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The purpose of this research is to develop new measures of merit specifically for
multivariable aircraft flight control systems. This report provides a theoretical
development of the measures of merit based on "modern" multivariable control
analysis methods. The analysis techniques used to form the new criteria draw
from recent control theory research in Hankel singular values, matrix singular
values, and the so-called "structured" singular values. The proposed measures of
merit are computed for a high-fidelity linear model of the F-16 aircraft at one
cruise flight condition. The results of this investigation demonstrate the
usefulness, computational methods, and numerical values expected from the new
measures. It is hoped that this research will provide the foundation for compilation
of multivariable flight control system evaluation results such that the Air Force
and aircraft manufacturers can directly compare the performance of different
designs.
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1. Introduction

The objective of this research is to initiate the study

of new evaluation measures of merit specifically for

multivariable flight control systems. A flight control

system is usually considered a mjiltivariab1l system if more

than one control effector (control surface, for example) or

more than one feedback variable is used to control the

aircraft motion. With this multivariable system definition,

almost all aircraft flying today can be considered to have a

multivariable flight control system. However, most older

aircraft control systems have been designed such that

interaction among each control effector and feedback variable

pair is minimized. Each feedback loop becomes independent

and can be designed and tested separately from the others.

Many of the recently developed aircraft have very
sophisticated control systems consisting of many different

control effectors and feedback variables. To optimize

performance, the control and feedback variable are no longer

separated but may actually be designed to interact - as in
the case of an integrated control system. Centralized flight

control systems are now being considered which combine many

other subsystems, such as an engine or rotor controller, with
the primary flight control system. An example is the control

system def 'ned for the B-1 aircraft which combines the

primary flight control system with a structural control

system designed to reduce vibration in the cockpit. Another

example is the use of thrust vectoring as a means of

producing additional pitch, roll, or yaw control

effectiveness.

New aircraft are also being designed with an increased

emphasis on low radar signature aiiframe shapes. The B-2
bomber and the F-117A are recent examples. The low

observability design requirements have resulted in rather

unconventional airframe shapes which may degrade inherent
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stability of the design. A sophisticated, multivariabie

control system has undoubtedly been used to improve the
stability and maneuverability of these stealth ai.rcraft.

A future need for multivariable flight control systems

is the area of aircraft flow control. Various boundary layer
flow control devices, such as small movable chin fins or
surface blowing devices, are being considered to improve

aircraft maneuverability, especially at high angles of
attack. Additional flow control effectors will require a
multivariable control system to function in concert with the
prirtary control surfaces of the aircraft.

To assess the effectiveness of any flight control system
design, criteria must be developed such that a minimum
acceptable performance can be specified. For military

aircraft, the flying qualitiesWl] (MIL-STD-1797) and flight
control system specifications[21 (MIL-F-87242) serve as the
principal flight control related performance specifications.
These military specifications have been formed after
compilation of many years of investigations and flight test
experience.

The current versions of the specifications, to a large
extent, are applicable only to aircraft with single-loop

control systems Although the current specifications have
been used successfully with many multivariable flight control

systems, this success is due to the fact the control system
have been designed such that individual control, loops can be
isolated and evaluated separately.

It has been only recently that analysis methods which
can be used for true multivariable control system evaluation
have matured to the point where they may be utilized to
assess actual aircraft flight control systems. Research in
the last ten years has resulted in many new analytical tools
for the evaluation (and design) of multivariable control
systems. Most important has been the research on the use of
matrix norms, such as the matrix singular value, as a method
to combine the characteristics of many control signals into
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one parameter which can be studied. :nstead of evaluat:ng

each control loop individually, all of the control loops are

evaluated at once. Thus, the analysis method can assess the

operation of the multivariable control system wherein all of

the control loops are interacting simultaneously.

I-!- h T -nogram Overview

This report documents the results obtained during Phase

I work of a Small Business Innovative Research (SBIR)

contract. The objective of the research was to demonstrate

the feasibility of the developing new measures of merit

specifically for multivariable flight control systems. In

addition, the results of the Phase I work is intended to

provide a foundation through which Phase II development of

the research can follow.

