NAVAL POSTGRADUATE SCHOOL @
Monterey, California

D-A279 989"
ELTE T — \m\“

DTIC

ELECTE D
» JUN 07 1994
S F THESIS

At ot d

Gty
A MOBILE ROBOT SONAR g ==
SYSTEM WITH OBSTACLE Po1) =
AVOIDANCE 7o) =
| =
by <=
Patrick Gerard Byrne o =
March 1994
Thesis Advisor: Yutaka Kanayama

Approved for public release; distribution is unlimited.

et R
. i
r Q A
e

04 6 6 043

REPORT DOCUMENTATION PAGE prives 07040188

Public reponing burden for this coliection of infermation i estimated 10 average 1 howr per reaponee, ncluding the tMe reviswing iNstructions, searching existing dels esuroes
gathering and maintaining the data needed, and compisting and reviswing the collection of indormation. Send cormments regarding this burden estimate or any other sapect of this
coliaction of information, including suggestions for redusing this busden 1 Washington Headquasters Services, Directorate for information Operations and Reports, 1215 Jeflerson
MHM Sulls 1204, Adington, mmuuumumuw Pm mmm»n Washington, DC 20803

\ g h 1994 Mm sThesxs
[4. TITLE AND SUBTITLE 5. FUNDING NUMBERS
A Mobile Robot Sonar System With Obstacle Avoidance (U)

Byrne, Patrick Gerard

7. PERFORMING ORGANIZATION NAME(S) AND ADORESS(ES) SRR SR
Naval Postgraduate Schoo. REPORT NUMBER
Monterey, CA 93943-5000

10. SPONSORING/ MONITORING
AGENCY REPORT NUMBER

a4

(11, SUPPLEMENTARY NOTES
The views expressed in this thesis are those of the author and do not reflect the official policy or position

of the Department of Defense or the United States Government.

[12a. DISTRIBUTION | AVAILABILITY STATEMENT ' 12b. DISTRIBUTION CODE
Approved for public release; distribution is unlimited.

[13. ABSTRAGT (Maximum 200 words)
The major problem addressed by this research is how to allow an autonomous vehicle to dynamically

recognize changes in its environment, to map its environment, and alter its path to avoid obstacles while
still reaching its goal point.

The approach taken was to modify existing sonar functions in previous work, to better utilize sonars,
and to perform many experiments to determine what data to expect from sonars while the vehicle is in
motion. By applying the linear square fitting algorithm, the robot has the ability to map the objects within
sensor range of an autonomous vehicle.

The results are that, given an initial and goal point, the robot can proceed on a directed path, utilize its
sonar sensor(s) used to detect obstacles, and when an obstacle is detected have the capability to
dynamically compute a parallel path and smoothly alter its motion to the parallel path. The robot now has
the capability to track the obstacle, and, once clear of the obstacle smoothly alter its motion to a path that
will reach its goal point. The ability for the robot to combine smooth motion with obstacle avoidance has
now been successfully programmed.

14. SUBJECT TERMS 15. NOMBER OF PAGES |
Autonomous vehicle, robot, obstacle avoidance, sonar sensing I 102
rm ». 1 20. LMITATION OF ABSTRACT |
OF REPORT OF THIS PAGE OF ABSTRACT
Unclassified Unclassified Unclassified Unlimited

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
i Preecribed by ANSI Sud. 239-18

Approved for public release; distribution is unlimited
A MOBILE ROBOT SONAR SYSTEM
WITH OBSTACLE AVOIDANCE
by
Patrick Gerard Byrne

Lieutenant, United States Navy
B.S., Bloomsburg University, 1985

Submitted in partial fulfiliment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE
from the
NAVAL POSTGRADUATE SCHOOL

March 1994

Author: rrz’\ ' @
ID—MM}\‘ ;tii::/emd Byme
Approved By: LW‘J\ \L@Muy

" Yutaka Kanayama, Thédis Advisor

/ Man-Tak Shing: Second Reader

oo

Ted Lewis, Chairman
Department of Computer Scxence

ABSTRACT

The major problem addressed by this research is how to allow an autonomous vehicle
to dynamically recognize changes in its environment, to map its environment, and alter its
path to avoid obstacles while still reaching its goal point.

The approach taken was to modify existing sonar functions in previous work, to better
utilize sonars, and to perform many experiments to determine what data to expect from
sonars while the vehicle is in motion. By applying the linear square fitting algorithm, the
robot has the ability to map the objects within sensor range of an autonomous vehicle.

The results are that, given an initial and goal point, the robot can proceed on a directed
path, utilize its sonar sensor(s) used to detect obstacles, and when an obstacle is detected
have the capability to dynamically compute a parallel path and smoothly alter its motion to
the parallel path. The robot now has the capability to track the obstacle, and, once clear of
the obstacle smoothly alter its motion to a path that will reach its goal point. The ability for
the robot to combine smooth motion with obstacle avoidance has now been successfully

programmed.

&‘.cesion For
NTIS CRA&T #

O jan I

U ¢mnon ed ™

Ji tcation

By ..
... -

Dist.abustion |
—— s o
Avaligimbly Codes
.| Avaii ardjor

i

A-ll |

TABLE OF CONTENTS

L. INTRODUCTIONcooninineessussssssseresssnsanosssnssasassssssessensens 1
A. BACKGROUNDccccvvereesensisassnssssnsressenssassssnssasssssssassssssssssssssasssssassaasasasess 1

B. OVERVIEW ... seveeaertasetstesastessasassasesnerassesastssetertseaenssasasreranessssssaeneses 1

II. PROBLEM STATEMENTcooiinininnnininnansssssssiesasssssssasasssssssassssssssssssasnasnssess 3
A. SONAR FUNCTION LIBRARY .. 3

B. OBSTACLE AVOIDANCE 4

II. SONAR HARDWARE SYSTEMcccnnimimsunsisssssessassssessssscsassassssssssassasaannssssess 6
A. HARDWARE SYSTEMccccooevesurrureesassasense .6

1. Sonar GIOUPINGccccervesuesninsansnscssessnsanssssesasntssesessssssssssnsassssn 7

2. Range Findingccccecencincnenns 9

3. INtETTUPt CONMOLccuoiviirneiricnrinnnicsicnsssnssissssnissssressssassssscsssssassasassnns 10

4, Data Transfer . resessrsssatestesenstertstsssssansasatasesesstnarnassnins 10

TV. BASIC SONAR FUNCTIONScccvccenereirenunnnessenasasssssossssseresenssnssssasasnsresassesesnes 11
A. DISTANCE eeresestesssaseseereasstraaeneaetesareene sttt sneasstrensenesesaesaransnesssneses 11

B. GLOBAL POSITION CALCULATIONS11

V. LINEAR FEATURE EXTRACTIONciininrnensssescossascssnssssesssssassessassrsase 13
A. LEAST SQUARES FITTINGccovucuiiscssirmscsussssnsssnsssssssssessssssssssasneassesss 13

B. FINDING ENDPOINTScccececeiersiinsnerisssssssssasssssnssasses . 16

C. RESIDUAL TESTING 16

D. BEGINNING LINE SEGMENTS . 16

E. ENDING LINE SEGMENTS .. 17

VL. MML USER INTERFACEccccconnsursasresacasnsaacens 18
A. GLOBAL CALCULATION 18

B. SONAR FUNCTIONS .23

1. ENAble SONArcccovrieiniinniisnnnnsiisassnsisssssessssssassesssnssasssssssensansnssase 23

2. DiSable SONATcccovecrnientniesisensesssacsssassssosssessansrasaasasses 24

3. Get Sonar Returns 24

4 Get Global Sonar REMIMScocnieeirnncissansiensonscscsusscsssessisssasasasasosns 24

5. Enable Linear Fitting 25

6. Disable Linear Fitting 25

7. Set Parameters In Linear Square Fitting 25

8. Enable Data Logging ..25

9. Disable Data Logging 26

10. Set Logging Interval 26

11. Transfer Raw Data To Host 26

12. Transfer Global Data To Host 27

13. Transfer Segment Data To Host .27

C. DATA LOGGING PROCEDURE .. 27

VII. SONAR CHARACTERISTICS EXPERIMENTAL RESULTScccoveueueune 29
A. CASE1l. 29

B. CASE2rvnirinenrerencsssssssssssssssasnesessenes 31

iv

C. CASE D oo sesesmmssassssssssssessssssssossans 33

D. CASE W oo sesasmsnesesssosssossossmsssssssssssssssssssssssssssmsssssssssssssss 35

B CASES e eeesesssssssesensessesssssssssssmmssssssssssssssssssssssssmmmsssssssssssssssas 37

F. CASE 6 coovoooeoeeeeeeeesseeeeeemessssssssessssssssssmmassesssssssassssssssssssscsmmmamsssssssssoss 39

G. CASET coooeeoeeoeemereeessssssssssssssssssssssssssssssmsssssossssssmssseses 39

H. CASES .. eeeessesssssmmmmmnenesssssssn T 41

VIIL. OBSTACLE AVOIDANCE UTILIZING SONARSooooevevevececsessessssmssssssesssen 44
A. OBSTACLE AVOIDANCEcvcocovneveessssssssmssssnssssssssssssssssssmsssssssssssssssssss 44

1. Detecting Obstacle With No Depth44

2. Detecting Obstacle With DEpthueeemmeeeceececssessssssossssesssssssessssses 46

IX. CONCLUSION . i} .. 49
A, RESULTS ..ooounreeeereeecsrnmssssssseen st s sssesss s 49

B. RECOMENDATIONS e esss s sssssssssssssassesesessesesssssssessmsssns 49
APPENDIXoooeeeeeeeresosessssessssseseseesessssssssesssssssssssssessssssssssssssssssssssssssesssssasssssssssssssoses 50
A, SONAR CODEosvsmmsserssssssssssssssmmsssssssssssssssss .50

B. USERFILES ..o 83
LIST OF REFERENCES 94
INITIAL DISTRIBUTION LIST R 95

Figure 1:
Figure 2:
Figure 3:
Figure 4:
Figure §:
Figure 6:
Figure 7:
Figure 8:
Figure 9:

Figure 10:
Figure 11:
Figure 12:
Figure 13:
Figure 14:
Figure 15:
Figure 16:
Figure 17:
Figure 18:
Figure 19:
Figure 20:
Figure 21:
Figure 22:
Figure 23:
Figure 24:
Figure 25:
Figure 26:
Figure 27:
Figure 28:
Figure 29:
Figure 30:
Figure 31:
Figure 32:
Figure 33:
Figure 34:
Figure 35:

LIST OF FIGURES
Example of obstacle avoidance.............ccccornrarrsernscsrsiorene 4
YamabiCo SONATS..........ccoevereiemsaesisisssscesssssnsssserssssssssssssessssnesssssssssesassnssnsns 6
Sonar Hardware ATCRitECtUrecccccveeeneeaecccensncssonsonsaesesasassssasnasassases 7
COMPOSItION.......corirenrirsssssssstsessesessensarssasasasnsssrasassssssassassane .12
Representation of a line L using r and a...........cccecvvurvencnen 14
Example of first compose sesarsssassssetessassesnsssesssssessssassrass 18
Example of Compose with SONAr TEtUML...........ccovrerseecsesersssrsassasssssossasssssses 20
Result of compose on examplecccccrerecncrcensesrsssssssssassesssssssssesssssssoses 21
Sonar positions on YamabiCocccccesescnesasosssssessssssasassssesssssssrassssons 22
{61735 29
Global and segment sonar data from tmnslauonal SCAM...ueeuesrerasnconsarsssane 30
Local trace and segment sonar data from translational scan.............ccceeeuu. 30
CASE 2....covruiercsacsasenssssissssrssssssanansasssesssssassssssasssenssssossssssssssasaesesssensanssssssasans 31
Path and sonar global retums 32
Path and sonar segment data..............ccoceeereerecnisnsessasncsssacssssssssssasssssssosans 32
Case 3 erosssssssesesssanses 33
Path and global SONar retUIMS.............ccceeevrcueecnssssessosssssssssasarsssassssessoseses 34
Path, corner, and sonar segment data...........c.ceeeeecrecencrrcassaosess 34
Case 4 35
Path and sonar global datacccccernereccrnnrmsmsasnsecsasnsacsassssessarsssaans 36
Sonar segment data and hallway............c.cocuecrsvcrncessscsessisnsnssesssasosssssscenns 36
CASE §....oeorricrnsairsssassesssssssstssensansssssssssnssssrssersassassssssssssasssssnsassasasstsssssssssnas 37
Global and segment SONar dataccccererrerrerenesecresseesacssaces 38
Segment sonar data, hallway, and aCecccvvsucecnsescrsssisnoae 38
Case 6 39
CASE T..ueeirrrnnreisonsmnssssesesissnasssssssonsssssasssssnmnasssssssssssssssssssasess .40
Sonar global and trace.............ccceerverreenercrenens .40
Sonar SEZMENt and tTACEcveererrereersecserecrersersenseassasssssassnssassnssasssssessases 41
Case 8 .42
Sonar global and trace .42
Sonar segment and trace data 43
Traversal around an Obstacle.. 45
Obstacle avoidance results 46
Traversal around an Obstacle with Depth............ccccceccrernrnneereeneene 47
Obstacle avoidance TESULLS...........ccccerrereeersercrersesssesesesesnsassssassesessrsressassans 48

I. INTRODUCTION

A. BACKGROUND

Obstacle recognition is a common application of sonars used in many different
applications. Motion control and path following for autonomous vehicles can be
accomplished in a variety of ways. Whether or not the vehicle is in a static or changing
world will drastically alter the path it will take. In previous research at the Naval
Postgraduate School, obstacles detected by sonars were addressed by Solomon Sherfey in
[Ref. 1] and resulted in an ability to use sonars that was not easily accomplished from a user
standpoint. Sonars are used to determine location, and to recognize obstacles to be avoided.
A high level language called MML (model bases mobile robot language) is the driving
force behind the robot Yamabico. Real testing of software development and algorithms can
be done on an autonomous vehicle. By restructuring the code and making it more modular,
this will make MML. more portable with the ability to apply its functions to other vehicles.

