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SUMMARY

This report presents some refinements to the wing weight
estimation methods outlined in RAND Report R-100.(» Since
Report R-100 was published, the weight equations have been
applied to a number of modern airplanes to determine certain
empirical constants and to observe the relative size of the
various terms in the equations. Some of these terms were
found to be relatively small. Therefore, it was possible
to shorten the final equations with little loss of accuracy.

This recent study also showed that the original assumptions
regarding the distribution of dead weight in the wing needed
revision. A more accurate method of accounting for the
effects of dead-weight loads is outlined in this report,

For references, see p.39.
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SYMBOLS

area

= wing span (aerodynamic), in.

= wing span (structural) (=b/cosA), in.

= intercept value for t/L, for type of construction

used in flanges of the structural box

intercept value for t/h for type of construction used
in ribs

intercept value for t/h for type of construction used
in the shear material of the structural box

mean aerodynamic chord, in.

integrated effective moment coefficient

structural mean aerodynamic chord (==C/bosAJ, in.

ratio of thickness taper ratio to planform taper
ratio (=m/A)

= equivalent axial allowable stress for bending, 1b/sq in.

allowable compressive stress in rib flanges, lb/sq in.

maximum wing depth at any span-wise station, in.

= weight of leading and trailing edge structure (in-

cluding flaps and ailerons) divided by the total wing
area

inertia-load correction factor (as used in Report

R-100)
inertia-load correction factor for bending loads
inertia-load correction factor for shear loads

shear reduction factor (as used in Report R-100)

= integrated shear reduction factor

width of wing structural box expressed as a fraction
of the chord

= rib spacing expressed as a fraction of chord (=L/C)

= maximum wing thickness, expressed as a fraction of

chord

ratio of effective column length to actual length
(=Lo/L)

vii



= span-distribvtion factor (as used in Report R-100)

span-distribution factor for airloads (also equal
to kisa)

span-distribution factor for inertia loads (also
equal to k; )

wing effective depth factor

bending integration factor (as used in Report R-100)
bending integration factor for airloads

bending integration factor for inertia loads

shear integration factor (as used in Report R-100)
shear integration factor for airloads

shear integration factor for inertia loads

= ratio of rear spar depth to airfoil maximum depth

(= hrf/h)

ratio of average spar depth to airfoil maximum depth
(=have/h)

nonoptimum factor for wing primary structure

nonoptimum factor which includes primary and secondary
structure

bending moment, in.-1b

bending moment due to airloads, in.-lb
bending moment due to inertia loads, in.-1b
thickness taper ratio (= hy/hg)

ratio of allowable rib flange stress to equivalent
axial stress (= F,,./F,)

ratio of effective shear stress to equivalent axial
stress (=F /F,)

ultimate load factor

load, 1b

dynamic pressure, lb/sq ft
wing area, sq ft

minimum average thickness for ribs, in.

= shear due to airloads, 1lb

= shear due to inertia loads, lb

value of shear measured at the root section, 1lb
airplene gross weight, 1b
weight of wing, 1b

e
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= weight of wing and wing contents, 1lb

= nondimensional span-wise distance measured from the

root section

= planform taper ratio (=Cr/Cy)




1. INTRODUCTION

RAND Report R-100 outlined procedures for applying optimum
design methods to structural weight analysis of the wing.
Subsequent to the publication of Report R-100, the wing
weight equations were applied to a number of modern air-
planes to check the values of calculated weight against the
actual weight. This preliminary study showed the need for
revision of some of the original simplifying assumptions
regarding the distribution of dead weight within the wing.

The procedure for estimating wing weights may generally
be analyzed in two parts:

1. The estimation of the loads applied to the structure,
based on a knowledge of the geometric properties of
the wing and of certain loading parameters

2. The estimation of the weight of structure necessary
to carry these loads.

The accuracy with which weights can be estimated depends
direcciy on the accuracy with which the designing loads are
estimated. The revision of the integration factors represents
a means of improving the results of the weight equations by
use of a more accurate method of determining the wing design
loads.

For Report R-100, the airloads on the wing structure were
determined by use of Weissinger’s method.(® These loads in
turn were used to calculate irtegration factors as functions
of planform taper ratio, sweepback, and thickness taper
ratio. The integration factors represent, in nondimensional
form, the volume of material necessary to carry the airload
shear or bending moment for a given wing configuration. How-
ever, to obtain the net shear and bending moments, the
inertia loads must be taken into account. This may be done
in either of two ways: (1) by subtracting inertia loads from
the airloads and working with net loads only, or (2) by
calculating integration factors separately for airloads and
for inertia loads and using these factors to calculate the
net result. The second of these two methods is used here
because of its greater convenience.

For references, see p.39.




Another revision made in the original equations is a
change in the terms representing rib weight. These changes
have been included in order to make the equations more accu-
rate. Derivation of the new terms is given in Appendix C.

When the original equations of Report R-100 were tried
out on wings corresponding to the configurations and loadings
of several modern wings, it was found that some of the terms
could be neglected with no appreciable error. Therefore it
was possible to write the wing weight equation in a shortened,
more convenient form. This shortened form of the equation 1s
given in Section III.