The Phase I work was divided into several tasks. Task I

was to select a control task and aircraft for study. An

existing linear model of the F-16 aircraft, actuators,
sensors and control system was used. Unfortunately, time was

not alloted in Phase I for a complete validation of this

model. Therefore, no specific conclusions should be drawn

from the research results reported herein regarding the

performance of the actual F-16 aircraft. For the purposes of

this initial study, the model represents a typical modern,

multivariable 'light control system.

The purpose of Task 2 was to identify and define the new
measures of merit. Several sources of pertinent literature

were used to identify the measures of merit. Specifically,

recent technical papers regarding multivariable control

system evaluation and design techniques were used along with

papers describing recent successful multivariable flight

control system applications. Whenever possible, new measures

of merit where developed to address areas which are already

included in the current military flying qualities and flight

control system specifications. The idea was to form new
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measures of merit which were, at least in spirit,

multivariable generali:ations of established single-loop

criteria for flight control system evaluations. For example,

a new measure of merit is proposed for computing the

multivariable system bandwidth. Bandwidth usually defines

the expected maximum frequency of good tracking and

disturbance rejection behavior. The calculations required to

compute the multivariable system bandwidth are very different

from the bandwidth criteria specified in MIL-STD-1797. The

results obtained from the new bandwidth criteria should not

be compared directly to the criteria. However, both the MIL-

STD-1797 bandwidth criteria and the new multivariable

bandwidth measure of merit are intended to quantify some

concept of system bandwidth.

The proposed new measures of merit were = intended to

replace any of the current applicable specifications, but

should be considered as an additional evaluation test

specifically designed for multivariable systems. The

measures where also chosen such that they do not favor one

design approach over another. The intent is to provide a

basis for comparison of multivariable flight control system

performance without regard to how the system was designed or

implemented.

Task 3 consisted of constructing analysis diagrams

suitable for describing each new measure. An example of each

measure is then computed using the linear model of the F-16

aircraft. Comparisons are made to any existing specification

or evaluation criteria which has a similar intent. These

comparisons are made to instill confidence in the new

measures of merit and are not meant to reflect on the

performance of the F-16 aircraft model or the adequacy of the

existing criteria used for the comparison.

Eight new measures of merit were defined in this

research: mode classification and nominal stability, multi-

loop stability margins, open-loop bandwidth, departure

susceptibility, effective response order, equivalent system
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error, turbulence response, and response decoupling. The

technical feasibility of the proposed new measures was

demonstrated by application of the measures to a linear model

of the F-16 aircraft. The results of the F-16 model analysis

reveal that each of the new measures can be computed for a
realistic multivariable flight control system.

1-2- R- orl- (un1mm, rv

The first task of this research was to select a control

task and aircraft for study. A high-order linear model of
the F-16 aircraft was chosen for this study. The description

of the model is given in Section 2 of this report.

The purpose of Task 2 was to identify the new measures

of merit. Section 3 of the report reviews.some of the

theoretical definitions and nomenclature needed to describe

the new measures. Section 4 describes each proposed

evaluation measure and, when possible, expected results are
reported from available literature and experience.

Task 3 consisted of constructing analysis diagrams

suitable for specifying each new measure. An example. of each
measure is then computed using a linear model of the F-16

aircraft. The results of Task 3 are documented in Section 5
of this report. Conclusions obtained from this research are
given in Section 6 while recommendations for Phase II are
noted in Section 7. Technical references are listed in

Section 8.
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2. Aircraft Model and Control Task Selection

A high-fidelity model of the F-16 C/D aircraft was

chosen for this study primarily because a nonlinear
simulation of the aircraft has already been developed by

Systems Control Technology, Inc. personnel for a separate

contract (F33657-85-C-0027). The F-16 C/D simulation model
was initially used to verify the implementation of the

digital flight control system. The simulation is based on
the Block 15 aerodynamic characteristics( 31 (angle-of-attack <
29 deg, altitude < 60000 ft, 0.2 < Mach < 2.0) and the Block
25 digital control laws.[41