B. OVERVIEW

Although Yamabico may have precise knowledge of its location in a given
environment, it is only capable of detecting the presence of unexpected obstacles in its path
by relying on its 12 sonars that can be operated at anytime. They have an accuracy of
approximately 1 centimeter, and are consistent in their results. Yamabico can move at a
speed up to 65 centimeters per second in a translational motion, forwards or backwards.
The sonars are low to the ground and will not pick up obstacles that are high, such as
overhangs, or low obstacles below 38 centimeters. If an obstacle is detected, Yamabico has
the ability to alter its path to avoid the obstacle, and once clear of the obstacle, return to its
original path. Once the obstacle is recognized, Yamabico should smoothly transition to an
alternative path and smoothly transition back to the original path once it can be done safely.
Hence, the fusion of an obstacle being recognized and then having motion functions

available to smoothly deviate from the original planned path are the basic premises on
which the sonar system for Yamabico has been designed and implemented.

II. PROBLEM STATEMENT

The problems we are addressing can be broken into two basic components.

1. The first is to construct a sonar function library, with a simple, transparent and
efficient user interface.

2. The second component is to use these functions for real time obstacle avoidance. The
sonar system can be used concurrently with the vehicle in motion, either translational or
rotational. The sonars can be used to determine where an obstacle is, and for a vehicle to
dynamically transition from its pre-planned path to another newly planned path in order to
maintain the safest path while avoiding obstacles.

A. SONAR FUNCTION LIBRARY

One of the problems in past sonar functions has been that they were logically incorrect
and unreliable. The C code was not written in ANSI C, so a lot of checking at compilation
for such things as type and parameter matching being two examples, was never being done.
A strong asset of ANSI C is that it’s the next step towards C++, which then gives us the
benefit of object oriented programming with inheritance.

The first step in improving sonar functions is to trace key algorithms to ensure that they
are being properly implemented, and to ensure that all unnecessary code is removed. Over
time, adjustments have been made to different functions, with needless variables and
equations not being deleted. Later, more complex functionality, such as linear square
fitting, was reorganized.

The second step in improving sonar functions is to make them more modular. That is
to shorten the sonar code into smaller functions that are correct and easily understood.
Making a module small to perform one basic operation for each is one step towards making
the code more portable. By making the functions easily understood, the user should have
no problem implementing the functions, and testing them on an actual platform.

B. OBSTACLE AVOIDANCE

Consider a vehicle traversing a hallway on a safest path trajectory, say the center of the
hallway. Along the way the vehicle encounters an obstacle in its path. In order to continue
on a safest path trajectory, the vehicle must change its linear path. This functionality is
possible with the linear fitting and some other basic capabilities.

The introduction of obstacle avoidance as a function that can be called when planning
the path of the vehici- is one way to give intelligence to the robot in navigating a path.

One simple way to do this is to (see Figure 1) detect the obstacle with a forward
looking sonar, shift to a parallel path, and then resume its original path once the side
detecting sonar detects no obstacle. This demonstrates the ability of a vehicle to
dynamically alter its path for a safer path, and resume its original path once the obstacle has
passed.

parallel path j \
- »

original path

obstacle

Figure 1: Example of obstacle avoidance

Writing functions that allow the vehicle to intelligently avoid obstacles and reach its
goal as the world becomes more complex will be the approach taken. It is important to
ensure each function is sound in solving one problem, and that different functions can be

dynamically used as different situations arise.

As a path becomes more complex, and the number of obstacles increases, additional
decision making becomes necessary. The challenge will be to cover as many different cases
as possible, and to dynamically path plan in a timely manner.

ITII. SONAR HARDWARE SYSTEM

A. HARDWARE SYSTEM

Yamabico’s sonar hardware is extremely efficient because a dedicated sonar board
with a microprocessor controls the sonar sensors. Yamabico’s main central processing unit
is interrupted only when data becomes available from the sonar array. The sonar system
provides user interface functions that control Yamabico’s array of sonar range finders. At
any point within a user’s program, any of the 12 sonars may be enabled or disabled. This
allows the user to operate a given sonar only when necessary for a particular application.
When needed, the sonar system retumns the latest reading of a specified sonar out of the
twelve. This system design is far better than the primitive one in which a user must wait 30
milliseconds after he/she issues a command. A user’s program can also be forced to “busy
wait” until some sonar-based condition is satisfied. This feature is particularly valuable for
obstacle avoidance. For example, a user's program could be written to wait until the
forward looking sonar’s range is less than distance d, then stop. A block diagram of the
sonar system is provided in Figure 2.

8

9 1 2 10

Figure 2: Yamabico sonars

Figure 3 shows the current hardware configuration of Yamabico.

o
2 D> ™R Command
—p
8 > Board
npP>—1
Data 1
¢ >
Data 2
4 D> TR
7 -
> Board Data 3 Bes
S > 2 YME
Data 4 '
1 >
3 Sonar Coutrol
B— ™R | 1| Daugbtercard Ceatral
9 > Board processor
10 > 3
BIM
VME Mothercard

Figure 3: Sonar Hardware Architecture

1. Sonar Grouping
In order to reduce sampling time the sonars are operated in logical groups of
four. The sonars of a logical group are all pulsed simultaneouslv and thus the sampling time
is reduced by a factor of four as compared to individual firing of the sonars. The sonars of
cach logical group are oriented in such a way as to:

- prevent mutual interference
- provide a “look” in all four directions from each group
- present a similar aspect from each sonar during a rotational scan

Thus, logical group 0 consists of sonars 0, 2, S and 7 (see Figure 2), group 1

consists of sonars 1, 3, 4 and 6; group 2 consists of sonars 8,9, 10 and 11; and group 3is a

“virtual” group which consists of four permanent test values. The sonars of a group are
symmetric about the robot’s axis of rotation.

In addition to being logically grouped, the sonars are also physically grouped
(see Figure 3). The physical grouping of the sonars is made to distribute the electrical load
over the driver boards evenly and thus minimize any electrical transients associated with
operation of the sonar. The physical grouping connects sonars 0, 2, 8 and 11 to driver/
amplifier board 1; sonars 4, S, 6 and 7 to board 2; and sonars 1, 3, 9 and 10 to board 3. The
reader will note that pairs of sonars from logical groups are assigned to physical groups, for
example, sonars 0 and 2 from logical group O are assigned to physical group (driver/
amplifier board) 1.

Initial design of the control circuitry was based on two primary parameters: (1)
a desired maximum range of 400 centimeter. and (2) a pulse width of 1 millisecond.

Assuming a speed of sound in air, at sea level, of 340 meters/second we may calculate a

round-trip time:
muMﬁpﬁtne:W—‘%.;—caﬂszZ-n.ﬁmsec (Eq3.1)

This round tn:p time is the period during which a valid echo may be received and
is referred to as the receive gate. This interval is rounded up to 24 milliseconds and is
derived by division of the sonar system’s 2 MHz clock to ensure that the receiver is not
falsely triggered by a direct path reception from it’s adjacent transmitter, we opt to disable
the receiver until the transmit pulse is complete. This will have the disadvantage of setting
a minimum range equal to half the distance sound would travel in the time of a transmit
pulse.

minimum range = 34000 cm./sec. x 1 msec. 0.5 = 17 cm. (Eq 3.2)

This minimum range lies approximately 9 centimeters outside the periphery of
the robot. In order to allow the measurement of objects up to the periphery of the robot, the
pulse width was decreased to 0.5 milliseconds thus reducing the minimum range to 8.5
centimeters.

In actual practice, the minimum range is set by firmware to 9.6 centimeters, the
additional distance being due to time allotted for switching and settling in the circuitry.

All sonars of a logical group are pulsed simultaneously. Which groups are fired
is determined by the value of the corresponding bit in the command register of the sonar
control board, which in turn is set by the user with an MML function (see Figure 3). Hence,
if bit 2 is set to 1 then group 2 sonars will be pulsed. If more than one group is selected to
be pulsed, the sonar control board will pulse the first group on the list, and when the data
from that pulse has been read from the fourth data register the sonar control board will
proceed to the next group and pulse it, and so on in round robin fashion. Groups with their
control bit set to 0 will not be pulsed. The sampling rate can thus be as high as 41 Hz with
only one group enabled (based on a 24 millisecond read gate as determined in Equation 3.2)
and will be halved for each additional group enabled. At a nominal robot speed of 30
centimeters per second. this sampling rate could provide an updated range within 0.75
centimeter of travel, exceeding our desired positional accuracy of 1 cent..: er. Of course,
real performance will be affected by any delay in reading the data registers due to other

demands on the central processor (processing the sonar data, controlling motion, etc.).

2. Range Finding

There are four 16 bit data registers on the sonar control board, one for each of
the four sonars in a logical group. When the transmit pulse is sent to the driver/amplifier
boards a counter is started which increments each of the data registers every 6
microseconds. This time period is equivalent to a range of 1.02 millimeter:

range = 340000 mmy/sec x 6 microsec X 0.5 = 1.02 mm (Eq 3.3)

The incrementing of a particular data register continues until an echo is received
or the range gate times out. The first 12 bits of the data register are allotted for range
accumulation, thus allowing for a maximum range of 4.177 meters (4095 x 1.02 mm.). If
the range gate should time out before an echo is received, the high bit of the over ranged

sonar’s data register is set to 1. This is the “over range” bit and is used to signal the ensuing

software that no echo was received. Bits 12, 13 and 14 of the data registers are not used.
When the ranging cycle is complete, the appropriate group number is written into bits 4 and
S of the status register and the “ready” bit, bit 7 of the status register, is set to 1. The ready
bit is used as a flag when operating in the polled mode; i.e. without interrupts.

3. Interrupt Control

The sonar control board is actually a daughtercard which rides on a VME bus
mothercard. The mothercard carries address decoders, bus drivers and interrupt control
circuitry in the Bus Interface Module (BIM).

When the sonar has completed a ranging cycle an interrupt request is provided
to the BIM. The BIM's control register holds information which determines whether an
interrupt is to be generated or not, and if so which interrupt level is to be generated.
Presuming an interrupt is generated, when the correct acknowledgment returns on the
address lines the BIM’s vector register provides the vector table entry where the central
processor may find the vector to the interrupt handler. The correct interrupt level, the
interrupt enable bit and interrupt vector are loaded to the BIM during software
initialization.

4. Data Transfer

Each of the data registers is individually addressed on the VME bus by a VME
short address, as is the status register. Transferral of the data is extremely straightforward.
The interrupt handler simply reads the correct register, masks out the unwanted bits and
writes the data to the stack. When the last data register is read, the sonar system resets the
data registers and commences a ranging cycle on the next sonar group in it’s round robin.

The system will continue to operate autonomously until all the sonars are disabled.

10

IV. BASIC SONAR FUNCTIONS

A. DISTANCE

There are two functions available to return sonar values. One function, sonar() will
return the range from the sonar to the object it is getting the return from. If there is no return,
then a value of infinity is assigned, and for Yamabico this value is 999999. The infinity
value is used for trouble shooting purposes, to detect whether or not there are instances of
no return from objects at a distance of less than 4 meters. The second range function
available is global(), and this will return the x,y coordinates of where the return was
detected in the world that the vehicle is in. This is useful in the vehicle making a map of its
world with obstacles in it. These functions can be found in Appendix A.

B. GLOBAL POSITION CALCULATIONS

By utilizing the compose function described by [Ref. 3] and seen in Figure 4, we can
determine the actual point in a 2D coordinate system. Let the following equations represent
q;anqp,

Q= (x5, 91)7 (Eq4.1)

0= (5375, 0,)" (Eq4.2)
The composition of these transformations is defined as
X} +x,c080, - y,8in0,
ql o qz -[’l +xzsin01 +yzcoc01]

0l +0,

(Eq4.3)

11

Y
) "

y

2 T,

X}

Y1

T;

To
> S
Figure 4: Composition

This functionality is extremely usefully in dynamically configuring new paths from your
original paths. You can dynamically define another path depending on your position and
the direction of your vehicle. For the sonar functions, it allows much more modularity to
the code. The code is reusable, since the only thing unique to Yamabico are the actual sonar
positions on the robot.

12

V. LINEAR FEATURE EXTRACTION

In addition to simple range and point position data, the sonar system recognizes the
linear features of an orthogonal world. To do so we must provide some method for
recognizing sets of data points which form the linear feature and a method for finding and
describing the line segment that best fits that set of data points. This is accomplished in
reverse fashion, i.e. we presume the data we are receiving belongs to such a set and
continuously modify a descriptive line segment to a best fit of the data using a least squares
fitting algorithm. This line segment continues to grow until the incoming data or certain
measures of the line segment indicate that the line segment should be ended and a new one
started. We use an implementation of least squares fitting described by [Ref. 1].