II. CHANGES IN THE ORIGINAL WING WEIGHT
EQUATIONS

The expression for the volume of the optimum wing struc-
tural box material is given in Report R-100 as

KK - KsCiqy -
Vol = <2csk31<,3 + C kK Kp + c,—']‘(—”>mcs 4o ~Eadv o

L kerth

1 J,nek k; J ky b/2 -
+ = nlf% _1_ 1:3+lki_§.L b+l_(§C (1)
2 F, |2 m, 3 %k hp| m

(See Report R-100, Eq.89.)

This equation comprises the following expressions for the
volume of the different structural components:

Shear Material

Vol = 2C, k K?(144CS) size term (1a)
1 Jonghgb (1 J

SO e Al “ky — loading term (1b)
2 F, 2 't m,

Bending Material

Vol = C,k K Kg(144CS) size term (1lc)
1 J Kb /1 ky b/2
PO it il Sy et i ) —1— loading term (1d)
2 F, 3 "k, hj
Rib Material
KiKpg - . .
Vol = C, (144CS) rib shear material (size) (le)
L
1 JonsW, [(KsC
+ =007 (2B rib shear material (loading) (1f)
2 F, m,
KgC) -
+ g 22l g rib flange material (1g)




One part of Eq.(l1) found to need revision is the ex-
pression for the volume of rib material. This change 1is made
so that the equation describes more accurately the present
practices in rib construction.

In order to provide a minimum gauge restriction on the
rib shear material rather than the minimum proportion re-
striction provided by Eq.(1), the volume of the size term
for rib shear material is rewritten as

T KK, S
Vol = 'roKeKnS(144) (2)
K,

where ?% = minimum average thickness of rib shear material.
The derivations for the new rib-material terms are presented
in Appendix C.

The expression for the volume of rib flange material,
given by Eq.(1g), is 'wtermined from a consideration of the
amount of flange material necessary to resist chordwise
bending moments from the trailing edge structure. Since some
of the parameters in Eq.(1g) may be difficult to evaluate
in preliminary design stages, the volume of rib flange mate-
rial will be based on a different set of parameters.

The revised expression for rib flange material presented
in Eq.(3) gives the amount of material necessary to carry
the axial loads associated with chordwise bending moments.
In this case, the bending moments result from the transfer
of normal airloads from the point of application in a chord-
wise direction to the shear resisting material in the spars.
The expression for the volume of flange material 1s

JoWon K2C
Vol = » &"f7B~ (3)
4K, F,,
where F,, = allowable axial stress in the rib flanges. The

derivation of Eq.(3) is given in Appendix C.

When Eqs.(2) and (3) are substituted for the corresponding
rib terms (le) and (lg) in Eq.(1), the volume of wing struc-
tural material becomes

KoK
tro Bc ")144cs

——Li{[ J— + ki, 2 (b/Z)]bH(BC[ K +i]} (4)
bk, ha 2Kpmy,  my

Vol = (2c k2K2 +C kK Ky +
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where

The term (1f), representing the loading term for rib shear
material, 1s not changed.

The optimum weight of the wing structural box 1s found
by multiplying Eq.(4) by the density w. Using a single over-
all nonoptimum factor k, and adding the weight of leading
and trailing edges J;7 S, the total wing weight is written

T, KgK _
W, = wk, <2Csk§Kﬁ + Coh K Kp + %—%4)144&9
L

o 1 Jansh, <i I, kiy b (b/2)>b
2 F,

where w = density of the material
k. = actual weight of structural box
x optimum weight of structural box
JurS = weight of leading and trailing edge structure

including flaps and ailerons.

-




I1l. SHORTENED FORM OF WING WEIGHT EQUATION

The terms of Eq.(5) were evaluated for several wings of
contemporary commercial and military airplanes. It was found
that the terms representing rib flange material and the
loading term for the rib shear material, Eqs.(3) and (1f),
could be omitted with no appreciable effect on the final
numerical result.

The nonoptimum factor k, 1s defined as the ratio of the
actual structural box weight to the weight of the optimum
structural box. It was originally intended to determine
values of kx by comparing calculated values of Eq.(5) with
actual values of weight for the airplanes studied. However,
much of the weight data available at this time was not item-
ized in sufficient detail to evaluate Jir with the required
accuracy. Therefore, a new nonoptimum factor was defined and
used in connection with the statistical study.

To avoid introducing any additional error by using un-
certain estimates for values of Jir, the new nonoptimum
factor is defined so as to include the weight of secondary
structure (leading and trailing edge structure).

If the assumption is made that the weight of the secondary
structure is proportional to the weight of the primary
structure, the wing weight is given by

W, = (ky + K;) X(optimum weight of structural box). (6)

Let the new nonoptimum factor be defined as

k’x=kx+Kl' (7)

Then the over-all weight becomes

W, = ky X(optimum weight of structural box). (8)

In this form, k; could be readily evaluated and was found
to be a function of planform taper ratio, as predicted in
Report R-100. Due to the classified nature of the weight
data involved, a-tual values are not included in this un-
classified report.

-1
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Omitting the rib weight terms discussed previously, the
shortened form of the wing weight equation is now written

T, KpK -
¥, = k',w[(zc,kgxﬁ + C .k K Kg + —'01(—%—">144cs
L

JunsW 1 ky (b/2
g L Janglg (1, Js 1, b (O/D) | ()
2 F, \2 “m, 3

h k! = actual wing weight
where Rx = Gptimum welght of structural box °




IV. INERTIA LOAD RELIEF

As shown in Report R-100, part of the wing structural
material is proportional to the size of the wing and part
is proportional to the loading. The integration factors
represent, in nondimensional form, the volume of material
which is proportional to loading. These factors are calcu-
lated separately for shear material and bending material.

