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Abstract

Known polylog parallel algorithms for the solution of linear systems and
related problems require computation of the characteristic polynomial or
related forms, which are known to be highly unstable in practice. How-
ever, matrix factorizations of various types, bypassing computation of the
characteristic polynomial, are used extensively in sequential numerical com-
putations and am. essential in many applications.

This paper gives new parallel methods for various exact factorizations
of several classes of matrices. We assume the input matrices are n x n with

either integer entries of size < 2"00) or rational entries expressible as a
ratio of integers of size < 2" 01. We make no other assumption on the
input. We assume the arithmetic PRAM model of parallel computation.
Our main result is a reduction of the known parallel time bounds for these
factorizations from O(log 3 n) to 0(log2 n). Our results are work efficient:
we match the best known work bounds of parallel algorithms with polylog
time bounds, and are within a log n factor of the work bounds for the best
known sequential algorithms for the same problems.

The exact factorizations we compute for symmetric positive definite ma-
trices include: recursive factorization sequences and trees. LU factoriza-
tions. QR factorizations. and reduction into upper Hessenberg form.

The classes of matrices for which we can efficiently compute these fac-
torizations include:

I. dense matrices, in time 0(log 2 n) with processor bound P(n) (the
number of processors needed to multiply two n x n matrices in 0(log n)
time),

2. block diagonal matrices, in time 0(Iog2 b) with P(b)n/b processors.

3. sparse matrices which are s(n)-separable (recursive factorizations only).
in time 0(log2 n) with P(s(n)) processors where sln) is of the form
n" for0< y < i. and

4. banded matrices, in parallel time 0((Iog n) log b) with P(b)n/b proces-
sors.

Our factorizations also provide us similarly efficient algorithms for exact
computation (given arbitrary rational matrices that need not be symmet-
ric positive definite) of the following: solution of the corresponding linear Accesion For
systems. the determinant, the inverse.

Thus our results provide the first known efficient parallel algorithms for NTIS CRA&l
exact solution of these matrix problems, that avoids computation of the DTIC TAB
characteristic polynomial or related forms. Instead we use a construction
which modifies the input matrix, which may initially have arbitrary condi- Unannounced 0
tion, so as to have condition nearly 1. and then applies a multilevel. pipelined Justification
Newton iteration, followed by a similar multilevel. pipelined Hensel Lifting.
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1 Introduction

1.1 Assumptions and Machine Model

For our model of computation, we assume the algebraic Parallel Random Access
Machine (PRAM) where each arithmetic or logical operation such as addition,
subtraction, multiplication, division, and comparison can be done in one step by
a given processor. Processors can execute such operations in parallel. Our time
complexity bounds are based on arithmetic complexity, that is the number of
these parallel steps. We assume the n x n matrices input to our algorithms have
integer entries of size < 2"°0 or rational entries expressible as ratio of integers

of size < 2-0 ('). The matrices may be dense, sparse separable, or banded.
Let P(n) = n" be the minimum number of PRAM processors necessary to

multiply two n x n matrices in Q(log n) parallel steps. (Currently, w = 2.376
and we assume w > 2.)

1.2 Motivation

Many problems in engineering and science rely on the solution of linear systems.
As the problem size grows, the resulting linear systems can grow to enormous
size, and can, in turn, require very large computational effort to solve. This
motivates both the search for work efficient and simultaneous parallel time fast
algorithms.

One of the success stories in the field of computer science algorithms and
numerical analysis is the development of efficient sequential algorithms for rapid
solution of linear systems. Previous researchers have exploited sparsity and/or
the structure of the linear system to improve these computations. In practice,
the use of parallel processing can give a further increase in speed. However, there
remains a considerable discrepancy between the theoretical methods proposed
for parallel solution of linear systems and the methods that are actually used.
This is the main motivation of our paper.

Pan and Reif [PR 85.PR 89] show that the inverse of a well conditioned
nonsingular n x n dense integer or rational matrix, and the solution of the
corresponding linear system, can be approximately computed with high ac-
curacy by Newton iterations in parallel time O(log2 n) with P(n) processors,
without construction of the characteristic polynomial. Subsequently Pan and
others [Pa 85,Pan 87] showed that the inverse of an arbitrary (not necessarily
well conditioned) nonsingular n x n dense integer or rational matrix A can be
exactly computed in parallel time O(logly n) with P(n) processors, usilag a re-
duction to the computation of the characteristic polynomial or a related form.
(Similar reductions to can also be made for matrices over an arbitrary fields
[KP 91,KP 92,J 92].) Thus the linear system Ax = b can theoretically be ex-
actly solved within this complexity by the computation x .4-1b, where A-1
is the matrix inverse.

4



However, numerical analysis practitioners certainly would generally not solve
linear systems by construction of the characteristic polynomial or a related form,
which is known to be numerically unstable. Many practicing numerical analysts
would object to this approach, for well known stability considerations.

Instead, they generally much prefer to factorize the matrices, and solve tri-
angular linear systems. For example, suppose we are given a nonsingular n x n
matrix A. If A is symmetric positive definite, then A will be factored A = LU
where U - LT(also known in this case as a Cholesky factorization), where L is
nonsingular lower triangular and U is nonsingular upper triangular.

The requirement that the matrix be symmetric positive definite presents no
difficulties, as we now show. Even if A is not symmetric positive definite, then
ATA is, so ATA can be factored as ATA = LU (this squares the condition
number, which may be problem if A is badly conditioned). With this prepro-
cessing, and given an n-vector b, the linear system Az = b can be solved in two
back-solving stages by first solving for n-vector y and then for n-vector - in
the triangular linear systems Ly = b, U: = y (For which there are well known
highly efficient parallel algorithms: see JU4 [J 921). Then if A = LU then we
can let x = :, and otherwise if ATA = LU then we can let x = Az.

Known efficient parallel algorithms for exact computation of the determinant
of A (see [Pa 85,Pan 87,KP 91,KP 92,J 92]) would also require the computation
of the characteristic polynomial of A. In contrast, given the LU decomposition
as above, if A = LU, then det(A) = det(L)det(U), and otherwise if ATA = LU,
then det(A) 2 = det(ATA) = det(L)det(U). In either case, the determinants of
these triangular matrices are obtained by multiplying all the elements of their
principal diagonals.

Furthermore, singular value decompositions and eigenvalue computations
generally begin with QR factorization which is computable from the LU fac-
torization. Eigenvalue computations generally use a further reduction to upper
Hessenberg form computed from the QR factorization (see Golub and van Loan
[GL 83]). Thus matrix factorizations of various types are used extensively in
numerical computations and are essential in many applications.

For dense matrices, known efficient parallel algorithms for exact LU and QR
factorization and reduction to upper Hessenberg form ([Pan 871) cost O(log 3 n)
time and also require the computation of the characteristic polynomial of .4.
The objective of this paper is to provide efficient parallel algorithms to factor
matrices in time O(log 2 n) with P(n) processors, without computation of the
characteristic polynomial.

1.3 Our Parallel Algorithms for Dense, Sparse and Banded
Matrices

The general technique 6f approximate solution, followed by lHensel Lifting, has
a long history in numerical and algebraic computation. For a recent examph
see Pan (Pa 85,Pan 87]. We use such a construction which modifies the input
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matrix (which initially may have arbitrary condition, so could be very badly
conditioned), so that the resulting matrix is extremely diagonally dominant
and has condition nearly 1. Explicit computation of matrix inverse of badly
conditioned matrices is thus avoided, and instead we approximate the inverse
of diagonally dominant matrices. To compute the recursive factorization, we
apply a multilevel, pipelined Newton iteration, followed by Hensel Lifting. Our
algorithms give an exact factorization, but nevetheless avoid computation of the
characteristic polynomial or related forms.