A. LEAST SQUARES FITTING

Suppose we have collected n consecutive valid data points in a local coordinate
system, (pj...., py), wWhere p; = (x;, y;) for i = 1,....,n. We obtain the moments m;; of the set
of points

m,,,-Exf,.y*,. (0Sj,kS2,and j+k<2) (Eq 5.1)

Notice that mgg = n. The centroid C is given by

m
c- (,..—;} 20) e) (Bq5.2)

The secondary moments around the centroid are given by

> 2
MN.Z(xi—ux)z = "‘n‘(::) (Eq 5.3)
im]
M= Z x-1,) (0i-n)) = "‘u‘(&;:‘?l) (Eq54)

ie]

13

2 2
Mu=Y (-1’ = m-% (Eq 5.5)
im]

We adopt the parametric representation (r,e) of a line with constants r and a. If a point
p = (x,y) satisfies an equation

r = xcosa + ysina (-x/2<asx/2) (Eq 5.6)
then the point p is on a line L whose normal has an orientation a and whose distance from
the origin is r (Figure 5). This method has an advantage in expressing lines that are
perpendicular to the X axis. The point-slope method, where y = mx + b, is incapable of
representing such a case (m = oo, b is undefined).

p=(xj yi)
™ residual

x
Figure 5: Representation of a line L using rand o

The residual of point p; = (x;, y;) and the line L = (r,@) is x,cosa + y;sina - r. Therefore,
the sum of the squares of all residuals is

§ = Y (r-xcosa-ysina)’ (Eq5.7)

im]
The line which best fits the set of points is supposed to minimize S. Thus the optimum
line (r,) must satisfy

14

ds _ds
;-E-o (Els-s)

Thus,

g = thl (r - x;cosa - y;sina) (Eq 5.9)
= Z(rz 1 -[Zx,]cocu—(Zy‘)sila) (Eq 5.10)

iwl is] im]
= 2 (Pimgy — m,,COSQ — My, SinQX) (Eq 5.11)
=0
and
r= ;—:cosu-ﬁ-%sina = j,cosa+ | sina (Eq 5.12)

where 7 may be negative. Substituting r in Equation (5.7) by Equation (5.12),

S= 2((x,.-u,)eosa+ ;- u,) sina) 2 (Eq 5.13)

iml

Finally,

S . 2‘2:((x..—u.)'eosa+ (7,-1) 8ina) (- (x;,-,) sina+ (7;-p)cos) (Bq 5.14)

= 22((yi'"y)z' (“i‘"x)z)ﬁ“amu*zz (x; -1, (3;-n,) (costa - sinfa)(Eq S.15)

= (Mg, — M) sin2a + 2M,, cos2a (Eq 5.16)
=0

Therefore

o = 20 2My/ i ¥w)) (Eq 5.17)

Equation (5.12) and Equation (5.17) are the solutions for the line parameters
generated by a least squares fit.

15

B. FINDING ENDPOINTS
The residual of a point p; = (x;, y) is
§ = (n,-x)cosa+ (p,-y)sina (Eq 5.18)
Therefore, the projection, p'; of the point p; onto the major axis is
P = (x;+8,cosat, y; + §;sincx) (Eq 5.19)
We will use p', and p', as estimates of the endpoints of the line segment L obtained
from the set p of data points.

C. RESIDUAL TESTING

We wish to do some pre-filtering of the data in order to remove points from the data
stream which are clearly not colinear with the existing points of set p. In this way we can
often detect the end of a line segment before having to perform the considerable
computations necessary to include it in the line. If the point satisfies

8,,, <max (6 xC1,C2) | (Eq 5.20)
where C1 and C2 are positive constants (typically, C1 = 0.02 and C2 = 5.0) then the point
can be included in the current line segment. C2 at 5.0 allows for more residual at a distance
greater than 250 centimeters, up to 8 centimeters at a distance of 4 meters.

D. BEGINNING LINE SEGMENTS

First, the sonar returns must fall within their physical constraints. For Yamabico,
acceptable return values fall between 9.3 centimeters and 409 centimeters. If a sonar return
is not within this range, a segment will be generated if there have been at least 10 previous
returns that met all requirements of the least square fitting to qualify as a segment.

Secondly, if it is the first return, you simply store it as the starting point and proceed
with the next return.

With the line segment established, collection and testing of the additional data points
can proceed. If the data point passes the residual testing, the moments and test values for
the line are calculated including the new point. Should that test pass, the line segment

16

parameters (endpoints, length, etc.) are updated and the system proceeds to gather a new
data point.
E. ENDING LINE SEGMENTS

There are three ways in which a line segment is ended. It may be ended by the failure
of data points to pass the residual testing, explicitly ended by the sonar being disabled, or
by the sonar return being outside the acceptable range.

17

V1. MML USER INTERFACE

A. GLOBAL CALCULATION

The compose function is implemented in a sonar function called calculate_global. It
applies the compose function twice. The first time the compose function is used to
determine the actual position of the sonar in the world being navigated by the vehicle, as
seen in Figure 6. In this example Yamabico is at coordinates (80,40), in the “world
coordinates”. The sonars position on the robot is (9.5, -19.75). By applying the compose

Yo
6,
N
KEN
™V
0 |
|
| X
80
Figure 6: Example of first compose
18

function,

X) +X,0080, - y,8in0,
g oq=| +x,8in0, +y,c080,

G.l+62

we determine the position of the sonar in “world coordinates”. In this case it would be:
world sonar x coordinate = 100.68 = 80 + 9.5*cos(x/4) - (-19.75*sin(n/4))
world sonar y coordinate = 32.74 = 40 + 9.5*sin(x/4) + (-19.75%cos(x/4))
world sonar theta = -x/4 = /4 + -(%/2).
The second time compose is applied it determines where the sonar return is in the world
being navigated by the robot, as in Figure 7.
In this case we apply the compose function and the results are:
sonar x coordinate from robot = 171.42 = 100.68 + 35*cos(-x/4) - 0*sin(-x/4)
sonar y coordinate from robot = -37.94 = 32.74 + 35*sin(-x/4) + 0*cos(-x/4)
which gives us the point in Figure 8.
By knowing where each sonar is on the vehicle (see Figure 9 and Table 1) and knowing
where the vehicles position is, we can consistently determine where the object being

detected is in relation to the world that Yamabico is in. This is needed so that a vehicle can
dynamically map out the world.

19

Figure 7: Example of Compose with sonar return

Figure 8: Result of compose on example

21

39.5cm

Figure 9: Sonar positions on Yamabico

36cm

Table 1: SONAR POSITIONS
Sonar X y 0
0 18 cm 9.5cm 0.0
1 -18cm 9.5cm
2 -18cm -9.5cm
3 18 cm -9.5cm 0.0
4 9.5cm 19.75cm
5 -9.5cm 19.75 cm x/2
6 -9.5cm -19.75cm | -x/2
7 9.5cm -1975cm | -x/2
8 -15¢cm 19.75 cm 34
9 -145cm -1975cm | -3/4x
10 15.5cm -1975cm | -x/4
11 16 cm 19.75cm x/4

B. SONAR FUNCTIONS

Sonar functions are found in sonarcard.c, sonarmath.c, sonario.c, sonarsys.c, and
sonarlog.c, which are part of Yamabico’s MML (model based mobile robot language), the
name for the entire set of code for Yamabcio. The following functions and all sonar code
can be found in Appendix A. The following are those functions which are available for use

in the user.c and a brief description.

1. Enable Sonar
Syntax: void enable_linear_fitting(n)
intn;

Description:

The user calls this function passing in the sonar that is to be enabled. On
Yamabico there are 12 available sonars. Each sonar should be enabled individually.

2. Disable Sonar
Syntax: void disable_sonar(n)
intn;
Description:
The user calls this function passing in the sonar that is to be disabled. On
Yamabico there are 12 available sonars. Each sonar should be enabled individually.

3. Get Sonar Returns
Syntax: double sonar(n)
intn;
Description:
The user calls this function and passes in the sonar number that range data is
wanted from. If no echo is received, then an INFINITY(1.0e6) is returned. If the distance

is less than 10 cm, then a 0 is retumed. If the sonar return is between 9 cm to 409 cm, then
that floating point number will be returned in centimeters.

4. Get Global Sonar Returns
Syntax: posit global(n)
intn;
Description:
The user calls this function and passes in the sonar number that global range data

is wanted from. The function will return a structure of type posit, which contains gx and gy,
the global x and y coordinates.

S. Enable Linear Fitting
Syntax: void enable_linear_fitting(n)
int n;
Description:
The user calls this function and passes in the sonar number, so that linear fitting
is applied to sonar returns. This will enable the robot to determine whether sonar returns
are walls, or some type of linear surface.

6. Disable Linear Fitting
Syntax: void disable_linear_fitting(n)
intn;
Description:
The user calls this function and passes in the sonar that linear fitting is to be
disabled on.

7. Set Parameters In Linear Square Fitting
Syntax: void set_sonar_parameters(cl, c2)
floatcl,c2;

Description:

Allows the user to adjust constants which control the linear fitting algorithm. C1
is a multiplier to allow more leniency for greater sonar ranges, and C2 will adjust the
tolerance allowed for sonar ranges being off the linear line being collected. Both are used
to determine if an individual data point is usable for the algorithm. The default values are

initialized to 0.02 and 5.0 respectively. For more information on C1 and C2 refer to Chapter
V.C of this thesis.

8. Enable Data Logging
Syntax:

void enable_data_logging(n filetype filenumber)

int n,filetype.filenumber;

Description: _
The user calls this function and passes in the sonar, the type of file data to be

collected, and which file array (0, 1, 2, or 3) to collect the data in. There are three types of

file data that can be collected. The first is raw data, the second is global data, and the third

is segment data. |

9. Disable Data Logging
Syntax: void disable_data_logging(n,filetype)
int n, filetype
Description:
The user calls this function and passes in the sonar, the type of file data to
collected, and which file array (0, 1, 2, or 3).The type of file data that is to cease being
collected is designated, either raw data, global data, or segment data.

10. Set Logging Interval
Syntax: void set_log_interval(n,d)
intn, d;

Description:

The user calls this function passing an integer designating how often the sonar
data being collected should be written to the file collecting the data. The default value is
13, which for a speed of 30 centimeters per second and sonar sampling time of 25
milliseconds. would record a data point approximately every 10 cm. To collect all sonar
data you pass in 1, so that every sonar return is recorded.

11. Transfer Raw Data To Host
Syntax: void xfer_raw_to_host(filenumber filename)

int filenumber, filename;

Description:

The user calls this function and passes in the file number (0, 1, 2, or 3) and the
name of the file that is to be created at the workstation to contain the raw sonar data
collected.

12. Transfer Global Data To Host
Syntax: void xfer_global_to_host(filenumber.filename)
int filenumber, filename;
Description:
The user calls this function and passes in the file number (0, 1, 2, or 3) and the
name of the file that is to be created at the workstation to contain the global sonar data
collected.

13. Transfer Segment Data To Host
Syntax: void xfer_segment_to_host(filenumber, filename)
int filenumber, filename;
Description:
The user calls this function and passes in the file number (0, 1, 2, or 3) and the

name of the file that is to be created at the workstation to contain the segment sonar data
collected.

C. DATA LOGGING PROCEDURE

After Yamabico has completed its mission, recorded sonar data can be downloaded and
checked to ensure that the hardware is performing optimally. The data that can be logged
includes global sonar data, raw sonar data, segment sonar data, and the motion trace data
of the robot. Once the robot has stopped, the data designated to be logged in user.c can now
be downloaded. A message on the powerbcok will instruct the user to connect the phone
cable to the robot. Once the phone line is connected, the user must hit the space bar, then
the character g, and the space bar once more. The data will then be downloaded to the

27

workstation. Once the download is completed, a bell sound will be heard from the
powerbook on the robot. This is required for each type of data being logged.

VIL. SONAR CHARACTERISTICS EXPERIMENTAL RESULTS

To be able to successfully use sonars in path navigation and obstacle avoidance, it is
necessary to understand what data you can expect in different situations using sonars. This
way you can determine in which cases you will be able to successfully avoid obstacles, and
in which cases you will be unable to determine a safe path with only input from the sonars.

A. CASE1

The robot is moving using its right sonar in a translational scan as in Figure 10. You
would expect to get very accurate data and to be able to recognize the wall. As Figure 11
and Figure 12 show, this is the case. As expected, the robot can determine that there is a

wall, and sonar returns have an accuracy within one centimeter.

Figure 10: Case 1

2‘6-2 L4 L v v RJ L] L v L L

‘global7.test’
‘segment’.test’ -——-

246 b JOUOT . o

245.8 p -
245.6 p J
245.4 o
245.2 ~ R o

245 b \,W J

2“ a A A 'y 'l 't A A i " 3 A

1280 1300 1320 1340 1360 138C 1400 1420 1440 1460 1480 1500

Figure 11: Global and segment sonar data from translational

scan
260 T T T = T T
‘loc_dusp .test® ——
‘segnent’? .test’ —=
“heliwvwey-weils’ -
40P P
220 o
200 P o
1% b <4
160 P <
[
l‘o 2 4 I 3 4 a4 il
600 900 1000 1200 1400 1600 1800 2000
Figure 12: Local trace and segment sonar data from
transiational scan

B. CASE2
The robot is moving using its sonar in a translational scan and transfers to a line 90

degrees from its starting line at a corner as in Figure 13.

Robot moving forward in translational scan

Figure 13: Case 2

The results can be found in Figure 14 and Figure 15. The sonar can accurately
detect both walls, with a 45 degree segment produced for the corner.

K} |

200

150

100

50

-100

Y
‘globall.dat’

‘loc_dump.test’ -

'y

A

0 50 l;O
Figure 14: Path and sonar gilo

150

A
200

bal returns

200

150 p

100

S0 §

L2 v
‘ sagment 7 .t
‘loc_dump . ¢

i

—

———
-
-
r

A

=

100

A
120

140

160 180 200

Figure 15: Path and sonar segment
data

32

250

C. CASE3

The third case is the robot in a translational scan of a corner and the actual way it
perceives it surroundings as in Figure 16. You would expect the results would not
accurately reflect the comer due to the amount of reflection, and the poor angle to get
returns off the wall. This is the case with the sonar not detecting the walls close to the point

where they meet at a 90 degree angle, as shown in Figure 17 and Figure 18.