The value of an integration factor is determined only by
the span-wise distribution of shear load or axial flange
load. It was assumed in Report R-100 that the dead-weight
loads had the same distribution as the airloads. Therefore,
the distribution of net loads, when plotted nondimensionally,
was the same as for airloads and consequently had the same
value of integration factor. All that was necessary in order
to include the effects of inertia loads was to correct the
value of loads at the root section. This was done in Report
R-100 by correcting the shear at the root by multiplying by
the factor J,, where

J, = & _7vc (10)

and where W; = airplane gross weight
w'c

welght of wing and contents.
(See Eq.10a, Report R-100.)

Since it is no longer assumed that the inertia loads are
distributed in the same manner as the airloads, the simple
correction factor shown above cannot be used. A study of
modern airplanes has shown that the difference in values of
airload integration factors and net load integration factors
may be of considerable magnitude in some cases. Therefore,
a method was derived for treating the airload and inertia-
load integration factors separately and combining them later
to obtain net values. The method is presented below.

The integration factors are obtained from integration of
the loads expressed in nondimensional form. For shear, the
factor is obtained from an integration of the shear loads.
For bending material, it is obtained from an integration of
the axial flange load expressed nondimensionally. Since
the portion of the material considered here is operating

9
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at constant allowable stresses, the integration factor also
represents the amount of material necessary for carrying
the shear or bending.

The airload integration factors have been described previ-
ously in Report R-100. The total inertia-load integration
factors may be composed of several factors which are obtained
separately for concentrated loads and for distributed loads
and which are then combined. A procedure for the calculation
of inertia-load integration factors is outlined in Section V.

After the airload and total inertia-load integration
factors have been obtained, they are used to calculate values
of the inertia relieving load factor J,. This factor is de-
termined separately for shear and bending material. As
derived in Appendix A, the expressions for J, are found to
be as follows:

Shear Material,

Woo k;
Jpg = 1 — =X _1:d (11)
WB ki:u

where k;,, = shear integration factor for inertia loads (total)

k

isa — shear integration factor for airloads;

Bending Material,

=
"
>~

ch b

Jnp = 1= E 2

wg ba

ih

a,

(12)

a
-

iba
where kpd = span-wise load distribution factor (=ki$d) for

inertia loads

kta = span-wise load distribution factor (==kuo) for
airloads

ki,, = bending integration factor for inertia loads
ki,, = bending integration factor for airloads.

The span distribution factor kp is identical with the shear
integration factor k;,. Therefore, values calculated for ki,
may be used in Eq.(12).

The two terms J,, and Jsp are substituted in the wing
weight equation in place of the single value of J, previously
used.

The shear reduction factor J, also required revision in
view of the more general assumptions made regarding inertia

10




load distribution. The derivation of Appendix B gives the
expression for the new shear reduction factor as

k; (l—m) J b
J.=1- tha n 1
y 3k, [J,,,] (13)

. . tip thickness
where m = thickness taper ratio = ;FﬁrTFTFEESE
k, effective depth factor.

The corrected wing weight equation is obtained by substi-
tuting the new values of J, and J; in Eq.(5) of Section II:

"

tr, Kpk -
W, = wh, <2Csk31(,f + C kK Kg +29K—‘.’é—’1>144cs
L

WE [(}. J"skisaJ; + lank. Ellg. (b/2))b

1 ng
+ts tha
2" F, \2 7w, 3 k, hg

[ K 1
+ KgC—2— + =%+ Jrs. (14)
2Kp m,, m

Substituting the new values of J, and J; in the shortened
form of the wing weight equation, given by Eq.(9), yields
the expression

=
il

t, KpK -
, = klu (2Cskfl(,f + C ok K Kp + -L%(L—'é-ﬁ>144cs

+l"wab(l Riggdneds [ 1, Kba (6/2) /2N (15)
2 F, \2 mg 3 ‘e k, hg

In the case of a sweptback wing, the values of structural
span and structural mean aerodynamic chord are used. The
structural span b; is defined as

b
by = (16)
f  cosh
where A = sweepback angle measured at the quarter-chord

position.
The structural mean aerodynamic chord C; is defined as

C, =C cosA. (17)
11




Equation (17) gives exact values only for nontapered
wings. However, except for low-aspect-ratio highly tapered
designs, these expressions give sufficient accuracy when
used with tapered wings.

In order to write Eq.(15) in a more general form, including
the effects of sweepback, let

P t, Ky K
B'= (2C, KK} + C .k K Kp + 022 (18)
KLCs
, 1 ky Jpedi 1 kya (bs/2
e = = Lgq NS 8 + —'ki an ._b—a- ( S/ ) ) (19)
2 mg 3 ‘be k. hp
Substituting in Eq.(15), the wing weight becomes
- ‘b W
W, = kiw(144pC,s + 22sMenr) (20)
2F,

12
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V. METHODS FOR ESTIMATING INERTIA-LOAD
INTEGRATION FACTORS

For estimating the integration factors, the inertia loads
are broken down into two general types—distributed and con-
centrated. The distributed loads come from the wing structure
and from miscellaneous distributed items such as control
systems. The concentrated loads originate with wing-mounted
engines, with landing gear, and sometimes with fuel tanks. It
is usually more convenient to treat the fuel tanks as several
concentrated loads rather than as a distributed load, since
a restricting assumption is made regarding the manner in
which the distributed loads vary.