Using reductions to the recursively factorization algorithm, we exactly com-
pute, for symmetric positive definite matrices, LU and QR factorizations, and
also compute their reduction into upper Hessenberg form. Using further re-
ductions to the LU factorization, we exactly compute, for arbitrary integer or
rational matrices (which need not be symmetric positive definite) solution of
the corresponding linear systems, the determinant, the inverse.

1. For dense matrices, we show that all of these factorizations and computa-
tions can be done in parallel time 0(log" n) with P(n) processors.

2. For sparse matrices, (with 0(n) non-zero entries) which are s(n)-separable
(i.e. the separator size of the sparsity graph of the matrix is of size s(n)),
we show LU and QR factorizations can be done in parallel time 0(log2 n
with P(s(n)) processors where s(n) is of the form n" for 0 < - < 1.

3. For b-block diagonal matrices (consisting of a sequence of b x b blocks on
the diagonal) we show LU and QR factorizations can be done in parallel
time 0(log2 b) with P(b)n/b processors.

4. For b-banded matrices, (where the non-zeros occur within only a band of
width b around the diagonal) we show LU and QR factorizations can be
done in parallel time 0(log n log b) with P(b)n/b processors.

Previous work of Pan (Pan 871 gave parallel time 0(log3 n) with P(n) pro-
cessors for factoring dense symmetric positive definite matrices, including LU
and QR factorizations, and also computing their reduction into upper Hessen-
berg form. Pan shows the solution and determinant of b-banded matrices can
be computed in parallel time 0(logn log b) with P(b)n/b processors. but his re-
suits do not extend to LU or QR factorizations. Armon and Reif [AR 92] gave
parallel time 0(log2 n) with P(s(n))i+' processors, for c > 0, for recursive fac-
torization (but not LU or QR factorizations) of nonsingular symmetric positive
definite matrices.

1.4 Organization of the Paper

In Section 1, we have motivated the problems we solve and stated our results
and previous results. Section 2 is a preliminary. In this section, we define
matrix notations, and problems, as well as introduce the Recursive Factorization
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(RF) Sequence and Tree of matrices, and show that matrix problems can be
efficiently reduced to RF computation in O(log2n) parallel time using P(n)
processors. Section 3 gives the parallel algorithm to compute the RF Tree of
a matrix with parallel time O(log 2 n) using P(n) processors. Details of the
two components of the algorithm, namely Newton-Hensel Lifting and Newton
Iteration are left out of Section 3 and are dealt with in detail in Section 4 and
Section 5 separately. Section 6 extends these results to parallel nested dissection,
giving efficient parallel factorizations of symmetric matrices with s(n)-separable
graphs in O(log2 n) time and P(s(n)) processors. Sectio, 7 discusses banded
matrices.

2 Preliminaries

This section contains some definitions, notations and previously known results
that will be of use later in this paper.

2.1 Matrix Definitions and Notation

2.1.1 Matrix Assumptions

All matrix products are inner products. Vectors and matrices will be denoted
by lower and upper case characters, respectively.

Generally, we assume input A is a square matrix of size n x n, except where we
compute QR-f'actors, where the input A can be a rectangular matrix of size m x n
, where m > n. We assume throughout this paper, without loss of generality,
that n is a power of 2. Although all our results apply to rational matrices,
note that we can always multiply a rational matrix by an appropriate integer
to form an integer matrix. For simplicity, we assume without loss of generality
throughout this paper the matrices input to our factorization algorithms have
integer entries of size < 2n°). However, our algorithms will in general generate
and output rational matrices.

Throughout this paper all logarithms are base 2.

2.1.2 Matrix Definitions and Specialized Matrices

I and 0 will denote identity and null matrices of the appropriate sizes. AT will

denote the transpose of a matrix A. A is define to be symmetric if AT = 4.
Let det(A) denote the determinant of A. A is singular if det(A) = 0, else it is
nonsingular. If A is nonsingular, then the inverse A` is defined and the adjoint
is the matrix adj(A) =det(A)A-' (the adjoint is an integer matrix if A is).

Let A = [a]ij denote the elements of A. The principal diagonal of A are
the elements all,a 22 , ...,ann. A minor of A is a sub-matrix induced by a
sequence of rows, say il, i2 .. , i., and columns, say jiJ2, -.-. , jm,. A principal
minor of A is a square minor induced by selecting the same sequence of row
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indices, say il = ji, i 2 = j2,... in = j., as column indices, and it is a leading
principal minor of A if these indices are consecutive starting at 1, say ii =
J1 = 1, i 2 = j2 = 2, -.... in' = in, = n'. A is positive definite if zTAz > 0 for
all nonzero vectors z. If A is positive definite, every principal minor is also
positive definite. If A is positive definite, then A is always nonsingular. For any
nonsingular matrix A, ATA is symmetric positive definite.

A is orthogonal if ATA = I. A is lower (upper) triangular if aii = 0 for
i < j (j < i, respectively). A is b-banded if ai1 = 0 for 21j - il + 1 > b, so the
non-zeros occur within only a band of width b around the diagonal. A is b-block
diagonal if A has nonzero entries only at a sequence of disjoint b x b blocks on
the diagonal.

We leave to Subsection 2.4 a definition of various matrix factorizations.

2.1.3 Matrix Norms

Let the elements of matrix A = [ai1 ]. For p = 1,2. oo, let IIAJtp = supAOl]jrIL

denote the p-norm of matrix A, so hJAil 1 = maxi , la,, I and IJI-ht1 = maxi [jai, 1.
For each such p = 1,oo, (see Golub and van Loan (GL 83]) ItAhIp/n <

maxij Jai,j Il SAil 2, for A = [a,1 ]. Also, for each such p = 1,00, (see Golub
and van Loan [GL 83], p. 57) JIAhlp/V/ < hAil2 < IIAiJipV. We can bound
det(A) <5 (nllAII2 )n.

If A is nonsingular, let condp(A) = iAJIp -IIA-11 for p = 1,2,co, and
let cond(A) = IIAil 2 IIA-'112. Note that for nonsingular A, cond(A) = 11,4l1
lIA-'Il2 >_ 1, so IIA-'112 > l/1AllA2. A is well conditioned if cond(A) < nlo").
Note that if A is well conditioned, then so is ATA.

Note: throughout this paper, we drop the subscript p in the case we wish to
indicate the 2-norm, so IIAil = IIAlI2.

2.2 Recursive Factorization (RF) Sequences of Matrices

Recursive Factorization (RF) SEQUENCE Problem: If possible, compute a
sequence of matrices A = A 0 , A, .... Aogn where for d = 0, 1_. , log n - 1, Ad
is an n/2d x n/2d matrix which is partitioned as

Ad = d W d

where Wd, Xd, Yd, Zd are matrices each of size n/2d+1 x n/2d+I and Ad+1 =
Zd - YdWjtXd is called the Schur complement.

If, for any d, no such factorization is possible, then A has no RF Sequence.
However, any symmetric positive definite matrix has a unique RF sequence (see
Golub and van Loan [GL 83] and Pan [Pan 87]).

Proposition 2.1 (follows from known properties of Schur complements and
Pan and Reif [PR 85,PR 92]) In ..ae RF sequence, for all d, 0 < d < logn - I
and a E {0. I}d,
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" if Ad is symmetric positive definite, then so are Ad+1 and Wd,
"• jjAd+ijj, IjWdjj <5 llAdjj,

* IIA-.' 11,11W;'-l 1 IIA-'II,
S1/lA-1111: min(IAd+II, IIWd1II),

• 1/IlAdl _r min(jjA4 11j.jWdIj-'),
"* cond(Wd) 5cond(A).