Sonar

Wall

Figure 16: Case 3

33

200 Y 4 v Y Y v T Y Y Y
‘globall.dat’ -
‘loc_dump.test’ -~
/
150 | / g
100 p -
S0 J
/_/
——/’
0 et -
-50 b q-‘ -
'lOO IS 2 A A A 'S A A A I3
940 960 980 1000 1020 1040 1060 1080 1100 1120 1140 1160
Figure 17: Path and global sonar returns
200 T Y 14 T T
‘segment’7.test’ —
‘hall.dat’ -
o 'loc_dump.test’ -----
150 | 4
100 | i
S0 -‘,..... J
0 -
-50 3 -
~100 1 1 4 '
950 1000 1050 1100 1150 1200 1250
Figure 18: Path, corner, and sonar
segment data

D. CASE4

The fourth case is the robot in a rotational scan as in Figure 19 with a horizontal wall.
With this type of obstacle you would expect that the detection rate would be good. Tests
results have shown that the robot is able to recognize the wall using the linear square fitting

algorithm with line segments, with the robot rotating, as seen in Figure 20 and Figure 21.

)

Figure 19: Case 4

35

L 4 L L) LJ LA v v
‘loc_dump.test’ —
‘globall.dat”’
q
-y
. 'y A d A A A
(o] 10 20 30 40 50 60 70 80

Figure 20: Path and sonar global data

20 L v ¥ L) ¥ LJ L
‘loc_dump.test’ —
‘globall.dat’
1s b ‘segment3.test’ 1 4
10 b -
LY i
0
-5 Pk e
-10 b -
-15 b -
_20 L 'l IS A i A A
-10 10 20 30 40 50 60 70 80
Figure 21: Sonar segment data and
halilway

E. CASES

The fifth case, seen in Figure 22 is the robot in a rotational scan with two walls forming
a 90 degree angle. The results are similar to those in case 2, with a translational scan. The
results can be seen in Figure 23 and Figure 24

Wall

Sonar Enabled

Rotational Scan ——————>

Figure 22: Case §

37

'380 L J 1 L 2 ¥ § v Ll
'globall.dat’
‘segment].test’ -
-400 . i - . B h
420} o :
-aa0 } \"\ 1
-460 P e
480 | \ 4
\
-500 } .
_520 i [l 2 ' i 'l 2
900 920 940 960 980 1000 1020 1040 1060
Figure 23: Global and segment sonar
data
“00) 1 p = o pr—) o 1 3
- " tHent’ —
‘hallvayvalls’ ——
‘loc, .test’ -
-450 | g
-500 }] .
I
-sso | 4
-600 -
'650 2 1 1 | o ' L
750 . 800 850 900 950 1000 1050 1100
Figure 24: Segment sonar data,
hallway, and trace

38

F. CASE6
The sixth case, seen in Figure 25 is a rotational scan with 2 walls forming a point. In
this case there were no sonar returns in the testing that was done, as would be expected due

the poor angle of return from the walls back to the sonar.

Wall

Sonar

Figure 25: Case 6

G. CASE7

In this case, seen in Figure 26 we have a circular object, and for testing purposes a
plastic can with a 55 centimeter diameter and height of 70 centimeters was used. The
purpose was to test how difficult it would be to recognize a circular object. In a translational
scan, the circular object was very accurately detected. The global sonar returns in Figure
27 show the curvature of the object. When testing for a segment, we are able to detect a line
segment from the obstacle, which will assure the ability to map the obstacle that is there.

39

Wall

Figure 26: Case 7

Circular
Obstacle

100

120

140

160 p

180

200

L] L

'lccTan.t-t' —
solohall Aag: .

- A Aa

50 100 150
Figure 27: Sonar global and

s
200 250

trace

20 Y 4 Y Y v
‘segment?.test’ —
0 .w‘—':ﬁ
-20 P
-40 p L
-60 P ——
L
-100 b 1
—_—
-120
100 b
-160 P
-0
-200 L A LY N 4 A
] 50 100 150 200 50 300 350
Figure 28: Sonar segment and trace

H. CASES

In this case, seen in Figure 29 we have a circular object, and for testing purposes a
plastic can with a 55 centimeter diameter and height of 70 centimeters was used. The
purpose was to test how difficult it would be to recognize a circular object in a rotational
scan. The results are shown in Figure 30 and Figure 31. The obstacle is detected but not as
accurately as in the translational scan.

41

Rotational Scan

Sonar

Figure 29: Case 8

30

sp

15 F

10

-0 b

-1% b

v v
‘loc, Lo’ —
rglonell.det’ -

A i A

-10

A A k3 A
L] 19 20 30 40 S0 [) 10]

Figure 30: Sonar global and trace

42

1$

10

L gt
\
-10] s‘o ;0 3. 0 4.0 5‘0 clo 70 0
Figure 31: Sonar segment
and trace data

43

VIII. OBSTACLE AVOIDANCE UTILIZING SONARS

A. OBSTACLE AVOIDANCE

Given that you have a starting point, and a finishing point, you should be able to reach
your goal even if there is an obstacle in your path. We will start out with simple cases that
are easily resolved by the vehicle. The starting point and goal point will be on one line, with
the robot transiting to a parallel line when an obstacle is detected. When the compose
function previously discussed is used, it is possible to designate a parallel line to the left or
the right of Yamabico’s current path, with the user either designating the distance between
the two paths or using a side sonar to determine the distance of the parallel path. Using the
compose function to compute a parallel path allows Yamabico to dynamically alter its path.

1. Detecting Obstacle With No Depth

This is the simplest case. There is a starting point and a goal point on a linear
line. There is a small obstacle. There is no depth to the obstacle, and once the object is
detected, the vehicle will shift to a parallel line to avoid the obstacle, and then shift back to
its original path (see figure 32). The general assumptions made in this case are that there is
room for the vehicle to maneuver to a parallel line, that there is at most one obstacle and
that there is no depth to the obstacle. For this case only one forward looking sonar will be
necessary to detect the obstacle.

To detect a small obstacle, the vehicle moves forward with its forward sonar. If
an obstacle is detected, the vehicle will maneuver to a parallel line with a specified distance
from the original line, left or right of the obstacle. Which way the vehicle turns to avoid the
obstacle is left to the user. The user can use side sonars to determine which side will give
the robot greater freedom to maneuver. Or for example he can have a heuristic that anytime
an obstacle is detected by a forward sonar that he will shift to a parallel line to the right.
The distance to shift can be a simple heuristic, for example shift to a parallel line one meter

A A N AR RN NN

Porig=(x1.¥1.01. K1) obstacle P
or

‘_—\:f—-—>

Poaratie=(%2, ¥2. 0. %))

AR RRRRR R IR
Figure 32: Traversal around an Obstacle

distance to the original path, or it can be determined using side sonars, for example taking
a range, subtracting 50 centimeters from it and then shift that distance. A sample pseudo-
code program for obstacle avoidance is as follows:
define_line(x;, y;, 0;, x;, &pl)
follow_line(&pl)
ifisonar_detects_forward_obstacle) then
define_parallel_line(x,, y;, 0}, X;, &p2)
shift_to_parallel_line(&p2)
shift_to_orig line(x;,y;, 8;, x;, &pl)
endif
Figure 33 shows that the robot has tracked a line Y = 150 with a goal configuration
(1650,150) and O degree orientation. The robot opens its front sonar while it is tracking on
its current path, as soon as the distance from an obstacle is less than 100 centimeters, it
transitions to an avoidance path which is line Y = 50. When the robot passes the obstacle,
it returns to its original path after traveling past the obstacle for two meters, and stops at its
final goal configuration. This can be done with a minimal number of commands. The user.c
file used to direct the robot’s mission can be found in Appendix B.

45

250 T
Joc_dump.AVOID —

200 P — : _
. 3 —
~§i 100 < ///,;"/”,
<]
O s AN <
é :
Q -so
™ 100

_150 e

-200

-250 i

1000 1100 1200 1300 1400 1500 1600 1700
X - DISTANCE (cm)
Figure 33: Obstacle avoidance results

2. Detecting Obstacle With Depth

The second case will assume that the obstacle will have depth, and that it is thin
enough to maneuver around. There is a start and a finish on a linear line. The depth of the
obstacle is unknown, so the vchicle will need to determine that it is safe to resume its
original path once the obstacle is clear (see figure 34). The general assumptions made in
this case are that there is room for it to maneuver to a parallel line, and there is at most one
obstacle. For this case, one forward looking sonar, and side looking sonars will be
necessary to detect the obstacle and to detect that it is clear of the obstacle.

To do this, the vehicle is set in motion with a forward sonar and side sonars on.
Once an obstacle is detected, the vehicle will shift to a parallel line on its left or right as
long as it is safe to do so. If there is an obstacle detected with the side sonars, the vehicle
will have to determine whether or not there is enough room to clear the forward obstacle

and side obstacle. In our case with Yamabico, perhaps we will maneuver to a line one meter

46

from the obstacle detected. The robot should maneuver to the parallel line with the most
room. If there is ar obstacle detected within some cut off range on both sides, the vehicle

will stop and wait for further instructions.

LAARRIEIEREEEEEEEEEEEEEEEEEEEEEEE RN NAEERRN NN

Porig=(1,¥1.0;.%X;) obstacle

-

Poaralter=(x2. 2. 01, X})

ANHERIERIEEREEEEEEEREEEIEEEEEEEREEREREREEEEEEREEER RN NN NN
Figure 34: Traversal around an Obstacle with

Depth
Once the vehicle transitions to the parallel line, it will detect the obstacle it has
shifted lines to avoid. Once the vehicle sonar no longer detects the obstacle, it will shift
back to its original line and continue towards its goal point. The pseudo-code program for
obstacle avoidance is as follows:
define_line(x;, y,, 9,, x;, &pl)
follow_line(&pl)
if{sonar_detects_forward_obstacle) then
define_parallel_line(x;, y,, 8;, x;, &p2)
shift_to_parallel line(&p2)
while(sonar_detects_obstacle_at_side)
remain on parallel_line
endwhile
shift_to_orig line(x;, y;, 9,, x;, &pl)
endif

47

Yamabico can use sonar as its environmental sensors to execute this obstacle avoidance
missions. Figure 35 shows that the robot has tracked a line Y = 0 with a goal configuration
(500,0) and O degree orientation. The robot opens its front sonar while it is tracking on its
current path, as soon as the distance from an obstacle is less than 100 centimeters, it
transitions to an avoidance path which is line Y = -100 and opens the side sonar to detect
the obstacle until it passes the obstacle. When the robot passes the obstacle, it returns to its
original path and stops at its final goal configuration. This can be done with a minimal

number of commands. The user.c file used to direct the robot’s mission can be found in

Appendix B.
350 T T ! T
i i ‘obstacle-avéidance{07Feb4’ —
200 ; :
150
100

50 ;
Lin.-; 1

Y - DISTANCE (cm)
i

AT . *
-150
-200
O I I L
0 50 100 150 200 250 300 350 400 4§50 500

X - DISTANCE (cm)

Figure 35: Obstacle avoidance results

48

IX. CONCLUSION

A. RESULTS

Yamabico’s sonar function library for the sonar system is now complete. It accurately
applies all algorithms and the results are very accurate. The linear square fitting algorithm
is accurately applied to sonar data returned from walls to build line segments that will
reflect the wall. The sonars now use the compose function to compute the global position
of sonar returns. The user can employ a select number of functions to utilize the sonars in
obstacle avoidance.

Basic sonar characteristics taken by translational scanning and rotational scanning
showed very reasonable results for the sonars. The experiments taken and results indicate
that there is a high degree of accuracy using the sonars while the robot is moving.

Simple obstacle avoidance is a success. The motion system and sonar system
coordination is a success. Testing has shown that the motion functions and sonar functions
can be jointly used to successfully detect an obstacle, and dynamically alter its path to avoid
the obstacle. The coordination is perfect between the sonar and motion systems.

B. RECOMENDATIONS
Some of the 12 sonars have been upgraded and hence are more accurate than others.
The front four sonars are the most recently replaced sensors. The remaining sonars need
hardware upgrading, and testing should be done to see ensure sonars are working optimally.
For better and more complex avoidance, the use of a parabola is needed in the
locomotion functionality. This will improve the transition from one path to another path,
and allow more complex motion when avoiding an obstacle. Follow on work needs to

ensure that the motion and sonar systems continue to work together.

49

APPENDIX

This appendix contains the C code for all sonar functions and for the user files that
generaced the results found in this thesis.

