</td>
<td>0.03 0.01</td>
</tr>
<tr>
<td>23 1-6-11-17-23</td>
<td>4.83</td>
<td>0.65</td>
<td>0.16 0.04</td>
</tr>
<tr>
<td>25 1-7-13-19-25</td>
<td>5.66</td>
<td>0.76</td>
<td>0.25 0.06</td>
</tr>
</tbody>
</table>

\[W_1, W_2, W_3 \mid 21, 23, 25 \mid \text{TARGET SELECTED COMBINED VALUE} \]

0.25 0.50 0.25 0.264 0.246 0.223 25 0.22

FOR 90 PERCENT REDUCTION IN AIR-DEFENSE LETHAL RADIUS.

<table>
<thead>
<tr>
<th>TARGET ROUTE</th>
<th>DISTANCE</th>
<th>DIFFICULTY</th>
<th>PRIORITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>21 1-6-11-16-21</td>
<td>4.00</td>
<td>0.54</td>
<td>0.01 0.00</td>
</tr>
<tr>
<td>23 1-6-11-17-23</td>
<td>4.83</td>
<td>0.65</td>
<td>0.04 0.01</td>
</tr>
<tr>
<td>25 1-7-13-19-25</td>
<td>5.66</td>
<td>0.76</td>
<td>0.07 0.02</td>
</tr>
</tbody>
</table>

\[W_1, W_2, W_3 \mid 21, 23, 25 \mid \text{TARGET SELECTED COMBINED VALUE} \]

0.25 0.50 0.25 0.261 0.231 0.200 25 0.20

FOR 100 PERCENT REDUCTION IN AIR-DEFENSE LETHAL RADIUS.

<table>
<thead>
<tr>
<th>TARGET ROUTE</th>
<th>DISTANCE</th>
<th>DIFFICULTY</th>
<th>PRIORITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>21 1-6-11-16-21</td>
<td>4.00</td>
<td>0.54</td>
<td>0.00 0.00</td>
</tr>
<tr>
<td>23 1-6-11-17-23</td>
<td>4.83</td>
<td>0.65</td>
<td>0.00 0.00</td>
</tr>
<tr>
<td>25 1-7-13-19-25</td>
<td>5.66</td>
<td>0.76</td>
<td>0.00 0.00</td>
</tr>
</tbody>
</table>

\[W_1, W_2, W_3 \mid 21, 23, 25 \mid \text{TARGET SELECTED COMBINED VALUE} \]

0.25 0.50 0.25 0.260 0.225 0.191 25 0.19
<table>
<thead>
<tr>
<th>TARGET ROUTE</th>
<th>DISTANCE</th>
<th>DIFFICULTY</th>
<th>PRIORITY</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ACT</td>
<td>NOR</td>
<td>ACT</td>
</tr>
<tr>
<td>21 1- 6-11-16-21</td>
<td>4.00</td>
<td>0.64</td>
<td>3.24</td>
</tr>
<tr>
<td>23 1- 6-11-17-23</td>
<td>4.83</td>
<td>0.77</td>
<td>3.92</td>
</tr>
<tr>
<td>25 1- 6-12-18-24-25</td>
<td>6.24</td>
<td>1.00</td>
<td>3.70</td>
</tr>
</tbody>
</table>

$w_1 = w_2 = w_3 = 0.25 \quad w^*_1 = w^*_2 = 0.50$

For 0 percent reduction in air-defense lethal radius.

<table>
<thead>
<tr>
<th>TARGET ROUTE</th>
<th>DISTANCE</th>
<th>DIFFICULTY</th>
<th>PRIORITY</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ACT</td>
<td>NOR</td>
<td>ACT</td>
</tr>
<tr>
<td>21 1- 6-11-16-21</td>
<td>4.00</td>
<td>0.64</td>
<td>2.32</td>
</tr>
<tr>
<td>23 1- 6-11-17-23</td>
<td>4.83</td>
<td>0.77</td>
<td>3.18</td>
</tr>
<tr>
<td>25 1- 6-12-18-24-25</td>
<td>6.24</td>
<td>1.00</td>
<td>3.06</td>
</tr>
</tbody>
</table>

$w_1 = w_2 = w_3 = 0.25 \quad w^*_1 = w^*_2 = 0.50$

For 10 percent reduction in air-defense lethal radius.

<table>
<thead>
<tr>
<th>TARGET ROUTE</th>
<th>DISTANCE</th>
<th>DIFFICULTY</th>
<th>PRIORITY</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ACT</td>
<td>NOR</td>
<td>ACT</td>
</tr>
<tr>
<td>21 1- 6-11-16-21</td>
<td>4.00</td>
<td>0.64</td>
<td>1.55</td>
</tr>
<tr>
<td>23 1- 6-11-17-23</td>
<td>4.83</td>
<td>0.77</td>
<td>2.52</td>
</tr>
<tr>
<td>25 1- 6-12-18-24-25</td>
<td>6.24</td>
<td>1.00</td>
<td>2.62</td>
</tr>
</tbody>
</table>

$w_1 = w_2 = w_3 = 0.25 \quad w^*_1 = w^*_2 = 0.50$

For 20 percent reduction in air-defense lethal radius.

<table>
<thead>
<tr>
<th>TARGET ROUTE</th>
<th>DISTANCE</th>
<th>DIFFICULTY</th>
<th>PRIORITY</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ACT</td>
<td>NOR</td>
<td>ACT</td>
</tr>
<tr>
<td>21 1- 6-11-16-21</td>
<td>4.00</td>
<td>0.64</td>
<td>0.38</td>
</tr>
<tr>
<td>23 1- 6-11-17-23</td>
<td>4.83</td>
<td>0.77</td>
<td>0.60</td>
</tr>
<tr>
<td>25 1- 6-12-18-24-25</td>
<td>6.24</td>
<td>1.00</td>
<td>0.80</td>
</tr>
</tbody>
</table>

$w_1 = w_2 = w_3 = 0.25 \quad w^*_1 = w^*_2 = 0.50$

For 30 percent reduction in air-defense lethal radius.
<table>
<thead>
<tr>
<th>TARGET ROUTE</th>
<th>DISTANCE</th>
<th>DIFFICULTY</th>
<th>PRIORITY</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ACT NOR</td>
<td>ACT NOR</td>
<td>ACT NOR</td>
</tr>
<tr>
<td>21 1-6-11-16-21</td>
<td>4.00</td>
<td>0.64</td>
<td>0.92 0.23</td>
</tr>
<tr>
<td>23 1-6-11-17-23</td>
<td>4.83</td>
<td>0.77</td>
<td>1.92 0.49</td>
</tr>
<tr>
<td>25 1-2-8-14-20-25</td>
<td>6.24</td>
<td>1.00</td>
<td>2.07 0.53</td>
</tr>
</tbody>
</table>

\[W_1, W_2, W_3 21 23 25 \text{ TARGET SELECTED COMBINED VALUE} \]

\[0.25 0.25 0.50 0.469 0.441 0.382 25 0.38 \]

FOR 40 PERCENT REDUCTION IN AIR-DEFENSE LETHAL RADIUS.

<table>
<thead>
<tr>
<th>TARGET ROUTE</th>
<th>DISTANCE</th>
<th>DIFFICULTY</th>
<th>PRIORITY</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ACT NOR</td>
<td>ACT NOR</td>
<td>ACT NOR</td>
</tr>
<tr>
<td>21 1-6-11-16-21</td>
<td>4.00</td>
<td>0.64</td>
<td>0.12 0.05</td>
</tr>
<tr>
<td>23 1-6-11-16-22-23</td>
<td>5.41</td>
<td>0.87</td>
<td>0.20 0.05</td>
</tr>
<tr>
<td>25 1-7-8-14-20-25</td>
<td>6.24</td>
<td>1.00</td>
<td>0.79 0.20</td>
</tr>
</tbody>
</table>

\[W_1, W_2, W_3 21 23 25 \text{ TARGET SELECTED COMBINED VALUE} \]

\[0.25 0.25 0.50 0.440 0.383 0.334 25 0.33 \]

FOR 50 PERCENT REDUCTION IN AIR-DEFENSE LETHAL RADIUS.

<table>
<thead>
<tr>
<th>TARGET ROUTE</th>
<th>DISTANCE</th>
<th>DIFFICULTY</th>
<th>PRIORITY</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ACT NOR</td>
<td>ACT NOR</td>
<td>ACT NOR</td>
</tr>
<tr>
<td>21 1-6-11-16-21</td>
<td>4.00</td>
<td>0.64</td>
<td>0.20 0.05</td>
</tr>
<tr>
<td>23 1-6-11-16-22-23</td>
<td>5.41</td>
<td>0.87</td>
<td>0.20 0.05</td>
</tr>
<tr>
<td>25 1-7-13-19-25</td>
<td>5.66</td>
<td>0.91</td>
<td>1.00 0.26</td>
</tr>
</tbody>
</table>

\[W_1, W_2, W_3 21 23 25 \text{ TARGET SELECTED COMBINED VALUE} \]

\[0.25 0.25 0.50 0.423 0.355 0.300 25 0.30 \]

FOR 60 PERCENT REDUCTION IN AIR-DEFENSE LETHAL RADIUS.

<table>
<thead>
<tr>
<th>TARGET ROUTE</th>
<th>DISTANCE</th>
<th>DIFFICULTY</th>
<th>PRIORITY</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ACT NOR</td>
<td>ACT NOR</td>
<td>ACT NOR</td>
</tr>
<tr>
<td>21 1-6-11-16-21</td>
<td>4.00</td>
<td>0.64</td>
<td>0.13 0.03</td>
</tr>
<tr>
<td>23 1-6-11-17-23</td>
<td>4.83</td>
<td>0.77</td>
<td>0.63 0.16</td>
</tr>
<tr>
<td>25 1-7-13-19-25</td>
<td>5.66</td>
<td>0.91</td>
<td>1.00 0.26</td>
</tr>
</tbody>
</table>

\[W_1, W_2, W_3 21 23 25 \text{ TARGET SELECTED COMBINED VALUE} \]

\[0.25 0.25 0.50 0.419 0.359 0.290 25 0.29 \]

FOR 70 PERCENT REDUCTION IN AIR-DEFENSE LETHAL RADIUS.

<table>
<thead>
<tr>
<th>TARGET ROUTE</th>
<th>DISTANCE</th>
<th>DIFFICULTY</th>
<th>PRIORITY</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ACT NOR</td>
<td>ACT NOR</td>
<td>ACT NOR</td>
</tr>
<tr>
<td>21 1-6-11-16-21</td>
<td>4.00</td>
<td>0.64</td>
<td>0.12 0.03</td>
</tr>
<tr>
<td>23 1-6-11-17-23</td>
<td>4.83</td>
<td>0.77</td>
<td>0.63 0.16</td>
</tr>
<tr>
<td>25 1-7-13-19-25</td>
<td>5.66</td>
<td>0.91</td>
<td>1.00 0.26</td>
</tr>
</tbody>
</table>

\[W_1, W_2, W_3 21 23 25 \text{ TARGET SELECTED COMBINED VALUE} \]

\[0.25 0.25 0.50 0.419 0.359 0.290 25 0.29 \]

<table>
<thead>
<tr>
<th>TARGET ROUTE</th>
<th>DISTANCE</th>
<th>DIFFICULTY</th>
<th>PRIORITY</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ACT NOR</td>
<td>ACT NOR</td>
<td>ACT NOR</td>
</tr>
<tr>
<td>21 1-6-11-16-21</td>
<td>4.00</td>
<td>0.64</td>
<td>0.12 0.03</td>
</tr>
<tr>
<td>23 1-6-11-17-23</td>
<td>4.83</td>
<td>0.77</td>
<td>0.63 0.16</td>
</tr>
<tr>
<td>25 1-7-13-19-25</td>
<td>5.66</td>
<td>0.91</td>
<td>1.00 0.26</td>
</tr>
</tbody>
</table>

\[W_1, W_2, W_3 21 23 25 \text{ TARGET SELECTED COMBINED VALUE} \]

\[0.25 0.25 0.50 0.419 0.359 0.290 25 0.29 \]
<table>
<thead>
<tr>
<th>TARGET ROUTE</th>
<th>DISTANCE</th>
<th>DIFFICULTY</th>
<th>PRIORITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>21 1-6-11-16-21</td>
<td>4.00</td>
<td>0.64</td>
<td>0.07 0.02</td>
</tr>
<tr>
<td>23 1-6-11-17-23</td>
<td>4.83</td>
<td>0.77</td>
<td>0.35 0.09</td>
</tr>
<tr>
<td>25 1-7-13-19-25</td>
<td>5.66</td>
<td>0.91</td>
<td>0.56 0.14</td>
</tr>
</tbody>
</table>

\[w_1, w_2, w_3, 21, 23, 25 \] TARGET SELECTED COMBINED VALUE

0.25 0.25 0.50 0.415 0.341 0.262 25 0.26

FOR 80 PERCENT REDUCTION IN AIR-DEFENSE LETHAL RADIUS.

<table>
<thead>
<tr>
<th>TARGET ROUTE</th>
<th>DISTANCE</th>
<th>DIFFICULTY</th>
<th>PRIORITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>21 1-6-11-16-21</td>
<td>4.00</td>
<td>0.64</td>
<td>0.03 0.01</td>
</tr>
<tr>
<td>23 1-6-11-17-23</td>
<td>4.83</td>
<td>0.77</td>
<td>0.16 0.04</td>
</tr>
<tr>
<td>25 1-7-13-19-25</td>
<td>5.66</td>
<td>0.91</td>
<td>0.25 0.06</td>
</tr>
</tbody>
</table>

\[w_1, w_2, w_3, 21, 23, 25 \] TARGET SELECTED COMBINED VALUE

0.25 0.25 0.50 0.412 0.329 0.243 25 0.24

FOR 90 PERCENT REDUCTION IN AIR-DEFENSE LETHAL RADIUS.

<table>
<thead>
<tr>
<th>TARGET ROUTE</th>
<th>DISTANCE</th>
<th>DIFFICULTY</th>
<th>PRIORITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>21 1-6-11-16-21</td>
<td>4.00</td>
<td>0.64</td>
<td>0.01 0.00</td>
</tr>
<tr>
<td>23 1-6-11-17-23</td>
<td>4.83</td>
<td>0.77</td>
<td>0.04 0.01</td>
</tr>
<tr>
<td>25 1-7-13-19-25</td>
<td>5.66</td>
<td>0.91</td>
<td>0.07 0.02</td>
</tr>
</tbody>
</table>

\[w_1, w_2, w_3, 21, 23, 25 \] TARGET SELECTED COMBINED VALUE

0.25 0.25 0.50 0.411 0.321 0.231 25 0.23

FOR 100 PERCENT REDUCTION IN AIR-DEFENSE LETHAL RADIUS.

<table>
<thead>
<tr>
<th>TARGET ROUTE</th>
<th>DISTANCE</th>
<th>DIFFICULTY</th>
<th>PRIORITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>21 1-6-11-16-21</td>
<td>4.00</td>
<td>0.64</td>
<td>0.00 0.00</td>
</tr>
<tr>
<td>23 1-6-11-17-23</td>
<td>4.83</td>
<td>0.77</td>
<td>0.06 0.00</td>
</tr>
<tr>
<td>25 1-7-13-19-25</td>
<td>5.66</td>
<td>0.91</td>
<td>0.00 0.00</td>
</tr>
</tbody>
</table>

\[w_1, w_2, w_3, 21, 23, 25 \] TARGET SELECTED COMBINED VALUE

0.25 0.25 0.50 0.410 0.318 0.227 25 0.23
TABLE A.9: MODE SET 2, PK SET 1, WEIGHT SET 1

For $w_1 = 1.00$ $w_2 = 0.00$ $w_3 = 0.00$

$w_1^* = 1.00$ $w_2^* = 0.00$

<table>
<thead>
<tr>
<th>TARGET</th>
<th>ROUTE</th>
<th>DISTANCE</th>
<th>DIFFICULTY</th>
<th>PRIORITY</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ACT</td>
<td>NOR</td>
<td>ACT</td>
<td>NOR</td>
</tr>
<tr>
<td>21</td>
<td>1- 6-11-16-21</td>
<td>4.00</td>
<td>0.71</td>
<td>3.15</td>
</tr>
<tr>
<td>23</td>
<td>1- 6-11-17-23</td>
<td>4.83</td>
<td>0.85</td>
<td>2.84</td>
</tr>
<tr>
<td>25</td>
<td>1- 7-13-19-25</td>
<td>5.66</td>
<td>1.00</td>
<td>2.58</td>
</tr>
</tbody>
</table>

w_1 w_2 w_3 21 23 25 TARGET SELECTED COMBINED VALUE

1.00 0.00 0.00 0.707 0.853 0.999 21 0.71

For 0 percent reduction in air-defense lethal radius.

<table>
<thead>
<tr>
<th>TARGET</th>
<th>ROUTE</th>
<th>DISTANCE</th>
<th>DIFFICULTY</th>
<th>PRIORITY</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ACT</td>
<td>NOR</td>
<td>ACT</td>
<td>NOR</td>
</tr>
<tr>
<td>21</td>
<td>1- 6-11-16-21</td>
<td>4.00</td>
<td>0.71</td>
<td>2.55</td>
</tr>
<tr>
<td>23</td>
<td>1- 6-11-17-23</td>
<td>4.83</td>
<td>0.85</td>
<td>2.34</td>
</tr>
<tr>
<td>25</td>
<td>1- 7-13-19-25</td>
<td>5.66</td>
<td>1.00</td>
<td>1.94</td>
</tr>
</tbody>
</table>

w_1 w_2 w_3 21 23 25 TARGET SELECTED COMBINED VALUE

1.00 0.00 0.00 0.707 0.853 0.999 21 0.71

For 10 percent reduction in air-defense lethal radius.