2-1 7-16 Airt-mft Model

A linear model defined at 20,000 ft altitude and Mach
0.8 was used for the Phase I work. The linear model of the
aircraft has ten states: axial velocity, lateral velocity,
vertical velocity, pitch rate, roll rate, yaw rate, roll

Euler angle, pitch Euler angle, yaw Euler angle, and

altitude. The eigenvalues of the bare airframe are shown in
Table 2.1. As indicated by the list of eigenvalues, the F-16
C/D model for the selected flight condition has an aperiodic

instability with a time-to-double amplitude of 6.6 seconds.

Table 2.1 Open-Loop Airframe Eigenvalues

Eiaenvalue Mode Classification

0.0 heading
0.0 altitude

-0.0132 spiral
0.105 phugoid

-0.114 phugoid
-0.991+jl.41 short period
-0.991-jl.41 short period
-2.78 roll
-0.410+j3.97 dutch roll
-0.410-j3.97 dutch roll
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A block diagram of the complete control system, as

modeled, is given in Figure 2.1. The digital control laws
were first transformed to an analog equivalent so that all of

the subsequent analysis could be carried out in the

continuous time domain. First order lag approximations of
the digital sample-and-hold functions were utilized assuming

a sample rate of 64 Hz. The sensor and actuator models

included 5 states and 10 states, respectively. The primary
control system has 17 states. The Dryden turbulence model

was used to model turbulence in the axial, lateral, and

vertical velocity components. The turbulence model has five

states. The complete closed-loop system has 53 states.

2.2 Control Task Description

The F-16 multi-role fighter is considered a Class IV
aircraft by the current flying qualities specification. The

flight condition considered in this analysis is a nonterminal
flight phase wherein rapid maneuvering, precision tracking,

and precise flight-path control may be required. Therefore,
Category A flight phases are considered representative.
Category A flight phases directly applicable to this
investigation are: air-to-air combat (CO), reconnaissance

(RC), in-flight refueling (receiver) (RR), and close

formation flying (FF).
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3. Review of Multivariable Control System
Analysis Methods

This section is intended to introduce the terminology
which will be used in subsequent theoretical development.
The material to be covered is not new, but it is recent
enough to warrant a brief review. References are cited,
where appropriate, wherein further information can be found

concerning these concepts.

3-1 LAnear nodel Ogc~- 4Ztinng

A continuous linear model will have the assumed form,

x(t) = Ax(t) + Bu(t)

y(t) = Cx(t) + Du(t) (3.1)

where x(t) represents a vector of system state, u(t)
represents a vector of system inputs, and y(t) is a vector of
system outputs. The overstrike dot denotes differentiation,

i.e. x(t) - dx(t)/dt.

The transfer function matrix of the continuous time
linear model is obtained from the Laplace transform of the
continuous state space model. The transfer function matrix
for the continuous model will be denoted G(s), and is defined

by,

y(s) - G(s)u(s) - [C(sI-A)-IB + Dlu(s) (3.2)

Frequency response of the individual elements of the transfer
function matrix are obtained by replacing 's' with 'jco' fo
selected frequency o values. Traditional Bode magnitude and

phase curves can then be obtained for each transfer function
element.
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The size of a matrix can be quantified by its norm. One
can think of the matrix norm as the maximum gain of the
matrix. :n most recent multivariable control research, the
spectral norm has been used to measure the size of a matrix.
The spectral norm of a matrix is also the maximum singular

value of a matrix, denoted a(A] and can be computed by,

C[A] - mx (A-A) (3.3)

where Xax(A-A) is the maximum eigenvalue of A*A. Algorithms

for computing singular values are readily available in
commercial computer-aided engineering packages such as Ctrl-
C®.

Singular values have many applications in control system
analysis primarily because of the convenience it provides in
measuring the size of a transfer function matrix. Typically,
the maximum and minimum singular values of the transfer
function matrix are plotted against frequency, like Bode

plots.[ 51 For a continuous model, a(G(jo.j)] is plotted for
selected frequency points 0j.