A. SONAR CODE

/*

Author : Patrick Byme

Date : 22 February 1994

File : sonarcard.h

Description : Provides extern declarations for functions in sonarcard.c
*/

extern void enable_interrupt_operation();
extern void disable_interrupt_operation();
extern void enable_linear_fitting();
extern void disable_linear_fitting();
extern void enable_sonar();
extern void disable_sonar();

extern void serve_sonar();

extern double wait_sonar();

extern void reset_moments();

* Author : Patrick Byrne

*Date :22 February 1994

* File

* sonarcard.c

* Description : Provides the following functions for the

* Sonar Interface card in sonarcard.c:

* void enable_interrupt_operation(); void disable_interrupt_operation(); void
* enable_linear_fitting(); void disable_linear_fitting(); void

* enable_sonar(); void disable_sonar(); void serve_sonar(); double
* wait_sonar(); void reset_moments(); void wait_until();

*

*/

#include “mml.h”

#ifdef SIM

#include */n/gemini/work2/yamabico/mml/Sim/spatial.h”
#endif

/*t‘ttt‘tt#‘*#.t.ttt“t‘tt*“‘t‘t‘t‘#‘t‘.“t.tttt“‘t#t‘t“‘.“tt“‘

* Procedure: enable_sonar(n)

* Description: enables the sonar group

* that contains sonar n, which causes all the sonars in that group to

* echo-range and write data to the data registers on the sonar

* control board. Marks the n’th position of the enabled_sonars array

* to track which sonars are enabled.
tt*tttttt*.*‘tt*t#ttttt‘t##‘tttttt*t‘tttt#tttt‘t**ttt‘tttttttttt‘tt/

void
enable_sonar(n)
int n;

{

#ifndef SIM
int i;
i = imaskoff();
#endif
enabled_sonars[n] = 1;
switch (n) {
case 0:
case 2:
case 5:
case 7:
#ifndef SIM
enabled = enabled | 0x01;
#else
sonar_group{0] = ON;
#endif
break;
case 1:
case 3:
case 4:
case 6:
#ifndef SIM
enabled = enabled | 0x02;
#else
sonar_group|1] = ON;
#endif
break;
case 8:
case 9:
case 10:

51

case 11:
#ifndef SIM
enabled = enabled | 0x04;
#else
sonar_group[2] = ON;
#endif
break;
case 12;
case 13:
case 14:
case 15:
enabled = enabled | 0x08;
break;
}
#ifndef SIM
*command_ptr = enabled;
imaskon(i);
#endif
}

/*tt*#****t*t**tt**#*t#***t#t##t#tttt**t#t‘##‘tttt#*#ttt***t#tt#tttt
]

* Procedure: disable_sonar(n)

* Description: removes the sonar n

* from the enabled_sonars list. If sonar n is the only enabled sonar
* from it’s group, then the group is disabled as well and will stop
* echo ranging. This has benefit of shortening the ping interval for

* groups that remain enabled.
##tt*t*#*#t*#*tt#tt‘ttt*t***t**t*tttttt#it#tttttttt*t**t#*t#*t**ttt/

void
disable_sonar(n)
int n;
{
int i,¢;
#ifndef SIM
i = imaskoff();
enabled_sonars[n] = 0;
#endif :
switch (n) {
case 0:
case 2:
case 5:

52

case 7:
¢ = enabled_sonars{0] + enabled_sonars{2] +
enabled_sonars{5] + enabled_sonars{7];
if (c ==0)
#ifndef SIM
enabled = enabled & Oxfe;
#else
sonar_group(0] = OFF;
#endif
break;
case 1:
case 3:
case 4:
case 6:
¢ = enabled_sonars[1] + enabled_sonars{[3] +
enabled_sonars[4] + enabled_sonars[6];
if c==0)
#ifndef SIM
enabled = enabled & Oxfd;
#else
sonar_group[1] = OFF;
#endif
break;
case 8:
case 9:
case 10:
case 11:
¢ = enabled_sonars(8] + enabled_sonars[9] +
enabled_sonars[10] + enabled_sonars[11];
if c==0)
#ifndef SIM
enabled = enabled & Oxfb;
#else
sonar_group(2] = OFF;
vendif .
break;
case 12:
case 13:
case 14:
case 15:
¢ = enabled_sonars[12] + enabled_sonars[13] +
enabled_sonars[14] + enabled_sonars[15};
if (c==0)

53

#ifndef SIM
enabled = enabled & 0xf7;
#else
sonar_group|3] = OFF;
#endif
}
#ifndef SIM
*command_ptr = enabled;
imaskon(i);
#endif
)

/"#tttt‘t‘t#ttttt#ttttttttttttttttttt“‘tt‘t.‘*tt.tttt“‘.ttttttttt
* Procedure: wait_sonar(n)

* Description: waits in a loop until new data is available for

* sonar n.
tttttt‘tt#ttttt#ttt‘t‘t#ttttt‘ttt*tttttt‘t“ttttt‘tt‘#tttttttttttt’

double
wait_sonar(n)

int n;
{

sonar_table[n].update = 0;
while (sonar_table[n].update == 0);
return sonar_table[n}.d;

}

/t‘tt#tt*t*t#*t##‘*##*tt*t*#*t*#**t#****#*tt#*##*#“t**#*‘i**t*ttt‘.

* Procedure: enable_linear_fitting(n)

* Description: causes the background system to gather data points

* from sonar n and form them into line segments as governed by

* the linear fitting algorithm. Increments service_flag.
tt#ttt*tttt#ttttttttttttttttttttt#*ttt*ttttt#t*t*tttttttttt#tttttt#/

void

enable_linear_fitting(n)
int n;

{

sonar_table[n].fitting = 1;
sonar_table[n].global = 1;
++service_flag;

}

/tt‘#t‘t‘t‘ttt‘tttttttt‘t‘ttttttt‘ttttt‘tttttt‘t“tttt‘tt‘#t“ttt“t/
/* Procedure: disable_linear_fitting(n)

* Description: causes background system to cease forming line

* segments for sonar n.

* Decrements the service_flag. Will also disable the calculation of

* global coordinates for that sonar if data logging of global data is

* not enabled.

““.‘tt*‘tttttttt.‘.‘t‘t##tt##‘t‘#**#*#t##*###t‘tttt*‘t#*tt‘tttttt’

void

disable_linear_fitting(n)
int n;

{

generate_segment(n);

sonar_table[n] fitting = 0;

if (sonar_table[n].filetype[1] == 0)
sonar_table[n].global = 0;

--service_flag;

/**tt###ttt*ttttttttt**tttt#tttttttttt*tt#t‘ttttt*t*ttttttt*t#t‘tttt
* Procedure: enable_interrupt_operation()
* Description: places sonar
* control board in interrupt driven mode.
#*t*ttttttt#ttt#ttttttt*‘##t***t#t#tttttt#tt**t#t.#ttt.*tt‘#tttt‘tt/

void
enable_interrupt_operation()
{

*BIM_ptr = *BIM_ptr | 0x10;
}

/**.tttt#t#*#t*ttt###t*.*ttttttttttt#ittt.*tt##tt.ttttt‘t“‘tttttttt
* Procedure: disable_interrupt_operation() Description: stops interrupt
* generation by the sonar control board. A flag is set in the status
* register when data is ready, and it is the user’s responsibility to poll

* the sonar system for the flag.
#ttttttttt*t#tttttttttttttt‘t##**#*t***tt‘.ttttt‘tttttt‘tt.t‘.ttt/

void

55

disable_interrupt_operation()
{

*BIM_ptr = *BIM_ptr & Oxef;
}

#ifndef SIM

/tt‘#t“‘.‘tt‘t##.“tttt‘t‘*tt‘.#.t#.t‘#“t‘tttt.t‘.ttttlt““t*.“.

* Procedure: serve_sonar(x,y,t,ovfl,datal data2,data3,datad,group)

* Description: this procedure is the “central command” for the

* control of all sonar related functions. It is linked with the

* ih_sonar routine and loads sonar data to the sonar_table from

* there. It then examines the various control flags in the

* sonar_table to determine which activities the user wishes to take

* place, and calls the appropriate functions. This procedure is

* invoked approximately every thirty milliseconds by an interrupt

* from the sonar control board.
#*###*#t#lttt*t*ttt&ttttt*ttt.tttttttttt‘ttttt####ttttttit.t‘t*t‘t/

void
serve_sonar(x, y, t, ovfl, datad, data3, data2, datal, group)
double x,y,t;

int ovfl, data4, data3, data2, datal, group;
{

int n;

int i;

int data[4];

int ovfl_mask = §;

data[0] = datal;

data[1] = data2;

data[2] = data3;

data[3] = datad;

for (i =0;i < 4; i++, ovfl_mask /= 2) {
n = group_array{group][i};
if (ovfl_mask & ovfl){
sonar_table[n]).d = INFINITY;
}
else {

}

sonar_table[n].d = (double) data[i] / 10.0;

sonar_table{n].x = x;

sonar_table{n].y = y;

sonar_table[n].t = t;

sonar_table[n].update = 1;
)

if (service_flag != 0) {
for(i=0;i< 16; i++) {
if (sonar_table[i).update == 1) {

if (sonar_table{i].global == 1)
calculate_global(i);

if (sonar_tablef{i].fitting == 1)
linear_fitting(i);

if (sonar_tablel[i].filetype[0] == 1)
log_data(i, 1, sonar_table{i].filenumber{0], 0);

if (sonar_table[i].filetype[1] == 1)
log_data(i, 2, sonar_table{i].filenumber{1], 0);

}
sonar_tablefi].update = 0;
}
}
)
#else
/

kkkhhpghhhkhkbhghkbkhhkbbbbhkkbkhdbhbbhkbhkkbkhkb bbb bbhhbkkbhkbkkbbik

Procedure: serve_sonar(w, group)

Description: this procedure is the Simulator “central command” for the
control of all sonar related functions. It then examines the various
sonar_table to determine which activities the user wishes to
control flags in the take place, and calls the appropriate functions.
This procedure is invoked every third ping.

Shtbhkhshbhhkkhkbbkbkkbkh bbb bbbk b bbbk kbbb h bbbk bk kbbb bbbk kkbkhhkhkhh

void

serve_sonar(w, group)
World *w;
int group;

{

}

#ifdef jjj

Line_segment sonar_line;

Line_segment wall;

Point P.q,pl. ql;
Polygon *current_poly;
Vertex *current_vertex;

int i
int 5
int k

int n;

double sonar_line_theta;
double wall_theta;
double sonar_theta;

/* for each sonar in the group being served */
for(i=0;i<4;i++) {
n = group_array[groupl(il;

/* save the robot posture */

sonar_table[n].x = vehicle.x;

sonar_table[n].y = vehicle.y;

sonar_table[n].t = vehicle.t;

if ((son}a:_gmup[group]) && (enabled_sonars[n])) {

* printf(“%s%d\n",”Sonar group firing => “, group);
*/
sonar_table{n].d = INFINITY;

/* define the sonar beam */

px = vehiclex + (cos(vehicle.t + sonar_tablefn).phi) *
sonar_table[n].offset);

py = vehicley + (sin(vehiclet + sonar_table[n].phi) *
sonar_table[n).offset);

q.x = p.x + (cos(vehicle.t + sonar_tablefn].axis) * 410.0);

q.y = p.y + (sin(vehicle.t + sonar_table[n].axis) * 410.0);

sonar_line.pl =p;

sonar_line.p2 = q;

sonar_line_theta = orientation(p, q);

current_poly = w->poly_list;
for (k = 1; k <= w->degree; k++) {
current_vertex = current_poly->vertex_list;
for (j = 0; j < current_poly->degree; j++) {
pl = current_vertex->point;
q1 = current_vertex->next->point;

58

wallpl = pl;

wall.p2 =ql;

wall_theta = orientation(pl, ql);

sonar_theta = fabs(normalize(wall_theta -
sonar_line_theta));

if ((segment_crossing_test(&wall, &sonar_line) ==

1) &&
(sonar_theta < (HPI + 0.26)) && (sonar_theta >
(HPI - 0.26)))
/t
* wall and sonar beam must
* intersect at 90 + 15
* degrees
*/
{
if (wall_theta == 0.0 Il wall_theta == PI) {
if (sonar_table[n]d > fabs((py - ply) /
sin(sonar_theta))) {
sonar_table[n}d = fabs((py - ply [/
sin(sonar_theta));
sonar_table[n]).update = 1;
}
|
if (wall_theta == -HPI ll wall_theta == HPI) {
if (sonar_table[n]d > fabs((px - plx) /
sin(sonar_theta))) {
sonar_table[n]d = fabs(px - plx) /

sin(sonar_theta));
sonar_table[n].update = 1;}
|5
}
current_vertex = current_vertex->next;
} /* end for each vertex loop */

} /* end for each polygon loop */
} /* end if sonar is enabled test */
} /* end outer for each sonar in group loop */
/#
* printf(“%s%d%s%2.21f\n",”Sonar “, n,” Rangeis =>*,
* sonar_table[n).d);
*/
if (service_flag !=0)
for(i=0;i<16;i++) {

59

#endif
#endif

if (sonar_table{i].update == 1) {
if (sonar_table{i].global == 1)
calculate_global(i);
if (sonar_table{i].fitting == 1)
linear_fitting(i);
if (sonar_table[i].filetype[0]) == 1)
log_data(i, 1, sonar_table[i).filenumber{0], 0);
if (sonar_table(i].filetype[1] == 1)
log_data(i, 2, sonar_table{i}.filenumber{1], 0);
} /* end if ¥/
sonar_table{i].update = 0;
/* end for each sonar updated */

/* end serve_sonar */

/*declaration of functions and return values®/
/*sonarmath.h */
extern double sonar();

extern void linear_fitting();

extern posit global();

extern LINE_SEG *get_segment();

extern void calculate_global();

extern void add_to_segment();

extern void generate_segment();

extern LINE_SEG *get_current_segment();
extern LINE_SEG *end_segment();

extern void initialize_sonar();

[*sonarmath.c */
#include “mml.h”

void
initialize_sonar()
{

int i k;

/* initialize sonar_table and segment_data */

for(i=0;1<16;i++) {

sonar_table[i].global = 0;
sonar_tablefi].fitting = 0;
sonar_table[i].filetype[0] = 0;
sonar_table[i].filetype[1] = 0;
sonar_table[i].filetype{2] = 0;
sonar_table{i].update = 0;
sonar_table[i].d = 0.0;
sonar_table[i].x =0.0;
sonar_table[i].y = 0.0;
sonar_table[i].t = 0.0;

segment_data[i).alpha = 0.0;
segment_data[i].r = 0.0;

segment_data[i].startx = 0.0;
segment_data[i).starty = 0.0;
segment_data[i].endx = 0.0;
segment_data{i].endy = 0.0;

61

enabled_sonars[i] = 0;
segment_data[i].n = 0;

)
/* set up compensation for sonar position */

sonar_table[0].rob_t = 0.0;
sonar_table[1].rob_t = 3.142;
sonar_table[2].rob_t = 3.142;
sonar_table[3].rob_t = 0.0;
sonar_table[4].rob_t = 1.571;
sonar_table[S).rob_t = 1.571;
sonar_table[6]).rob_t = -1.571;
sonar_table{7].rob_t =-1.571;
sonar_table[8].rob_t = 2.356;
sonar_table[9]).rob_t = -2.356;
sonar_table[10].rob_t = -0.78S;
sonar_table[11].rob_t = 0.785;
sonar_table[12].rob_t = 0.0;
sonar_table[13].rob_t = 1.5708;
sonar_table[14].rob_t=4.7124;
sonar_table[15].rob_t = 0.0;

sonar_table[0].rob_x = 18.0;
sonar_table[1].rob_x = -18.0;
sonar_table[2].rob_x = -18.0;
sonar_table[3].rob_x = 18.0;
sonar_table[4].rob_x =9.5;
sonar_table[S5].rob_x = -9.5;
sonar_table[6].rob_x = -9.5;
sonar_table[7].rob_x =9.5;
sonar_table[8].rob_x = -15.0;
sonar_table[9].rob_x =-14.5;
sonar_table[10].rob_x = 15.5;
sonar_table[11].rob_x = 16.0;
sonar_table[12].rob_x = 0.0;
sonar_table[13].rob_x = 1.5708;
sonar_table[14]).rob_x = 4.7124;
sonar_table[15].rob_x = 0.0;

sonar_table[0].rob_y = 9.5;
sonar_table[1].rob_y = 9.5;