Integration factors are calculated separately for the
different loads and are then combined into a single factor.
These factors are calculated separately for shear loads and
for bending loads.

CONCENTRATED LOADS

The expression for the shear integration factor is derived
below for the case of several concentrated loads located at
different span-wise stations. This loading condition is
shown in Fig. 1.

The shear curve for this loading is shown in Fig.2.

ho—— ) ——»+

L

i
le30 oo 0 —ofe— 0 ]

L
o %
# - t +
Fig. i—Concentrated loading condition Fig. 2——Shear diagram “or

concentrated loads

The area under the shear curve of Fig.2 is given by
Area = Pya;, + Pja; + Pya, . (21)
13




This may be expressed in nondimensional form by dividing
by the value of shear at the root and by the semispan (see
Appendix F, Report R-100):

A , _Pyay+Prar+Pa,
re -
2 (Pt Py +P,)(b/2)

(22)

Since the allowable shear stress is a constant for this
portion of the material, Eq.(22) also represents the volume
of shear material expressed in nondimensional form.

The integration factor for shear is defined as the ratio
of the area under the shear curve to that under the shear
curve for the basic case. Since the area equals one-half*
for the basic case, the shear integration iactor for concen-
trated loads is given by

2 Pia,tPyay+Ph a,

k. = 23
Psd  (b/2) P+ P, +P, (23)

The integration factor for bending depends on the distri-
bution of the axial flange load P,, where

M

P, = h (24)

and where M = bending moment
h = depth of the wing.

The integration factor k;, for bending is defined as
follows:

Let Ay, = area under the curve of M/h versus distance along
the semispan for the given loading condition
Ay = area under the curve of M/h versus distance along
the semispan for the basic case.
Then
A
ki = (25)
Ap

(see Report R-100, page 47.)

For convenience, these areas are expressed in nondi-
mensional form. Since the area (nondimensional) under the
curve of M/h for the basic case equals one-third,* the
bending integration factor is written

ki, = 34 (26)
* See RAND Report R-100, pp.46 and 47.
14




where
1 b/2 M
Ay = — - dx . (27)
°»_u£ h
hgp 2

For the general case of a tapered wing under a concentrated
load, the integration factor is given by

by, = <1_i.5)<1%) f1~ [n+ 90 - m )1~ Log(x + ¢t = w)1} (20)

where @ = 1 — 7, where 7 is the nondimensional distance from
tne root to the span-wise station at which the
concentrated load is located
_  tip thickness
m = oot thickness -
A plot of Eq.(28) is shown in Fig.3. A value of k;, is read
from the curves for each concentrated load. These separate
values are then combined into a single integration factor
by the expression
_ kib‘P,nPl+ kibzP2nP2 + see + kibnﬂ,npn (29)
P, t Py, + s ¥ B,

2.8 T T T T

. (f;)('-_'?)'{u-[m +(=-mP|[i-10g, (m +(1=m) 4:)]}

2.4 where
$=1-m, y
me dip thickness Ay
root thickness [ m = 0, A

kiyg

2.0 / /
16 | /// é
g /
olr ] _ 7%2/
== L, —a
08 L___"A;? WT;-pl.o_
0.4
/
0 0 [+X] 0.2 0.3 0.4 0.5 0.6 [eh4 0.8 0.9 §

s
Fig. 3—integration factors for bending moteriol——concentrated loads
15
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where k;, = value read from the curves of Fig.3

P
Np

value of concentrated load

nondimensional distance from the location of the
load to the wing root section.

Equation (29) is a special case of Eq.(33), which is derived
in Appendix D.

DISTRIBUTED LOADS

The integration factors for distributed loads are derived
on the basis of the following assumption—that the load at
any span-wise station is proportional to the cross-sectional
area of the wing at that station.* Such a load distribution
would result from the exact filling of the enclosed volume
of the wing by a material of constant density.

The shear at any station is proportional to the enclosed
wing volume outboard of that station. An algebraic solution
for the shear integration factor yields the expression

1+A+dN+3dA?

. = (30)
Bd 94N+ dA+2dN\2

where d = m/A. A plot of this function is shown in Fig.4.

LO £=_~ /“
o8 ' —\\ ’7,,,,—r"”’%"i::::u———"‘F"—'—
8 S >
hy %/ % o _L/

04
" e X ¢k ¢ 30\
K P R T2\
0.2 where
d = l>".
[o]
] [+X} 0.2 03 0.4 [+, 0.6 07 08 09 1.0

A
Fig. 4—Shear integration factor for weight distributed aos wing volume

* Reference 3 has shown that the span-wise distribution of structure
weight for tapered wings tended to vary as the square of the chord. For
s wing having a constant airfoil section along the span, such a distri-
bution would also vary as the wing cross-sectional area.

16
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Similarly, the solution for the bending integration factor
is given by

a1 l1+a n—2mA\—2(1 «a
kibd=B——<'2-—a+azloge a>+ <———+a2

2 6(1—m) \3 2
l1+a 1-7Af1 a a? l1+a
-d1 + —|-—-=+—=-a+a* —
a’ log, a) m (4 st~ ate log, a) (31)
‘where
B = 3
ﬂb+m~2mk+k+(l—XH1—m)
2 6 12
m
a = .
1—nm

This expression is shown graphically in Fig.5.