3 3 Ranlkpl Singular Values ane the 2-Nor-

The Hankel singular values of a linear system are
closely related to the controllability and observability
properties of the system. If the linear, continuous, state-
space model is stable, the controllability grammian P is
defined by,

00

P - f exp(At)BB*exp(A*t) dt (3.4)
0
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while the observability grammian Q is,

Q = f exp (At) C*Cexp (At) dt (3.5)
0

It can be shown that the grammians also satisfy the following

Lyapunov equations,

AP + PA: + BB* = 0 (3.6)

and,

A*Q + QA + C*C = 0 (3.7)

The Hankel singular values of the system G(s) are then,

hj[G(s)] 4 • Y (3.8)

where, by convention, h > h+1.1 [ 6 1

The 2-Norm of a linear system is also obtained from the

controllability and observability grammians. J 71 The 2-norm is

typically denoted by fIG(s) 112 and is,

1IG(s) 1122 = trace[CPCT] = trace[BTQBI (3.9)

where the trace operator stands for the sum of the diagonal

elements. The 2-norm essentially measures the rms response

value if the system is excited by white noise. This property

is evident by noting that,

00

IIG(s)112 2  f- 1 trace(G*(jO)G(J0) ]do (3.10)
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The expression above is the same as computing the rms

response of a transfer function matrix if the noise process

had an identity spectral density matrix. it also should be

noted that the direct feedthrough term of the transfer

function matrix (i.e. the D matrix in (3.1)) must be zero for

the 2-norm to be finite.

3-4 Sngular- Vales

The structured singular value has been defined to

measure the robustness properties of linear, multivariable

contrcl systems.[ 8 -1 0] The robustness measure determines

whether the system remains stable for a given set of

perturbations to the nominal model. Performance robustness

tests are also possible wherein the system is checked against

performance requirements (and remains stable) for a given set

of perturbations to the nominal model.

The robustness measure is intimately tied to the

definitions of the perturbations which are to be

investigated. Typically the perturbations are described by a
block diagonal matrix A - diag(Al, ... ,An). The individual A2

blocks may be either scalars or matrices and can be complex

in some cases.

The structured singular value of a complex matrix M,
denoted p(M), is defined by,

i_• , a ((Y[A] I det(I - AM) - 0} (3.11)

The value of 1/g(M) determines the size of the smallest

"destabilizing" A which satisfies det(I - AM) = 0. Also,

i/g(M(so)) measures the size of the "worst case" or smallest

perturbation A which moves a closed-loop pole to so.

Computation of the structured singular value continues

to be an area of concentrated research. However, the

Frobenius norm scaling technique has proven to be a reliable
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alternative to exact computation of the structured singular

value. Algorithms which utilize the Frobenius norm scaling

technique are now widely available. Therefore, it is

reasonable to assume that a measure of merit based on a

structured singular value computation will be acceptable by

industry.

The Frobenius norm scaling technique makes use of the

fact that,

min a[DMD_1] (3.12)

where D is a diagonal scaling matrix which is formed such

that each block in A is scaled by the associated diagonal

element in D. The equation above indicates that the scaiing

matrix D must be found which minimizes ([DMD 1 ]. The

Frobenius norm scaling technique typically uses Osborne's

method of finding a scaling matrix D which minimizes the

Frobenius norm, I JDMD'JI IF. (1 11  The resulting D matrix is

then used to compute a(DMD-1 ] as an (upper bound)

approximation to .(M).