This RF sequence gives the following useful recursive formulae:

Proposition 2.2 The LU factorization of A can be recursively computed fromthe RF sequence of A, as follows:

Ad=[ YdW;1 [w0 Ad+ [ 0 ]

Proposition 2.3 The inverse of A can be recursively computed from the RF
sequence of A, as follows:

-W;'tXd - 0

Ad'=[ ~ W][ A4] --YdWd ]

The RF sequence provides a divide and conquer technique used in many
theoretically efficient sequential algorithms for matrix inverse. (see [AHU 74]).
For example, the Strassen block matrix algorithm shows that computing the
inverse of two n x n matrices that are partitioned into four blocks (each of size
n/2 x n/2) reduces to matrix inverses and products on the block submatrices.
(see [AHU 74]). The above formula expresses the inverse of the input matrix in
terms of a constant number products, sums and two inverses of four n/2 x n/2
submatrices.

2.3 Recursive Factorization (RF) Trees of Matrices

RF TREE Problem: If possible, compute a full binary tree of depth log n whose
nodes are matrices. All nodes of depth d, 0 < d < log n are n/2d x n / 2 d matrices
with notation Ada wikere a E {0, I}d is a binary string of length d.

If d = 0 then Ad,,, = A is the root of the tree and a is the empty string.
For 0 < d < log n, each matrix Ad. ,, of depth d has exactly two children in the
tree, Ad+,,a, and Ad+l, 0, o of depth d+ I which will be defined by recursion. In
particular, for d = 0, 1,.. ., log n - 1 , Ad,a is an n/2d x n/2d matrix which is
partitioned as

Ad,. = [Ad+ Y,o, Xo , 1d,
Y 'd,. , Zd~, ,



where Ad+1, 0o, Xd,a, Yd,., Zd,0 are matrices each of size n/2d+1 x n/2d+l and
Ad+,,a. = Zd,. - Yd,.Ad-1t,oXd,0 is the Schur complement. If, for any d, no
such factorization is possible, then A has no RF tree.

Important Note: The RF tree of A is very similar to the previously defined
RF sequence A = A0, A,, A2 ..... Alo1 . In particular, for each d = 1, ... , log n
Ad = Ad,., where a = ld. The only difference is that the RF tree also recursively
factors each of the Wd = Ad+l,aO matrices appearing in the RF sequence.

Any symmetric positive definite matrix has an RF sequence and therefore
an RF tree, and it is unique.

This RF tree gives the following useful recursive formulae:

Proposition 2.4 The LU factorization of A can be recursively computed from
the RF tree of A, as follows: Ad,a =

I 0 Ad+t,aO 0 I r A-'1,0 0 Xa
Y d, 0A 7- 1 a I 0 A d+ li 0 O I j

Proposition 2.5 The inverse of A can be recursively computed from the RF
tree of A, as follows: A-'

S-A-1,aoXd,. ]-'
dA+toX, " d+l,oO 4I, -

.1 0 A O " d rt~ - dt~~+ 1'a0

Note: throughout the rest of this paper, we will deal only with RF trees. Thus
we will hereafter simply call an RF tree an RF, and we will call the RF tree
problem simply the RF problem unless otherwise indicated.

2.4 Reduction of Matrix Problems to RF Computation

In this section we define various matrix problems and their efficient parallel
reduction to RF Computation (also. see Pan, p.69 [Pan 87]). We will consider
a reduction to be an efficient parallel reduction if it can be done in 0(log"2 n)
parallel time using P(n) processors.

1. LU FACTORIZATION (if A is symmetric, then U = LT and this problem
is known as CHOLESKY FACTORIZATION ): If possible, factor A =
LU where L is nonsingular lower triangular, and U is nonsingular tipper
triangular, otherwise output NO LU FACTORIZATION.

If A is symmetric positive definite, then A always has a LU factorization.

Note: If A has an RF, then the LU factorization can be computed by
O(log n) stages of matrix multiplication using the above recursive formula.

Lemma 2.1 There is an efficient par-tlel reduction from LU FACTOR-
IZATION to the RF problem.
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2. DETERMINANT: Compute det(A).

Note: If A has a factorization A = LU, then det(A) = det(L)det(U).
The determinant of a triangular matrix is obtained by multiply..g all
the elements on its principal diagonal. (This can be computed in O(log n)
time and n/log n processors by using a balanced binary multiplication tree
of size O(n/logn) whose leaves have logn elements each.) So det(L) =
1l'..-1 Li, and det(U) = -[I'=l Uji. Otherwise, ATA is symmetric positive
definite, and so has a factorization ATA = LU. Then since det(A) =
det(AT), we have det(A) 2 = det(ATA) = det(L)det(U).

Lemma 2.2 There is an efficient parallel reduction from DETERMI-
NANT to the RF problem.

3. INVERSE: If 4 is nonsingular, then compute A-` = where adj(.4)det( A)'

is the adjoint matrix of A. otherwise output SINGULAR.

Note: If A has an RF. then A' can be computed by the above RF
sequence or tree formula. Otherwise, ATA is symmetric positive definite,
so if A is nonsingular then A has an RF. Then (ATA)-1 = (A)-(AT)-t,
can be computed by the above RF tree formula, and we can compute
A-' = A((A)- 1 (AT)- 1 ) = A(ATA)- 1 by one more matrix product.

Lemma 2.3 INVERSE has an efficient parallel reduction to the RF prob-
lem.

4. LINEAR SYSTEM SOLVE: If.4 is nonsingular, then compute A-'t'. oth-
erwise output SINGULAR.

Here we can apply the efficient parallel reduction given in our Subsection
1.2 to LU factorization of ATA (which we can compute by Lemma 2.1 by
efficient parallel reduction to the RF.), and to solution of triangular linear
systems, for which there are known efficient parallel algorithms (see JaJa
[J 92]).

Lemma 2.4 There is an efficient parallel reduction from LINEAR SYS-
TEM SOLVE to the RF problem.

5. QR FACTORIZATION: If possible, factor m x n matrix .4 = QR where
R is a nonsingular upper triangular matrix and Q is an orthogonal matrix
(so QTQ = I) of size m x n, for mn > n. If the QR factorization is not
possible, then output NO QR FACTORIZATION (Rank deficient).

Note: the QR-factors of .4 can be computed from the LU-factors of ,4 T 4 ,
where R= U and Q =.'R-
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Lemma 2.5 There is an efficient parallel reduction from QR FACTOR-
IZATION to the RF problem.

6. HESSENBERG REDUCTION: Compute a matrix H - QTAQ having
upper Hessenberg form Hi1 = 0 if i > j + 1, and compute Q, which is an
orthogonal matrix. Note: if A is symmetric, then H is tridiagonal.

Note: The Krylov matriz of an n x n matrix A and n-vector v, is an
n x m matrix K(A, v) = (v, Av,A2V .....vAm-lv). Borodin and Munro
([BM 75]p.128) describe a well known algorithm for the Krylov matrix
requiring 2 log m multiplications of matrices of size at most n x max (n, m).
They observe that the matrix powers A, A 2 ..... 420*o-1 can be computed
in [log mJ stages of matrix products, and that K(A, v) can be computed
in log m further stages, where using the identity for i = 1 . [... ,log mj,
(A2'v,Av, A 2v ... , A2'+' v) = ..42(v, 2V, .. 2 V).