1.2
m !
7 “‘\
l
L
o] %/ /
/ 2o A
/ )y
0.8
[oX3
4
04
0.2
o]
] 0. 0.2 0.3 0.4 0.5 0.6 0.7 [oX:] 0.9 1.0

X

Fig. 5—1Integration factors for bending moterial for inertio loads
distributed as wing volume

If it becomes desirable to revise the assumptions regard-
ing the variation of distributed inertia loads in the wing,
integration factors can be derived for any assumed variation
of distributed loads. These factors would then be used in
the same manner as those derived here.

17




TOTAL COMBINED VALUES

After values of the integration factors have been calcu-
lated separately for concentrated and distributed loads,
these values must be combined to give total values for
inertia-load integration factors. This is done for the shear
and bending factors by means of the expressions given below.

The total value for the inertia-load shear integration
factor is given by

= kislvnl+ ki:z VR2 toeee 4 kisn Vnn

k.
ted Vay tVa, + oo + Vs, (32)

where k; = shear integration factor for any given load.
Vp = corresponding value of shear at the root.

The total integration factor for bending material 1is
given by
kiy Mo, * Riy M, + 200 ¥ ki Ma,

Tbd Mp, + Mp, + <=+ + My

k (33)

where k;, = bending material integration factor for any given
load

Mp = corresponding value of bending moment at the root.

The derivation of these expressions is given in Appendix D.

18




Vi. CONCLUSIONS

In order to improve the accuracy of the equation for
estimating wing weight it was necessary to use a more accu-
rate method of estimating the loads on the wing structure.
This required a more precise procedure for estimating the
effects of dead-weight loads, such as the method outlined
in this report. The use of this refined method is more im-
portant for large airplanes having wing fuel and wing-mounted
engines than for airplanes which have no sources of large
concentrated loads in the wings.

The shortened form of the weight equation (Eq.20) using
the over-all nonoptimum factor ky is the most convenient form
to use in the estimation of wing weights on the basis of
currently available weight data. The nonoptimum factor kg may
be determined from statistics and expressed as a function of
planform taper ratio.

Values of airload and inertia-load integration factors
were obtained from actual bending moment curves and were
checked against values calculated by the methods outlined in
this report. The values were in good agreement, the best
correlation being obtained for the larger airplanes.

19
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APPENDIX A

DERIVATION OF EXPRESSIONS FOR INERTIA-LOAD
RELIEF FACTORS

In the derivation of integration factors for the shear
and bending materials {see Report R-100) it was assumed that
the dead weight of wing and contents had the same distri-
bution as the airloads. The use of J, as outlined previously
gives the correct net values of shear and bending moment at
the wing root section but does not account for the actual
distribution of dead weight.

An investigation of the distribution of dead-weight shear
and bending moments for actual airplanes has shown that the
use of J, alone yields somewhat optimistic values for the
weights of shear and bending material. This is particularly
true for large airplanes having engines mounted in the wings.

In order to make the wing weight equations more accurate
by accounting for the actual distribution of dead weight, the
following derivation is presented.

The shear and bending materials discussed here are those
portions only which vary with loading and which operate at
constant allowable stresses. The portions which are pro-
portional to size are not affected.

SHEAR MATERIAL

Equation (84) of Report R-100 gives the expression for
the volume of shear material as

(Vol)s = ,}k,-,A,Rb (34)

where k; = integration factor derived on the basis of air-
loads

Ay, = area of shear material required at the root

section and given by
_.]__. WngJan
SR_ 2 F

%

. (35)

Substituting Eq.(35) in Eq.(84), the volume of shear ma-
terial becomes
WongJg bk;
(Vol), = -‘—f'-i-j—-‘-dﬂ . (36)

So
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The use of J, gives the required area of shear material
corrected for the relieving shear from dead weight. However,
in actual airplane wings, the value of shear relief given by
‘the term J, is correct only at the root section, since the
dead-weight shear is not proportional to the airload shear
at all span-wise stations. This difference can be accounted
for by using a combination of two integration factors—one
for airloads and one for the relieving dead-weight loads.

The net cross-sectional area of shear material required
at any station is given by

(37)

where V, = shear from airloads

Vqg = shear from dead-weight loads.

The volume of shear material is found by integration of

Eq.(37):

b b
(Vol), = —f’u, dn — ——f’vddn. (38)
FSO 0 1;;0 0

The subscript R designates values taken at the root

section, and the value of V; at the root section is given
by

Vi = LWgngJ . (39)

The value of V; at the root section is given by

Y

e = %chans (40)

where W,, = weight of wing and contents.

Multiplying and dividing the first and second terms of
Eq.(38) by Eqs.(39) and (40), respectively, the volume of
shear material may be written

WeneJg b 1 v ¥, Jsb v
(V°1)s=—“-;’7’—j; V—“dn—-'fc?';_f—’j:lv—d-dn. (41)
So ag S0 dg

This assumes that the shear from airloads is greater than
the dead-weight shear at all span-wise stations and was true
for the most critical design condition for all of the air-
planes studied.
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Since the allowable shear stress is constant, the cross-
sectional area of shear material is directly proportional to
the shear load. Therefore,

|4 A
ﬁi = _Sa (42)
b 4 Asak
where A; = area of shear material which would be required
to carry airloads only. Also,
Y, A
R (43)
Vap Ay
where A;, = area of shear material which would be required

to carry dead-weight loads only. Substituting Eqs.(42) and
(43) into Eq.(41) and factoring,

ansb fl A fl Ag,
v = K 2dn — W dn|. 4
(Vol)s 2Fs° |: e ), A, n ve )2 n (44)

aR SdR

Since the integration factors are evaluated here for both
airloads and inertia loads, it is necessary to use subscripts
a (airload) and d (dead-weight load) with the integration
factors. The value of k;  of this report corresponds to
k;, of Report R-100, k;, corresponds to k;, , etc.