62

sonar_table[2].rob_y = -9.5;
sonar_table{3].rob_y = -9.5;
sonar_table{4]).rob_y = 19.75;
sonar_table[5).rob_y = 19.75;
sonar_table[6]).rob_y = -19.75;
sonar_table[7].rob_y = -19.75;
sonar_table[8].rob_y = 19.75;
sonar_table[9].rob_y = -19.75;
sonar_table[10]).rob_y = -19.75;
sonar_table{11].rob_y = 19.75;
sonar_table[12].rob_y = 0.0;
sonar_table{13].rob_y = 21.5;
sonar_table[14].rob_y = 21.5;
sonar_table[15].rob_y = 0.0;

group_array[0}{0] = 0;
group_array[0][1] = 5;
group_array{0][2] = 2;
group_array[0](3] = 7;
group_array[1]{0] = 3;
group_array[1][1] = 4;
group_array[1][2] = 1;
group_array[1][3] = 6;
group_array[2][0] = 10;
group_array[2][1] = 11;
group_array(2](2] = §;
group_array{2](3] = 9;
group_array[3][0] = 12;
group_array[3][1] = 13;
group_array[3][2] = 14;
group_array(3](3] = 15;

service_flag = 0;
C1=0.02;
C2=50;

}

/*ll#‘l*t**t‘*##t*t**###*###**#t**t#**t**t#*#t*#*********tt**#**#**#**
* Procedure: sonar(n)

63

* Description: returns the distance (in
* centimeters) sensed by the n_th ultrasonic sensor. If no echo is
* received, then INFINITY (1.0e6) is returned. If the distance is less than 10

* cm, then a 0 is returned.
t#*##*#***t*tt#*t*##**#tt#****t***#*tt***###t##tt#*#tttttt##*#*l

double
sonar(n)

int n;
{

return sonar_table[n}.d;
}

/******#*#******###t*#***‘***#**#********#*t*****#*t*****###*******#

* Procedure: global(n)
* Description: returns a structure of type
* posit containing the global x and y coordinates of the position of

* the last sonar return.
##*t**************t*#******t#*#***#***t***#t****t*#tt**###**##***/

posit global (n)
int n;

{

posit answer;

if (sonar_table[n].global == 0)

calculate_global(n);
answer.gx = sonar_table[n].gx;
answer.gy = sonar_table[n].gy;
return answer;

}

/*#**##******#**#***************##**************##***********#******

* Procedure: get_segment(n)

* Description: returns a pointer to the

* oldest segment on the linked list of segments for sonar n; i.e. the
* record at the head of the linked list. It is destructive, thus

* subsequent calls will return subsequent segments until the list is

* empty. This is accomplished by first copying the contents of the
* head record into a temporary record called segstruct and then

* freeing the allocated memory for the head record. The pointer

* returned is actually a pointer to this temporary storage. If

* get_segment is called on an empty list a null pointer is returned.

ttt#t*t‘tt‘*#.ttttt..t“tttttttitﬁ‘t‘tttt“tt‘ttt.ttttt“ttttt#“‘i/

LINE_SEG *
get_segment(n)
int n;
{
LINE_SEG ‘*pt;
int index;

index = seg_list_head[n}];
if (index = -1)
ptr = NULL;
else {
ptr = &seg_list[n}[index];
seg_list_head[n] = (index < 4) ? (index + 1) : 0;
}
return ptr;
}

/****ttt****t*t*ttt#**t*tttttt**#t*****ttt*t#tt*##***tttt#tt****#t*
* Procedure: end_segment(n)
* Description: this procedure allocates
* memory for the segment data structure, loads the correct values

* into it and returns a pointer to the structure.
*t***t*tt*****t#tttt*t#t*‘#***#ttt*t*#t***#tt**#*tt*t#ttt*tt##****/

LINE_SEG *
end_segment(n)
int n;
{
LINE_SEG *seg_ptr;
double startx, starty, endx, endy, delta, alpha, r, length;

seg_ptr = &segstruct;

startx = segment_data[n].startx;

starty = segment_data[n].starty;

endx = segment_data[n)].endx;

endy = segment_data[n].endy;

alpha = segment_data[n).alpha;

1 = segment_data[n].r;

delta = startx * cos(alpha) + starty * sin(alpha) - r;
startx = startx - (delta * cos(alpha));

65

starty = starty - (delta * sin(alpha));

delta = endx * cos(alpha) + endy * sin(alpha) - r;

endx = endx - (delta * cos(alpha));

endy = endy - (delta * sin(alpha));

length = sqrt(SQR(startx - endx) + SQR(starty - endy));

seg_ptr->headx = startx;
seg_ptr->heady = starty;
seg_ptr->tailx = endx;
seg_ptr->taily = endy;
seg_ptr->alpha = alpha;
seg_pu->r=r;
seg_ptr->length = length;
seg_ptr->sonar = n;

return seg_ptr;

/**##“t#ttt*t‘#t*ttttttt#*t#t*itt*#t*#t##ttttttt*tt***t*t*tt*ttttt
* Procedure: get_current_segment(n)
* Description: returns a pointer
* to the segment currently under construction if there is one,
* otherwise returns null pointer. This is accomplished by calling
* end_segment, copying the data into segstruct and then returning a
* pointer to segstruct. The memory allocated by end_segment is then
* freed.

t*tt*tt**tt*t*#**‘t*##***#*###t#t#t*##t**ttt**tt*tt#tttt‘ttt#tt#*#t/

LINE_SEG *
get_current_segment(n)
int n;

{
LINE_SEG *ptr;

ptr = end_segment(n);
return ptr;
}

/***tt#*#t****#**#*t*#*#t*#*#****#*##*t*‘***#tt*##ttt‘t*#‘ttt#*t#**#

* Procedure: calculate_global(n)
* Description: this procedure

* calculates the global x and y coordinates for the range value and
* robot configuration in the sonar table. The results are stored in

* the sonar table.
tttttt‘#ttttttttt‘itttttt#tttttt#***t#t‘ttttttittt..t‘ttttttttttttt’

void

calculate_global(n)
int n;

{

double Ix, ly, It, range, rob_t, rob_x, rob_y;
CONFIGURATION global;
range = sonar_table[n].d;
if (range >= INFINITYO) {
sonar_table[n].gx = INFINITY;
sonar_table[n).gy = INFINITY;
} else {

rob_x = sonar_table[n).rob_x;
rob_y = sonar_table[n].rob_y;
rob_t = sonar_table[n].rob_t;

get_rob0(&global);

/* vehicle compose sonar */

Ix = global. x + (cos(global.t) *rob_x) - (rob_y * sin(global.t));
ly = global. y + (sin(global.t) *rob_x) + (rob_y * cos(global.t));
It = rob_t + global.t;

/* vehicle compose sonar range */
sonar_table[n].gx = Ix + (cos(lt) * range);
sonar_table[n].gy = ly + (sin(it) * range);
}
}

/#*****#*#t‘*****t##*t***t#*tt#**###**‘t****t***tt*tt**tttttt**tt#t*
* Procedure: add_to_segment(n, x, y) * Description: this procedure
* calculates new interim data for the line segment and stores it in
* segment_data[n). It also changes the end point values to the point
* being added.

*‘*t**#*#*#**##*tttt#***********t**#**#****###t#‘ttt*##*****##*t‘#/

void

67

add_to_segment(n, x, y)
int n;
double X, Y:

double m00, m10, m01, m20, mi1, m02;
double alpha, r;
double mux, muy, mm20, mml1, mm02;

m00 = segment_data{n}.m00 += 1.0;
ml0 = segment_data[n].m10 += x;
m01 = segment_data[n].m01 +=y;
m20 = segment_data[n].m20 += sqr(x);
mll = segment_data[n}.mll +=x *y;
m02 = segment_data[n].m02 += sqr(y);

if (m00 < 1.5) {
segment_data[n].startx = x;
\ segment_data[n].starty = y;

mux = m10 / m00;

muy = m01 / m00;

mm20 = m20 - sqr(m10) / mOO0;
mmll =mill - ml0 * m01 / mOO;
mm02 = m02 - sqr(m01) / m00;

if (m00 > 1.5) {
alpha = atan2(-2.0 * mm11, (mm02 - mm20)) / 2.0;
r = mux * cos(alpha) + muy * sin(alpha);

segment_data[n].alpha = alpha;
segment_data[n].r -
segment_data[n]. -~ - x;
segment_data[n).endy = y;

/*tt*t*tttt*t#‘##*#“**ttt##tttt***t*tt#t#tttttttt**ttt*###*t#ttt*
* Procedure: reset_moments(n);
* Description: resets the accumulative
* values in segment_data[n] /* (m00,m10,m01,m20,m11,m02) to zero.

t*t#**#t.*###***‘##*&ttit‘ttt*tt#*#*#*t‘.*t***#*#*t*t#*tt#t*t***#**##/

void

reset_moments(n)
int n;

{
segment_data{n}.m00 = 0.0;
segment_data[n).m10 = 0.0;
segment_data{n).m01 = 0.0;
segment_data{n].m20 = 0.0;
segment_datafn).ml11 = 0.0;
segment_data{n].m02 = 0.0;

/*tt#ttttt*.t**tt‘tt*ttttttt*tt###*tttt‘t‘*t‘t‘#t‘t‘lt##t‘##“t‘tttt

* Procedure: generate_segment(n)

* Description: this function

* completes segments at the end of a data run. Necessary because the
* linear fitting function only terminates a segment based on the data

* - it has no way of knowing that the user has stopped collecting data.
#t#tt‘t#*t‘tt#tttt#*‘*tt**ttttttttt#*ttt*‘tttttttttt*ttt#ttt‘#tttt/

void

generate_segment(n)
int n;

{

LINE_SEG *seg ptr;

if (segment_data[n].m00 > 10.0) {
seg_ptr = end_segment(n);
build_list(seg_ptr, n);

)

reset_moments(n);

}

/**t‘*t#**ti*t*#*t*‘***tt#*******#**##tt*#tt*tt##t*#tttt‘ttt#*t*#t*t
* Procedure: linear_fitting(n)

* Revised by Y. Kanayama,07-07-93

* Description: this procedure controls the fitting of point

* data to straight line segments. First it tests if the new coming

* point is not far from the fitted line. If the test is passed, the

* point is added to test if the thinnes test is passed. If it is

* passed, the addition is finalized. If any of the tests fail,

* the line segment is ended and a new one started. The completed line

* segment is stored in a data structure called segment, and segments
* are linked together in a linked list.

“t‘t‘.i.“t‘t““.‘.Ot‘.t“t‘#“‘.‘#*.“tttttltt‘.#“....‘tttt‘t.‘/

void
linear_fitting(n

int n;
{

double x, y, m00;

double alpha, r, delta;

double sonar_range;
LINE_SEG *finished_segment;
sonar_range = sonar_table[n].d;

if (sonar_range < 9.3 |l sonar_range > 409.0) {
generate_segment(n);
return,
}
x = sonar_table[n].gx;/* temporary moments ¥/
y = sonar_table[n].gy;
m00 = segment_data[n].m00;

if (m00 < 1.5) {
add_to_segment(n, x, y);
return;

}

r = segment_data[n].r;
alpha = segment_data[n].alpha;
delta = fabs(r - x * cos(alpha) - y * sin(alpha));

if (delta > max2(C2, C1 * sonar_range)) {
generate_segment(n);
add_to_segment(n, x, y);

retum;
} else {
add_to_segment(n, x, y);
return;
}
} /* end linear_fitting */

/#*t*tt##*********‘*t*#**t‘#*t#*#***#t****tt***#t*****tttt***t###*t

70

* Procedure: build_list(ptr, n);

* Description: this function accepts

* a pointer to a segment data structure and a sonar number, and
* appends the segment structure to the tail of a linked list of

* structures for that sonar.
ttttttttttttt‘t.‘ttttt‘tttttt‘ttt#*t#ttttt.ttttttttttt*tttttt‘tt/

void
build_list(ptr, n)
int n;
LINE_SEG *ptr;
{

int next;

if (seg_list_tail[n] == -1)
seg_list_headf:i] = 0;
next = (seg_list_tail[n] < 4) ? ++seg_list_tail[n] : 0;
if (next == seg_list_head[n]) .
seg_list_head[n] = (seg_list_head[n] < 4) ? ++seg_list_head[n] : 0;
seg_list{n][{next] = *ptr;
if (sonar_table[n].filetype{2] == 1)
log_data(n, 3, sonar_table[n].filenumber{2], next);

)

g

Author : Patrick Byme

Date : February 22, 1994

File : sonario.h

Description : Provides extern declarations for functions in sonario.c
*/

extern void xfer_raw_to_host();
extern void xfer_global_to_host();
extern void xfer_segment_to_host();
extern void host_xfer();

r*

* Author : Patrick Byme

* Date : 22 February 1994

* File :

* sonario.c

* Description : Provides the following functions for sonar io:

* host_xfer() xfer_segment_to_host() xfer_raw_to_host() xfer_global_to_host()

*/

#include “mml.h”
#ifndef SIM

/*#tt**###ttt**tt‘i*‘*##t##*#tt*‘*#*‘t#*‘tl##t*#tt***#t#tt#t##t#tttt

* Procedure: xfer_raw_to_host(filenumber,filename)

* Description:

* this function allocates memory for a buffer and then converts a raw data
* Jog file to a string format stored in the buffer. It then calls host_xfer

* to send the string to the host. When that transfer is complete, it

* frees the memory it allocated for the buffer. Filename must be

* entered in double quotes (“dumpraw” for example).
ttttttt#‘tttt##t##t##t*tttt*ttt*#t#t*#ttt*ttt‘tt‘#***#tt*‘**.ttt*tt/

void

xfer_raw_to_host(filenumber, filename)
int filenumber;
char *filename;

{
Char *rbuffer;

char *start;

72

int ic,j

i = raw_data_log[filenumber].next;

c=20+(i*33);

rbuffer = malloc(c);

start = rbuffer;

for(j=0;j<i; j++) {
print_flex(raw_data_log[filenumber].darray(j], rbuffer);
print_flex(raw_data_log[filenumber].xarray(j}, rbuffer);
print_flex(raw_data_log[filenumber).yarray{j], rbuffer);
print_flex(raw_data_log[filenumber).tarray{j}, rbuffer);
nl_flex(rbuffer);

}

putb(\0’, rbuffer);

rbuffer = start;

host_xfer(rbuffer, filename);

free(rbuffer);

/*###t*tt*###‘#t**t**t*ttlttt*#tt‘*#**tt‘*##‘#t*#t‘#t#tt##***##t#t#

* Procedure: xfer_global_to_host(filenumber,filename) Description:
* this function performs the same function as xfer_raw_to_host, but for
* global data vice raw data.