Further Note: If K(A, v) is nonsingular with QR factorization, K(A, v) =
QR, then H = QTAQ is in upper Hessenberg form.

Lemma 2.6 There is an efficient parallel reduction from HESSENBERG
REDUCTION to the RF problem.

3 Our Parallel Algorithm for Computing an RF
of a Matrix

Fix a nonsingular n x n matrix A, with integer entries of size < 2""".

3.1 Deterministic Choice of Modulus

Proposition 3.1 Let p be a prime of size at least (nllAjI)"?c for some r, > 2.
Ifdet(A)#0, then O$det(A) (modp)

Also. if det(K(Av)) #6O, then 0 $ det(K(A,v)) (mod p).

3.2 Random Choice of Modulus

Proposition 3.2 (See Schwartz [Sc 801 and Pan [Pan 871) Let p be a random
prime of the interval [2(nIIAjI)'o/n,2(nhIAII)'°], for any co > 2. If det(A) 5 0.
then 0 $ det(A) (mod p) with probability > 1 - Q(nlog(njl.-Ai)/(njlAII)"').

Also, if det(K(A, v)) $ 0. then 0 $ det(K(A, t,)) (mod p) with probability
> 1 - Q(n 2 log(nljAjI)/(njlAIIj)").
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3.3 RF Algorithm

We now describe our algorithm:
Algorithm RF
INPUT: an n x n integer matrix A, with integer entries of size < 2-"'.
Comment: Since we can bound det(A) <_ 2-'(", all rational quantities in

the RIF can be expressed as a quotient of two integers of size < 2""

1. Depending on whether a deterministic or randomized algorithm is desired,
do steps (a) or (b).

(a) Let p be any prime from the interval (nhIAIl)"no < p < (nI4AII)he°' for
some c0 ,c0 > 2.
Comment: By Proposition 3.1, if det(A) $ 0 then 0 $ det(A) (mod p).

(b) Let p be a random prime from the interval
"2(nhlAjI)c0/n < p < 2(nI1AI1)c0, for some co > 2.
Comment: By Proposition 3.2, if det(A) 6 0 then 0 $ det(A) (mod p)
with high likelihood.

-2. Let A = A + Ip(nIIAIIooyI)', for a sufficiently large constant cl > 8.

Comment: A is extremely diagoially dominant, and thus nonsingular,
and cond(A) < 1 + nT7.
Comment: We can show we actually need to add a much smaller quantity

to A, thus decreasing the bit complexity of our algorithm.

Comment: Since .4A- A = Ip(nijAIlI)n•' is divisible by p, A a A mod p.
and thus (r)- = A-' mod p.

3. Apply Newton Iteration of Section 5 (Lemma 5.4) to compute in time
O(log 2 n) using P(n) processors, an approximate RF of A to accuracy
2"'. for a sufficiently large constant e > 2.

Comment: This approximate RF gives for each Ad.,,, for d = 0,.... log n
and a E {0, 1}d, an approximation of (A.,,)-' and the LU factorization
of Ad,0 to accuracy 2-n'.

4. For each d = 0,..., logn and a E {0, I}d do in parallel

(a) By applying Lemma 2.2 (which showed DETERMINANT has an
efficient parallel reduction to RF), compute in time O(log2 n) using
P(n) processors an approximation to det(Ad1,,) to accuracy within
2-nc from the approximate LU factorization of Ad.,.
Comment: Since det(Ad.a) < (nIJAIIJ), and each entry in the ap-
proximation can be in error by at most n22-n', the total error is
(nIIAII)"n22-2' < 1/2, with choice of sufficiently large constant c >
2.
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(b) Round this approximation to the nearest integer to compute det(Ad,,)
exactly.

(c) if det(Add,) - 0 (mod p) for any d,a then exit and OUTPUT NO
RF of A.

Comment: In this case det(Ad,a) = 0 implying Ad,a is singular, so
A has no RF.

(d) Multiply this exact value of det(Ad,0 ) by the approximation of (Ad,a,)-

to get an approximation of the integer adjoint matrix adj(Ad,0 ) to
accuracy within 2-`c.

(e) Round this approximation to the nearest integer to compute adj(Ad,0 )

exactly, and thus the exact rational value of (Ad,a)-' det(=A,.)

Comment: We now have the exact RF of A.

Comment: Recall A a A mod p, so the RF (mod p) of A is identical
to the RF (mod p) of A.

5. Reduce (mod p) the exact RF of A, yielding the RF (mod p) of A

6. Apply Newton-Hensel Lifting of Section 4 (Lemma 4.1) to compute in
time O(log"2 n) using P(n) processors the RF (mod p"') of A, which is
the same as the exact RF of A.

OUTPUT The exact RF of A.
Note that by Lemmas 5.4, 2.2, and 4.1, each major stage of the above RF

algorithm takes at most time O(log 2 n) using P(n) processors. Since there are
only 7 such major stages, we have:

Theorem 3.1 Our algorithm for the exact RF takes parallel time O(log 2 n)
using P(n) processors.

By Theorem 3.1 and the efficient parallel reductions of Subsection 2.4. we have
the following new results:

Corollary 3.1 The following problems can be exactly solved in parallel time
O(log2 n) using P(n) processors:

* LU FACTORIZATION

e QR FACTORIZATION.

Note: the RF will still be constructed for input which arc non-symmetric
positive definite matrices, so symmetry of the input matrix is not essential
(it just simplifies the analysis (Lemma 5.4) of the pipelined Newton iterations
described in Section 5). However, the RF algorithm on an input matrix which
is singular will not result in a complete RF.
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By a slight modification of the above construction (see Pan [Pan 87]), we can
compute a HESSENBERG REDUCTION. Let H = [hq] be the n x n matrix
where

{i ifj-i-=lmodn,
hj =otherwise.

Let v = (1, 0,..., 0] and A" = HA+Hp(nllAll.)nc, for an appropriate constant
c1 > 3 and for a prime p as in the RF algorithm.

Pan [Pan 87] shows that the Krylov matrix K(A", v) = [v, A"v.. A"-I
is strongly diagonally dominant, and that same proof implies K((A", v) is ex-
tremely diagonally dominant. As Pan [Pan 87] notes, some simple modifica-
tions of our RF algorithm allow one to compute the HESSENBERG REDUC-
TION. We can compute (Hr A")` using the RF algorithm, because HTA" =
A + Hp(nhIAII.)nc is strongly diagonally dominant, and because we have al-
ready computed det( Hr A")= det( Hr )det(A")= (-1)'n-Idet(A"). Compute
(HTA")-ldet(HTA")= adj(HT A"). Then we can compute the integer adjoint
matrix adj(A) via reduction modulo p and finally compute A-' =

Corollary 3.2 HESSENBERG REDU'CTION can be exactly solved in parallel
time O(log2 n) using P(n) processors.

Note that our parallel time bounds for LU FACTORIZATION, QR FAC-
TORIZATION and HESSENBERG REDUCTION are new. Previously Pan
[Pan 87] had proved the same processor bounds for these listed problems with
a time bound of O(Iog3 n).

The following additional problems were previously known to be exactly solv-
able (see [Pa 85,Pan 87,KP 91.KP 92,J 92]) in time O(log2 n) using P(n) pro-
cessors, requiring reduction to the computation of the characteristic polynomial.

"* DETERMINANT

"* INVERSE

"* LINEAR SYSTEM SOLVE.

Our techniques achieve the same bounds, without the need to compute the
characteristic polynomial.

3.4 Factorization of Block Diagonal Matrices

Recall that A is b-block diagonal if A has nonzero entries only at a sequence of
b x b disjoint blocks on the diagonal.