The integration factor for airloads is defined as

A
ki, = 2fl o dn . (45)
0 A‘an

This expression is the same as that given by Eq.(F-1) in
Report R-100.

The integration factor for dead-weight loads is defined as

1 A
kisd=2£ A"‘dn. (46)

Sdr

This factor can be evaluated from a knowledge of the distri-
bution of the dead weight of wing and contents.

Substituting Eqs.(45) and (46) into Eq.(44), the volume
of shear material becomes

ngdg b
Vol), =
( o ): 4F.

$9

(ngi" - W,ck‘-'d) . (47)
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Factoring out the terms associated with airloads,

Wy ngJg bk Wy ki
Vol), = £ 1 ° "%se [y — %€ _fsd ) (48
(Vol), 4F,, Wy ki )

Equation (48) is the same as Eq.(36) with J, replaced by the
term in parenthesis. It can be seen that this term, which
represents an integrated dead-weight relief factor, reduces
to Jy(=1 — W,/ W,) when the integration factors are equal.
This would occur if, as previously assumed, the dead weight
were distributed in the same manner as the airloads. The re-
vised inertia-load integration factor for shear material
will be denoted by J, , where

BENDING MATERIAL

The volume of bending material which is proportional to
loading is given by Eq.(85) of Report R-100:

(Vol)y = 3§ ky,Ap b (49)
where k;, = integration factor calculated on the basis of
airloads
App = cross-sectional area of bending material re-
quired at the root section, and where
W, b k
ay, = & (22) ko (50)
k 2 hg | k. F,

Substituting Eq.(50) into Eq.(49), the volume of bending
material is written

W, b/2\ bky k;
(Vol), = 221 b/2) Sk kiyJn (51)
6 hy ke F,

Here, as in Eq.(36), J, gives the correct value for dead-
weight load relief effects only at the root section. The
span-wise load distribution factor k, and the integration
factor k;, for bending material are based only on airloads.
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The net cross-sectional area of bending material required
at any station is given by

2
Fo ko h

Ay = (Mg — My) (52)
where M, = bending moment from airloads
My = bending moment from dead-weight loads.

The volume of bending material is found by integrating

Eq. (52):

2b 1 M, 2b 1 My
Vol)y = =2 dn - f = dn. (53)
Vel =25 o 29 " Fa Jo B

This assumes that the bending moments from airloads are
greater than those from dead-weight loads at all span-wise
stations.

The value of M,/h at the root section is given by

Moy _ 1 b/2

R =y — |k 54
hy 4 ‘"f< B ) O (54)
where k, = span-wise load distribution factor for airloads.

The value of My/h at the root section is given by

Map 1 b/2
h_: = Z wwcnf<-zn—>kbd (55)
where ky, = span-wise load distribution factor for dead-

weight loads.

Multiplying and dividing the first and second terms of
Eq.(53) by Eqgs. (54) and (55), respectively, the volume of
bending material is written

b

Wgnf<£>bkb¢

(Vol)y = r f‘ YL,
2F, k, 0 Ma,/hn

b/2

2% bk

w""""(h) %~y My/h

- R f =2 dn. (56)
oF, k, o Mg /hy
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Since the allowable axial stress is constant, the cross-
sectional area of bending material required at any station is
directly proportional to the quantity M/h. Therefore,

Ap M, /h
2= (57)
Abak MGR/hR
where Ay = area of bending material which would be required
to carry airloads alone. Also,
Ap My/h
— = / (58)
bag de/h"
where Ay, = cross-sectional area of bending material which

would be required to carry only dead-weight loads.

Substituting Eqs.(57) and (58) into Eq.(56) and factoring,
the volume of bending material becomes

(Vol ) ——(6/2) bnf[ f Lo d‘r] wnckbdf b dT}:|. (59)

2\h
The integration factor for bending material required by
airloads is defined as

1 A
' = g . 60
i, =3 j; 2 (60)

aR

This expression is the same as the original equation for the
bending-material integration factor given by Eq.(F-6) of
Appendix F, Report R-100.

The integration factor for bending material which would
be required to carry only dead-weight loads is defined as

" _ 1 Ay,

ihd o A dn . (61)

dR

Substituting Egs.(60) and (61) into Eq.(59), the volume
of bending material is written

b/2\ bn
(Vol)y = E(h/ >ka (Wg ks, kiy, = Wockogkiy,) - (62)
R
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Factoring out the quantities associated only with airloads,
the volume of bending material becomes

Wens (b/2) bky ki Woo kb, &
(Vol)p = 8"f<L) ba " ibe (1 — e b4 ..‘ﬁ) , (63)

6 \hy/) Fak We ko, ki,

This expression for volume of bending material is the same
as Eq.(51), except that the dead-weight relief factor J, is
replaced by the integrated relief factor in parenthesis. This
revised inertia-load relief factor for bending material is
denoted by J,,, where

b

K, k ;
an—_'l—Lc.i‘. 15.
We kbu kiba

Q.