<table>
<thead>
<tr>
<th>TARGET</th>
<th>ROUTE</th>
<th>DISTANCE</th>
<th>DIFFICULTY</th>
<th>PRIORITY</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ACT</td>
<td>NOR</td>
<td>ACT</td>
<td>NOR</td>
</tr>
<tr>
<td>21</td>
<td>1- 6-11-16-21</td>
<td>4.00</td>
<td>0.71</td>
<td>2.00</td>
</tr>
<tr>
<td>23</td>
<td>1- 6-11-17-23</td>
<td>4.83</td>
<td>0.85</td>
<td>1.87</td>
</tr>
<tr>
<td>25</td>
<td>1- 7-13-19-25</td>
<td>5.66</td>
<td>1.00</td>
<td>1.66</td>
</tr>
</tbody>
</table>

w_1 w_2 w_3 21 23 25 TARGET SELECTED COMBINED VALUE

1.00 0.00 0.00 0.707 0.853 0.999 21 0.71

For 20 percent reduction in air-defense lethal radius.

<table>
<thead>
<tr>
<th>TARGET</th>
<th>ROUTE</th>
<th>DISTANCE</th>
<th>DIFFICULTY</th>
<th>PRIORITY</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ACT</td>
<td>NOR</td>
<td>ACT</td>
<td>NOR</td>
</tr>
<tr>
<td>21</td>
<td>1- 6-11-16-21</td>
<td>4.00</td>
<td>0.71</td>
<td>2.00</td>
</tr>
<tr>
<td>23</td>
<td>1- 6-11-17-23</td>
<td>4.83</td>
<td>0.85</td>
<td>1.87</td>
</tr>
<tr>
<td>25</td>
<td>1- 7-13-19-25</td>
<td>5.66</td>
<td>1.00</td>
<td>1.66</td>
</tr>
</tbody>
</table>

w_1 w_2 w_3 21 23 25 TARGET SELECTED COMBINED VALUE

1.00 0.00 0.00 0.707 0.853 0.999 21 0.71

For 30 percent reduction in air-defense lethal radius.

<table>
<thead>
<tr>
<th>DISTANCE</th>
<th>DIFFICULTY</th>
<th>PRIORITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>71</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TARGET ROUTE</td>
<td>ACT</td>
<td>NOR</td>
</tr>
<tr>
<td>-------------</td>
<td>------</td>
<td>------</td>
</tr>
<tr>
<td>21 1- 6-11-16-21</td>
<td>4.00</td>
<td>0.71</td>
</tr>
<tr>
<td>23 1- 6-11-17-23</td>
<td>4.83</td>
<td>0.85</td>
</tr>
<tr>
<td>25 1- 7-13-19-25</td>
<td>5.66</td>
<td>1.00</td>
</tr>
</tbody>
</table>

$W_1 \ W_2 \ W_3 \ 21 \ 23 \ 25 \ \text{TARGET SELECTED COMBINED VALUE}$

1.00 0.00 0.00 0.707 0.853 0.999 21 0.71

FOR 40 PERCENT REDUCTION IN AIR-DEFENSE LETHAL RADIUS.

<table>
<thead>
<tr>
<th>TARGET ROUTE</th>
<th>DISTANCE</th>
<th>DIFFICULTY</th>
<th>PRIORITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACT</td>
<td>NOR</td>
<td>ACT</td>
<td>NOR</td>
</tr>
<tr>
<td>21 1- 6-11-16-21</td>
<td>4.00</td>
<td>0.71</td>
<td>1.13</td>
</tr>
<tr>
<td>23 1- 6-11-17-23</td>
<td>4.83</td>
<td>0.85</td>
<td>1.11</td>
</tr>
<tr>
<td>25 1- 7-13-19-25</td>
<td>5.66</td>
<td>1.00</td>
<td>0.99</td>
</tr>
</tbody>
</table>

$W_1 \ W_2 \ W_3 \ 21 \ 23 \ 25 \ \text{TARGET SELECTED COMBINED VALUE}$

1.00 0.00 0.00 0.707 0.853 0.999 21 0.71

FOR 50 PERCENT REDUCTION IN AIR-DEFENSE LETHAL RADIUS.

<table>
<thead>
<tr>
<th>TARGET ROUTE</th>
<th>DISTANCE</th>
<th>DIFFICULTY</th>
<th>PRIORITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACT</td>
<td>NOR</td>
<td>ACT</td>
<td>NOR</td>
</tr>
<tr>
<td>21 1- 6-11-16-21</td>
<td>4.00</td>
<td>0.71</td>
<td>0.79</td>
</tr>
<tr>
<td>23 1- 6-11-17-23</td>
<td>4.83</td>
<td>0.85</td>
<td>0.79</td>
</tr>
<tr>
<td>25 1- 7-13-19-25</td>
<td>5.66</td>
<td>1.00</td>
<td>0.69</td>
</tr>
</tbody>
</table>

$W_1 \ W_2 \ W_3 \ 21 \ 23 \ 25 \ \text{TARGET SELECTED COMBINED VALUE}$

1.00 0.00 0.00 0.707 0.853 0.999 21 0.71

FOR 60 PERCENT REDUCTION IN AIR-DEFENSE LETHAL RADIUS.

<table>
<thead>
<tr>
<th>TARGET ROUTE</th>
<th>DISTANCE</th>
<th>DIFFICULTY</th>
<th>PRIORITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACT</td>
<td>NOR</td>
<td>ACT</td>
<td>NOR</td>
</tr>
<tr>
<td>21 1- 6-11-16-21</td>
<td>4.00</td>
<td>0.71</td>
<td>0.51</td>
</tr>
<tr>
<td>23 1- 6-11-17-23</td>
<td>4.83</td>
<td>0.85</td>
<td>0.51</td>
</tr>
<tr>
<td>25 1- 7-13-19-25</td>
<td>5.66</td>
<td>1.00</td>
<td>0.44</td>
</tr>
</tbody>
</table>

$W_1 \ W_2 \ W_3 \ 21 \ 23 \ 25 \ \text{TARGET SELECTED COMBINED VALUE}$

1.00 0.00 0.00 0.707 0.853 0.999 21 0.71

FOR 70 PERCENT REDUCTION IN AIR-DEFENSE LETHAL RADIUS.

<table>
<thead>
<tr>
<th>TARGET ROUTE</th>
<th>DISTANCE</th>
<th>DIFFICULTY</th>
<th>PRIORITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACT</td>
<td>NOR</td>
<td>ACT</td>
<td>NOR</td>
</tr>
</tbody>
</table>

72
<table>
<thead>
<tr>
<th>Target Route</th>
<th>Distance</th>
<th>Difficulty</th>
<th>Priority</th>
</tr>
</thead>
<tbody>
<tr>
<td>21-6-11-16-21</td>
<td>4.00</td>
<td>0.71</td>
<td>0.28 0.09 40.00 0.50</td>
</tr>
<tr>
<td>23-6-11-17-23</td>
<td>4.83</td>
<td>0.85</td>
<td>0.28 0.09 60.00 0.75</td>
</tr>
<tr>
<td>25-7-13-19-25</td>
<td>5.66</td>
<td>1.00</td>
<td>0.25 0.08 80.00 1.00</td>
</tr>
</tbody>
</table>

W₁, W₂, W₃, 21, 23, 25 TARGET SELECTED COMBINED VALUE

1.00 0.00 0.00 0.707 0.853 0.999 21 0.71

FOR 80 PERCENT REDUCTION IN AIR-DEFENSE LETHAL RADIUS.

<table>
<thead>
<tr>
<th>Target Route</th>
<th>Distance</th>
<th>Difficulty</th>
<th>Priority</th>
</tr>
</thead>
<tbody>
<tr>
<td>21-6-11-16-21</td>
<td>4.00</td>
<td>0.71</td>
<td>0.12 0.04 40.00 0.50</td>
</tr>
<tr>
<td>23-6-11-17-23</td>
<td>4.83</td>
<td>0.85</td>
<td>0.12 0.04 60.00 0.75</td>
</tr>
<tr>
<td>25-7-13-19-25</td>
<td>5.66</td>
<td>1.00</td>
<td>0.11 0.03 80.00 1.00</td>
</tr>
</tbody>
</table>

W₁, W₂, W₃, 21, 23, 25 TARGET SELECTED COMBINED VALUE

1.00 0.00 0.00 0.707 0.853 0.999 21 0.71

FOR 90 PERCENT REDUCTION IN AIR-DEFENSE LETHAL RADIUS.

<table>
<thead>
<tr>
<th>Target Route</th>
<th>Distance</th>
<th>Difficulty</th>
<th>Priority</th>
</tr>
</thead>
<tbody>
<tr>
<td>21-6-11-16-21</td>
<td>4.00</td>
<td>0.71</td>
<td>0.04 0.01 40.00 0.50</td>
</tr>
<tr>
<td>23-6-11-17-23</td>
<td>4.83</td>
<td>0.85</td>
<td>0.04 0.01 60.00 0.75</td>
</tr>
<tr>
<td>25-7-13-19-25</td>
<td>5.66</td>
<td>1.00</td>
<td>0.03 0.01 80.00 1.00</td>
</tr>
</tbody>
</table>

W₁, W₂, W₃, 21, 23, 25 TARGET SELECTED COMBINED VALUE

1.00 0.00 0.00 0.707 0.853 0.999 21 0.71

FOR 100 PERCENT REDUCTION IN AIR-DEFENSE LETHAL RADIUS.

<table>
<thead>
<tr>
<th>Target Route</th>
<th>Distance</th>
<th>Difficulty</th>
<th>Priority</th>
</tr>
</thead>
<tbody>
<tr>
<td>21-6-11-16-21</td>
<td>4.00</td>
<td>0.71</td>
<td>0.00 0.00 40.00 0.50</td>
</tr>
<tr>
<td>23-6-11-17-23</td>
<td>4.83</td>
<td>0.85</td>
<td>0.00 0.00 60.00 0.75</td>
</tr>
<tr>
<td>25-7-13-19-25</td>
<td>5.66</td>
<td>1.00</td>
<td>0.00 0.00 80.00 1.00</td>
</tr>
</tbody>
</table>

W₁, W₂, W₃, 21, 23, 25 TARGET SELECTED COMBINED VALUE

1.00 0.00 0.00 0.707 0.853 0.999 21 0.71
TABLE A.10: NODE SET 2, PK SET 1, WEIGHT SET 2

For \(w_1 = 0.00 \) \(w_2 = 1.00 \) \(w_3 = 0.00 \)

\[w^*_1 = 0.00 \quad w^*_2 = 1.00 \]

For 0 Percent Reduction in Air-Defense Lethal Radius.

<table>
<thead>
<tr>
<th>Target Route</th>
<th>Distance</th>
<th>Difficulty</th>
<th>Priority</th>
</tr>
</thead>
<tbody>
<tr>
<td>21-2-3-4-10-15-20-25-23-22-21</td>
<td>11.41</td>
<td>1.29</td>
<td>1.00</td>
</tr>
<tr>
<td>23-1-2-3-4-10-15-20-25-23</td>
<td>9.41</td>
<td>0.83</td>
<td>0.67</td>
</tr>
<tr>
<td>25-1-2-3-4-10-15-20-25</td>
<td>7.41</td>
<td>0.67</td>
<td>0.67</td>
</tr>
</tbody>
</table>

\[w_1 \quad w_2 \quad w_3 \quad 21 \quad 23 \quad 25 \quad \text{Target Selected Combined Value} \]

\[0.00 \quad 1.00 \quad 0.00 \quad 1.000 \quad 0.519 \quad 0.519 \quad 23/25 \quad 0.52 \]

For 10 Percent Reduction in Air-Defense Lethal Radius.

<table>
<thead>
<tr>
<th>Target Route</th>
<th>Distance</th>
<th>Difficulty</th>
<th>Priority</th>
</tr>
</thead>
<tbody>
<tr>
<td>21-2-3-4-10-15-14-18-23-22-21</td>
<td>10.83</td>
<td>0.95</td>
<td>0.78</td>
</tr>
<tr>
<td>23-1-2-3-4-10-15-14-18-23</td>
<td>8.83</td>
<td>0.77</td>
<td>0.36</td>
</tr>
<tr>
<td>25-1-2-3-4-10-15-14-18-24-25</td>
<td>10.24</td>
<td>0.90</td>
<td>0.36</td>
</tr>
</tbody>
</table>

\[w_1 \quad w_2 \quad w_3 \quad 21 \quad 23 \quad 25 \quad \text{Target Selected Combined Value} \]

\[0.00 \quad 1.00 \quad 0.00 \quad 0.605 \quad 0.279 \quad 0.279 \quad 23/25 \quad 0.28 \]

For 20 Percent Reduction in Air-Defense Lethal Radius.

<table>
<thead>
<tr>
<th>Target Route</th>
<th>Distance</th>
<th>Difficulty</th>
<th>Priority</th>
</tr>
</thead>
<tbody>
<tr>
<td>21-2-3-4-10-15-14-18-23-22-21</td>
<td>10.83</td>
<td>0.95</td>
<td>0.37</td>
</tr>
<tr>
<td>23-1-2-3-4-10-15-14-18-23</td>
<td>8.83</td>
<td>0.77</td>
<td>0.11</td>
</tr>
<tr>
<td>25-1-2-3-4-10-15-14-18-24-25</td>
<td>10.24</td>
<td>0.90</td>
<td>0.11</td>
</tr>
</tbody>
</table>

\[w_1 \quad w_2 \quad w_3 \quad 21 \quad 23 \quad 25 \quad \text{Target Selected Combined Value} \]

\[0.00 \quad 1.00 \quad 0.00 \quad 0.287 \quad 0.085 \quad 0.085 \quad 23/25 \quad 0.09 \]

For 30 Percent Reduction in Air-Defense Lethal Radius.

<table>
<thead>
<tr>
<th>Distance</th>
<th>Difficulty</th>
<th>Priority</th>
</tr>
</thead>
<tbody>
<tr>
<td>TARGET ROUTE</td>
<td>ACT NOR</td>
<td>ACT NOR</td>
</tr>
<tr>
<td>--------------</td>
<td>---------</td>
<td>---------</td>
</tr>
<tr>
<td>21 1- 2- 3- 4-10-15-14-18-23-22-21</td>
<td>10.83 0.95</td>
<td>0.14 0.11</td>
</tr>
<tr>
<td>23 1- 2- 3- 4-10-14-18-23</td>
<td>8.24 0.72</td>
<td>0.00 0.00</td>
</tr>
<tr>
<td>25 1- 2- 3- 4-10-15-14-18-24-25</td>
<td>10.24 0.90</td>
<td>0.00 0.00</td>
</tr>
</tbody>
</table>

W₁, W₂, W₃, 21, 23, 25 TARGET SELECTED COMBINED VALUE
0.00 1.00 0.00 0.109 0.000 0.000 23/25 0.00

FOR 40 PERCENT REDUCTION IN AIR-DEFENSE LETHAL RADIUS.

<table>
<thead>
<tr>
<th>TARGET ROUTE</th>
<th>DISTANCE</th>
<th>DIFFICULTY</th>
<th>PRIORITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>21 1- 2- 3- 4-10-15-14-18-23-22-21</td>
<td>10.83 0.95</td>
<td>0.04 0.03</td>
<td>40.00 0.50</td>
</tr>
<tr>
<td>23 1- 2- 3- 4-10-14-18-23</td>
<td>8.24 0.72</td>
<td>0.00 0.00</td>
<td>60.00 0.75</td>
</tr>
<tr>
<td>25 1- 2- 3- 4-10-15-14-18-24-25</td>
<td>10.24 0.90</td>
<td>0.00 0.00</td>
<td>80.00 1.00</td>
</tr>
</tbody>
</table>

W₁, W₂, W₃, 21, 23, 25 TARGET SELECTED COMBINED VALUE
0.00 1.00 0.00 0.031 0.000 0.000 23/25 0.00

FOR 50 PERCENT REDUCTION IN AIR-DEFENSE LETHAL RADIUS.

<table>
<thead>
<tr>
<th>TARGET ROUTE</th>
<th>DISTANCE</th>
<th>DIFFICULTY</th>
<th>PRIORITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>21 1- 2- 3- 4-10-15-14-18-23-22-21</td>
<td>10.83 0.95</td>
<td>0.00 0.00</td>
<td>40.00 0.50</td>
</tr>
<tr>
<td>23 1- 2- 3- 4-10-14-18-23</td>
<td>8.24 0.72</td>
<td>0.00 0.00</td>
<td>60.00 0.75</td>
</tr>
<tr>
<td>25 1- 2- 3- 4-10-15-14-18-24-25</td>
<td>10.24 0.90</td>
<td>0.00 0.00</td>
<td>80.00 1.00</td>
</tr>
</tbody>
</table>

W₁, W₂, W₃, 21, 23, 25 TARGET SELECTED COMBINED VALUE
0.00 1.00 0.00 0.000 0.000 0.000 21/23/25 0.00

FOR 60 PERCENT REDUCTION IN AIR-DEFENSE LETHAL RADIUS.

<table>
<thead>
<tr>
<th>TARGET ROUTE</th>
<th>DISTANCE</th>
<th>DIFFICULTY</th>
<th>PRIORITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>21 1- 2- 3- 4-10-15-14-18-23-22-21</td>
<td>10.83 0.95</td>
<td>0.00 0.00</td>
<td>40.00 0.50</td>
</tr>
<tr>
<td>23 1- 2- 3- 4-10-14-18-23</td>
<td>8.24 0.72</td>
<td>0.00 0.00</td>
<td>60.00 0.75</td>
</tr>
<tr>
<td>25 1- 2- 3- 4-10-15-14-18-24-25</td>
<td>10.24 0.90</td>
<td>0.00 0.00</td>
<td>80.00 1.00</td>
</tr>
</tbody>
</table>

W₁, W₂, W₃, 21, 23, 25 TARGET SELECTED COMBINED VALUE
0.00 1.00 0.00 0.000 0.000 0.000 21/23/25 0.00

FOR 70 PERCENT REDUCTION IN AIR-DEFENSE LETHAL RADIUS.