Corollary 3.3 If A is b-block diagonal, then the following problems can be ex-
actly solved in parallel time O(log2 h) with P(b)n/b processors:

"• RF

"* LU FACTORIZATION

"• QR FACTORIZATION
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4 Newton-Hensel Lifting

4.1 Newton-Hensel Lifting of a Matrix

Fix a nonsingular n x n matrix A and a prime p. In this section we assume
we have already computed A- I mod p. Zassenhause extended Hensel's lifting
to exponentially increase the modulus. The resulting Newton-Hensel Lifting is
the following algorithm:

INPUT: a positive number k, and n x n matrices A and A` mod p.

1. S() - A` mod p
2. For i = .. k do S(k) = S(k -1) (21 - ASO - 1)) rood p2•.

Moenck and Carter [MC 79] show

Proposition 4.1 .5k) - A- I mod p-2.

4.2 Newton-Hensel Lifting of Modular Recursive Factor-
izations

Recall that the RF of A is a full binary tree of depth log n. Each internal node
is an n/2d x n/2d matrix Ad.a. The RF of Ad,,, is defined in terms of the RF of
two n/ 2 d+1 x n/2d+l matrices, namely Ad+l,0 l and Ad+l,0o, and furthermore
Ad+l,,I is defined in terms of submatrices of Ad., and the inverse of Ad+:. 0o.

Let an RF (mod p) of an n x n matrix A be an RF of matrix A where
each element is taken (mod p). This will also be called a modular RF. In
this section we assume we are given an RF (mod p) of matrix A . We shall
compute the RF (mod p2-) of A.

Recall that P(n) = n' is the minimum number of PRAM processors neces-
sary to multiply two n x n matrices in O(Iogn) parallel steps, where we assume
w >2.

l-,ogn 9do(l p~ d)) <5 O( Pn) ).
Proposition 4.2 .d=O 2 P(/ 2  O

Note that the obvious way to compute the RF (mod p ) of A is by pro-
ceeding level by level through the RF in log n stages, each requiring O(k log n)
time and O(P(n)) _> 2 do(P(n/ 2 d)) processors for the required k matrix prod-
ucts for the nodes of depth d. This requires total parallel time O(k log2 n) using
O(P(n)) processors.

Newton-Hensel Lifting Algorithm for an RF
INPUT: RF (mod p) of A and number k > 1.
For each d, a for 0 < d < logn and a E 40, I)d, do in parallel:

1. INITIALIZATION:

(a) Let A(°), Ad•. (mod p)
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(b) Let S(O) = 4'A ,, (mod p).
()LtSd+I,o0 _= d+lo

2. For each i = .... kdo

Loop Invariant: We have just computed
A(d', ' Ad,a mod p-2' and
s ti 1) - p2 '- 1

=,a - A-' mod

(a) Let S(') _.' (- 1) (21 AdS(' )).
d'a d,a *doc ~

(b) For d < log n, let

4(3) = d+loAO (' d,)A( diu (i) Xi),.
d ~a '~do

where A5. 0 ,Xo"( y,( Zd'a are matrices each of size n/2d+l x

n/2d+1 and
d~i) •i) 0- yS)M{i XM

"A•d+1,01 -••do Yd'a d+ do'ado

OUTPUT: RF (mod p-k) of A given by the {d.a}"

This algorithm, as stated, requires parallel time O(k log2 n) using O(P(n))
processors. However, we can use the technique of stream contraction (see Pan
and Reif [PR 91]) to decrease the time to O((k + log n) log n) time without a
processor penalty. The idea is to note that for each d, 0 < d < log n, and each
a E 40, l}d defining an internal node Ad,, of depth d, the following hold:

1. The matrices Ad+1 0o mod p2-1 and Ad+,,,,r mod p- are defined in

terms of submatrices of Ad,0 mod p.

2. The computation S'" = A1 mod p2' depends on the previous computa-
tions
(a) -i) - ' mod p" and

'5 d+,ll. - d+l,al

(b) S-, AA-t mod p-() d+l.a0 - d+l.,,0

This implies that we can pipeline the computation as follows: As our basis
step t = 0 we have done the computation ") foralld=0 .logn and each a E
{0, 1}). We assume for our induction hypothesis that at time t, 0 < t < k+log n
we have computed each S(' for all i, d,a where0 < d< Iogn, 0 < i< I-d
and a E T0, 1 }d.

Then we apply the RF formula and compute one further product at each

node of the recursion tree to compute by time t + 1 each qSt+') for all i,d, a
where 0 <d < logn,i = t + - d and et E 0, 1}d.
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Summarizing, we have (using a small constant factor slowdown to reduce
the processor bounds from O(P(n)) to P(n))

Lemma 4.1 Given an RF (mod p) of an n x n matrix A, we can compute an

RF (mod p2') of A in parallel time O((k+logn)logn) using P(n) processors.

5 Newton Iterations for Approximation of an
RF of Diagonally Dominant Matrices

5.1 Extremely Diagonally Dominant Matrices

Let A be an n x n matrix where A = [aij]. A is (-diagonally dominant for some
c >0 if for all i,l < i < n,

j I i,j I .

Let D(A) = diag(a1 l, a22 .. , ann) denote the n x n diagonal matrix with the di-
agonal entries all, a22, ... , ann. Then D(A)-I = diag(l/a11 , 1/a22. , . /ann)
is the n x n diagonal matrix with the diagonal entries 1/all, 1/a 22. , /ann.E, .,.,I
Since III - D(A)-'AIIoo _< maxi , < C' it follows:

Proposition 5.1 If A is c-diagonally dominant then Ill - D(A)-' AIll. < C.

We generally will let B() -= D(A)-I be the initial approximation to the inverse
of A in our Newton iterations. A is diagonally dominant if A is c-diagonally
dominant for c < 1. A is strongly diagonally dominant if A is (-diagonally
dominant for c = I - I/nc for some c > 0. Define a quantity to be extremely
small if it is of the form c = 1/(nuIAII)Y" for some large constant r > 2. (This
definition of extremely small is required for our proofs of rapid convergence:
but in practice, it is possible we could alter this definition of extremely small
so that c is a larger quantity, thus often decreasing the bit complexity of our
algorithm.) A is extremely diagonally dominant if A is c-diagonally dominant
for an extremely small t. Let a nonsingular .4 be ertremely well conditioned if
condA < I + c for an extremely small c. Let A ;, i if hIA - ill is extremely
small. The following follows from basic norm proprieties (see also [K 81,K 87]):

Proposition 5.2 Suppose A is extremely diagonally dominant. Then:

"* A is extremely well conditioned,

"* If A • A then A is also extremely diagonally dominant,

"* A :, D(A), so A is, within extremely small relative error, a diagonal
matrix (but of course A is not identical to D(A)).
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"* A-' i D(A)'. so the inverse of A is, within extremely small relative er-
ror. also a diagonal matrix (but of course A-' is not identical to D(A)-').

" Iff1I - BAllj• is extremely small, and IVA]],o 2> 1. then IIBII[ • 2.

5.2 Approximate Inverse of Diagonally Dominant Matri-
ces

Let A be an n x n matrix. We will let BIO) = D(A)-I be the initial approxi-
mation to the inverse of A in our Newton iterations. The Newton iteration (see
Ben-Israel [B66], Ben-Israel and Cohen [BC 66], and Hotelling [H 43,Ht 43) for
sequential Newton iteration and Pan and Reif [PR 85,PR 89] for parallel appli-
cations) generates a sequence of matrices BO), B-•2 .... where

B(k) = B(k-1)(21- AB(k--).