It can be shown algebraically that the integration factor
ki, for shear material is identical with the span-wise load
distribution factor k. For purposes of explanation the
two factors are left in their original form, but this
identity should be kept in mind when calculating actual
values.

Some actual values for the integration factors and relief
factors are given below:

Airplane
Item A B

L. ki, .810 .806
2. ki, .599 .565
3. ki, 1.128 | 1.030
4. kiy, .706 .813
5. Jp . 546 .647
6. Jn, .665 .752
T. Jny .790 .805
8. Percent increase in weight of

shear material by use of

corrected relief factor 22 16
9. Percent increase in weight of

bending material by use of

corrected relief factor 45 24

Designation of airplanes:

A = large four-engine cargo airplane calculated for the
critical condition of no wing fuel

B = fighter aircraft with no engines in the wings calcu-
lated for the critical condition of no wing fuel.

27

P




The errors introduced by using J, rather than the inte-
grated relief factor can be seen by comparing Items 6 and 7
with Item 5. The percentage error is seen to be larger for
the four-engine cargo airplane.

When more detailed data are acquired on wing loads for
actual airplanes, these factors (Jﬁx and J;b) can be evaluated
for a number of airplanes, and perhaps average values can
be computed for different classes of airplanes.
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APPENDIX B

DERIVATION OF THE INTEGRATED SHEAR
REDUCTION FACTOR

The expression for the shear reduction factor Jg given

" by Eq.(A-8) of Report R-100 is valid only at the root section

of the wing. An investigation of actual airplane wings has
shown that the variation in the value of J; along the span
makes necessary the use of an average or “integrated” value.
This integrated shear reduction factor, when substituted
in the general wing weight equation, yields an amount of
shear material which is corrected for the over-all effect
of shear relief along the span,

The integrated shear reduction factor, denoted by Js, is
defined as follows:

Vol
; — ( o )SC (64)
(VOl)so
where (Vol)%, = volume of shear material necessary to carry

the shear load after itis corrected for re-
lieving shear loads from the flanges

(Vol)s, = volume of shear material necessary to carry
the total uncorrected shear load.

This expression may also be written

(VOl)s

!

Jg =1-— (65)
$ (Vol),o

where (Vol),, = volume of material which is subtracted from

so when relieving shear is considered.

The volume of shear material before correcting for shear
relief is

(Vol),, =3 Fn; (66)
where V3 = maximum shear load at the root of one wing.
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The volume of shear material “removed” by considering shear
relieving loads from the beam flanges is

bs2 V,
(Vol)sf = 2 J; 2 Ff— dy (67)

So

where Vs = portion of the shear load resisted by axial loads
in the flanges. The shear Vf is given by Eq.(A-2) of Report
R-100 as

Vi =P tanf. (68)

For the general case, the rate of change of depth per
unit span is given by

tan 0 = ————— (69)

depth at tip
where m = —4—8m8¥ ——1 |
depth at root

The flange load P is given by
M

P = . (70)
ke h
The depth h at any station y is given by
h=hn[1—l—(1—m)]. (71)
b/2

Substituting Eqs.(71), (70), and (69) into Eq.(68), the
portion of the shear load resisted by the flanges is ex-
pressed as

Vf — Mhﬂ(l_M) (12)

- 0]

Simplifying,

(73)

\-‘.
]
. o4
Y
/—\
N | o
e
[
l
o
~
(3]
P~
—
|
N
——d
.
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Substituting Eq.(73) into Eq.(67) and expressing the
span-wise distance y in terms of 7, where n = y/(b/2),

2(1—m) 1 M
(Vol), = —f —_—dn. (74)
f keﬁso o 1—n+nm L

Multiplying and dividing by the bending moment Mp at the
root section,

2(1—m)M 1 M/M
(Vol)s, AR St f MMy dn . (75)
kero o 1—Nn+7nm
Equations (F-5) and (F-6) of Appendix F, Report R-100,
show that
M/M k;
f‘ _M/Mn__ dn = =t (76)
6 1—N+nm 3
where k“ = integration factor for bending material.

Substituting Eq.(76) into Eq.(75),

_ _2_ (l_m)Mﬂkib

Vol = (77)
(Vo) = 2 45

Substituting Eqs.(77) and (66) into Eq.(65), the integrated
shear reduction factor becomes

4 MR k;‘ (1—nm)
J! = -l
L =1 s(v,,) . (18)

As shown in Appendix F of Report R-100, the following
expression may be written

M _ kb(2)= k; (2) (79)
Va 4 \4

Substituting Eq.(79) into Eq.(78) and simplifying, the
integrated shear reduction factor is written
. k. 1_
J! =1——‘°% . (80)
€

The expression for J;/ given by Eq.(80) is derived here
to replace Eq.(A-8) of Report R-100. Equation (80) has been
derived on the basis of net shear and bending loads. When
the airloads and inertia loads are treated separately, it
is necessary to go through the derivation above and to
express the net moment M as Mg — My, the shear V as Vo — Vg,
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etc. (The subscript a denotes airload values and d denotes
dead-weight values.) Such a derivation gives the expression

for J; as
ki (1—m)|Jnb
Jg =1~ e ||,
s 3k, Jns (81)
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APPENDIX C