###t###tt‘t#**t#t##tt#t.ttttt#t#t*t#t*l#t*#***tttt‘###t*‘tt#tt*‘#*#tt’

void

xfer_global_to_host(filenumber, filename)
int filenumber;
char *filename;

{
char *gbuffer;
char *start;
int i, c,js

i = global_data_log[filenumber].next;
c=20+(31*17)

[*c =20 + (i * 22);*/

73

gbuffer = malloc(c);

start = gbuffer;

for(j=0;)<i;j++) {
print_flex(global_data_log[filenumber].xarray[j], gbuffer);
print_flex(global_data_log[filenumber).yarray(j], gbuffer);
nl_flex(gbuffer);

}

putb(\0’, gbuffer);

gbuffer = start;

host_xfer(gbuffer, filename);

free(gbuffer);

}

/*******tt##*t###‘*t***#*ttt*t##****tt#*tt**t#*##*‘*****#tt##*t‘t##t

* Procedure: xfer_segment_to_host(filenumber filename)
* Description:
* this function performs the same function as xfer_raw_to_host, but for

* segment data vice raw data.
ttt#t*****t***t#****tt#*#**#*****tttt*t#******tt*tttt****ttt*#*/

void
xfer_segment_to_host(filenumber, filename)
int filenumber;
char *filename;
{
char *segbuffer;
char *start;
int i, ¢,

i = segment_data_log[filenumber].count;

MFc=20+({*77);*

¢ =20+ (i * 85);

segbuffer = malloc(c);

start = segbuffer;

for (j =0;j <i; j++) {
print_flex(segment_data_log[filenumber].array(j].headx, segbuffer);
print_flex(segment_data_log[filenumber].array(j].heady, segbuffer);
nl_flex(segbuffer);
print_flex(segment_data_log{filenumber].array(j}.tailx, segbuffer);
print_flex(segment_data_log[filenumber].array(j].taily, segbuffer);
nl_flex(segbuffer);
nl_flex(segbuffer);

74

/**‘ttt‘t*#‘ttt*tttt**t*ttttt‘.t.tttti#t‘#‘ttttt#‘tttt#“**tttt*#ttt

putb(\D’, segbuffer);
segbuffer = start;
host_xfer(segbuffer, filename);
free(segbuffer);

* Procedure: host_xfer(buffer,filename)
* Description: this function

* transfers a data string from the buffer to the host. Not a user
* function; is called by data conversion functions such as xfer_raw_to_host.
* User would call the xfer_raw_to_host (or equivalent for global or

* segment data) to download data from the robot.

#*t#t#t#t###‘t##*t‘#*ttt*t#‘#*ttt**tt“t#t*t‘*‘ttt#t‘*tttt‘t*‘.#‘#‘**tt/

void
host_xfer(buffer, filename,

{

char *buffer;
char *filename;

i_port(HOST, PORT_SPEED, 0, 0, 0);
r_printf(\12\15 connect cable and keyin\"\'"’);
while (r_getchar() = * *);

putstr(‘“\n”, HOST);

i_port(HOST, PORT_SPEED, 0, 0, 1);
r_printf(*\12\15 ready for dump “);
while (r_getchar() != ‘g’);

putstr(“ytof “, HOST);
putstr(filename, HOST);

putstr(“ w\n”’, HOST);

while (r_getchar() != ¢ “);
r_printf(**dumping “);

putstr(buffer, HOST);

putb("¥4’, HOST);

putb(d’, HOST);

r_printf(\I\I\7”);

return;

#endif

75

/* Includes from sonar sub-modules */
#include “sonarmath.k”

#include “sonarcard.h”

#include “sonario.h”

#include “sonarlog.h”

[*declaration of functions and return values for sonarsys.c*/

extern void set_sonar_parameters();
extern void build_list();
extern CONFIGURATION get_sonar_config();

#include “mml.h”

#ifdef SIM

#include “/n/gemini/work2/yamabico/mml/Sim/spatial.h”
#endif

/#************************t************#**********t**##*t*t#*#*****

* Procedure: set_sonar_parameters(cl,c2)

* Description: allows the user to

* adjust constants which control the linear fitting algorithm. Cl1 is
* a multiplier to allow more lenancy for greater sonar ranges.

* C2 is an absolute value; both are used to determine if an

* individual data point is usable for the algorithm. Default values

* are set in main.c to .02, 5.0 respectively.
**********#*t*t**#*‘***t*****#************t*#*t***t***********t**#/

void
set_sonar_parameters(cl, c2)
double cl;
double c2;
{
Cl=cl;
C2=c2;
}

/**##********#**t#*#**#**#*****#***********#*****#*##*****#*********

FUNCTION: get_sonar_config()
PARAMETERS:

PURPOSE:

RETURNS:
CALLED BY:
CALLS: NONE
COMMENTS: 11 September 92 - Dave MacPherson
*tt#*tttt**##t**ttt#tt#t*t**t**t#tt*#*#ttt#*#*#*t‘#*t##*#**#****#’
CONFIGURATION
get_sonar_config(seg_count)
int seg_count;

{
CONFIGURATION Qsonar;

Qsonar.x = segment_data_log[0).array[seg_count].tailx;

Qsonar.y = segment_data_log[0].array[seg_count].taily;

Qsonar.t = atan2(segment_data_log[0].array[seg_count].heady -
segment_data_log([0].array[seg_count].taily,
segment_data_log[0].array[seg_count).headx -
segment_data_log[0].array[seg_count].tailx);

Qsonar.k =0.0;

return Qsonar;

77

/*

Author : Patrick Byrne

Date : 22 Feburary 1994

File : sonarlog.h

Description : Provides extern declarations for functions in sonarLog.c

*/

extern void enable_data_logging();
extern void disable_data_logging();
extern log _data();

extern void set_log_interval();

r*
* Author : Patrick Byme
* Date : 22 February 1994
* File :sonarlog.c
* Description : Provides the following Sonar Logging
* functions:
*
* void enable_data_logging(); void disable_data_logging(); void log_data();
* void set_log_interval();
*

*/

#include “mml.h”

/

ke a2 2l e 2 e 2o s e e abe e afe a3 3 e s e e e 3 e afe e e abe e e afe e s o e 3 3 2 2 2 2 e 3 2 e e afe e e e 2 e e 2 o e o afe e o e o e e afe ek ok

* Procedure: enable_data_logging(n,filetype,filenumber)

* Description: causes the background system to log data for sonar (n)

* to a file (filenumber). The csta to be logged is specified by an

* integer flag (filetype). A value of O for filetype will cause raw

* sonar data to be saved, 1 will save global x and y, and 2 will save

* line segments. The filenumber may range between 0 and 3 for each of
* the three types, providing up to 12 data files. Example:

* enable_data_logging(4,0,0); will cause raw data from sonar #4 to be
* saved to file 0, while: enable_data_logging(7,2,0);

* will cause segments for sonar #7 to be saved to file 0. Function

* increments the service_flag.
#*t****t*t*****#****t*t******t*t*******#*t*ttt**t****t*t***t****t**/

78

void
enable_data_logging(n, filetype, filenumber)
int n, filetype, filenumber;
{
global_data_log[filenumber].next = 0;
if (filetype == 1)
sonar_table[n].global = 1;
sonar_table[n] filetype[filetype] = 1;
sonar_table[n].filenumber[filetype] = filenumber;
++service_flag;

/*******t*##t**#***tt**#**#*‘*tt****t*###t****#*‘t#******##*t*t**#‘*

* Procedure: disable_data_logging(n,filetype)
* Description: causes the background system to cease logging data of a
* given filetype for

* a sonar n. Decrements the service_flag.
*********ttt**#tt*t#**#****t#tt***#t**t***tttt***t*****t##t#t**#tttl

void

disable_data_logging(n, filetype)
int n, filetype;

{

if ((filetype == 1) && (sonar_table[n].fitting == 0))
sonar_table[n].global = 0;

sonar_table[n].filetype[filetype] = 0;

--service_flag;

}

/*****##**t**t****#*****#*##**#****#****#*#************#*tt*********
* Procedure: log_data(n, type, filenumber,i)
* Description: this
* procedure causes data to be written to a file. The filenumber
* designates which “column” (0,1,2, or 3) of a two dimensional array for
* that type of data is used. The data array and a counter for each column
* forms the data structure for each type. The value of i is used to index

* the seg_list array for storing line segments.
t*ttt###***tt#ttt*#t*tt###*##ttt*tt#****t#*****t****t**#*t#*##****/

log_data(n, filetype, filenumber, i)

int n, filetype, filenumber, i;

int count, interval, next;
switch (filetype) {
case 1:

count = raw_data_log[filenumber].count;
interval = sonar_table[n].interval;
if ((count < MAXRAW) && !(count % interval)) {
next = raw_data_log[filenumber].next;
raw_data_log[filenumber].darray[next] = sonar_table{n].d;
raw_data_log[filenumber).xarray[next] = sonar_table{n].x;
raw_data_log[filenumber).yarray[next] = sonar_table[n].y;
raw_data_log[filenumber].tarray[next] = sonar_table[n].t;
raw_data_log[filenumber].next += 1;
}
raw_data_log[filenumber].count += 1;
break;
case 2:
if (sonar_table[n}.gx == INFINITY){
next = global_data_log[filenumber].next;
if (global_data_log[filenumber].xarray[next-1] < 9999){
count = global_data_log[filenumber].count;
interval = sonar_table[n].interval;
if ((count < MAXGLOBAL) && !(count % interval)) {
next = global_data_log[filenumber].next;
global_data_log[filenumber].xarray[next}=

global_data_log[filenumber].yarray[next)=

global_data_log[filenumber].next += 1;
}
global_data_log[filenumber].count += 1;

else{
count = global_data_log[filenumber].count;
interval = sonar_table{n].interval;
if ((count < MAXGLOBAL) && !(count % interval)) {
next = global_data_log[filenumber].next;
global_data_log[filenumber].xarray[next}=
sonar_table[n].gx;

global_data_log|[filenumber].yarray{next}=
sonar_table{n).gy;
global_data_log[filenumber].next += 1;
}
global_data_log[filenumber].count += 1;
}
break;
case 3:
count = segment_data_log[filenumber].count;
if (count < MAXSEGMENT) {
segment_data_log(filenumber].array{count] = seg_list[n][i};
#ifdef SIM
printf(‘“\n\nLogging segment data count => %d sonar => %d “,
count, n);
printf(‘“\nThe Line segment is:
%5%5.1f%5%5.1f%5%5.1f%s%5.1f\n%s% 5. 1f%s%S. 1f\n”,
“ hcadx = u’
segment_data_log[filenumber].array[{count].headx,
. hcady = u,
segment_data_log[filenumber].array[count).heady,
“ tailx = “’
segment_data_log([filenumber].array[count].tailx,
(13 taily = ‘6’
segment_data_log[filenumber].array[count].taily,
“ length = u’
segment_data_log|[filenumber].array[count].length/*

(13 m 6‘,
segment_data_log[filenumber].array[count].phi*/);
#endif

segment_data_log{filenumber].count += 1;
break;

}
}

/ttttt*tt*tt**##t*#t**t#tt*t*tlltt*tttIt#t*t#ttt#ttt***#ttttt#*t**t*
* Procedure: set_log_interval(n,d)
* Description: this procedure
* allows the user to set how often the sonar system writes data to

81

* the raw data or global data files. The interval d is stored at

* sonar_table[n], and one data point will be recorded for every d data

* points sensed by the sonar. Default value for interval d is 13, which for
* a speed of 30 cm/sec and sonar sampling time of 25 msec should

* record a data point every 10 cm.
tt*tttt##lt*t#‘#t**t#tt‘t###t#*#*t*##*##tttt***#*#ttttttttt**tt*tt/

void

set_log_interval(n, d)
int n, d;

{

sonar_table[n].interval =d;

}

82

. USER FILES

#include “mml.h”

user()
{

/* File for translation scanning of sonar 4 */
/* Uses logging functions for local trace, */
/* segment sonar data, and global sonar data*/
/* Pat Byrne 11Nov93 */