An approximation to the structured singular value is

also available for the special case when the model

perturbation A is strictly real. 123 For this special case,

the structured singular value will be denoted IR(M) and is

approximated by,

max min 1

LR(M) mx m p[- (DMD-10 + OD-1M*D)] (3.13)

where p is the spectral radius and 0 is a permutation matrix

with the same form as D but with either a +1 or -1 on the

diagonal elements. The approximation involves searching for

the permutation matrix which maximizes gR(M) and therefore
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preciz=s z:e sign (±) of the worst case real peru-

3-6



4. Measures of Merit for F.Lght Control Systems

In flight control system evaluation and analysis, one is

typically concerned with the criteria developed to test

nominal stability, nominal performance, robust stability and
robust performance. Nominal stability and performance

measures are used to define stability and performance
properties of the flight control system at the nominal design
conditions. Robust stability and performance measures deal
with how model uncertainty influences stability and

performance. The remainder of this section serves to
introduce the new multivariable measures of merit.

4-1- M-nminan St-aix14*y Measu rP&

Nominal stability has been indirectly specified in the
military flying qualities specifications by requirements

regarding the location of dominant characteristics roots.

For example, damping and natural frequencies are specified
for the short period, phugoid, 4nd dutch roll modes. In
addition, time-to-double amplitudes are specified for the

spiral mode.
The flight control or stability augmentation system may

introduce additional modes into the actual response of the

aircraft as commanded by the pilot. With control system

complexity increasing in an effort to maximize performance,
the order of the control system itself may be quite large.

The current aircraft flying qualities specification
takes into account these additional control system modes by
utilizing the definition of an equivalent system. An
equivalent system is simply a low-order equivalent

representation of the actual high-order response. The

equivalent system model includes a pure time delay as an
approximation of the effect of higher-order dynamics.

Assuming an appropriate equivalent system can be found, the
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parameters of the equivalent model are then used to assess

flying qualities. The equivalent system method works quite

well in measuring response characteristics but the roots of

the equivalent system model are not necessarily a good

indicator of nominal stability. For example, if the

recommended method of matching frequency response

characteristics is used to develop the equivalent system

model, it is possible that an unstable mode is approximately

(but not completely) cancelled by a non-minimum phase zero

and therefore will not appear in the low-order equivalent

system model. As a result, nominal stability should only be
measured on the highest fidelity model available.

The V/STOL aircraft flying qualities handles the nominal
stability assessment problem for hovering V/STOL aircraft by
specifying stability for all modes of the characteristic
equations as opposed to an approximation made by equivalent

systems modeling.[ 131 The specification requires that all
aperiodic roots of the longitudinal and lateral-directional

characteristic equation should be stable for Level I rating.
Oscillatory modes of frequency greater than 0.5 rad/sec

sl uld also be stable, but oscillatory modes of frequency
less than or equal to 0.5 rad/sec can be unstable provided

the damping ratio is less than -0.1.

The nominal stability specification for V/STOL aircraft
provides a good model for new specifications concerning

conventional aircraft. Nominal stability requirements for
all of the modes represented in the highest possible fidelity
linear model should be specified. The aircraft flying

qualities specification allows for an unstable spiral mode;
as long as the time-to-double amplitu"'e is greater than 12
sec (Cat. A and C). Therefore, A£U unstable modes of the
high-order, closed-loop aircraft model should have an

equivalent time-to-double amplitude of greater than 12 sec.
This nominal stability requirement can be evaluated by

computing the eigenvalues of the entire, closed-loop model of

the aircraft. The complete model should include both
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longitudinal and lateral-directional dynamics, and the

complete operational control system. It is possible that the

closed-loop model may have up to one hundred states, but it

is very important that all possible dynamic modes be

represented. The closed-loop eigenvalues should then be

sorted to determine any which have a positive (unstable) real

part. The time-to-double amplitude of the unstable modes
should then be computed and shown to be greater than 12 sec.
The time-to-double amplitude (t2d) can be computed for each

unstable aperiodic mode from the equation,

ln 2
t2d - (4.1)

p

where p is the unstable root. For unstable oscillatory

modes, the time-to-double amplitude is given by,

In 2
t2d -- (4.2)

where ; is the damping ratio and cn is the natural frequency

of the unstable mode.l 1 4]

4.1.1. Mode Classification

The fact that the control system is multivariable does

not change its characteristic roots; however, it becomes more

difficult to classify the modes according to the traditional

bare-airfz'ame rigid-body modes. Mode classification is also

complicated by the fact that the stability augmentation
system may introduce many extra modes which may or may not
influence the response of the aircraft to pilot stick inputs.