Proposition 5.3 IrfA is (-diagonally dominant then II - B(k).41[. < , -k

This follows since.

I - B . "-1(21 -IIBBk- ))A

= (I - B(k•-).4) 2 .

Thus
III - B(k4AII = 11(l - B(kL4)2 I- < ( -

Thus if .1 is strongly or extremely diagonally dominant. tihent k = O(I0g i,)
Newton iterations suffice to compute the approximate inverse B(kl with error
2-,n~t

5.3 Newton Iterations with Inaccurate Input

We assume A is extremely diagonally dominant, so .1 is (-diagonally dloiillant

for some extremely small C = l/(1uIj..I)*p for some sdlliciently large r > S.
L )k !)2k +2k

Let E+(•) = •-,)- - .Note that EO(,) = . (5EA.-I(t)): _< I&.((). :111d also

= 2 for a sufficiently large constant cr > 1.
Next we consider the case of Newton iteration where the input matrix .1

is not initially given with full accuracy, and instead we are provided on-line
a sequence of approximates A' 1.-Jl ).... where IA - .4-k)I 1".!-, E•.(0). Let
J(O0 = D(At0))-1 = diag(l/al, ,1/a, 2 _., I/a,) where .i" = [aii].

If A.4' is (-diagonally dominant then by Proposition 5.1. 111- IIX, <
c. We will generate a seq lence of matrices BO) j B).... where fl k" - I )(21-
:ijtk)&k- 1)).

Since .4 is assumed to be extremely diagonally dominant. then by as'suimption
on the close approximation of A by the .. (J~t, by Proposition 5.2 we haIe:

19



Proposition 5.4 Each A(k) is also extremely diagonally dominant, and ex-
tremely well conditioned.

Finally, we give an inductive proof of quadratic convergence of the entire
iteration sequence:

Proposition 5.5 If IlAIko, > 1, A and ,A(o) are extremely c-diagonally domi-
nant, then we have III - j(kTA(k)IO. < Ek(C).

Proof: We use a proof by induction on k. Note that the Basis holds by as-
sumption, since c = EO(c). Now for k > 1, assume the induction hypothesis:
11, - hk )k I,.< Ek 0

By definition of the Newton Iterations,

I- -~)~k - j(k'- "(21 _-~~~-1)jk

= (I- (k-1) ,j(k))2.

By assumption on the approximations to the AM•),

IIA(k) - A(•-)Illoo ,5 IIA - A4(k) lo + I11 - j(k-1)i11. < Ek(C) + Ek._(C).

Since by Proposition 5.4, Aj(k- ) is extremely diagonally dominant and by
the induction hypothesis, III- B_(k-).4(k-1)jII < Ek-t(c), and by assumption
IIAII. ! 1, Proposition 5.2 implies jIItk-1)I) < 2.

Also,

I -(k-•)j(k) = (I - •(k -i) + + (k-I)(..k-) _ -(k))

so we have the bound:

III _ f 1k-)A(k)II,. :5 III_ j~-i.(k )I + 11,5(- IA("..1,(- ) 'j~Ik"

< E=(c) + 2(Ek(c) + Eki(c)) <_ 5Ek_•(f)

since E#()) _Ekj(c)
Thus we have:

II -f)4k)j 11(1 - j(k-i 1)4(k))2 1 1 ,

_ II(I - (k-I)A(k)) 112 < (5E.-.(c))2 < Ek(C),

by definition of Ek(c). I

Lemma 5.1 If A is extremely diagonally dominant, then even with the above
approximations to A, k = O(Iog n) Newton iterations still suffice to compute the
approximate inverse A(k) with error 2-10").

(Note: we ca~i also show that Lemma 5.1 holds even if A is more moderately
diagonally dominant, but the Lemma will suffice for the RF algorithm.)
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5.4 Non-Pipelined Newton Iterations for RE

In this subsection we assume we are given a matrix A which is extremely diag-
onally dominant. We shall compute an approximation to the RF of A within
error 2-"' for any given constant c > 1.

Recall again that the RF of A is a full binary tree of depth log n. Each
internal node is an n/2d x n/2d matrix Ad,. The RF of Ad,. is defined in terms
of the RF of two n/2d+i x n/2d+' matrices, namely Ad+1,0 1 and Ad+l,.O, and
furthermore Ad+l,.l is defined in terms of submatrices of Ad,0 and the inverse
of Ad+,, 0o.

Fix some k = ct log n, for some appropriate constant cl > 2. Note that the
simplest and most obvious way we could use to compute the RF of A within error
2-n' is by proceeding up the recursion tree in log n stages. We first sketch this
simple algorithm (we will give full details of a more efficient algorithm below).
At each stage d = 0, 1,... log n, we could compute for all nodes of depth d an
approximation Ad,. of Ad,, within error 2-". Then we could compute Bdk.
which is a k-th Newton iteration matrix approximating the inverse of matrix

Ad,a up to error c- , where f = l/(nhIAII), n, for some sufficiently large constant
c' > 2. We could use B,(k) to approximate A-' within error 2-". Since there

are only log n levels in the RF, and since A is extremely diagonally dominant,
the norm bounds given in Proposition 2.1 would ensure that the error of the
overall approximate computation is at most 2"'. At each stage we would need
to compute approximations to two recursive inverses. Each such stage requires
O(log2 n) time and O(P(n)) _ 2 do(P(n/ 2 d)) processors for the required k
repeated n/2d x n/2d matrix products for each of the 2 d nodes of depth d.

The log n stages would require total parallel time O(k log"2 n) = O(log3 n) using
og 2ndO(P(n/2d)) - O(P(n)) processors.

5.5 Pipelined Newton Iterations for RF

Next, we will improve on this 0(Iog3 n) algorithm for Lhe approximate RF.
decreasing the time to O(log2 n) without an increase in processor bounds. As
in Lemma 5.1, we consider the case of Newton iteration where the recursively
defined matrices Ad,, are not initially given with full accuracy, and instead

we are provided a sequence of improving approximations A ,At),... where

ILA - ,4(k)II. < Ek(c). In the special case d = 0, the approximation is exact,
A0,<> = A, where <> is the empty string.

Given these approximants to A, we will generate a sequence of matrices
Mo), J") .... where

d,a, d,a,"
d -"= §(1*A)(21 ").(k- Thus, B will approximate the inverse
d,, •- da d,ad,o" d.6

of A(k)
d.6'

We will then use Lemma 5.1 to show quadratic convergence.
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Newton Iteration Algorithm for an RF
INPUT: An extremely c-diagonally dominant matrix A of size n x n.
For each d,a for 0 < d < logn and a E (0, 1}d, do in parallel:

1. INITIALIZATION: Let A(O) = A, where <> is the empty string.

2. Let k = cl log n, for some appropriate constant cl > 2.

3. For each i =" 1 .. k do

Loop Invariant: and
* We have just computed A('- 1) which approximates Ada with error

"dd~all~'•)- Ad,0 lcoo < E1.-..( ') for e' = I/(nhIAII)C'n with c' > 2. and

Swe have just computed B'(i- 1 which approximates A-"I with error

specified by 111 - BJ.-' Ad., 11 < E,.-.(e').

(a) If i = 0 then let t~13 = diag(1/.i, I/a -.  where Ad

Else if i > 0 then let B,'{,=-B"at (21 - - d, B.'-).