<table>
<thead>
<tr>
<th>TARGET ROUTE</th>
<th>DISTANCE</th>
<th>DIFFICULTY</th>
<th>PRIORITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>21 1- 2- 3- 4-10-15-14-18-23-22-21</td>
<td>10.83 0.95</td>
<td>0.00 0.00</td>
<td>40.00 0.50</td>
</tr>
<tr>
<td>23 1- 2- 3- 4-10-14-18-23</td>
<td>8.24 0.72</td>
<td>0.00 0.00</td>
<td>60.00 0.75</td>
</tr>
<tr>
<td>25 1- 2- 3- 4-10-15-14-18-24-25</td>
<td>10.24 0.90</td>
<td>0.00 0.00</td>
<td>80.00 1.00</td>
</tr>
</tbody>
</table>

W₁, W₂, W₃, 21, 23, 25 TARGET SELECTED COMBINED VALUE
0.00 1.00 0.00 0.000 0.000 0.000 21/23/25 0.00
21	1-	2-	3-	4-10-15-14-18-23-22-21	10.83	0.95	0.00	0.00	40.00	0.50																											
23	1-	2-	3-	4-10-14-18-23	8.24	0.72	0.00	0.00	60.00	0.75																											
25	1-	2-	3-	4-10-15-14-18-24-25	10.24	0.90	0.00	0.00	80.00	1.00																											
W_1	W_2	W_3	21	23	25	TARGET SELECTED COMBINED VALUE	0.00	1.00	0.00	0.000	0.000	0.000	21/23/25	0.00																							

FOR 80 PERCENT REDUCTION IN AIR-DEFENSE LETHAL RADIUS.

<table>
<thead>
<tr>
<th>TARGET ROUTE</th>
<th>DISTANCE</th>
<th>DIFFICULTY</th>
<th>PRIORITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>21</td>
<td>1- 2- 3- 4-10-15-14-18-23-22-21</td>
<td>10.83</td>
<td>0.95</td>
</tr>
<tr>
<td>23</td>
<td>1- 2- 3- 4-10-14-18-23</td>
<td>8.24</td>
<td>0.72</td>
</tr>
<tr>
<td>25</td>
<td>1- 2- 3- 4-10-15-14-18-24-25</td>
<td>10.24</td>
<td>0.90</td>
</tr>
<tr>
<td>W_1</td>
<td>W_2</td>
<td>W_3</td>
<td>21</td>
</tr>
</tbody>
</table>

FOR 90 PERCENT REDUCTION IN AIR-DEFENSE LETHAL RADIUS.

<table>
<thead>
<tr>
<th>TARGET ROUTE</th>
<th>DISTANCE</th>
<th>DIFFICULTY</th>
<th>PRIORITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>21</td>
<td>1- 2- 3- 4-10-15-14-19-18-23-22-21</td>
<td>11.41</td>
<td>1.00</td>
</tr>
<tr>
<td>23</td>
<td>1- 2- 3- 4-10-14-19-23</td>
<td>8.24</td>
<td>0.72</td>
</tr>
<tr>
<td>25</td>
<td>1- 2- 3- 4-10-15-20-25</td>
<td>7.41</td>
<td>0.65</td>
</tr>
<tr>
<td>W_1</td>
<td>W_2</td>
<td>W_3</td>
<td>21</td>
</tr>
</tbody>
</table>

FOR 100 PERCENT REDUCTION IN AIR-DEFENSE LETHAL RADIUS.

<table>
<thead>
<tr>
<th>TARGET ROUTE</th>
<th>DISTANCE</th>
<th>DIFFICULTY</th>
<th>PRIORITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>21</td>
<td>1- 6-11-16-21</td>
<td>4.00</td>
<td>0.35</td>
</tr>
<tr>
<td>23</td>
<td>1- 6-12-17-23</td>
<td>4.83</td>
<td>0.42</td>
</tr>
<tr>
<td>25</td>
<td>1- 6-12-17-23-24-25</td>
<td>6.83</td>
<td>0.60</td>
</tr>
<tr>
<td>W_1</td>
<td>W_2</td>
<td>W_3</td>
<td>21</td>
</tr>
</tbody>
</table>
TABLE A.11: MODE SET 2, PK SET 1, WEIGHT SET 3

For \(w_1 = 0.33 \) \(w_2 = 0.33 \) \(w_3 = 0.33 \)
\(w_1^* = 0.50 \) \(w_2^* = 0.50 \)

For 0 percent reduction in air-defense lethal radius.

<table>
<thead>
<tr>
<th>TARGET</th>
<th>ROUTE</th>
<th>DISTANCE</th>
<th>DIFFICULTY</th>
<th>PRIORITY</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>ACT</td>
<td>NOR</td>
<td>ACT</td>
</tr>
<tr>
<td>21</td>
<td>1-6-11-16-21</td>
<td>4.00</td>
<td>0.64</td>
<td>3.15</td>
</tr>
<tr>
<td>23</td>
<td>1-7-1-13-18-23</td>
<td>4.83</td>
<td>0.77</td>
<td>1.93</td>
</tr>
<tr>
<td>25</td>
<td>1-7-1-3-19-25</td>
<td>5.66</td>
<td>0.91</td>
<td>2.18</td>
</tr>
</tbody>
</table>

\(w_1, w_2, w_3, 21, 23, 25 \) Target selected combined value
0.33 0.33 0.33 0.713 0.545 0.532 25 0.53

For 10 percent reduction in air-defense lethal radius.

<table>
<thead>
<tr>
<th>TARGET</th>
<th>ROUTE</th>
<th>DISTANCE</th>
<th>DIFFICULTY</th>
<th>PRIORITY</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>ACT</td>
<td>NOR</td>
<td>ACT</td>
</tr>
<tr>
<td>21</td>
<td>1-6-11-16-21</td>
<td>4.00</td>
<td>0.64</td>
<td>2.55</td>
</tr>
<tr>
<td>23</td>
<td>1-6-12-18-23</td>
<td>4.83</td>
<td>0.77</td>
<td>1.63</td>
</tr>
<tr>
<td>25</td>
<td>1-2-8-14-19-25</td>
<td>6.24</td>
<td>1.00</td>
<td>1.25</td>
</tr>
</tbody>
</table>

\(w_1, w_2, w_3, 21, 23, 25 \) Target selected combined value
0.33 0.33 0.33 0.650 0.513 0.465 25 0.47

For 20 percent reduction in air-defense lethal radius.

<table>
<thead>
<tr>
<th>TARGET</th>
<th>ROUTE</th>
<th>DISTANCE</th>
<th>DIFFICULTY</th>
<th>PRIORITY</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>ACT</td>
<td>NOR</td>
<td>ACT</td>
</tr>
<tr>
<td>21</td>
<td>1-6-11-16-21</td>
<td>4.00</td>
<td>0.64</td>
<td>2.00</td>
</tr>
<tr>
<td>23</td>
<td>1-6-12-18-23</td>
<td>4.83</td>
<td>0.77</td>
<td>1.18</td>
</tr>
<tr>
<td>25</td>
<td>1-2-8-14-19-25</td>
<td>6.24</td>
<td>1.00</td>
<td>0.85</td>
</tr>
</tbody>
</table>

\(w_1, w_2, w_3, 21, 23, 25 \) Target selected combined value
0.33 0.33 0.33 0.591 0.466 0.423 25 0.42

For 30 percent reduction in air-defense lethal radius.
<table>
<thead>
<tr>
<th>TARGET ROUTE</th>
<th>DISTANCE</th>
<th>DIFFICULTY</th>
<th>PRIORITY</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ACT</td>
<td>NOR</td>
<td>ACT</td>
</tr>
<tr>
<td>21 1- 6-11-16-21</td>
<td>4.00</td>
<td>0.64</td>
<td>1.53</td>
</tr>
<tr>
<td>23 1- 6-12-18-23</td>
<td>4.83</td>
<td>0.77</td>
<td>0.83</td>
</tr>
<tr>
<td>25 1- 7-13-19-25</td>
<td>5.66</td>
<td>0.91</td>
<td>0.99</td>
</tr>
</tbody>
</table>

w_1, w_2, w_3 | 21 | 23 | 25 | TARGET SELECTED COMBINED VALUE
0.33 | 0.33 | 0.33 | 0.542 | 0.429 | 0.393 | 25 | 0.39 |

FOR 40 PERCENT REDUCTION IN AIR-DEFENSE LETHAL RADIUS.

<table>
<thead>
<tr>
<th>TARGET ROUTE</th>
<th>DISTANCE</th>
<th>DIFFICULTY</th>
<th>PRIORITY</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ACT</td>
<td>NOR</td>
<td>ACT</td>
</tr>
<tr>
<td>21 1- 6-11-16-21</td>
<td>4.00</td>
<td>0.64</td>
<td>1.13</td>
</tr>
<tr>
<td>23 1- 7-12-18-23</td>
<td>4.83</td>
<td>0.77</td>
<td>0.59</td>
</tr>
<tr>
<td>25 1- 7-13-19-25</td>
<td>5.66</td>
<td>0.91</td>
<td>0.99</td>
</tr>
</tbody>
</table>

w_1, w_2, w_3 | 21 | 23 | 25 | TARGET SELECTED COMBINED VALUE
0.33 | 0.33 | 0.33 | 0.499 | 0.403 | 0.407 | 25/25 | 0.40 |

FOR 50 PERCENT REDUCTION IN AIR-DEFENSE LETHAL RADIUS.

<table>
<thead>
<tr>
<th>TARGET ROUTE</th>
<th>DISTANCE</th>
<th>DIFFICULTY</th>
<th>PRIORITY</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ACT</td>
<td>NOR</td>
<td>ACT</td>
</tr>
<tr>
<td>21 1- 6-11-16-21</td>
<td>4.00</td>
<td>0.64</td>
<td>0.79</td>
</tr>
<tr>
<td>23 1- 7-12-18-23</td>
<td>4.83</td>
<td>0.77</td>
<td>0.40</td>
</tr>
<tr>
<td>25 1- 7-13-19-25</td>
<td>5.66</td>
<td>0.91</td>
<td>0.69</td>
</tr>
</tbody>
</table>

w_1, w_2, w_3 | 21 | 23 | 25 | TARGET SELECTED COMBINED VALUE
0.33 | 0.33 | 0.33 | 0.463 | 0.383 | 0.375 | 25/23 | 0.38 |

FOR 60 PERCENT REDUCTION IN AIR-DEFENSE LETHAL RADIUS.

<table>
<thead>
<tr>
<th>TARGET ROUTE</th>
<th>DISTANCE</th>
<th>DIFFICULTY</th>
<th>PRIORITY</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ACT</td>
<td>NOR</td>
<td>ACT</td>
</tr>
<tr>
<td>21 1- 6-11-16-21</td>
<td>4.00</td>
<td>0.64</td>
<td>0.51</td>
</tr>
<tr>
<td>23 1- 7-12-18-23</td>
<td>4.83</td>
<td>0.77</td>
<td>0.26</td>
</tr>
<tr>
<td>25 1- 7-13-19-25</td>
<td>5.66</td>
<td>0.91</td>
<td>0.44</td>
</tr>
</tbody>
</table>

w_1, w_2, w_3 | 21 | 23 | 25 | TARGET SELECTED COMBINED VALUE
0.33 | 0.33 | 0.33 | 0.434 | 0.368 | 0.348 | 25 | 0.35 |

FOR 70 PERCENT REDUCTION IN AIR-DEFENSE LETHAL RADIUS.
<table>
<thead>
<tr>
<th>Target Route</th>
<th>Distance</th>
<th>Difficulty</th>
<th>Priority</th>
</tr>
</thead>
<tbody>
<tr>
<td>21 1- 6-11-16-21</td>
<td>4.00</td>
<td>0.64</td>
<td>0.28</td>
</tr>
<tr>
<td>23 1- 6-12-18-23</td>
<td>4.83</td>
<td>0.77</td>
<td>0.14</td>
</tr>
<tr>
<td>25 1- 7-13-19-25</td>
<td>5.66</td>
<td>0.91</td>
<td>0.25</td>
</tr>
</tbody>
</table>

W, W,

21 23 25 TARGET SELECTED COMBINED VALUE

0.33 0.33 0.33 0.356 0.328 25 0.33

FOR 80 PERCENT REDUCTION IN AIR-DEFENSE LETHAL RADIUS.

<table>
<thead>
<tr>
<th>Target Route</th>
<th>Distance</th>
<th>Difficulty</th>
<th>Priority</th>
</tr>
</thead>
<tbody>
<tr>
<td>21 1- 6-11-16-21</td>
<td>4.00</td>
<td>0.64</td>
<td>0.12</td>
</tr>
<tr>
<td>23 1- 6-12-18-23</td>
<td>4.83</td>
<td>0.77</td>
<td>0.06</td>
</tr>
<tr>
<td>25 1- 7-13-19-25</td>
<td>5.66</td>
<td>0.91</td>
<td>0.11</td>
</tr>
</tbody>
</table>

W, W, W

21 23 25 TARGET SELECTED COMBINED VALUE

0.33 0.33 0.33 0.393 0.347 0.314 25 0.31

FOR 90 PERCENT REDUCTION IN AIR-DEFENSE LETHAL RADIUS.

<table>
<thead>
<tr>
<th>Target Route</th>
<th>Distance</th>
<th>Difficulty</th>
<th>Priority</th>
</tr>
</thead>
<tbody>
<tr>
<td>21 1- 6-11-16-21</td>
<td>4.00</td>
<td>0.64</td>
<td>0.04</td>
</tr>
<tr>
<td>23 1- 6-12-18-23</td>
<td>4.83</td>
<td>0.77</td>
<td>0.02</td>
</tr>
<tr>
<td>25 1- 7-13-19-25</td>
<td>5.66</td>
<td>0.91</td>
<td>0.03</td>
</tr>
</tbody>
</table>

W, W, W

21 23 25 TARGET SELECTED COMBINED VALUE

0.33 0.33 0.33 0.384 0.343 0.305 25 0.31

FOR 100 PERCENT REDUCTION IN AIR-DEFENSE LETHAL RADIUS.

<table>
<thead>
<tr>
<th>Target Route</th>
<th>Distance</th>
<th>Difficulty</th>
<th>Priority</th>
</tr>
</thead>
<tbody>
<tr>
<td>21 1- 6-11-16-21</td>
<td>4.00</td>
<td>0.64</td>
<td>0.00</td>
</tr>
<tr>
<td>23 1- 6-11-17-23</td>
<td>4.83</td>
<td>0.77</td>
<td>0.00</td>
</tr>
<tr>
<td>25 1- 7-13-19-25</td>
<td>5.66</td>
<td>0.91</td>
<td>0.00</td>
</tr>
</tbody>
</table>

W, W, W

21 23 25 TARGET SELECTED COMBINED VALUE

0.33 0.33 0.33 0.380 0.341 0.302 25 0.30
TABLE A.12: WORSE SET 2, PK SET 1, WEIGHT SET 4

For $w_1 = 0.50$, $w_2 = 0.25$, $w_3 = 0.25$

$w_1^* = 0.67$, $w_2^* = 0.33$

For 0 percent reduction in air-defense lethal radius.

<table>
<thead>
<tr>
<th>TARGET ROUTE</th>
<th>DISTANCE</th>
<th>DIFFICULTY</th>
<th>PRIORITY</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ACT NOR</td>
<td>ACT NOR</td>
<td>ACT NOR</td>
</tr>
<tr>
<td>21 1- 6-11-16-21</td>
<td>4.00 0.71</td>
<td>3.15 1.00</td>
<td>40.00 0.50</td>
</tr>
<tr>
<td>23 1- 7-13-18-23</td>
<td>4.83 0.85</td>
<td>1.93 0.61</td>
<td>60.00 0.75</td>
</tr>
<tr>
<td>25 1- 7-13-19-25</td>
<td>5.66 1.00</td>
<td>2.18 0.69</td>
<td>80.00 1.00</td>
</tr>
</tbody>
</table>

w_1, w_2, w_3, 21 23 25 TARGET SELECTED COMBINED VALUE

0.50 0.25 0.25 0.728 0.642 0.673 23 0.64

For 10 percent reduction in air-defense lethal radius.

<table>
<thead>
<tr>
<th>TARGET ROUTE</th>
<th>DISTANCE</th>
<th>DIFFICULTY</th>
<th>PRIORITY</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ACT NOR</td>
<td>ACT NOR</td>
<td>ACT NOR</td>
</tr>
<tr>
<td>21 1- 6-11-16-21</td>
<td>4.00 0.71</td>
<td>2.55 0.81</td>
<td>40.00 0.50</td>
</tr>
<tr>
<td>23 1- 7-12-18-23</td>
<td>4.83 0.85</td>
<td>1.63 0.52</td>
<td>60.00 0.75</td>
</tr>
<tr>
<td>25 1- 7-13-19-25</td>
<td>5.66 1.00</td>
<td>1.94 0.62</td>
<td>80.00 1.00</td>
</tr>
</tbody>
</table>

w_1, w_2, w_3, 21 23 25 TARGET SELECTED COMBINED VALUE

0.50 0.25 0.25 0.681 0.618 0.654 23 0.62

For 20 percent reduction in air-defense lethal radius.

<table>
<thead>
<tr>
<th>TARGET ROUTE</th>
<th>DISTANCE</th>
<th>DIFFICULTY</th>
<th>PRIORITY</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ACT NOR</td>
<td>ACT NOR</td>
<td>ACT NOR</td>
</tr>
<tr>
<td>21 1- 6-11-16-21</td>
<td>4.00 0.71</td>
<td>2.00 0.63</td>
<td>40.00 0.50</td>
</tr>
<tr>
<td>23 1- 6-12-18-23</td>
<td>4.83 0.85</td>
<td>1.18 0.37</td>
<td>60.00 0.75</td>
</tr>
<tr>
<td>25 1- 7-13-19-25</td>
<td>5.66 1.00</td>
<td>1.66 0.53</td>
<td>80.00 1.00</td>
</tr>
</tbody>
</table>

w_1, w_2, w_3, 21 23 25 TARGET SELECTED COMBINED VALUE

0.50 0.25 0.25 0.637 0.583 0.631 23 0.58

For 30 percent reduction in air-defense lethal radius.
<table>
<thead>
<tr>
<th>TARGET ROUTE</th>
<th>DISTANCE</th>
<th>DIFFICULTY</th>
<th>PRIORITY</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ACT NOR</td>
<td>ACT NOR</td>
<td>ACT NOR</td>
</tr>
<tr>
<td>21 1- 6-11-16-21</td>
<td>4.00</td>
<td>0.71</td>
<td>1.53</td>
</tr>
<tr>
<td>23 1- 7-12-18-23</td>
<td>4.83</td>
<td>0.85</td>
<td>0.83</td>
</tr>
<tr>
<td>25 1- 7-13-19-25</td>
<td>5.66</td>
<td>1.00</td>
<td>1.34</td>
</tr>
</tbody>
</table>

\[W, W, W_2 \] 21 23 25 TARGET SELECTED COMBINED VALUE

0.50 0.25 0.25 0.600 0.555 0.606 23 0.56

FOR 40 PERCENT REDUCTION IN AIR-DEFENSE LETHAL RADIUS.