For these reasons, a mode classification procedure is
proposed to aid in measuring nominal stability of the

dominant modes of the longitudinal and lateral-directional

axes.

4-3



With a model represented in modal form, the input-output

residues are readily available.A151  The magnitude of each

residue reflects the contribution of that mode to the input-

output response. A residue with zero magnitude indicates

that the mode is uncontrollable, unobservable, or both.

Assuming the continuous system has real, distinct

eigenvalues, the modal decomposition of the full order state

matrix is,

A -= MA (4.3)

were A - diag(X1 , X2 , ... , n, M is a real matrix of

eigenvectors, and Xi are the (real) eigenvalues. A similar

decomposition is possible for systems with complex

eigenvalues.

The system can be transformed to modal form by defining

a new state vector q as, x - Mq, and then the linear model

can be written as,

q(t) - Aq(t) + Bmu(t)

y(t) = Cmq(t) + Ou(t) (4.4)

where A - M-1AM, Cm- CM and Bm - M-1 B. The continuous model

transfer function matrix is obtained by using the Laplace

transform and solving for y(s),

y(s) - (Cm(sI - A)-lBm + Dju(s) (4.5)

Because A is diagonal, the system transfer function matrix

can also be written as,

n Riy(s) = + D] u(s) (4.6)

i-1 s/Xi - (

Ri is the residue matrix for the ith mode, computed from,
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R Xvnbj (4.7)

where cmi is the ith column of Cm and bmi is the ith row of

Bm.

It should be clear that if Ri is very small for some

given mode, the mode does not contribute significantly to the

response of the system. The maximum matrix singular value of

the residue matrix will be used to measure the size of

residue matrix. Therefore, all modes with residue matrices

such that,

a(Ri] > K (4.8)

can be considered as contributors to the response of the

system.
Equation (4.8) illustrates that the value of x

determines which modes are considered contributors to the
response of interest. Consequently, X should be chosen as

some small number so that only those modes with large residue
magnitudes are classified. Although K ultimately depends on

the units of the response variables, a value of K - 0.00001

was chosen for this study.

The aircraft military flying qualities specification

requires that the phugoid mode of the aircraft should be

stable and'have a damping ratio greater than 0.04.

Consequently, it should seem reasonable to specify that all

longitudinal axis modes should be stable. To determine the

longitudinal axis modes, the mode classification procedure

defined above will be used, with the longitudinal control

force input (lb) and responses of pitch rate q(rad/sec) and

vertical acceleration (g's).

As stated earlier, the aircraft flying qualities

specification allows for an unstable spiral mode as long as

the time to double is greater than 12 sec. Therefore, we
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will measure lateral-directional axis nominal stability by

requiring that all lateral-directional axis modes have a time

to double greater than 12 sec. The lateral-directional axis

modes are to be determined by the classification of modes

procedure with lateral stick and directional pedal force (Ib)

input. Responses of interest are roll attitude (deg) and

sideslip (deg).
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4.2. Robusr Stahi1iv Measures

The purpose of this section is to review the concepts

related to stability robustness. Stability robustness is the

the property whereby the system remains stable in spite of
the existence of various sources of uncertainty (modeling

errors). Model uncertainty may be due to a number of sources

including the ones mentioned in the military flight control

specifications:

a. Mathematical modeling and errors in defining the
nominal system model and the plant;

b. Variations in dynamic characteristics caused by
changes in environmental conditions, manufacturing
tolerances, aging, wear, noncritical material
failures, and off-nominal power supplies;

c. Maintenance induced errors in calibration,
installation, and adjustment;

d. Errors due to modeling of airframe structural
dynamics/inertial coupling between axes and
frequency dependency of stability derivatives;

e. Digitization effects due to digital control
implementation (phase shift due to sampling).