(b) For d < logn, let

-i r *d+l.aO "/1.a1

d.at ad,Ja

where A("' , t'i Y•', i are matrices each of size n/2d+i x
"d+i,aO' "da' re Ztc

n/2d+1 and
Am = 2(i) -)-

d+i,ai "da -ýd dad+ltxO"4,a"

OUTPUT: Approximate RF 4. lj ,k1 which approximates the RF of A
within 2-norm error v/4t2-"c' < 2". for some c> >

We now show that in the initial approximation 4-,} to the 11' of A.
the errors do not accumulate as much on the recursions. Recall that we have

recursively defined: Ad+l.0 1 = Zd,. - aA•. 0 0 Xa. This implies:

Proposition 5.6 (again follows from known properties of Schur complements
and Proposition 2.1 Pan and Reif [PR 85,PR 92/) In the RF. for al! d. 0 < d <
logn-1 and E {0, I}d,

"* if the Ad,a is symmetric positive definite, then so are Ad+. 0 1, Ad+ a,,

"* IIAd+1,o&11, IIAd+ 1._01 _5 IIAd. 11,
122 A- A-1
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* l/IIA-,1 < min(IIAd+1,,lII, IIAd+1,•o0I),

I II/Ad,,JI < min(IfA-. 1 , JjA-.'j0jJ),

"* cond(AdaO) < cond(A)

Since A is extremely diagonally dominant, by definition A is c-diagonally
dominant for e = I/(nhIAII)cn for some c > 2. By Proposition 5.2, A is extremely
well conditioned. Since we have cond(Adao) < cond(A), each AdQo is also
extremely well ccqditioned.

Recall we have defined a quantity to be extremely small if it is of the form
f = 1/(nhIAII)c' for some c' > 2. By Proposition 5.2, A and all the matrices
Ad,, in the RF of A are, at least.within extremely small relative error, diagonal
matrices. By Proposition 5.2, the inverse of such nearly diagonal matrices are
also, with extremely small relative error, diagonal matrices. Since our initial
approximations to the inverses of matrices occurring in the RF are themselves
diagonal matrices, it follows by Proposition 5.2, that our initial approximations
to its inverse gives an approximation to the RF. with extremely small relative
error c' = I/(nIIAII)c"'f for some c' > 2.

Lemma 5.2 Let c' = I/(nIIA!)IYn for some c' > 2. In the Newton Iteration
Algorithm for the RF, at each depth d = 1,....log n, and for each a E {0, 1 }d, on
the first stage of Newton iteration, the initial approximation of the RF matrices
at depth d, have extremely small oo-norm error. In particular.

IIA1°' - AdII. <C

and ll - B,. .4dajllo _ ~

Lemma 5.3 bounds the errors of the i-th approximate RF {A(J} It follows
by induction directly from Lemma 5.1 using it as a basis for the induction
Lemma 5.2.

Lemma 5.3 For each d = 1 .. ,logn. and each a E {0, 1}), the .c-norm error
for the i-th iteration is a (c')-. In particular,

IIAZ -A aa,,loo <E i (c')

and
III- B." d.j < E,().

As in the Subsection 4.2, we use the technique of stream contraction to
decrease the time to O(log2 n) time without a processor penalty. To simplify
notation, let us define $. to be the computation of A( and .", where this
approximate computation is within error specified by Lemma 5.3.
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The idea is to note that for each d,O < d < logn, and each a E {0, 1}d
defining an internal node Ad,. of depth d, the computation 4d,. depends only on
the computations 4+.a and +lc0. Furthermore, the computation 4',s.'jt

is defined in terms of submatrices of A t '-.) and of Ali-) 0  In particular,
we need only to apply Newton iteration one more time to these approximated
matrices.

This implies that we can pipeline the computation of 4, just as we did in

the previous section for '(') (except we use here k = O(logn)) to reduce the

parallel time from fl(log3 n) to O(log 2 n) without a processor increase.
We pipeline the computation as follows: As our basis step t = 0 we have

done the computation 40,. for all d = 0,.. .logn and each a E {0, 1}d. We
assume for our induction hypothesis that at time t, 0 < t < k + log n we have
done the computation 4',, for all i, d,a• where 0 < d < log n, 0 < i < t - d, and

E {0, I}d.
Then we apply the approximation RF formula and perform one more product

at each node of the recursion tree to do computation $:i'j by time t + I for all
i,d,a where O < d < logn and i = t + I - d and a E {0, I}d.

Summarizing, we have (using a small constant factor slowdown to reduce
the processor bounds from O(P(n)) to P(n))

Lemma 5.4 Given an n x n matrix 4, which is extremely diagonally dominant.
we can compute an approximation to the RF of A with error 2" in parallel
time O(log2 n) using P(n) processors.

6 Symmetric Matrices with Separable Graphs

A family of graphs is s(n)-separable if, given a graph G in the family of n > 0(l)
nodes, we can delete a set of s(n) nodes, separating G into subgraphs in the
family of size < 2/3n nodes. Clearly d-diniensional grids or dissection graphs are
s(n) = O(n-'•") separable, and Lipton and Tarjan [LT 79] showed planar graphs
are O(v/ini)-separable. A sparsity graph of a symmetric matrix has a vertex for
every row (column) of the matrix and an edge wherever there is a non-zero entry
of the adjacency matrix. Matrices with separable sparsity graphs arise naturally
from VLSI circuit problems, structure problems, and discretization of 2- or 3-
dimensional PDEs. For example, d-dimensional PDEs result in matrices whose
sparsity graphs are d-dimensional grids or related dissection graphs which are
s(n) = 0(n_iLz ) separable.

Let A be an n x n symmetric positive definite matrix A with a s(n)-separable
sparsity graph. Lipton, Rose, and Tarjan [LRT79] and Pan and Reif [PR 85,
PR 92] define a nested dissection ordering which is used to guide the Gaussian
elimination process of the sparse mat-;x so as to minimize fill-in. We assume
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the matrix has already been pre and post multiplied by a permutation matrix
so that the resulting matrix A has the rows and columns in this order.

Using this ordering for sequential Gaussian elimination,

Lemma 6.1 (Lipton, Rose, and Tarjan [LRT79]) Given an n x n symmetric
positive definite matrix A with an s(n)-separable sparsity graph. a recursive LU
factorization can be computed in sequential time O(s(n)3 ), exactly solving in
the same time bound the problems DETERMINANT and LINEAR SYSTEM
SOL VE.

In the Parallel Nested Dissection algorithm of Pan and Reif [PR 85,PR 92],
this nested dissection ordering is specified by a vertex partition sequence lý, V, ..... V,
for k = O(log n) which is used to guide the parallel elimination process. Let
no = n and let nd+1 = nd - IVdI for d = 0_...Jk. Assuming an s(n)-separable
sparsity graph (see Lipton, Rose, and Tarjan [LRT79]), we define:

Nested Dissection(ND) RF Sequence Problem:
If possible, construct a sequence of matrices .4 = A0 , A. . .1.?.. A, where

k = O(logn) and for d = 0, 1 k - 1, Ad is an nd x nd matrix which is
partitioned as

Ad =[Wd Zd

where

"* nd+t -= nd - IVdI

"* Wd, Xd, Yd, Zd are matrices,

"* Wd is a block diagonal matrix of size jVdj x IVdI where each block is of size
s(nd) x s(nd),

"* Xd is of size IVdl x nd+1l,

"* Yd is of size nd+l x Ix I (if A is symmetric, then I' = (Vd)T),

"* Zd is of size nd+1 x rd+1, and

"* Ad+1 = Zd - YdW7tXd is the Schur complement.

Note that Pan and Reif [PR 85,PR 92] show that the norm and condition
bounds of Proposition 2.1 hold for any ND RF sequence.