<table>
<thead>
<tr>
<th>TARGET ROUTE</th>
<th>DISTANCE</th>
<th>DIFFICULTY</th>
<th>PRIORITY</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ACT NOR</td>
<td>ACT NOR</td>
<td>ACT NOR</td>
</tr>
<tr>
<td>21 1- 6-11-16-21</td>
<td>4.00</td>
<td>0.71</td>
<td>1.13</td>
</tr>
<tr>
<td>23 1- 7-12-18-23</td>
<td>4.83</td>
<td>0.85</td>
<td>0.59</td>
</tr>
<tr>
<td>25 1- 7-13-19-25</td>
<td>5.66</td>
<td>1.00</td>
<td>0.99</td>
</tr>
</tbody>
</table>

\[W, W_2 \] 21 23 25 TARGET SELECTED COMBINED VALUE

0.50 0.25 0.25 0.568 0.536 0.578 23 0.54

FOR 50 PERCENT REDUCTION IN AIR-DEFENSE LETHAL RADIUS.

<table>
<thead>
<tr>
<th>TARGET ROUTE</th>
<th>DISTANCE</th>
<th>DIFFICULTY</th>
<th>PRIORITY</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ACT NOR</td>
<td>ACT NOR</td>
<td>ACT NOR</td>
</tr>
<tr>
<td>21 1- 6-11-16-21</td>
<td>4.00</td>
<td>0.71</td>
<td>0.79</td>
</tr>
<tr>
<td>23 1- 7-12-18-23</td>
<td>4.83</td>
<td>0.85</td>
<td>0.40</td>
</tr>
<tr>
<td>25 1- 7-13-19-25</td>
<td>5.66</td>
<td>1.00</td>
<td>0.69</td>
</tr>
</tbody>
</table>

\[W, W_2 \] 21 23 25 TARGET SELECTED COMBINED VALUE

0.50 0.25 0.25 0.541 0.521 0.554 23/21 0.51

FOR 60 PERCENT REDUCTION IN AIR-DEFENSE LETHAL RADIUS.

<table>
<thead>
<tr>
<th>TARGET ROUTE</th>
<th>DISTANCE</th>
<th>DIFFICULTY</th>
<th>PRIORITY</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ACT NOR</td>
<td>ACT NOR</td>
<td>ACT NOR</td>
</tr>
<tr>
<td>21 1- 6-11-16-21</td>
<td>4.00</td>
<td>0.71</td>
<td>0.51</td>
</tr>
<tr>
<td>23 1- 7-12-18-23</td>
<td>4.83</td>
<td>0.85</td>
<td>0.26</td>
</tr>
<tr>
<td>25 1- 7-13-19-25</td>
<td>5.66</td>
<td>1.00</td>
<td>0.44</td>
</tr>
</tbody>
</table>

\[W, W_2 \] 21 23 25 TARGET SELECTED COMBINED VALUE

0.50 0.25 0.25 0.519 0.510 0.535 23/21 0.51

FOR 70 PERCENT REDUCTION IN AIR-DEFENSE LETHAL RADIUS.

<table>
<thead>
<tr>
<th>TARGET ROUTE</th>
<th>DISTANCE</th>
<th>DIFFICULTY</th>
<th>PRIORITY</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ACT NOR</td>
<td>ACT NOR</td>
<td>ACT NOR</td>
</tr>
<tr>
<td>21 1- 6-11-16-21</td>
<td>4.00</td>
<td>0.71</td>
<td>0.31</td>
</tr>
<tr>
<td>23 1- 7-12-18-23</td>
<td>4.83</td>
<td>0.85</td>
<td>0.13</td>
</tr>
<tr>
<td>25 1- 7-13-19-25</td>
<td>5.66</td>
<td>1.00</td>
<td>0.14</td>
</tr>
</tbody>
</table>

\[W, W_2 \] 21 23 25 TARGET SELECTED COMBINED VALUE

0.50 0.25 0.25 0.519 0.510 0.535 23/21 0.51

FOR 80 PERCENT REDUCTION IN AIR-DEFENSE LETHAL RADIUS.

<table>
<thead>
<tr>
<th>TARGET ROUTE</th>
<th>DISTANCE</th>
<th>DIFFICULTY</th>
<th>PRIORITY</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ACT NOR</td>
<td>ACT NOR</td>
<td>ACT NOR</td>
</tr>
<tr>
<td>21 1- 6-11-16-21</td>
<td>4.00</td>
<td>0.71</td>
<td>0.15</td>
</tr>
<tr>
<td>23 1- 7-12-18-23</td>
<td>4.83</td>
<td>0.85</td>
<td>0.08</td>
</tr>
<tr>
<td>25 1- 7-13-19-25</td>
<td>5.66</td>
<td>1.00</td>
<td>0.14</td>
</tr>
</tbody>
</table>

\[W, W_2 \] 21 23 25 TARGET SELECTED COMBINED VALUE

0.50 0.25 0.25 0.519 0.510 0.535 23/21 0.51
<table>
<thead>
<tr>
<th>TARGET ROUTE</th>
<th>DISTANCE</th>
<th>DIFFICULTY</th>
<th>PRIORITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>21 1- 6-11-16-21</td>
<td>4.00</td>
<td>0.71</td>
<td>0.28 0.09</td>
</tr>
<tr>
<td>23 1- 7-12-18-23</td>
<td>4.83</td>
<td>0.85</td>
<td>0.14 0.04</td>
</tr>
<tr>
<td>25 1- 7-13-19-25</td>
<td>5.66</td>
<td>1.00</td>
<td>0.25 0.08</td>
</tr>
</tbody>
</table>

\[W, W_2, W_3, 21, 23, 25 \] TARGET SELECTED COMBINED VALUE

0.50 0.25 0.25 0.50 0.50 0.52 0.23/21 0.50

FOR 80 PERCENT REDUCTION IN AIR-DEFENSE LETHAL RADIUS.

<table>
<thead>
<tr>
<th>TARGET ROUTE</th>
<th>DISTANCE</th>
<th>DIFFICULTY</th>
<th>PRIORITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>21 1- 6-11-16-21</td>
<td>4.00</td>
<td>0.71</td>
<td>0.12 0.04</td>
</tr>
<tr>
<td>23 1- 7-12-18-23</td>
<td>4.83</td>
<td>0.85</td>
<td>0.06 0.02</td>
</tr>
<tr>
<td>25 1- 7-13-19-25</td>
<td>5.66</td>
<td>1.00</td>
<td>0.11 0.03</td>
</tr>
</tbody>
</table>

\[W, W_2, W_3, 21, 23, 25 \] TARGET SELECTED COMBINED VALUE

0.50 0.25 0.25 0.48 0.49 0.50 0.23/21 0.49

FOR 90 PERCENT REDUCTION IN AIR-DEFENSE LETHAL RADIUS.

<table>
<thead>
<tr>
<th>TARGET ROUTE</th>
<th>DISTANCE</th>
<th>DIFFICULTY</th>
<th>PRIORITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>21 1- 6-11-16-21</td>
<td>4.00</td>
<td>0.71</td>
<td>0.04 0.01</td>
</tr>
<tr>
<td>23 1- 6-12-18-23</td>
<td>4.83</td>
<td>0.85</td>
<td>0.02 0.01</td>
</tr>
<tr>
<td>25 1- 7-13-19-25</td>
<td>5.66</td>
<td>1.00</td>
<td>0.03 0.01</td>
</tr>
</tbody>
</table>

\[W, W_2, W_3, 21, 23, 25 \] TARGET SELECTED COMBINED VALUE

0.50 0.25 0.25 0.48 0.49 0.50 0.21/23 0.48

FOR 100 PERCENT REDUCTION IN AIR-DEFENSE LETHAL RADIUS.

<table>
<thead>
<tr>
<th>TARGET ROUTE</th>
<th>DISTANCE</th>
<th>DIFFICULTY</th>
<th>PRIORITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>21 1- 6-11-16-21</td>
<td>4.00</td>
<td>0.71</td>
<td>0.00 0.00</td>
</tr>
<tr>
<td>23 1- 6-11-17-23</td>
<td>4.83</td>
<td>0.85</td>
<td>0.00 0.00</td>
</tr>
<tr>
<td>25 1- 7-13-19-25</td>
<td>5.66</td>
<td>1.00</td>
<td>0.00 0.00</td>
</tr>
</tbody>
</table>

\[W, W_2, W_3, 21, 23, 25 \] TARGET SELECTED COMBINED VALUE

0.50 0.25 0.25 0.47 0.48 0.50 0.21 0.48
TABLE A.13 : NODE SET 2, PK SET 1, WEIGHT SET 5

FOR $W_1 = 0.25$ $W_2 = 0.50$ $W_3 = 0.25$

$W_4* = 0.33$ $W_2* = 0.67$

FOR 0 PERCENT REDUCTION IN AIR-DEFENSE LETHAL RADIUS.

<table>
<thead>
<tr>
<th>TARGET</th>
<th>ROUTE</th>
<th>DISTANCE</th>
<th>DIFFICULTY</th>
<th>PRIORITY</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>ACT NOR</td>
<td>ACT NOR</td>
<td>ACT NOR</td>
</tr>
<tr>
<td>21</td>
<td>1-6-11-16-21</td>
<td>4.00 0.54</td>
<td>3.15 1.00</td>
<td>40.00 0.50</td>
</tr>
<tr>
<td>23</td>
<td>1-7-13-18-23</td>
<td>4.83 0.65</td>
<td>1.93 0.61</td>
<td>60.00 0.75</td>
</tr>
<tr>
<td>25</td>
<td>1-2-3-4-10-15-20-25</td>
<td>7.41 1.00</td>
<td>0.67 0.21</td>
<td>80.00 1.00</td>
</tr>
</tbody>
</table>

W_1 W_2 W_3 21 23 25 TARGET SELECTED COMBINED VALUE
0.25 0.50 0.25 0.760 0.532 0.356 25 0.36

FOR 10 PERCENT REDUCTION IN AIR-DEFENSE LETHAL RADIUS.

<table>
<thead>
<tr>
<th>TARGET</th>
<th>ROUTE</th>
<th>DISTANCE</th>
<th>DIFFICULTY</th>
<th>PRIORITY</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>ACT NOR</td>
<td>ACT NOR</td>
<td>ACT NOR</td>
</tr>
<tr>
<td>21</td>
<td>1-6-11-16-21</td>
<td>4.00 0.54</td>
<td>2.55 0.81</td>
<td>40.00 0.50</td>
</tr>
<tr>
<td>23</td>
<td>1-6-12-18-23</td>
<td>4.83 0.65</td>
<td>1.63 0.52</td>
<td>60.00 0.75</td>
</tr>
<tr>
<td>25</td>
<td>1-2-3-4-10-15-20-25</td>
<td>7.41 1.00</td>
<td>0.46 0.15</td>
<td>80.00 1.00</td>
</tr>
</tbody>
</table>

W_1 W_2 W_3 21 23 25 TARGET SELECTED COMBINED VALUE
0.25 0.50 0.25 0.665 0.413 0.323 25 0.32

FOR 20 PERCENT REDUCTION IN AIR-DEFENSE LETHAL RADIUS.

<table>
<thead>
<tr>
<th>TARGET</th>
<th>ROUTE</th>
<th>DISTANCE</th>
<th>DIFFICULTY</th>
<th>PRIORITY</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>ACT NOR</td>
<td>ACT NOR</td>
<td>ACT NOR</td>
</tr>
<tr>
<td>21</td>
<td>1-6-11-16-21</td>
<td>4.00 0.54</td>
<td>2.00 0.63</td>
<td>40.00 0.50</td>
</tr>
<tr>
<td>23</td>
<td>1-6-12-18-23</td>
<td>4.83 0.65</td>
<td>1.18 0.37</td>
<td>60.00 0.75</td>
</tr>
<tr>
<td>25</td>
<td>1-2-8-14-20-25</td>
<td>6.24 0.84</td>
<td>0.85 0.27</td>
<td>80.00 1.00</td>
</tr>
</tbody>
</table>

W_1 W_2 W_3 21 23 25 TARGET SELECTED COMBINED VALUE
0.25 0.50 0.25 0.577 0.413 0.346 25 0.35

FOR 30 PERCENT REDUCTION IN AIR-DEFENSE LETHAL RADIUS.

DISTANCE DIFFICULTY PRIORITY

83
<table>
<thead>
<tr>
<th>TARGET ROUTE</th>
<th>ACT</th>
<th>NOR</th>
<th>ACT</th>
<th>NOR</th>
<th>ACT</th>
<th>NOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>21 1-6-11-16-21</td>
<td>4.00</td>
<td>0.54</td>
<td>1.53</td>
<td>0.69</td>
<td>40.00</td>
<td>0.50</td>
</tr>
<tr>
<td>23 1-6-12-18-23</td>
<td>4.83</td>
<td>0.65</td>
<td>0.83</td>
<td>0.26</td>
<td>60.00</td>
<td>0.75</td>
</tr>
<tr>
<td>25 1-2-8-14-19-25</td>
<td>6.24</td>
<td>0.84</td>
<td>0.57</td>
<td>0.18</td>
<td>80.00</td>
<td>1.00</td>
</tr>
</tbody>
</table>

\[W_1, W_2, W_3 \] 21 23 25 TARGET SELECTED COMBINED VALUE

0.25 0.50 0.25 0.503 0.357 0.301 25 0.30

FOR 40 PERCENT REDUCTION IN AIR-DEFENSE LETHAL RADIUS.

<table>
<thead>
<tr>
<th>TARGET ROUTE</th>
<th>DISTANCE</th>
<th>DIFFICULTY</th>
<th>PRIORITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACT</td>
<td>NOR</td>
<td>ACT</td>
<td>NOR</td>
</tr>
<tr>
<td>21 1-6-11-16-21</td>
<td>4.00</td>
<td>0.54</td>
<td>1.13</td>
</tr>
<tr>
<td>23 1-6-12-18-23</td>
<td>4.83</td>
<td>0.65</td>
<td>0.59</td>
</tr>
<tr>
<td>25 1-2-8-14-19-25</td>
<td>6.24</td>
<td>0.84</td>
<td>0.42</td>
</tr>
</tbody>
</table>

\[W_1, W_2, W_3 \] 21 23 25 TARGET SELECTED COMBINED VALUE

0.25 0.50 0.25 0.439 0.319 0.277 25 0.28

FOR 50 PERCENT REDUCTION IN AIR-DEFENSE LETHAL RADIUS.

<table>
<thead>
<tr>
<th>TARGET ROUTE</th>
<th>DISTANCE</th>
<th>DIFFICULTY</th>
<th>PRIORITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACT</td>
<td>NOR</td>
<td>ACT</td>
<td>NOR</td>
</tr>
<tr>
<td>21 1-6-11-16-21</td>
<td>4.00</td>
<td>0.54</td>
<td>0.79</td>
</tr>
<tr>
<td>23 1-6-12-18-23</td>
<td>4.83</td>
<td>0.65</td>
<td>0.40</td>
</tr>
<tr>
<td>25 1-2-8-14-19-25</td>
<td>6.24</td>
<td>0.84</td>
<td>0.30</td>
</tr>
</tbody>
</table>

\[W_1, W_2, W_3 \] 21 23 25 TARGET SELECTED COMBINED VALUE

0.25 0.50 0.25 0.385 0.289 0.258 25 0.26

FOR 60 PERCENT REDUCTION IN AIR-DEFENSE LETHAL RADIUS.

<table>
<thead>
<tr>
<th>TARGET ROUTE</th>
<th>DISTANCE</th>
<th>DIFFICULTY</th>
<th>PRIORITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACT</td>
<td>NOR</td>
<td>ACT</td>
<td>NOR</td>
</tr>
<tr>
<td>21 1-6-11-16-21</td>
<td>4.00</td>
<td>0.54</td>
<td>0.51</td>
</tr>
<tr>
<td>23 1-7-12-18-23</td>
<td>4.83</td>
<td>0.65</td>
<td>0.26</td>
</tr>
<tr>
<td>25 1-7-13-19-25</td>
<td>5.66</td>
<td>0.76</td>
<td>0.44</td>
</tr>
</tbody>
</table>

\[W_1, W_2, W_3 \] 21 23 25 TARGET SELECTED COMBINED VALUE

0.25 0.50 0.25 0.341 0.267 0.261 25/23 0.26

FOR 70 PERCENT REDUCTION IN AIR-DEFENSE LETHAL RADIUS.