DERIVATION OF REVISED RIB WEIGHT EXPRESSIONS

The original expressions for the volume of rib material
are given in Section II as Eqs.(le) through (lg). The
derivations of these expressions are given in Report R-100,
The derivation for the new rib weight terms is givenbelow,

RIB SHEAR MATERIAL

The expression for the area (average volume per foot
of span) of rib shear material is given by Eq.(47) of Report
R-100 as

_ GhB 1 nydn MgBC

: (82)
L 2 (L449)F,,

Since the term C; is the intercept (at V/h? = 0) value of
t/h (see Fig.5, Report R-100), it represents a minimum al-
lowable ratio of average thickness to depth. A study of
actual airplanes showed that it is desirable to place the
minimum-value limitation on thickness rather than on proportion,

Since C; = (t/h)y, the minimum average thickness ?,0 for
the rib shear material is given by
%, =Csh. (83)
Substituting Eq.(83) into the first term of Eq.(82), the
expression for the average area (volume per unit length of
span) of rib shear material becomes

W, BC
hB 1 npdntgBC . (84)

o L 2 (144S)K,

Ars = T

The volume is found by integrating Eq.(84) over the span,
as in Report R-100:

T KnKp (144)S 1 JnnghgkpC
K, 2 F )

So

(Vol)ys = (85)
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RIB FLANGE MATERIAL

As previously stated, the new expression for the volume
of rib flange material 'is derived on the basis of axial
loads associated with chordwise bending moments.

From Fig.10 and Eq.(45) of Report R-100, it can be seen
that the expression for the maximum chordwise bending
moment is given by

1 A
Mnax = = npdn —ELCB. (86)

The axial load P in the rib flanges is given by
ngJy Wy LCB

817
8h(144S) (87

M
P=_=
h

The cross-sectional area, per bay, of rib flange material is

_ 2P _ngJ, WLCB

— (88)
F,  4h(1443)F,
where Fy, = compressive yield stress, or equivalent allowable
stress.
The volume of rib flange material per bay is
2
(Vol), ¢ - 4B = ngJ, WgLCB (89)

bay 4h(144S)F,

Expressing L, B, and h as fractions of chord, the average
area (average volume per unit length of span) is written
, _ ann WgKB’C"'

S - 8 (90)
7K, (1449F,

Integrating Eq.(90) over the span gives the total volume
of rib flange material as

ngJn W K3C

(91)
4K\ F,

(Vol),f =

34




APPENDIX D

DERIVATION OF EXPRESSIONS FOR COMBINING
INTEGRATION FACTORS

Since integration factors are calculated separately for
various concentrated and distributed loads, they must be
combined into single factors in order to be used in the
wing weight equations. This may be done by means of the
simple expressions derived below.

SHEAR INTEGRATION FACTORS

The shear integration factor represents, in nondimensional
form, the area under the shear curve. Figure 6 shows the
shear curves for two sources of load, as well as the total
shear.

% )
iy

N
—>

r\‘)‘@.

Fig. 6—Shear diagram for two superimposed
loading conditions

The integration factor corresponding to shear curve
V, is given by

A
ki = ——— (92)
s1 1 b
9 F1lg
where A; = area under curve of V;.

Simiiarly, the integration factor for V, is written
Az

itB 1 b
_V _—
2 ™ (2)

where A; = area under curve of V;.

(93)




o ———— o c——

i,y Which is to be
and kisz’ is given by

The over-all integration factor &k
written in terms of k;

A+ A,
1 b\
E (an + VBQ)(E)

Solving Eqs.(92) and (93) for A; and A,, respectively, and
substituting into Eq.(94), the total integration factor

becomes
L "
2 kigy Ve, ki52Vh2

ter 1 b

(94)

isr

b

2

1

2

b

2
k

(95)

Simplifying, the equation may be written in general form as

k Vﬂl + kisz Vﬂz + LR + kisn VR

an +Vﬂ2+ e + Vﬂn

ts1 n

k

(96)

igT

This derivation assumes that the total shear does not change
sign at any point along the span.

BENDING INTEGRATION FACTORS

The bending integration factor represents, in non-
dimensional form, the area under the curve of M/h, which
is the flange load. Figure 7 shows curves of M/h for two
sources of bending loads and a curve for the total value

of M/h,

'
_*_ T
i), (#)

(

R

nlg.

Fig. 7—Diagram of oxial flange loads for two sources
of bending moments
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The bending integration factor for the curve of (M/h); is

A
By, =~ (97)

(i) (3)

where A; = area under curve of (Mz/hp),.
Similarly, the integration factor for (Mp/hg), is
A,
kibg=—-———_.
1 [Ma\ (b
3 \hp/s\2

where A; = area under curve of (M/h),.

(98)

The total integration factor is written

Art A (99)

Solving Eqs.(97) and (98) for A; and A,, respectively, and
substituting into Eq.(99), the total integration factor

becomes
1 M b 1 M b
Lo () (B) 4 2, (B <_
3 hp/1\2 3 hg/2\2

ki = _ . (100)
T l MR s MR E
3\ha/1 hp/ 2\ 2
Dividing out the wing root thickness hp and simplifying, the
total integration factor may be written in general as

k

— kibiM"1+-kiszna oot ki Mp

= 2. (101)
toT Mg, + Mg, + -+ + M,

k

This derivation assumes that the total bending moment does
not change sign at any point along the span,
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