Pan and Reif [PR 85,PR 92] show that an ND RF sequence can be computed
in parallel time O(log 3 n) using P(s(n)) processors, also giving in the same time
bounds solutions to the problems DETERMINANT and LINEAR SYSTEM
SOLVE. The proofs in Pan and Reif [PR 85,PR 92] show that the work for
ND RF sequence is dorr".iated by the computation of O(n/s(nd)) products and
inverses of a sequence of dense submatrices of size s(nd) x s(nd) each requiring
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O(log2 n) time and O(P(s(nd))n/s(nd)) processors for d = 0,..., k = O(log n).
Thus the total time is O(log3 n) and the processor bound is

n

SO(P(s(nd))n/s(nd)) < O(P(s(n))),
d=O

where s(n) is of the form n" for y > 0.
We now derive a parallel algorithm in this case, and reduce the parallel

time from Q2(log 3 n) to O(log 2 n) while still using P(s(n)) processors. We use a
modified form of our (balanced) RF algorithm on the appropriately permuted
input matrix.

The partitioning of blocks is again altered depending on the separator struc-
ture, following the usual techniques used in the above ND RF sequence. Again
the nested dissection ordering is specified by the vertex partition sequence
V0b, V. ... , Vj , for k = O(logn) which is used to guide the parallel elimina-
tion process. Let nd be as defined above.

ND RF: If possible, compute a binary tree of depth k = O(log n) whose nodes
ate matrices. Each node of depth d, 0 < d < k is a nd.a, X nd,• matrix Adj,
where a E {0, I}d is a binary string of length d, and nd,a is defined recursively
below. The node is a leaf if nd,,a = 1.

For each d, 0 < d < k, we specify the string Id to be special. For each
SE {0, 1}d, if a is special and nd.a > 1, then we recursively decompose the

matrix (using the ND RF sequence), setting nd+l.aO = IVdI and nai+.,at =
nd+1 = nd - IVAI. Otherwise, if a E {0, 1 }d is not special but na., > 1. then
we recursively decompose the matrix evenly (using the RF defined at the start
of this paper). Let nd+dal = Lnad.,/ 2 j, nd+t,aO = [fnda/2l. If d = 0 then
.a.= .4 is the root of the tree and a is the empty string. For 0 < d < k. each

matrix Ada, of depth d with nd.,, > I has exactly two children in the tree, Ad.4a.
and Ad,,O of depth d + 1 which will be defined by recursion. In particular, for
d = 0, 1.- k - I , Ad.,, is an hnda x ndia matrix which is partitioned as

-Ad, [ Ad+1.0 .Ada 1
, Ya, Zda.•

where

* Ad+!..•, Xda, V..a, Zd,, are matrices,

o Ad+1,,,0 = Wd is of size nd+I.aO x nd+l,,,O, (where ifa = 1 d then d+I.,'0 =

IdIV and .4Ad+lo is a block diagonal matrix of size Vii x IJdI with each
block of size s(nd) X s(nd)),

* Xda,, is of size nd+l.,o x n,+I.a,
* Yd,, is of size nd+l,at x nd+1,aO (if A is symmetric, then Yd.a = (Xda,)T),
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"* Zda is of size nd+l,al X nd+l.al, and

"* Ad+l,.I = Zd,. - Yd,aA-d4i,aOXd,a is the Schur complement.

Note: The above ND RF of A is defined to be very similar to the RF
A = Ao,A,,A 2 , .. , Ak. In particular, Ad = Adld for d = 1 .. , k. The only
difference is that the ND RF also recursively factors the Wd = Ad+lldo matrices
appearing in the ND RF sequence. This takes O(log2 n) time using P(s(n))
processors. Since this is an s(nd)-block diagonal matrix of size IVdI x IVdI with
each block of size s(nd) x s(nd)), the processor bound is O(P(s(nd))n/s(nd)) •
P(s(n)). These are recursively factored evenly (rather than use the separator
structure), using the (balanced) RF defined at the start of this paper.

Note that the results of Pan and Reif [PR 85,PR 92] imply that the norm
and condition bounds of proposition 5.6 hold also for any ND RF.

We again use the exact same pipelining technique used in Subsection 4.2 to
decrease the parallel time bounds from O(log3 n) to O(log 2 n). We use both
the analysis of (balanced) RF defined at the start of this paper, as well as
the analysis of ND RF sequence defined in Pan and Reif [PR 85,PR 92]. In
particular, the proof of our P(s(n)) processor bounds follows exactly from the
results of Pan and Reif [PR 85.PR 92] and from corollary 3.3 in this paper.
Again in this sparse s(n)-separable case the work for ND RF is dominated by
the computation of products and inverses of a sequence of dense submatrices of
size s(nd) X s(nd) each requiring O(log2 n) time and O(P(nd)) processors for
d = 0...., k = O(log n). However. due to our use of pipelining, all these inverses
are computed simultaneously, so the total time is O(log2 n) while the processor
bound remains T' 0 O(P(s(nd))). This sum is O(P(s(n))) if s(n) is of the form
n" for 0 < - < 1. Note that if the sparsity graph of A has constant degree or is
planar, then the sparsity graph of A TA still has separator bound O(s(n)).

Theorem 6.1 Let A be an n x n symmetric positive definite matrix with an
s(n)-separable sparsity graph, where s(n) is of the form n" forO < y < 1. If4A is
nonsingular, then an ND RF can be computed in parallel time O(Iog 2 n) time us-
ing P(s(n)) processors, and we can exactly solve the problems DETERMINANT
and LINEAR SYSTEM SOLVE for A within the same parallel complexity.

7 Banded Matrices

Recall that A is b-banded if aij = 0 for 21j - iI + 1 > b, so the non-zero entries
occur only within a band of width b around the diagonal. Note that the sparsity
graph of A has constant separator bound b, and also note that the sparsity graph
of ATA also has constant separator bound 3b. If s(n) is a constant b, then the
above sum of proof of Theorem 6.1 bounding the processors En 0 O(P(s(nd)))
is upper bounded by O(P(b)n/b).
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Corollary 7.1 Let A be an n x n matrix which is b-banded. If A is symmet-
ric positive definite, then an ND RF can be exactly computed in parallel time
O(log n log b) with P(b)n/b processors. We can solve the problems DETERMI-
NANT and also LINEAR SYSTEM SOLVE for nonsingular A (not necessarily
symmetric positive definite) within the same parallel complexity, by computing
the RF of ATA, using the reductions of Lemma 2.2 and 2.4.

8 Further Work

In a further paper [R 93b], we show that many structured linear systems can
be solved exactly and efficiently in parallel, dropping processor bounds to lin-
ear, with polylog time bounds. We give much improved parallel algorithms for
the exact solution and factorization, determinant, inverse, and finding rank of
various structured matrices: in particular Toeplitz and matrices of bounded
displacement rank. and their generalizations. These are the first polylog time
bounds for these problems with linear processors. Our processor reduction is by
far the major result of that subsequent paper; this processor reduction uses tech-
niques specific to structured matrices (and not related to the enclosed paper)
However, using pipelining techniques of the enclosed paper, we also decrease
our time bounds, for solving these structured linear systems, to O(log2 n) using
n(logn)' processors. In spite of this, we view this speedt!" due to pipelining
as less consequential compared to our processor decrease r structured linear
systems. We apply this result to efficient parallel algorithms for the following
problems in the same parallel time and processor bounC'• oolynomial great-
est common divisors (GCD) and extended GCD, polynon.al resultant, Pad6
approximants of rational functions , and shift register synthesis and BCH de-
coding problems. This drops by a nearly linear factor the best previous processor
bounds for polylog time parallel algorithms for these problems.
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