<table>
<thead>
<tr>
<th>TARGET ROUTE</th>
<th>DISTANCE</th>
<th>DIFFICULTY</th>
<th>PRIORITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACT</td>
<td>NOR</td>
<td>ACT</td>
<td>NOR</td>
</tr>
<tr>
<td>21 1-6-11-16-21</td>
<td>4.00</td>
<td>0.54</td>
<td>0.34</td>
</tr>
<tr>
<td>23 1-7-12-18-23</td>
<td>4.83</td>
<td>0.65</td>
<td>0.23</td>
</tr>
<tr>
<td>25 1-7-13-19-25</td>
<td>5.66</td>
<td>0.76</td>
<td>0.43</td>
</tr>
</tbody>
</table>

\[W_1, W_2, W_3 \] 21 23 25 TARGET SELECTED COMBINED VALUE

0.25 0.50 0.25 0.341 0.267 0.261 25/23 0.26

FOR 80 PERCENT REDUCTION IN AIR-DEFENSE LETHAL RADIUS.
<table>
<thead>
<tr>
<th>TARGET</th>
<th>ROUTE</th>
<th>DISTANCE</th>
<th>DIFFICULTY</th>
<th>PRIORITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>21</td>
<td>1- 6-11-16-21</td>
<td>4.00</td>
<td>0.54</td>
<td>0.28</td>
</tr>
<tr>
<td>23</td>
<td>1- 6-12-18-23</td>
<td>4.83</td>
<td>0.65</td>
<td>0.14</td>
</tr>
<tr>
<td>25</td>
<td>1- 7-13-19-25</td>
<td>5.66</td>
<td>0.76</td>
<td>0.25</td>
</tr>
</tbody>
</table>

\[W_1, W_2, W_3 = 21, 23, 25 \] \text{TARGET SELECTED COMBINED VALUE}

\[0.25, 0.50, 0.25, 0.304, 0.248, 0.231 \]

\[25, 0.23 \]

\text{FOR 80 PERCENT REDUCTION IN AIR-DEFENSE LETHAL RADIUS.}

\begin{align*}
\text{TARGET} & \quad \text{ROUTE} & \quad \text{DISTANCE} & \quad \text{DIFFICULTY} & \quad \text{PRIORITY} \\
21 & 1- 6-11-16-21 & 4.00 & 0.54 & 0.12 & 0.04 & 40.00 & 0.50 \\
23 & 1- 6-12-18-23 & 4.83 & 0.65 & 0.06 & 0.02 & 60.00 & 0.75 \\
25 & 1- 7-13-19-25 & 5.66 & 0.76 & 0.11 & 0.03 & 80.00 & 1.00 \\
\end{align*}

\[W_1, W_2, W_3 = 21, 23, 25 \] \text{TARGET SELECTED COMBINED VALUE}

\[0.25, 0.50, 0.25, 0.279, 0.235, 0.208 \]

\[25, 0.21 \]

\text{FOR 90 PERCENT REDUCTION IN AIR-DEFENSE LETHAL RADIUS.}

\begin{align*}
\text{TARGET} & \quad \text{ROUTE} & \quad \text{DISTANCE} & \quad \text{DIFFICULTY} & \quad \text{PRIORITY} \\
21 & 1- 6-11-16-21 & 4.00 & 0.54 & 0.04 & 0.01 & 40.00 & 0.50 \\
23 & 1- 7-12-18-23 & 4.83 & 0.65 & 0.02 & 0.01 & 60.00 & 0.75 \\
25 & 1- 7-13-19-25 & 5.66 & 0.76 & 0.03 & 0.01 & 80.00 & 1.00 \\
\end{align*}

\[W_1, W_2, W_3 = 21, 23, 25 \] \text{TARGET SELECTED COMBINED VALUE}

\[0.25, 0.50, 0.25, 0.260, 0.229, 0.196 \]

\[25, 0.20 \]

\text{FOR 100 PERCENT REDUCTION IN AIR-DEFENSE LETHAL RADIUS.}

\begin{align*}
\text{TARGET} & \quad \text{ROUTE} & \quad \text{DISTANCE} & \quad \text{DIFFICULTY} & \quad \text{PRIORITY} \\
21 & 1- 6-11-16-21 & 4.00 & 0.54 & 0.00 & 0.00 & 40.00 & 0.50 \\
23 & 1- 6-11-17-23 & 4.83 & 0.65 & 0.00 & 0.00 & 60.00 & 0.75 \\
25 & 1- 7-13-19-25 & 5.66 & 0.76 & 0.00 & 0.00 & 80.00 & 1.00 \\
\end{align*}

\[W_1, W_2, W_3 = 21, 23, 25 \] \text{TARGET SELECTED COMBINED VALUE}

\[0.25, 0.50, 0.25, 0.260, 0.225, 0.191 \]

\[25, 0.19 \]
<table>
<thead>
<tr>
<th>TARGET</th>
<th>ROUTE</th>
<th>DISTANCE</th>
<th>DIFFICULTY</th>
<th>PRIORITY</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>ACT</td>
<td>NOR</td>
<td>ACT</td>
</tr>
<tr>
<td>21</td>
<td>1- 6-11-16-21</td>
<td>4.00</td>
<td>0.64</td>
<td>3.15</td>
</tr>
<tr>
<td>23</td>
<td>1- 7-13-18-23</td>
<td>4.83</td>
<td>0.77</td>
<td>1.93</td>
</tr>
<tr>
<td>25</td>
<td>1- 7-13-19-25</td>
<td>5.66</td>
<td>0.91</td>
<td>2.18</td>
</tr>
</tbody>
</table>

$W_1 = 0.25 \quad W_2 = 0.25 \quad W_3 = 0.50$

$W_1^* = 0.50 \quad W_2^* = 0.50$

FOR 0 PERCENT REDUCTION IN AIR-DEFENSE LETHAL RADIUS.

$W_1 \quad W_2 \quad W_3 \quad 21 \quad 23 \quad 25 \quad$ TARGET SELECTED COMBINED VALUE

$0.25 \quad 0.25 \quad 0.50 \quad 0.600 \quad 0.472 \quad 0.400 \quad 25 \quad 0.40$

FOR 10 PERCENT REDUCTION IN AIR-DEFENSE LETHAL RADIUS.

$W_1 \quad W_2 \quad W_3 \quad 21 \quad 23 \quad 25 \quad$ TARGET SELECTED COMBINED VALUE

$0.25 \quad 0.25 \quad 0.50 \quad 0.613 \quad 0.448 \quad 0.349 \quad 25 \quad 0.35$

FOR 20 PERCENT REDUCTION IN AIR-DEFENSE LETHAL RADIUS.

$W_1 \quad W_2 \quad W_3 \quad 21 \quad 23 \quad 25 \quad$ TARGET SELECTED COMBINED VALUE

$0.25 \quad 0.25 \quad 0.50 \quad 0.569 \quad 0.412 \quad 0.318 \quad 25 \quad 0.32$

FOR 30 PERCENT REDUCTION IN AIR-DEFENSE LETHAL RADIUS.

<table>
<thead>
<tr>
<th>DISTANCE</th>
<th>DIFFICULTY</th>
<th>PRIORITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACT</td>
<td>NOR</td>
<td>ACT</td>
</tr>
<tr>
<td>21 6-11-16-21</td>
<td>4.00</td>
<td>0.64</td>
</tr>
<tr>
<td>23 7-13-18-23</td>
<td>4.83</td>
<td>0.77</td>
</tr>
<tr>
<td>25 7-13-19-25</td>
<td>5.66</td>
<td>0.91</td>
</tr>
</tbody>
</table>

$W_1 = 0.25 \quad W_2 = 0.25 \quad W_3 = 0.50$

$W_1^* = 0.50 \quad W_2^* = 0.50$

END OF PAGE
<table>
<thead>
<tr>
<th>TARGET ROUTE</th>
<th>ACT</th>
<th>NOR</th>
<th>ACT</th>
<th>NOR</th>
<th>ACT</th>
<th>NOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>21 1-6-11-16-21</td>
<td>4.00</td>
<td>0.64</td>
<td>1.53</td>
<td>0.49</td>
<td>40.00</td>
<td>0.50</td>
</tr>
<tr>
<td>23 1-6-12-18-23</td>
<td>4.83</td>
<td>0.77</td>
<td>0.83</td>
<td>0.26</td>
<td>60.00</td>
<td>0.75</td>
</tr>
<tr>
<td>25 1-2-8-14-19-25</td>
<td>6.24</td>
<td>1.00</td>
<td>0.57</td>
<td>0.18</td>
<td>80.00</td>
<td>1.00</td>
</tr>
</tbody>
</table>

\[W_1, W_2, W_3 \text{ for 21 23 25 target selected combined value} \]

\[
\begin{align*}
0.25 & \quad 0.25 & \quad 0.50 & \quad 0.532 & \quad 0.384 & \quad 0.295 & \quad 25 & \quad 0.30
\end{align*}
\]

For 40% Reduction in Air-Defense Lethal Radius:

<table>
<thead>
<tr>
<th>TARGET ROUTE</th>
<th>DISTANCE</th>
<th>ACT</th>
<th>NOR</th>
<th>ACT</th>
<th>NOR</th>
<th>ACT</th>
<th>NOR</th>
<th>ACT</th>
<th>NOR</th>
<th>ACT</th>
<th>NOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>21 1-6-11-16-21</td>
<td>4.00</td>
<td>0.64</td>
<td>1.13</td>
<td>0.36</td>
<td>40.00</td>
<td>0.50</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23 1-6-12-18-23</td>
<td>4.83</td>
<td>0.77</td>
<td>0.59</td>
<td>0.19</td>
<td>60.00</td>
<td>0.75</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25 1-7-13-19-25</td>
<td>5.66</td>
<td>0.91</td>
<td>0.99</td>
<td>0.31</td>
<td>80.00</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\[W_1, W_2, W_3 \text{ for 21 23 25 target selected combined value} \]

\[
\begin{align*}
0.25 & \quad 0.25 & \quad 0.50 & \quad 0.500 & \quad 0.365 & \quad 0.305 & \quad 25 & \quad 0.31
\end{align*}
\]

For 50% Reduction in Air-Defense Lethal Radius:

<table>
<thead>
<tr>
<th>TARGET ROUTE</th>
<th>DISTANCE</th>
<th>ACT</th>
<th>NOR</th>
<th>ACT</th>
<th>NOR</th>
<th>ACT</th>
<th>NOR</th>
<th>ACT</th>
<th>NOR</th>
<th>ACT</th>
<th>NOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>21 1-6-11-16-21</td>
<td>4.00</td>
<td>0.64</td>
<td>0.79</td>
<td>0.25</td>
<td>40.00</td>
<td>0.50</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23 1-6-12-18-23</td>
<td>4.83</td>
<td>0.77</td>
<td>0.40</td>
<td>0.13</td>
<td>60.00</td>
<td>0.75</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25 1-7-13-19-25</td>
<td>5.66</td>
<td>0.91</td>
<td>0.69</td>
<td>0.22</td>
<td>80.00</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\[W_1, W_2, W_3 \text{ for 21 23 25 target selected combined value} \]

\[
\begin{align*}
0.25 & \quad 0.25 & \quad 0.50 & \quad 0.473 & \quad 0.350 & \quad 0.281 & \quad 25 & \quad 0.28
\end{align*}
\]

For 60% Reduction in Air-Defense Lethal Radius:

<table>
<thead>
<tr>
<th>TARGET ROUTE</th>
<th>DISTANCE</th>
<th>ACT</th>
<th>NOR</th>
<th>ACT</th>
<th>NOR</th>
<th>ACT</th>
<th>NOR</th>
<th>ACT</th>
<th>NOR</th>
<th>ACT</th>
<th>NOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>21 1-6-11-16-21</td>
<td>4.00</td>
<td>0.64</td>
<td>0.51</td>
<td>0.16</td>
<td>40.00</td>
<td>0.50</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23 1-6-12-18-23</td>
<td>4.83</td>
<td>0.77</td>
<td>0.26</td>
<td>0.08</td>
<td>60.00</td>
<td>0.75</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25 1-7-13-19-25</td>
<td>5.66</td>
<td>0.91</td>
<td>0.44</td>
<td>0.14</td>
<td>80.00</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\[W_1, W_2, W_3 \text{ for 21 23 25 target selected combined value} \]

\[
\begin{align*}
0.25 & \quad 0.25 & \quad 0.50 & \quad 0.451 & \quad 0.339 & \quad 0.262 & \quad 25 & \quad 0.26
\end{align*}
\]

For 70% Reduction in Air-Defense Lethal Radius:

<table>
<thead>
<tr>
<th>TARGET ROUTE</th>
<th>DISTANCE</th>
<th>ACT</th>
<th>NOR</th>
<th>ACT</th>
<th>NOR</th>
<th>ACT</th>
<th>NOR</th>
</tr>
</thead>
</table>

87
For 80% Reduction in Air-Defense Lethal Radius

<table>
<thead>
<tr>
<th>Target Route</th>
<th>Distance</th>
<th>Difficulty</th>
<th>Priority</th>
</tr>
</thead>
<tbody>
<tr>
<td>21-6-11-16-21</td>
<td>4.00</td>
<td>0.64</td>
<td>0.28</td>
</tr>
<tr>
<td>23-6-12-18-23</td>
<td>4.83</td>
<td>0.77</td>
<td>0.14</td>
</tr>
<tr>
<td>25-7-13-19-25</td>
<td>5.66</td>
<td>0.91</td>
<td>0.25</td>
</tr>
</tbody>
</table>

\[\begin{bmatrix} W_1 & W_2 & W_3 \end{bmatrix} \]

<table>
<thead>
<tr>
<th>Targets Selected</th>
<th>Combined Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>21-23-25</td>
<td>0.25 0.25 0.50 0.432 0.330 0.246 25</td>
</tr>
</tbody>
</table>

For 90% Reduction in Air-Defense Lethal Radius

<table>
<thead>
<tr>
<th>Target Route</th>
<th>Distance</th>
<th>Difficulty</th>
<th>Priority</th>
</tr>
</thead>
<tbody>
<tr>
<td>21-6-11-16-21</td>
<td>4.00</td>
<td>0.64</td>
<td>0.12</td>
</tr>
<tr>
<td>23-6-12-18-23</td>
<td>4.83</td>
<td>0.77</td>
<td>0.06</td>
</tr>
<tr>
<td>25-7-13-19-25</td>
<td>5.66</td>
<td>0.91</td>
<td>0.11</td>
</tr>
</tbody>
</table>

\[\begin{bmatrix} W_1 & W_2 & W_3 \end{bmatrix} \]

<table>
<thead>
<tr>
<th>Targets Selected</th>
<th>Combined Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>21-23-25</td>
<td>0.25 0.25 0.50 0.420 0.323 0.235 25</td>
</tr>
</tbody>
</table>

For 100% Reduction in Air-Defense Lethal Radius

<table>
<thead>
<tr>
<th>Target Route</th>
<th>Distance</th>
<th>Difficulty</th>
<th>Priority</th>
</tr>
</thead>
<tbody>
<tr>
<td>21-6-11-16-21</td>
<td>4.00</td>
<td>0.64</td>
<td>0.00</td>
</tr>
<tr>
<td>23-6-12-18-23</td>
<td>4.83</td>
<td>0.77</td>
<td>0.00</td>
</tr>
<tr>
<td>25-7-13-19-25</td>
<td>5.66</td>
<td>0.91</td>
<td>0.00</td>
</tr>
</tbody>
</table>

\[\begin{bmatrix} W_1 & W_2 & W_3 \end{bmatrix} \]

<table>
<thead>
<tr>
<th>Targets Selected</th>
<th>Combined Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>21-23-25</td>
<td>0.25 0.25 0.50 0.410 0.320 0.229 25</td>
</tr>
</tbody>
</table>
APPENDIX B

FIGURES OF RESULTS FOR DYNAMIC ROUTE SELECTION MODEL

The figures given in this appendix are described in Chapter V. Figures B.1 - B.8 show the CV (Combined Value) for each target across percent reduction in air defense lethal radii for Node sets 1 and 2, and weight sets 3 - 6. Figure B.9 - B.14 present CV for each target across weight sets 3 - 6 for each ten percent increment of reduction in air defense lethal radii.
Figure B.1: Node SET 1 - WEIGHT SET 3 (.33, .33, .33)
Figure B.2: Node Set 1 - Weight Set 4 (.50, .25, .25)
Figure 5.3: Node SET 1 - WEIGHT SET 5 (.25, .50, .25)
Figure 5.4: Node SET 1 - WEIGHT SET 6 (0.25, 0.25, 0.50)

PERCENT REDUCTION IN AIR-DEFENSE LETHAL RADIUS

Figure B.4 : Node SET 1 - WEIGHT SET 6 (.25, .25, .50)
Figure B.5: Node SET 2 - WEIGHT SET 3 (.33,.33,.33)
Figure B.6: Node SET 2 - WEIGHT SET 4 (.50, .25, .25)
Figure B.7: Node SET 2 - WEIGHT SET 5 (.25,.50,.25)
Figure 3.8: Node SET 2 - WEIGHT SET 6 (.25, .25, .50)
Figure B.9: 0 Percent Reduction in AD Lethal Radii
Figure B.10: 20 Percent Reduction in AD Lethal Radii
Figure B.11: 40 Percent Reduction in AD Lethal Radii
Figure B.12: 60 Percent Reduction in AD Lethal Radii
Figure B.13: 80 Percent Reduction in AD Lethal Radii
Figure B.14: 100 Percent Reduction in AD Lethal Radii
APPENDIX C. LIST OF VARIABLES

This appendix presents an alphabetical list which provides definitions of the major variables that are used in the air grid coverage model (Appendix D) and air route selection model (Appendix E). Variables which are used as counters or as dummy arguments in UNITS are not included on this list. Variables used to store intermediate results of computations are also omitted from the list. Constant, boolean, scaler, array, record-type, file-type, and linked list variables are listed separately.