/* Case 1%/

CONFIGURATION first, second;

double s;

def_configuration(1500.0, 146.0, PI, 0.0, &first);
def_configuration(800.0, 0.0, HPI, 0.0, &second);
s =20.0;

speed{15.0);

buffer_loc = index_loc = malloc(300000) ;
bufloc = indxloc = (double *) malloc(60000);
loc_tron(2, 0x3f, 30);

set_rob(&first);

enable_sonar(RIGHTF);

size_const(s);

set_log_interval(RIGHTF, 1);
enable_linear_fitting(RIGHTF);
enable_data_logging(RIGHTF, 1, 0);
enable_data_logging(RIGHTF, 2, 0);
enable_display_status();

line(&first);

bline(&second);

while(vehicle.x > 1300.0);
disable_sonar(RIGHTF);
disable_linear_fitting(RIGHTF);
disable_data_logging(RIGHTF, 2);
disable_data_logging(RIGHTF, 1);
loc_troff();

motor_on = NO;

xfer_global_to_host(0, “global7.test”);
xfer_segment_to_host(0, “segment7.test™);
loc_trdump(“loc_dump.test”);

83

#include “mml.h”
?wd)
/* File for translation scanning of sonar 7 */
/* Uses logging functions for local trace, */
/* segment sonar data, and global sonar data*/
/* Pat Byrne 31 Jan 93 %/
/* Case 2 *?
CONFIGURATION first, second, third,fourth fifth,sixth;
double s;
def_configuration(0.0, 0.0, 0.0, 0.0, &first);
def_configuration(100.0, 300.0, HPI, 0.0, &second);
s =20.0;
speed(15.0);
buffer_loc = index_loc = malloc(300000) ;
bufloc = indxloc = (double *) malloc(60000);
loc_tron(2, 0x3f, 30);
set_rob(&first);
enable_sonar(RIGHTF);
size_const(s);
set_log_interval(RIGHTF, 1);
enable_linear_fitting(RIGHTF);
enable_data_logging(RIGHTF, 1, 0);
enable_data_logging(RIGHTF, 2, 0);
enable_display_status();
line(&first);
line(&second);
while(vehicle.y < 150.0);
disable_sonar(RIGHTF);
disable_linear_fitting(RIGHTF);
disable_data_logging(RIGHTF, 2);
disable_data_logging(RIGHTF, 1);
loc_troff();
motor_on = NO;
xfer_global_to_host(0, “global7.test’);
xfer_segment_to_host(0, “segment7.test”);
loc_trdump(“loc_dump.test”);

#include “mml.h”
\‘wo
/* File for translation scanning of sonar 7 */
/* Uses logging functions for local trace, */
/* segment sonar data, and global sonar data*/
/* Pat Byrne 11Nov93 */
/* Case 3%/
CONFIGURATION first, second, third,fourth, fifth,sixth
double s;
def_configuration(951.6, -50.0, HPI, 0.0, &first);
def_configuration(951.6, -30.0, HPI/2, 0.0, &second);
s = 20.0;
speed(15.0);
buffer_loc = index_loc = malloc(300000) ;
bufloc = indxloc = (double *) malloc(60000);
loc_tron(2, 0x3f, 30);
set_rob(&first);
enable_sonar(RIGHTF);
size_const(s);
set_log_interval(RIGHTF, 1);
enable_linear_fitting(RIGHTF);
enable_data_logging(RIGHTF, 1, 0);
enable_data_logging(RIGHTF, 2, 0);
enable_display_status();
line(&first);
line(&second);
while(vehicle.x < 1150.0);
disable_sonar(RIGHTF);
disable_linear_fitting(RIGHTF);
disable_data_logging(RIGHTF, 2);
disable_data_logging(RIGHTF, 1);
loc_troff();
motor_on = NO;
xfer_global_to_host(0, “global7.test™);
xfer_segment_to_host(0, “segment7.test™);
loc_trdump(*“loc_dump.test”);

8s

/* File for rotational scanning of sonar 3 */
/* Pat Byme Nov30, 93 */
/* Case 4 */
#include “mml.h”
\llser()
CONFIGURATION pl;
void initialize();
void cleanup();
def_configuration(1200.0, 146.0, 0.0, 0.0, &p1);
speed(15.0);
initialize(p1);
set_rob(&p1);
rotate(DP]);
while(vehicle.t <Pl);
cleanup();
}
void initialize(p1)
{
double s = 20.0;
buffer_loc = index_loc = malloc(300000) ;
bufloc = indxloc = (double *) malloc(60000);
loc_tron(2, 0x3f, 30);
set_rob(&p1);
enable_sonar(FRONTR);
speed(15.0);
size_const(s);
set_log_interval(FRONTR, 1);
enable_linear_fitting(FRONTR);
enable_data_logging(FRONTR, 1, 0);
enable_data_logging(FRONTR, 2, 0);
}
void cleanup()
{
disable_sonar(FRONTR);
generate_segment(FRONTR);
disable_data_logging(FRONTR, 2);
loc_troff();
motor_on = NO;
xfer_global_to_host(0, “global.test’);
xfer_segment_to_host(0, “segment3.test”);
loc_trdump(“loc_dump.test™);

/* File for rotational scanning of sonar 3 */
/* Pat Byrne Nov30, 93 ¥/
#include “mmlLh”
[*CaseS ¥/
t{xser()
CONFIGURATION pl;
void initialize();
void cleanup();
def_configuration(951.6, -504.5, 0.0, 0.0, &p1);
speed(15.0);
initialize(p1);
set_rob(&pl);
rotate(DPI);
while(vehicle.t <Pl);
cleanup();
}
void initialize(p1)
{
double s = 20.0;
buffer_loc = index_loc = malloc(300000) ;
bufloc = indxloc = (double *) malloc(60000);
loc_tron(2, 0x3f, 30);
set_rob(&pl);
enable_sonar(FRONTR);
speed(15.0);
size_const(s);
set_log_interval(FRONTR, 1);
enable_linear_fitting(FRONTR);
enable_data_logging(FRONTR, 1, 0);
enable_data_logging(FRONTR, 2, 0);
}
void cleanup()
{
disable_sonar(FRONTR);
generate_segment(FRONTR);
disable_data_logging(FRONTR, 2);
loc_troff();
motor_on = NO;
xfer_global_to_host(0. “global.test”™);
xfer_segment_to_host(0, “segment3.test™);
loc_trdump(“loc_dump.test™);

/* File for rotational scanning of sonar 3 */
/* Pat Byrne Nov30, 93 */
/* Case 6 */
#include “mml.h”
l(xser()
CONFIGURATION pl;
void initialize();
void cleanup();
def_configuration(781.0, 100.00, PI, 0.0, &pl);
speed(15.0);
initialize(p1);
set_rob(&p1);
rotate(PI);
while(vehicle.t < DPI);
cleanup();
}
void initialize(p1)
{
double s = 20.0;
buffer_loc = index_loc = malloc(300000) ;
bufloc = indxloc = (double *) malloc(60000);
loc_tron(2, 0x3f, 30);
set_rob(&pl);
enable_sonar(FRONTR),
speed(15.0);
size_const(s);
set_log_intervalFRONTR, 1);
enable_linear_fitting(FRONTR);
enable_data_logging(FRONTR, 1, 0);
enable_data_logging(FRONTR, 2, 0);
}
void cleanup()
{
disable_sonar(FRONTR);
generate_segment(FRONTR);
disable_data_logging(FRONTR, 2);
loc_troff();
motor_on = NO;
xfer_global_to_host(0, “global.test);
xfer_segment_to_host(0, “segment3.test”);
loc_trdump(“loc_dump.test”);

#include “mml.h”

user()

{

/* File for translation scanning of sonar 7 */
/* Uses logging functions for local trace, */
/* segment sonar data, and global sonar data®*/

/* Pat Bymne 1Feb%4 ¥/

/* Case 7 */
CONFIGURATION first, second;
double s;

def_configuration(0.0, 0.0, 0.0, 0.0, &first);

def_configuration(800.0, 0.0, HPI, 0.0, &second);

s =20.0;

speed(15.0);

buffer_loc = index_loc = malloc(300000) ;

bufloc = indxloc = (double *) malloc(60000);

loc_tron(2, 0x3f, 30);

set_rob(&first);

enable_sonar(RIGHTF);

size_const(s);

set_log_interval(RIGHTF, 1);

enable_linear_fitting(RIGHTF);

enable_data_logging(RIGHTF, 1, 0);

enable_data_logging(RIGHTF, 2, 0);

enable_display_status();

line(&first);

bline(&second);

while(vehicle.x <300.0);
disable_sonar(RIGHTF);
disable_linear_fitting(RIGHTF);
disable_data_logging(RIGHTF, 2);
disable_data_logging(RIGHTF, 1);
loc_troff();
motor_on = NO;
xfer_global_to_host(0, “global7.test”);
xfer_segment_to_host(0, “segment7.test™);
loc_trdump(“loc_dump.test™);

89

#include “mml.h”
user()
{
/* File for rotational scanning of sonar 3 */
/* Uses logging functions for local trace, */
/* segment sonar data, and global sonar data*/
/* Pat Byrne 11Nov93 */
/* case 8 */
CONFIGURATION first, second;
double s;
def_configuration(1500.0, 146.0, PI, 0.0, &first);
def_configuration(800.0, 0.0, HPI, 0.0, &second);
s = 20.0;
speed(15.0);
buffer_loc = index_loc = malloc(300000) ;
bufloc = indxloc = (double *) malloc(60000);
loc_tron(2, 0x3f, 30);
set_rob(&first);
enable_sonar(RIGHTF);
size_const(s);
set_log_interval(RIGHTF, 1);
enable_linear_fitting(RIGHTF);
enable_data_logging(RIGHTF, 1, 0);
enable_data_logging(RIGHTF, 2, 0);
enable_display_status();
line(&first);
bline(&second);
while(vehicle.x > 1300.0);
disable_sonar(RIGHTF);
disable_linear_fitting(RIGHTF);
disable_data_logging(RIGHTF, 2);
disable_data_logging(RIGHTF, 1);
loc_troff();
motor_on = NO;
xfer_global_to_host(0, “global7.test™);
xfer_segment_to_host(0, “segment7.test”);
loc_trdump(*“loc_dump.test’);

#include “mml.h”
/* obstacle example one */
user()

{
double hitll;
CONFIGURATION pl, p3, positl;
def_configuration(1051.0, 146.0, 0.0, 0.0, &p1l);
def_configuration(1651.0,46.0,0.0,0.0, &p3);
speed(15.0);
buffer_loc = index_loc = malloc(300000) ;
bufloc = indxloc = (double *) malloc(60000);
loc_tron(2, 0x3f, 30);

set_rob(&p1);
enable_sonar(FRONTR);
set_log_interval(FRONTR, 1);
enable_data_logging(FRONTR, 1, 0);
hit]l 1 = sonar(FRONTR);
line(&pl);

while(hitl 1 >= 100.0 Il hit11 == 0.0){

hitl1l = sonar(FRONTR);
}

skip();

line(&p3);
get_rob0(&positl);
while(positl.x < 1351){
get_rob0(&positl);

)

skip();

line(&pl);

get_rob0(&positl);

while (positl.x < 1651){
get_rob0(&positl);

}

disable_sonar(FRONTR);
disable_data_logging(FRONTR, 1);
loc_troff();

stop0();

motor_on = OFF;
xfer_global_to_host(0, “global7.AVOID”);
loc_trdump(“loc_dump.AVOID");

91

#include “mmlLh"”
/* example of obstacle avoidance 2 */
user()

{

double hitll;

CONFIGURATION pl, p3, p4, start, positl;
def_configuration(0.0,0.0,0.0,0.0, &start);
def_configuration(600.0, 0.0, 0.0, 0.0, &p1);
def_configuration(0.0, -100.0, 0.0, 0.0, &p3);
speed(15.0);

buffer_loc = index_loc = malloc(300000);
bufloc = indxloc = (double *) malloc(60000);
loc_tron(2, 0x3f, 30);

set_rob(&start);

enable_sonar(FRONTR);
enable_sonar(LEFTF);
hit11 = sonar(FRONTR);

line(&pl);

hitl1 = 9999.0;

while (hit11 >= 100.0 Il hit11 == 0.0) {
hitl1 = sonar(FRONTR);

)

skip();

line(&p3);

hitl1 = sonar(LEFTF);

while (hitl11 >= 100.0 Il hitl11 == 0.0){
hitl1 = sonar(LEFTF);

)

while (hitl1 <= 100.0 Il hit11 == 0.0){
hitl1 = sonar(LEFTF);
}

skip();

line(&p1);

get_rob0(&positl);

while(positl.x < 600.0){
get_rob0(&positl);

}

disable_sonar(FRONTR);
disable_sonar(LEFTF);

loc_troff();

stop0():

motor_on = OFF;
loc_trdump(*‘loc_dump.AVOID”);

LIST OF REFERENCES

Sherfey, S., A Mobile Robot Sonar System, Master’s Thesis, Naval Postgraduate
School, Monterey, California, September, 1991.

Kanayama, Y., Noguchi, T.,, “Spatial Learning by an Autonomous Mobile Robot
with Ultrasonic Sensors”, University of California Department of Computer Science
Technical Report TRCS89-06, February, 1989.

Kanayama, Y., “Mathematical Theory of Robotics: Introduction to 2D Spatial
Reasoning”, Lecture Notes of the Advanced Robotics Course, Department of
Computer Science, Naval Postgraduate School, Winter Quarter 1994,

INITIAL DISTRIBUTION LIST

Defense Technical Information Center
Cameron Station
Alexandria, VA 22304-6145

Dudley Knox Library

Code 052

Naval Postgraduate School
Monterey, CA 93943-5101

Chairman, Code CS

Computer Science Department
Naval Postgraduate School
Monterey, CA 93943

Dr. Yutaka Kanayama, Code CS/KA
Computer Science Department
Naval Postgraduate School
Monterey, CA 93943

Dr. Man-T;k Shing, CS/SH -
Computer Science Department
Naval Postgraduate School
Monterey, CA 93943

Lt. Patrick G. Byrne

569 Christopher Lane
Doylestown, PA 18901

95