A. CONSTANTS

length = square root of number of grids in the grid space
maxvertexsize = desired space for array and linked list data
number_of_grid = number of grids in the grid space
w = width of each air grid

B. BOOLEAN VARIABLES

finish = checking to see whether air grid coverage model computations are completed
inside = to indicate whether the center point of a ground node is inside a specific air grid or not
totally_inside = used to indicate whether the area covered by a ground node is totally inside an air grid or not
C. SCALER VARIABLES

\[\text{delta} = \text{width of a trapezoid (used in model II)} \]
\[i = \text{counter} \]
\[\text{number} = \text{grid number in which the center point of a ground unit is located} \]
\[p = \text{estimated probability of kill} \]
\[r = \text{radius} \]
\[\text{reduction} = \text{percent of reduction from original radius (r)} \]
\[\text{target} = \text{location of target grid} \]
\[xc = \text{location of the center point on the X-axis} \]
\[yc = \text{location of the center point on the Y-axis} \]

D. ARRAY VARIABLES

\[DL = \text{the Difficulty Level (Probability of Kill) of a target in each air grid} \]
\[pk = \text{probability of kill of a target in each air grid with respect to a ground unit} \]
\[\text{store} = \text{the area of each air grid covered by a ground unit} \]
\[\text{Tot_area_covered} = \text{the total area of each air grid covered by all ground units} \]

E. RECORD-TYPE VARIABLES

\[\text{air_grid} = \text{four corner points of air grids} \]
\[\text{queue} = \text{PriorityQueue} \]
F. FILE-TYPE VARIABLES

infile1 = coordinates of the grid system

infile2 = perceived information of ground units

infile3 = data for Difficulty Level (probability of kill) of each air grid (input from Model I)

outfile1 = result of area-covered and Difficulty Level of each air grid

outfile2 = result of Difficulty Level of each air grid (computed by model I)

outfile3 = route selection model's results

G. LINKED LIST

g = information for each air grid and relative locations of allowable neighbor grids
program AIR_GRID_COVERAGE(input,output);
uses PkTool1,PkTool2;
var
 air_grid: grid_value;
 inside,totally_inside,finish: boolean;
 pk,store,DL,Tot_area_covered:keep_value;
 xc,yc,x,p:real;
 i,number,reduction: integer;
 infile1,infile2,outfile1,outfile2:text;
 delta: real;
begin
 assign(infile1,'C:\copy\AXISS5.DAT');
 reset(infile1);
 while not(eof(infile1)) do
 begin
 readln(infile1,i, air_grid[i].ax, air_grid[i].ay,
 air_grid[i].bx, air_grid[i].by,
 air_grid[i].cx, air_grid[i].cy,
 air_grid[i].dx, air_grid[i].dy);
 end;
 close(infile1);
 delta := 0.01;
 assign(outfile1,'C:\copy\DL&COVRR.pas');
 assign(outfile2,'C:\copy\DL.OUT');
 rewrite(outfile1);
 rewrite(outfile2);
 reduction := 0;
 repeat
 assign(infile2,'C:\copy\GRDNODE.DAT');
 reset(infile2);
 finish := true;
 Initial_state(DL,Tot_area_covered);
 while not(eof(infile2)) do
 begin

Initial_state(Pk,store);
readln(infile2,xc,yc,r,p);
r := r - reduction;
if (r > 0) then

begin
 finish := false;
 Inside_or_not(inside,number,xc,yc);
 Calculation_of_PK_and_difficulty_level
 (inside,totally_inside,xc,yc,r,p,delta,number,
 air_grid,Pk,store);
 Area_calculation_of_Special_case(inside,
 totally_inside,air_grid,number,xc,yc,
 r,p,delta,Pk,store);
 keep(DL,Tot_area_covered,Pk,store);
end;
end; {while}
Final_result(DL,Tot_area_covered,outfile1);
Route_data(DL,outfile2);
reduction := reduction + 1;
close(infile2);
until (finish);
close(outfile1);
close(outfile2);
end.
{--}
unit PkTooll;
interface
 const number_of_grid = 25;
 { number of air_grid in the model }
type gridtype = record
 ax :real;
 ay :real;
 bx :real;
 by :real;
 cx :real;
 cy :real;
 dx :real;
 dy :real;
 end;
grid_value = array[1..number_of_grid] of gridtype;
keep_value = array[1..number_of_grid] of real;
procedure Find_max_min1_min2_min3(i:integer;xc,yc:real;
 air_grid:grid_value;var max,min1,min2,min3:real) ;
procedure Calculation_of_PK_and_difficulty_level
 (inside:boolean;var totally_inside:boolean;
 xc,yc,x,p,delta:real;number:integer;
 air_grid:grid_value;
 var Pk,store:keep_value);
implementation
const w = 10 ; { width of the air grid equals 10 km }
 length = 5 ; { dimension = sqrt(number_of_grid) }
var T : gridetype;
 max,min,min1,min2,min3 : real ;
 x,y : real;
 a,b,d : real;
 i : integer;
 Up,Lo,height,area : real;
{----------------------------------}
procedure Find_max_min1_min2_min3 ;
 begin
 x := air_grid[i].ax ;
 y := air_grid[i].ay ;
 a := (xc - x) * (xc - x) ;
 b := (yc - y) * (yc - y) ;
 if ((a+b)=0.0) then d := 0.0
 else d := exp(0.5 * ln(a+b)) ;
 mini := d ; { mini < min2 < min3 }
 max := d ;
 x := air_grid[i].bx ;
 y := air_grid[i].by ;
 a := (xc - x) * (xc - x) ;
 b := (yc - y) * (yc - y) ;
 if ((a+b)=0.0) then d := 0.0
 else d := exp(0.5 * ln(a+b)) ;
 if (d > max) then max := d ;
 if (d < mini) then begin
 min2 := mini ;
 mini := d ;
 end
 else min2 := d ;
 x := air_grid[i].cx ;

y := air_grid[i].cy;
a := (xc - x) * (xc - x);
b := (yc - y) * (yc - y);
if ((a + b) = 0.0) then d := 0.0
else d := exp(0.5 * ln(a + b));
if (d > max) then max := d;
if (d < min2) then
 if (d < min3) then
 if (d < min1) then
 begin
 min3 := min2;
 min2 := min1;
 min1 := d;
 end
 else begin
 min3 := min2;
 min2 := d;
 end
 else min3 := d;
else
 if (d < min2) then
 if (d < min3) then
 begin
 if (d < min1) then
 begin
 min3 := min2;
 min2 := min1;
 min1 := d;
 end
 else begin
 min3 := min2;
 min2 := d;
 end
 end
 else min3 := d;
end;
{procedure Find_max_min1_min2_min3}
{--}
procedure Calculation_of_PK_and_difficulty_level;
begin

totally_inside := false;

max := \exp(0.5 * \ln(2 * 4 * w * 4 * w));

min := \exp(0.5 * \ln(2 * 4 * w * 4 * w));

min1 := \exp(0.5 * \ln(2 * 4 * w * 4 * w));

min2 := \exp(0.5 * \ln(2 * 4 * w * 4 * w));

min3 := \exp(0.5 * \ln(2 * 4 * w * 4 * w));

if inside then

begin

x := air_grid[number].ax;
y := air_grid[number].ay;

a := (xc - x) * (xc - x);
b := (yc - y) * (yc - y);

if ((a+b)=0.0) then d := 0.0
else d := \exp(0.5 * \ln(a+b));

min := d;

x := air_grid[number].bx;
y := air_grid[number].by;

a := (xc - x) * (xc - x);
b := (yc - y) * (yc - y);

if ((a+b)=0.0) then d := 0.0
else d := \exp(0.5 * \ln(a+b));

if (d < min) then min := d;

x := air_grid[number].cx;
y := air_grid[number].cy;

a := (xc - x) * (xc - x);
b := (yc - y) * (yc - y);

if ((a+b)=0.0) then d := 0.0
else d := \exp(0.5 * \ln(a+b));

if (d < min) then min := d;

x := air_grid[number].dx;
y := air_grid[number].dy;

a := (xc - x) * (xc - x);
b := (yc - y) * (yc - y);

if ((a+b)=0.0) then d := 0.0
else d := \exp(0.5 * \ln(a+b));

if (d < min) then min := d;

x := air_grid[number].cx;
y := yc;
a := (xc - x) * (xc - x);
\[b := (yc - y) \times (yc - y); \]
\[d := \exp(0.5 \times \ln(a+b)); \]
(\text{shortest distance to the left-hand side})

\[
\text{if } (d < \text{min}) \text{ then } \text{min} := d; \]
\[x := \text{air_grid[number]}.ax; \]
\[y := yc; \]
\[a := (xc - x) \times (xc - x); \]
\[b := (yc - y) \times (yc - y); \]

\[
\text{if } ((a+b)=0.0) \text{ then } d := 0.0 \]
\[\text{else } d := \exp(0.5 \times \ln(a+b)); \]
(\text{shortest distance to the right side})

\[
\text{if } (d < \text{min}) \text{ then } \text{min} := d; \]
\[x := xc; \]
\[y := \text{air_grid[number]}.cy; \]
\[a := (xc - x) \times (xc - x); \]
\[b := (yc - y) \times (yc - y); \]

\[
\text{if } ((a+b)=0.0) \text{ then } d := 0.0 \]
\[\text{else } d := \exp(0.5 \times \ln(a+b)); \]
(\text{shortest distance to the top})

\[
\text{if } (d < \text{min}) \text{ then } \text{min} := d; \]
\[x := xc; \]
\[y := \text{air_grid[number]}.dy; \]
\[a := (xc - x) \times (xc - x); \]
\[b := (yc - y) \times (yc - y); \]

\[
\text{if } ((a+b)=0.0) \text{ then } d := 0.0 \]
\[\text{else } d := \exp(0.5 \times \ln(a+b)); \]
(\text{shortest distance to the bottom})

\[
\text{if } (d < \text{min}) \text{ then } \text{min} := d; \]
\[\text{end}; \]
\{ if \}

\{ \text{ground node is totally inside an air_grid} \}
\[\text{if } (\text{inside and } (r \leq \text{min})) \text{ then } \]

\[
\text{begin} \]
\[\text{pk[number]} := p \times (\pi \times r \times r)/(w \times w); \]
\[\text{store[number]} := \pi \times r \times r; \]
\[\text{totally_inside := true}; \]
\[\text{end} \]
else begin
 for i := 1 to number_of_grid do begin
 if not((inside and (i=number))) then begin
 T := air_grid[i] ;
 {********** FOR CASE 1 & 2 **********}
 if ((T.by < yc) and (yc < T.ay)) then begin
 {********** CASE 1 **********}
 if (T.ax <= xc) then begin
 { find max, min, min1, min2 }
 x := air_grid[i].ax ;
 y := air_grid[i].ay ;
 a := (xc - x) * (xc - x) ;
 b := (yc - y) * (yc - y) ;
 if ((a+b)=0.0) then d := 0.0
 else d := exp(0.5 * ln(a+b)) ;
 min1 := d ;
 max := d ;
 x := air_grid[i].bx ;
 y := air_grid[i].by ;
 a := (xc - x) * (xc - x) ;
 b := (yc - y) * (yc - y) ;
 if ((a+b)=0.0) then d := 0.0
 else d := exp(0.5 * ln(a+b)) ;
 if (d > max) then max := d ;
 if (d < min1) then begin
 min2 := min1 ;
 min1 := d ;
 end
 else min2 := d ;
 x := air_grid[i].cx ;
 y := air_grid[i].cy ;
 end
 end
 end
 end
end
\[a \cdot (x_c - x) \]
\[b = (y_c - y) \]

\[a : \] \[(a + b) = 0.0 \] then \[d := 0.0 \]
\[else d := \exp(0.5 \cdot \ln(a+b)) \]

\[\text{if } (d > \text{max}) \text{ then } \text{max} := d \]
\[\text{if } (d < \text{min}) \text{ then begin} \]
\[\text{if } (d < \text{min2}) \text{ then begin} \]
\[\text{if } (d < \text{mini}) \text{ then } \text{mini} := d \]
\[end \]
\[\text{else min2 := d; } \]
\[{\text{shortest distance from } (x_c, y_c) \text{ to the left-hand side of the target air grid}} \]

\[x := \text{air-grid}[i].dx; \]
\[y := \text{air-grid}[i].dy; \]
\[x := (x_c - x) \]
\[y := (y_c - y) \]

\[\text{if } (r = \text{min}) \text{ then } pk[i] := 0 \]
\[\text{else if } (r \geq \text{max}) \text{ then } \]
\[\text{begin} \]
\[\text{store[i]} := \text{w} \cdot \text{w} \]
\[\text{end} \]
\[\text{else begin} \]
\[\text{if } (\text{mini} < r) \text{ and } (\text{min2} < r) \text{ then begin} \]
\[\text{end} \]
\[\text{else if } (d < \text{mini}) \text{ then begin} \]
\[\text{end} \]
begin
Lo := T.by ;
Up := T.ay ;
end
else if ((r<min) and ((r<min1) and (r<min2))) then
begin
y:=exp(0.5*ln(r*r-(T.ax-xc)*
 (T.ax-xc)))+yc;
Up := y ;
Lo := 2 * yc - y ;
end
else if (yc > (T.ay+T.by)/2) then
begin
Up := T.ay ;
y:=exp(0.5*ln(r*r-(T.ax-xc)*
 (T.ax-xc)))+yc;
Lo := abs(y-2* (y-T.ay) -2*
 abs(T.ay-yc)) ;
end
else begin
Lo := T.by ;
y:=exp(0.5*ln(r*r-(T.ax-xc)*
 (T.ax-xc)))+yc;
Up := y ;
end ;
{ Area caculation portion }
y := Lo + delta / 2 ;
area := 0 ;
while (y <= Up) do begin
begin
x:=exp(0.5*ln(r*r-(y-yc)*
 (y-yc)))+xc;
height:= x-xc-abs(T.ax-xc) ;
area := area + height * delta ;
y := y + delta ;
end; {while}
pk[i] := p * area / (w * w) ;
store[i] := area ;
end
end {if}
else
begin

{************ END OF CASE 2 ************}

end begin

{************ END OF CASE 1 ************}

begin

{find max, min, min1, min2}

x := air_grid[i].ax;
y := air_grid[i].ay;
a := (xc-x)*(xc-x);
b := (yc-y)*(yc-y);
if ((a+b)=0.0) then d := 0.0
else d := exp(0.5*ln(a+b));
min1 := d; { min1 < min2 }
max := d;
x := air_grid[i].bx;
y := air_grid[i].by;
a := (xc-x)*(xc-x);
b := (yc-y)*(yc-y);
if ((a+b)=0.0) then d := 0.0
else d := exp(0.5*ln(a+b));
if (d > max) then max := d;
if (d < min1) then begin
min2 := min1;
min1 := d;
end
else min2 := d;
x := air_grid[i].cx;
y := air_grid[i].cy;
a := (xc-x)*(xc-x);
b := (yc-y)*(yc-y);
if ((a+b)=0.0) then d := 0.0
else d := exp(0.5*ln(a+b));
if (d > max) then max := d;
if (d < min2) then
 if (d < min1) then begin
 min2 := min1;
 min1 := d;
 end
else min2 := d;
x := air_grid[i].dx;
y := air_grid[i].dy;

116
a := (xc - x) * (xc - x);
b := (yc - y) * (yc - y);
if ((a+b) = 0.0) then d := 0.0
else d := exp(0.5 * ln(a+b));
if (d > max) then max := d;
if (d < min2) then
 if (d < min1) then begin
 min2 := min1;
 min1 := d;
 end
else min2 := d;

{shortest distance from (xc,yc) to the
 right-hand side of the target air_grid}
x := air_grid[i].cx;
y := yc;
a := (xc - x) * (xc - x);
b := (yc - y) * (yc - y);
if ((a+b) = 0.0) then min := 0.0
else min := exp(0.5 * ln(a+b));

if (r <= min) then pk[i] := 0
else if (r >= max) then
 begin
 pk[i] := p;
 store[i] := w * w;
 end
else begin
 if ((min1 < r) and (min2 < r)) then
 begin
 Lo := T.dy;
 Up := T.cy;
 end
 else if ((r > min) and ((r < min1)
 and (r < min2))) then
 begin
 y := exp(0.5 * ln(r*r - (T.cx-xc)*(T.cx-xc)) + yc);
 Up := y;
 Lo := 2 * yc - y;
 end
 else if (yc > (T.cy + T.dy)/2) then
begin
Up := T.cy;
y := \exp(0.5 \times \ln(r \times r - (T.cx-xc) \times (T.cx-xc))) + yc;
Lo := 2 \times yc - y;
end
else begin
Lo := T.dy;
y := \exp(0.5 \times \ln(r \times r - (T.cx-xc) \times (T.cx-xc))) + yc;
Up := y;
end;
{ Area calculation portion }
y := Lo + delta / 2;
area := 0;
while (y <= Up) do begin
begin
x := \exp(0.5 \times \ln(r \times r - (y-yc) \times (y-yc))) + xc;
height := x-T.cx;
area := area + height \times delta;
y := y + delta;
end; \{while\}
end
\{********** END OF CASE 2 **********\}
end \{if\}
\{********** END OF CASE 1 & 2 **********\}
\{************ FOR CASE 3 & 4 ************\}
else if ((T.cx <= xc) and (xc <= T.ax)) then begin
\{*************** CASE 3 ***************\}
if (yc <= T.dy) then begin
\{********************* \} find max, min, min1, min2 \}
x := air_grid[i].ax;
y := air_grid[i].ay;
end
end
\{*************** END OF CASE 3 ***************\}
end
\{*************** END OF CASE 1 & 2 ***************\}
\[a := (xc - x) \times (xc - x); \]
\[b := (yc - y) \times (yc - y); \]
\[\text{if } ((a+b)=0.0) \text{ then } d := 0.0 \]
\[\text{else } d := \exp(0.5 \times \ln(a+b)); \]
\[\text{min1} := d; \{ \text{min1 < min2} \} \]
\[\text{max} := d; \]
\[x := \text{air_grid[i].bx}; \]
\[y := \text{air_grid[i].by}; \]
\[a := (xc - x) \times (xc - x); \]
\[b := (yc - y) \times (yc - y); \]
\[\text{if } ((a+b)=0.0) \text{ then } d := 0.0 \]
\[\text{else } d := \exp(0.5 \times \ln(a+b)); \]
\[\text{if } (d > \text{max}) \text{ then } \text{max} := d; \]
\[\text{if } (d < \text{min1}) \text{ then begin} \]
\[\text{min2} := \text{min1}, \]
\[\text{min1} := d; \]
\[\text{end} \]
\[\text{else min2} := d; \]
\[x := \text{air_grid[i].cx}; \]
\[y := \text{air_grid[i].cy}; \]
\[a := (xc - x) \times (xc - x); \]
\[b := (yc - y) \times (yc - y); \]
\[\text{if } ((a+b)=0.0) \text{ then } d := 0.0 \]
\[\text{else } d := \exp(0.5 \times \ln(a+b)); \]
\[\text{if } (d > \text{max}) \text{ then } \text{max} := d; \]
\[\text{if } (d < \text{min2}) \text{ then begin} \]
\[\text{if } (d < \text{min1}) \text{ then begin} \]
\[\text{min2} := \text{min1}, \]
\[\text{min1} := d; \]
\[\text{end} \]
\[\text{else min2} := d; \]
\[x := \text{air_grid[i].dx}; \]
\[y := \text{air_grid[i].dy}; \]
\[a := (xc - x) \times (xc - x); \]
\[b := (yc - y) \times (yc - y); \]
\[\text{if } ((a+b)=0.0) \text{ then } d := 0.0 \]
\[\text{else } d := \exp(0.5 \times \ln(a+b)); \]
\[\text{if } (d > \text{max}) \text{ then } \text{max} := d; \]
\[\text{if } (d < \text{min2}) \text{ then begin} \]
\[\text{if } (d < \text{min1}) \text{ then begin} \]

119
\[
\begin{align*}
\text{min2} & := \text{min1} \\
\text{min1} & := d
\end{align*}
\]

else \text{min2} := d \\
{\text{shortest distance from (xc,yc) to the bottom of the target airgrid}} \\
x := xc \\
y := \text{air_grid[i].dy} \\
a := (xc - x) * (xc - x) \\
b := (yc - y) * (yc - y) \\
if ((a+b)=0.0) \text{then min} := 0.0 \\
else \text{min} := \exp(0.5 * \ln(a+b)) \\
{\text{if (\text{r} \leq \text{min}) then pk[i] := 0}} \\
else if (\text{r} \geq \text{max}) \text{then begin} \\
\begin{align*}
\text{pk[i]} & := p \\
\text{store[i]} & := w * w
\end{align*}
end \\
else begin \\
if ((\text{min1} < \text{r}) \text{ and (min2 < r)}) \text{then begin} \\
\begin{align*}
\text{Lo} & := \text{T.dx} \\
\text{Up} & := \text{T.bx}
\end{align*}
end \\
else if ((\text{r}>\text{min}) \text{ and((r}<\text{min1}) \\
\text{and(r<min2)))) \text{then begin} \\
\begin{align*}
\text{x} & := \exp(0.5*\ln(r*r-(T.by-yc)^2) \\
& \text{(T.by-yc)})+xc; \\
\text{Up} & := x \\
\text{Lo} & := 2 * xc - x
\end{align*}
end \\
else if (\text{xc} > (\text{T.dx+T.bx})/2) \text{then begin} \\
\begin{align*}
\text{Up} & := \text{T.bx} \\
\text{x} & := \exp(0.5*\ln(r*r-(T.by-yc)^2) \\
& \text{(T.by-yc)})+xc; \\
\text{Lo} & := 2 * xc - x
\end{align*}
end \\
else \text{begin}
\end{align*}
\]
\[Lo := T.dx; \]
\[x := \exp(0.5*\ln(r*x-(T.by-yc)* \]
\[(T.by-yc)) + xc; \]
\[Up := x; \]
\[\text{end;} \]
\[\{ \text{Area calculation portion} \} \]
\[x := Lo + delta / 2; \]
\[area := 0; \]
\[\text{while (} x <= Up \text{) do} \]
\[\text{begin} \]
\[y := \exp(0.5*\ln(r*x-(x-xc)* \]
\[(x-xc))) + yc; \]
\[height := y-yc-abs(T.by-yc); \]
\[area := area + height \times delta; \]
\[x := x + delta; \]
\[\text{end;} \{ \text{while} \} \]
\[pk[i] := p \times area / (w \times w); \]
\[store[i] := area; \]
\[\text{end} \{ \text{if} \} \]

\{ ************** END OF CASE 3 *************** \}

\{ ************** CASE 4 ********************* \}

\text{else} \begin{align*}
\{ \text{find max , min, min1, min2} \} \\
x := \text{air_grid}[i].ax; \\
y := \text{air_grid}[i].ay; \\
a := (xc - x) \times (xc - x); \\
b := (yc - y) \times (yc - y); \\
\text{if ((}a+b=0.0\text{) then } d := 0.0 \\
\text{else } d := \exp(0.5 \times \ln(a+b)); \\
\text{min1:= } d; \quad \{ \text{min1 < min2} \} \\
\text{max := } d; \\
x := \text{air_grid}[i].bx; \\
y := \text{air_grid}[i].by; \\
a := (xc - x) \times (xc - x); \\
b := (yc - y) \times (yc - y); \\
\text{if ((}a+b=0.0\text{) then } d := 0.0 \\
\text{else } d := \exp(0.5 \times \ln(a+b)); \\
\text{if (}d > \text{max} \text{) then max := } d; \\
\end{align*}
if (d < min1) then begin
 min2 := min1;
 min1 := d;
end
else min2 := d;
x := air_grid[i].cx ;
y := air_grid[i].cy ;
a := (xc - x) * (xc - x) ;
b := (yc - y) * (yc - y) ;
if ((a+b)=0.0) then d := 0.0
else d := exp(0.5 * ln(a+b)) ;
if (d > max) then max := d ;
if (d < min2) then
 if (d < min1) then begin
 min2 := min1 ;
 min1 := d ;
 end
else min2 := d ;
x := air_grid[i].dx ;
y := air_grid[i].dy ;
a := (xc - x) * (xc - x) ;
b := (yc - y) * (yc - y) ;
if ((a+b)=0.0) then d := 0.0
else d := exp(0.5 * ln(a+b)) ;
if (d > max) then max := d ;
if (d < min2) then
 if (d < min1) then begin
 min2 := min1 ;
 min1 := d ;
 end
else min2 := d ;
{ shortest distance from (xc,yc) to the
top of the target air_grid }
x := xc ;
y := air_grid[i].cy ;
a := (xc - x) * (xc - x) ;
b := (yc - y) * (yc - y) ;
if ((a+b)=0.0) then min := 0.0
else min := exp(0.5 * ln(a+b)) ;
{***}
if (r <= min) then pk[i] := 0
else if (r >= max) then
 begin
 pk[i] := p ;
 store[i] := w * w ;
 end
else begin
 if ((min1 < r) and (min2 < r)) then
 begin
 Lo := T.dx ;
 Up := T.bx ;
 end
 else if ((r > min1) and ((r < min1)
 and (r < min2))) then
 begin
 x := \exp(0.5*\ln(r*x-(T.ay-yc)*
 (T.ay-yc))) + xc ;
 Up := x ;
 Lo := 2 * xc - x ;
 end
 else if (xc > (T.dx + T.bx) / 2) then
 begin
 Up := T.ax ;
 x := \exp(0.5*\ln(r*x-(T.ay-yc)*
 (T.ay-yc))) + xc ;
 Lo := 2 * xc - x ;
 end
 else begin
 Lo := T.cx ;
 x := \exp(0.5*\ln(r*x-(T.cy-yc)*
 (T.cy-yc))) + xc ;
 Up := x ;
 end ;
{ Area calculation portion }
x := Lo + delta / 2 ;
area := 0 ;
while (x <= Up) do
 begin
 y := \exp(0.5*\ln(r*x-(x-xc)*
 (x-xc))) + yc ;
 height := abs(y-yc-abs(T.cy-yc)) ;
area := area + height * delta ;
x := x + delta ;
end; {while}

pk[i] := p * area / (w * w) ;
store[i] := area ;

end

{************ END OF CASE 4 ************}

end

{************ END OF CASE 3 & 4 ************}

{************* FOR CASE 5 *************}

else if ((T.dx > xc) and (T.dy >= yc)) then
begin

Find_max_min1_min2_min3(i,xc,yc,air_grid,
 max,min1,min2,min3) ;

if (r <= min1) then pk[i] := 0

else if (r >= max) then
begin

pk[i] := p ;
store[i] := w * w ;

end

else begin

if ((r >min1) and (r <max)) then
begin

Lo := T.dx ;
x:=exp(0.5*ln(r*r-(T.dy-yc)*
 (T.dy-yc))/xc);
if (x > T.ax) then Up := T.ax
else Up := x ;

end ;

{ Area caculation portion }

x := Lo + delta / 2 ;
area := 0 ;
while (x <= Up) do
begin

y := exp(0.5*ln(r*r-(x-xc)*
 (x-xc)) + yc ;
if (y > T.ay) then y := T.ay ;
height:= y - T.dy ;
area := area + height * delta ;
x := x + delta ;

124
end; {while}
if (area > w*w) then area := w*w;
pk[i] := p * area / (w * w) ;
store[i] := area ;
end

end

{END OF CASE 5}

{FOR CASE 6}

else if ((T.ax < xc) and (T.ay <= yc)) then

begin
Find_max_min1_min2_min3(i,xc,yc,air_grid,
max,min1,min2,min3) ;
if (r <= min1) then pk[i] := 0
else if (r >= max) then begin
pk[i] := p ;
store[i] := w*w;
end
else begin
if ((r>min1) and (r<max)) then
begin
Up := T.ax;
x:=exp(0.5*ln(r*r-(T.ay-yc)*
(T.ay-yc)))+xc;
Lo := 2 * xc - x ;
if (Lo < T.cx) then Lo := T.cx ;
end ;
{ Area calculation portion }
x := Lo + delta / 2 ;
area := 0 ;
while (x <= Up) do
begin
y := exp(0.5*ln(r*r-(x-xc)*
(x-xc)) + yc ;
height := T.ay - (2*yc-y);
if (height > w) then height := w ;
area := area + height * delta ;
x := x + delta ;
end; {while}
pk[i] := p * area / (w * w) ;
store[i] := area ;
end

125
else if (T.bx < xc and T.by >= yc) then begin
 Find_max_min1_min2_min3(i, xc, yc, air_grid, max, min1, min2, min3);
 if (r <= min1) then pk[i] := 0
 else if (r >= max) then begin
 pk[i] := p;
 store[i] := w*w;
 end
 else begin
 if ((r > minl) and (r < max)) then begin
 Up := T.bx;
 x := exp(0.5*ln(r*r - (T.dy - yc)*
 (T.dy - yc)))*xc;
 Lo := 2 * xc - x;
 if (Lo < T.dx) then Lo := T.dx
 end;
 { Area caculation portion }
 x := Lo + delta / 2;
 area := 0;
 while (x <= Up) do
 begin
 y := exp(0.5*ln(r*r - (x-xc)*
 (x-xc)) + yc;
 if (y > T.ay) then y := T.ay;
 height := y - T.by;
 area := area + height * delta;
 x := x + delta;
 end; {while}
 pk[i] := p * area / (w * w);
 store[i] := area;
 end end
Find_max_min1_min2_min3(i,xc,yc,air_grid,max,min1,min2,min3);
if (r <= minl) then pk[i] := 0
else if (r >= max) then begin
 pk[i] := p ;
 store[i] := w*w ;
end
else begin
 if ((r > minl) and (r < max)) then
 begin
 Lo := T.cx ;
 x := exp(0.5*ln(r*r- (T.ay-yc)*
 (T.ay-yc)))+xc;
 Up := x ;
 if (Up > T.ax) then Up := T.ax ;
 end ;
 { Area calculation portion }
 x := Lo + delta / 2 ;
 area := 0 ;
 while (x <= Up) do
 begin
 y := exp(0.5*ln(r*r- (x-xc)*
 (x-xc))) + yc ;
 height := T.ay - (2*yc-y);
 if (height > w) then height := w ;
 area := area + height * delta ;
 x := x + delta ;
 end ; {while}
 pk[i] := p * area / (w * w) ;
 store[i] := area ;
end
end;
end; { if not((inside and (i=number))) } }
end; { for }
end ; { else }
end;
{---}
end. {unit}
{---}
unit PkTool2;
interface
uses PkTool1;
procedure Inside-or-not(var inside:boolean;var number:
integer;A,B:real);
procedure Initial_state(var keep1,keep2:keep_value);
function Boundary_check(xc,yc,r:real;air_grid:grid_value):
boolean;
procedure Area_calculation_of_Special_case
(inside,totally_inside:boolean;air_grid:grid_value;
number:integer;xc,yc,r,p,delta:real;var
Pk,store:keep_value);
procedure Keep(var DL,Tot_area_covered:keep_value;Pk,store:
keep_value);
procedure Final_result(DL,Tot_area_covered:keep_value;var
outfile1:text);
procedure Route_data(DL:keep_value;var outfile2:text);
implementation
const w = 10; {unit length of the air grid equals 10 km}
length = 5; {length = sqrt(M) }
var T : gridertype;
x,y,xc,yc : real;
a,b,d : real;
height,area,sum,Up,Lo : real;
i : integer;
{---}
procedure Inside_or_not ;
begi
begin
xc := A ;
yc := B ;
xc := xc / w ;
yc := yc / w ;
number := number_of_grid + 1 ;
if ((xc = 0.0) or (yc = 0.0)) then inside := false
else if ((xc < 1) and (yc < 1)) then
begin
inside := true ;
number := 1 ;
end
else if ((xc < 1) and (yc > 1)) then
begin

if (yc/trunc(yc) = 1) then inside := false
else begin
 inside := true;
 number := length * trunc(yc) + 1;
end
else if ((xc > 1) and (yc < 1)) then
 begin
 if (xc/trunc(xc) = 1) then inside := false
 else begin
 inside := true;
 number := trunc(xc) + 1;
 end
else if ((xc < 1) and (abs(yc/trunc(yc))=1)) then
 inside := false
else if ((yc < 1) and (abs(xc/trunc(xc))=1)) then
 inside := false
else if ((abs(xc/trunc(xc))=1) or (abs(yc/trunc(yc))=1)) then
 inside := false
else begin
 inside := true;
 if ((0 < xc) and (xc < 1)) then
 begin
 if ((0 < yc) and (yc < 1)) then number := 1;
 if ((1 < yc) and (yc < 2)) then number := 6;
 if ((2 < yc) and (yc < 3)) then number := 11;
 if ((3 < yc) and (yc < 4)) then number := 16;
 if ((4 < yc) and (yc < 5)) then number := 21;
 end
 else if ((1 < xc) and (xc < 2)) then
 begin
 if ((0 < yc) and (yc < 1)) then number := 2;
 if ((1 < yc) and (yc < 2)) then number := 7;
 if ((2 < yc) and (yc < 3)) then number := 12;
 if ((3 < yc) and (yc < 4)) then number := 17;
 if ((4 < yc) and (yc < 5)) then number := 22;
 end
 else if ((2 < xc) and (xc < 3)) then
 begin
 if ((0 < yc) and (yc < 1)) then number := 3;
 end
if ((1 < yc) and (yc < 2)) then number := 8;
if ((2 < yc) and (yc < 3)) then number := 13;
if ((3 < yc) and (yc < 4)) then number := 18;
if ((4 < yc) and (yc < 5)) then number := 23;
end
else if ((3 < xc) and (xc < 4)) then
 begin
 if ((0 < yc) and (yc < 1)) then number := 4;
 if ((1 < yc) and (yc < 2)) then number := 9;
 if ((2 < yc) and (yc < 3)) then number := 14;
 if ((3 < yc) and (yc < 4)) then number := 19;
 if ((4 < yc) and (yc < 5)) then number := 24;
 end
else if ((4 < xc) and (xc < 5)) then
 begin
 if ((0 < yc) and (yc < 1)) then number := 5;
 if ((1 < yc) and (yc < 2)) then number := 10;
 if ((2 < yc) and (yc < 3)) then number := 15;
 if ((3 < yc) and (yc < 4)) then number := 20;
 if ((4 < yc) and (yc < 5)) then number := 25;
 end
else writeln(' Error from input data !!! ');
end;
xc := xc * w;
yc := yc * w;
end;

{---}
procedure Initial_state;
begin
 for i := 1 to number_of_grid do
 begin
 keep1[i] := 0.0;
 keep2[i] := 0.0;
 end;
{---}
function Boundary_check;
begin
 if ((r>(air_grid[length].ax-xc))or(r>(air_grid
 [number_of_grid].ay-yc))or((r>(yc-air_grid[1].by))
 or((r>(xc-air_grid[1].dx)))) then Boundary_check := true
else Boundary_check := false;
end;

procedure Area_calculation_of_Special_case;
var i : integer;
area : real;
begin
 if not(totally_inside) then
 if (inside and not(Boundary_check(xc,yc,r,
 air_grid))) then
 begin
 T := air_grid[number] ;
 area := pi * r * r ;
 i := 1 ;
 while (i <= number_of_grid) do
 begin
 if (i <> number) then area := area - store[i] ;
 i := i + 1 ;
 end ; {while}
 pk[number] := p * area / (w * w) ;
 store[number] := area;
 end
 else if (inside and Boundary_check(xc,yc,r,air_grid))
 then begin
 sum := 0.0 ;
 T := air_grid[number] ;
 {### for the upper_right part ###}
 Lo := xc ;
 Up := xc + r ;
 if (Up > T.ax) then Up := T.ax ;
 { Area caculation portion }
 x := Lo + delta / 2 ;
 area := 0 ;
 while (x <= Up) do
 begin
 y := exp(0.5*ln(r*r-(x-xc)*(x-xc)))*yc ;
 if (y > T.ay) then y := T.ay ;
 height := y - yc ;
 area := area + height * delta ;
 x := x + delta ;
 end; {while}
 end;

 end;

{---------------------------}
SU3
BUS
+ area;
{
e*e*4#ei*4MI**#e*1et*## e*###e)#
for the upperleft portion
}
Up := xc;
Lo := xc - x;
if (Lo < T.cx) then Lo := T.cx;
{ Area calculation portion }
x := Lo + delta / 2;
area := 0;
while (x <= Up) do
begin
 y := exp(0.5*ln(x^r- (x-xc)*(x-xc)))+yc;
 if (y > T.ay) then y := T.ay;
 height := y - yc;
 area := area + height * delta;
 x := x + delta;
end; {while}
sum := sum + area;
{***}
{## for the down_right part ##}
Lo := xc;
Up := xc + x;
if (Up > T.ax) then Up := T.ax;
{ Area calculation portion }
x := Lo + delta / 2;
area := 0;
while (x <= Up) do
begin
 y := exp(0.5*ln(x^r- (x-xc)*(x-xc)))+yc;
 y := 2 * yc - y;
 if (y < T.by) then y := T.by;
 height := yc - y;
 area := area + height * delta;
 x := x + delta;
end; {while}
sum := sum + area;
{***}
{## for the down_left part ##}
Up := xc;
Lo := xc - x;
if (Lo < T.cx) then Lo := T.cx;

132
\{ Area calculation portion \}
\begin{align*}
x & := L_0 + \delta / 2; \\
area & := 0; \\
\text{while } (x \leq U_p) \text{ do} & \\
& \begin{align*}
& \quad y := \exp(0.5*\ln(r^2 - (x-x_c)^2)) + y_c; \\
& \quad y := 2 \cdot y_c - y; \\
& \quad \text{if } (y \leq T.b_y) \text{ then } y := T.b_y; \\
& \quad \text{height} := y_c - y; \\
& \quad \text{area} := \text{area} + \text{height} \cdot \delta; \\
& \quad x := x + \delta; \\
& \end{align*} \\
& \text{end; } \text{(while)} \\
& \text{sum} := \text{sum} + \text{area}; \\
& \{\begin{align*}
& \quad \text{sum} := \text{sum} + \text{area}; \\
& \end{align*}\}
\end{align*}
\begin{align*}
\text{pk[number]} & := p * \text{sum} / (w * w); \\
\text{store[number]} & := \text{sum}; \\
& \text{end; }
\end{align*}

\begin{align*}
\text{procedure Keep; } \\
& \begin{align*}
& \quad \text{for } i := 1 \text{ to number_of_grid do}
& \quad \begin{align*}
& \quad \text{DL[i]} := \text{DL[i]} + \text{Pk[i]}; \\
& \quad \text{Tot_area_covered[i]} := \text{Tot_area_covered[i]} + \text{store[i]}; \\
& \quad \text{end; }
& \end{align*}
& \text{end; }
& \end{align*}
\end{align*}

\begin{align*}
\text{procedure Final_result; } \\
& \begin{align*}
& \quad \text{for } i := 1 \text{ to number_of_grid do}
& \quad \text{writeln(outfile1, 'DL[', i:2, ']', ' = ', DL[i]:7:6, ',', 'Total_area_covered[', i:2, '] = ', Tot_area_covered(i):7:6);}
& \quad \text{end; }
& \end{align*}
\end{align*}

\begin{align*}
\text{procedure Route_data; } \\
& \begin{align*}
& \quad \text{for } i := 1 \text{ to number_of_grid do}
& \quad \text{writeln(outfile2, i:2, ',DL[i]:3:2);}
& \quad \text{writeln(outfile2); }
& \end{align*}
\end{align*}
end;

{---}
end. {unit}
APPENDIX II

SOURCE CODE OF AIR ROUTE SELECTION MODEL (MODEL II)

program Route_Select(input, output);
uses MRoutool, PriQTool, PKTool;

var target : integer;
 g : VertexList;
 queue : PrioriQueueType;
 DL : Keep_value;
 infile3, outfile3 : text;

begin
 target := 13;
 assign(infile3, 'C:\COPY\DL2.PAS');
 assign(outfile3, 'C:\COPY\RESULT.PAS');
 reset(infile3);
 rewrite(outfile3);
 Transfer(infile, DL);
 NetworkInput(g, DL);
 Search_part(g, target, DL);
 Result_Print(outfile3, g, target, DL);
 close(infile3);
 close(outfile3);
end.

{---}

unit MRoutool;

interface
uses PriQTool;

const MAXVERTEXSIZE = 25;
LENGTH = 5;

type VertexPTR="AdjVertexType;
AdjVertexType=record
 VertexNumber: integer;
 Dis :real;
 Next :VertexPTR;
end;

{ Dis means distance from host grid to the adjacent grid }
VertexType=record
 visited: boolean;
 Hardness: real;
 next_choice: integer;
 AdjVertexList: VertexPTR;
end;

{ Hardness means sum of the effects of those difficulty level &
distance from current grid to the target grid }

VertexList = array[1..MAXVERTEXSIZE] of VertexType;

procedure Transfer(var infile: text; var DL: Keep_value);
procedure NetworkInput(var g: VertexList; DL: Keep_value);
procedure Search_part(var VertexList; target: integer;
 DL: Keep_value);
procedure Result_Print(var outfile: text; g: VertexList;
 target: integer; DL: Pk_DL);

implementation

procedure Transfer(var infile: text; var DL: Keep_value);
var i: integer;
 DL : real;
 answer: char;
begin
 for i := 1 to MAXVERTEXSIZE do
 begin
 readln(infile,i,DL[i]);
 writeln(outfile,i:2,' ',DL[i]:5:2);
 end;
end;

procedure NetworkInput;
var i,AdjElement: integer;
 CE: VertexPTR;
 check: boolean;
begin
 for i := 1 to MAXVERTEXSIZE do
 begin
 g[i].visited := false;
 g[i].Hardness := 999;
 g[i].nextchoice := MAXVERTEXSIZE + 1;
 g[i].AdjVertexList := NIL;
 end;
for i := 1 to MAXVERTEXSIZE do
begin
 check := false;
 New(g[i].AdjVertexList);
 CE := g[i].AdjVertexList;
 {-----------------------------1-----------------------------
 if (i < (MAXVERTEXSIZE - (LENGTH -1))) then
 begin
 AdjElement := i + LENGTH;
 if ((AdjElement >= 1) and (AdjElement <= MAXVERTEXSIZE))
 then
 begin
 check := true;
 CE^.VertexNumber:= AdjElement;
 CE^.Dis := 1;
 CE^.Next:=NIL;
 end;
 end;
 {-----------------------------2-----------------------------
 if ((i < (MAXVERTEXSIZE - (LENGTH -1))) and
 ((i mod LENGTH) <> 0)) then
 begin
 AdjElement := i + (LENGTH + 1) ;
 if ((AdjElement >= 1) and (AdjElement <= MAXVERTEXSIZE))
 then
 begin
 if check then
 begin
 New(CE^.Next) ;
 CE :=CE^.Next ;
 end;
 CE^.VertexNumber:= AdjElement;
 CE^.Dis := sqrt(2) ;
 CE^.Next:=NIL;
 check := true ;
 end;
 end;
 {-----------------------------3-----------------------------
 if ((i mod LENGTH) <> 0) then
 begin

137
AdjElement := i + 1;
if ((AdjElement >= 1) and (AdjElement <= MAXVERTEXSIZE))
then
begin
 if check then
 begin
 New(CE^.Next);
 CE := CE^.Next;
 end;
 CE^.VertexNumber := AdjElement;
 CE^.Dis := 1;
 CE^.Next := NIL;
 check := true;
end;
end;

if (i > LENGTH) and ((i mod LENGTH) > 0) then
begin
 AdjElement := i - (LENGTH - 1);
if ((AdjElement >= 1) and (AdjElement <= MAXVERTEXSIZE))
then
begin
 if check then
 begin
 New(CE^.Next);
 CE := CE^.Next;
 end;
 CE^.VertexNumber := AdjElement;

 CE^.Dis := sqrt(2);
 CE^.Next := NIL;
 check := true;
end;
end;

if (i > LENGTH) then
begin
 AdjElement := i - LENGTH;
 if ((AdjElement >= 1) and (AdjElement <= MAXVERTEXSIZE))
then
begin

138
if check then
begin
 New(CE^.Next) ;
 CE :=CE^.Next ;
end ;
CE^.VertexNumber:= AdjElement ;
CE^.Dis := 1 ;
CE^.Next:=NIL;
check := true ;
end;

{----------------------------- 6 ----------------------------}
if ((i> LENGTH) and (((i-1) mod LENGTH) <> 0)) then
begin
 AdjElement := i - (LENGTH + 1) ;
 if ((AdjElement >= 1) and (AdjElement <= MAXVERTEXSIZE))
then
begin
 if check then
 begin
 New(CE^.Next) ;
 CE :=CE^.Next ;
 end ;
 CE^.VertexNumber:= AdjElement ;
 CE^.Dis := sqrt(2) ;
 CE^.Next:=NIL;
 check := true ;
end;
end;

{----------------------------- 7 ----------------------------}
if (((i-1) mod LENGTH) <> 0) then
begin
 AdjElement := i - 1 ;
 if ((AdjElement >= 1) and (AdjElement <= MAXVERTEXSIZE))
then
begin
 if check then
 begin
 New(CE^.Next) ;
 CE :=CE^.Next ;
 end ;

139
CE^.VertexNumber := AdjElement;
CE^.Dis := 1.
CE^.Next := NIL,
check := true;
end;
end;

{-----------------------------
if ((((i-1) mod LENGTH) <> 0) and
 (i < (MAXVERTEXSIZE-(LENGTH-1)))) then
begin
 AdjElement := i + (LENGTH - 1);
 if ((AdjElement >= 1) and (AdjElement <= MAXVERTEXSIZE))
 then
 begin
 if check then
 begin
 New(CE^.Next);
 CE := CE^.Next;
 end;
 CE^.VertexNumber := AdjElement;
 CE^.Dis := sqrt(2);
 CE^.Next := NIL;
 check := true;
 end;
end; {for}
end; {end of NetworkInput}

procedure Search_part;
var
 host,i,j,counter,choice : integer;
 min,Hardness : real;
 X : DataType;
 V : array[1..MAXVERTEXSIZE] of integer;
 pQueue : PriorityQueueType;
 check,change : boolean;
begin
 InitializePriorityQueue(pQueue);
g[target].visited := true;
g[target].Hardness := 0.0;
g[target].next_choice := 0 ;
X.grid := target ;
if ((w2 * DL[target]) = 0) then X.Hardness := 0
else X.Hardness := 1 / (w2 * DL[target]) ;
InsertPriorityQueue(pQueue,X) ;
while not (EmptyPriorityQueue(pQueue)) do
begin
 host := ExtractMaximum(pQueue) ;
 T := g[host].AdjVertexList ;
 while (T <> NIL) do
 begin
 if (host = target) then
 begin
 begin
 Hardness := w2 * DL[host] + w1 * W * T^.Dis ;
 g[T^.VertexNumber].visited := true ;
 g[T^.VertexNumber].Hardness := Hardness ;
 g[T^.VertexNumber].next_choice:= host ;
 X.grid := T^.VertexNumber ;
 if ((g[T^.VertexNumber].Hardness + w2 *
 DL[X.grid]) = 0)
 then X.Hardness:= 0
 else X.Hardness:=1/(g[T^.VertexNumber].Hardness
 + w1 * DL[X.grid]) ;
 InsertPriorityQueue(pQueue,X) ;
 T := T^.Next ;
 end
 end else begin
 begin
 min := 888 ;
 choice := MAXVERTEXSIZE + 1 ;
 if not(g[T^.VertexNumber].visited) then
 begin
 Temp := g[T^.VertexNumber] .
 AdjVertexList ;
 while (Temp <> NIL) do
 begin
 if ((g[Temp^.VertexNumber].visited)
 then
 begin
 Hardness := g[Temp^.VertexNumber] .
 Hardness + w2 * DL[Temp^.VertexNumber]


```
+ w1 * W * Temp^*.Dis ;
if ( Hardness < min ) then
begin
    min := Hardness;
    choice := Temp^*.VertexNumber ;
end;
end;
Temp := Temp^*.Next ;
end ; {while }
g[T^*.VertexNumber].visited := true ;
g[T^*.VertexNumber].Hardness := min ;
g[T^*.VertexNumber].next_choice:=choice;
X.gride := T^*.VertexNumber ;
if ( (min + w2 * DL[X.gride]) = 0 ) then X.Hardness := 0
else X.Hardness:= 1 / (min + w2 *
    DL[X.gride]);
    InsertPriorityQueue(pQueue,X) ;
    T := T^*.Next ;
end
else T := T^*.Next ;
end ;{end of while ( T <> NIL )}
end ;{end of outside while loop }

---------------------------------------------------------------------
procedure Result_Print ;
var i,n,count : integer ;
begin
    writeln(outfile,'Gride il:4,'DL[i]:7,'path to target':24,
    'Hardness':15,'% Hardness reduced':22);
for i := 1 to MAXVERTEXSIZE do
begin
    n := i ;
    write(outfile,i:4,DL[i]:9:1);
    if (n = target) then
begin
    write(outfile, '0':13);
    write(outfile, '0.0':25);
    writeln(outfile, '???':18);
    writeln(outfile);
end
```
else begin
 write(outfile,i:8);
 count := 0;
 repeat
 count := count + 1;
 write(outfile,' - ',g[n].next_choice:2);
 n := g[n].next_choice;
 until (n = target);
 while (count < 3) do
 begin
 write(outfile,:5);
 count := count + 1;
 end;
 write(outfile,g[i].Hardness:15:1);
 writeln(outfile,???:18);
 writeln(outfile);
end end;

{$R+}
unit PriQTool;
interface
const MAXPQUEUESIZE= 25 ;
 MAX = 8 ;
type DataType=record
 grid :integer;
 Hardness :real;
 end;
HeapArrayType =array[1..MAXPQUEUESIZE] of DataType ;
PriorityQueueType=record
 HeapSize :integer;
 HeapArray:HeapArrayType;
end;

{must be called before the priority queue is first used } {also resets the priority queue so it is empty}
procedure InitializePriorityQueue(var pQueue:PriorityQueueType);
{error if called when it already has MAXPQUEUESIZE elements}
procedure InsertPriorityQueue(var pQueue:PriorityQueueType;
 info:DataType);

{returns the element with the largest value}
{error if no elements in the priority queue}
function Maximum(pQueue:PriorityQueueType):integer;
{removes and returns the element with the largest value}
{error if no elements in the priority queue}
function ExtractMaximum(var pQueue:PriorityQueueType):integer;
function EmptyPriorityQueue(pQueue:PriorityQueueType):boolean;
function SizePriorityQueue(pQueue:PriorityQueueType):integer;

implementation
var i,j,K:integer;

{error if the two binary trees that are children of the index do not
satisfy the heap property}
procedure Heapify(var pQueue:PriorityQueueType;i:integer);
 var L,R,largest:integer;
 temp:DataType;
 begin
 with pQueue do begin
 L:=2*i;
 R:=(2*i)+1;
 largest:=i;
 if (L <= HeapSize) then begin
 if (HeapArray[L].Hardness > HeapArray[i].Hardness) then
 begin
 largest:=L;
 end;
 end;
 if (R<=HeapSize) then begin
 if (HeapArray[R].Hardness>HeapArray[largest].Hardness) then
 begin
 largest:=R;
 end;
 end;
 if (largest <> i) then begin
 temp.gride:=HeapArray[i].gride;
 temp.Hardness:=HeapArray[i].Hardness;
 HeapArray[i].gride:=HeapArray[largest].gride;
 end;
 end;
 end;
end;
end;
HeapArray[i].Hardness := HeapArray[largest].Hardness;
HeapArray[largest].grid := temp.grid;
HeapArray[largest].Hardness := temp.Hardness;
Heapify(pQueue, largest);
end;
end; {with}
end;
{removes and returns the element with largest value}
{error if no elements in the priority queue}
function HeapExtractMax(var pQueue:PriorityQueueType):integer;
begin
HeapExtractMax := pQueue.HeapArray[1].grid;
[pQueue.HeapSize].grid;
pQueue.HeapArray[1].Hardness :=
pQueue.HeapArray[pQueue.HeapSize].Hardness;
pQueue.HeapSize := pQueue.HeapSize-1;
Heapify(pQueue, 1);
end;
{error if called when it already has MAXPQUEUESIZE elements}
procedure HeapInsert(var pQueue:PriorityQueueType; info:DataType);
var parent:integer;
check:boolean;
begin
with pQueue do begin
HeapSize := HeapSize+1;
i := HeapSize;
parent := (i div 2);
check := False;
if parent = 0 then begin
check := True;
end else
if HeapArray[parent].Hardness >= info.Hardness then begin
check := True;
end;
while ((i > 1) and not(check)) do begin
HeapArray[i].grid := HeapArray[parent].grid;
HeapArray[i].Hardness := HeapArray[parent].Hardness;
i := parent;
parent := (i div 2);
end;
end;
145
if parent=0 then begin
 check:=True;
 end else
 if HeapArray[parent].Hardness >= info.Hardness then
 begin
 check:=True;
 end;
 end; {while}
 HeapArray[i].grade := info.grade;
 HeapArray[i].Hardness := info.Hardness;
end; {with}
end;

{***}
procedure InitializePriorityQueue;
begin
 pQueue.HeapSize:=0;
end;
procedure InsertPriorityQueue;
begin
 HeapInsert(pQueue, info);
end;
function Maximum;
begin
 Maximum:=pQueue.HeapArray[1].grade;
end;
function ExtractMaximum;
begin
 ExtractMaximum:=HeapExtractMax(pQueue);
end;
function EmptyPriorityQueue;
begin
 EmptyPriorityQueue:=(pQueue.HeapSize=0);
end;
function SizePriorityQueue;
begin
 SizePriorityQueue:=pQueue.HeapSize;
end;
end. {unit_PriorityQueue}
LIST OF REFERENCES

<table>
<thead>
<tr>
<th>No.</th>
<th>Distribution List</th>
</tr>
</thead>
</table>
| 1. | Defense Technical Information Center
 Cameron Station
 Alexandria VA 22304-6145 | 2 |
| 2. | Library, Code 052
 Naval Postgraduate School
 Monterey CA 93943-5002 | 2 |
| 3. | Dr. Sam Parry (Code OR/Py)
 Naval Postgraduate School
 Monterey CA 93943-5000 | 1 |
| 4. | Dr. Pat Jacobs (Code OR/Jc)
 Naval Postgraduate School
 Monterey CA 93943-5000 | 1 |
| 5. | Dr. Donald Gaver (Code OR/Gv)
 Naval Postgraduate School
 Monterey CA 93943-5000 | 1 |
| 6. | Naval Academy Library
 P.O. Box 90175
 Tsoying, Kaohsiung,
 Taiwan R. O. C. | 1 |
| 7. | Armed Forces University, War Game Center
 P.O. Box 90040-16
 Dai-Jei, Taipei,
 Taiwan R. O. C. | 1 |
| 8. | Wang, Hua-Chung
 4F, No. 175, Sec. 2, Chi-nan Rd, Wen-sham Chu,
 Taipei, Taiwan R.O.C. | 2 |
9. Deputy Undersecretary of the Army for Operations Research
 Room 2B261, The Pentagon
 Washington D. C. 20310

10. Director
 Attn: Mr. B. B. Vandiver III
 U.S. Army Concepts Analysis Agency
 8120 Woodmont Avenue
 Bethesda MD 20814

11. Commander
 U.S. Army TRADOC Analysis Command
 Attn: ATRC (Mr. Bauman)
 Fort Leavenworth KS 66027-5200

12. Director
 U.S. Army TRADOC Analysis Command - Fort Leavenworth
 Attn: ATRC-FOQ (Technical Information Center)
 Fort Leavenworth KS 66027-5200