This research will consider three measures of stability

robustness. The first measure is a multi-loop equivalent of

the traditional single-loop stability margins which are

specified in the flight control system specifications. The

second measure, open-loop bandwidth, stems largely from

flight control design concepts which rely on the importance

of bandwidth to gain and phase margin definition, tracking

performance and disturbance rejection. The last stability

robustness measure is a measure of the susceptibility of an

aircraft to depart from controlled flight. The departure

susceptibility metric is based on measuring the robustness of

the control system to variations in aerodynamic stability
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derivatives which are known to dominate aircraft departure

warning, susceptibility, and severity.

4.2.1. Multi-loop Stability Margins

It has been standard practice in control engineering to

represent model uncertainty in two distinctive types: loop

gain uncertainty and phase uncertainty. The standard single-

loop gain margin is a measure of the amount of tolerance of

the system to only loop gain uncertainty such that the system

remains stable. The phase margin is a measure of the

tolerance of the system to only phase lag or delay, i.e. loop

phase uncertainty such that the system remains stable.

The military flight control system specification uses

gain and phase margins to asses stability robustness. A

typical form of the phase and gain margins required to pass

the military specifications is shown in Table 4.1. The phase

and gain margins include both positive and negative entries

corresponding to gain amplification or attenuation and phase

advance or phase delay uncertainty.

Table 4.1 MIL-F-87242 Gain and Phase Margin Specification

Mode Frequency fm, Hz GM PM
(dB) (deg)

fa < 0.06 ± 4.5 ± 30

0.06 < fm < first aeroelastic mode ± 6.0 ± 45

fa > first aeroelastic mode ± 8.0 ± 60

The military specification requires computation of a

gain and phase margin for each feedback loop. The loop in

question is tested while all other loops are closed at their

nominal gain values. It has been pointed out by many
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researchers that this type of one-loop-at-a-time uncerrainty

representation is not realistic for a multi-loop system. rt
is possible for a lightly damped system to have acceptable

single-loop gain and phase margins yet very small

simultaneous gain and phase variations could drive the system

unstable. A more realistic measure of system robustness

should allow simultaneous perturbations in all the feedback

loops.

The stability margin of a system can be assessed by

examining the Nyquist plot and determining its closest

approach to the -1 point. To aid in this analysis, Smith

introduced a vector margin which was defined to be the

distance to the -1 point from the closest approach of the

Nyquist plot.i 1 6 1 For a multi-loop system, the Nyquist

Stability Criterion still applies except that the stability

is related to the closeness of the determinant det[I+G(s)] to

the -1 point.

Using a multivariable version of the Nyquist Stability

Criterion, a non-unique (estimate) of the multi-loop gain

margin is, [171]

GMj = (4.9)

where,

min 
(4.10)

The parameter a is essentially the magnitude of the vector

distance from a multivariable Nyquist plot generalization to

the -1 point.
The transfer function matrix S(JO)) is the system

sensitivity function, typically defined as,

S(s) = (I + G(s)]"I (4.11)
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where G(s) is the open-loop system return ratio matrix. The

open-loop return ratio matrix is essentially all of the
feedback system components placed in series from the loop
breaking point. In contrast to the single-loop stability
margins described previously, the return ratio matrix is
obtained by opening all of the feedback loops at the same

time.

Note also that the multi-loop margin can be defined for
any loop breaking point in the feedback system. Typically,

loop stability margins are defined at the interface between

the control system and the actuators, or the "input" to the
controlled system and the "output" of the system which is the
interface between the sensors and the control system.

The multi-loop phase margin PMI, computed using the

system sensitivity function, is given by,

PMI = cos 1 (1 - C-) (4.12)

Another multi-loop stability margin can be defined using
the equivalent of an inverse Nyquist plot. The gain margin

GM2 is then defined, (181

GM2 - 1 ± J (4.13)

where

min 
(4.14)

(T (j(O) ]

and T(s) - G(s)[I + G(s)]- 1 is the complimentary sensitivity
function. The multi-loop phase margin PM2 is,

PM2 = cos 1 (1 - P) (4.15)
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The multi-loop stability margin estimates obtained using

the system sensitivity functions may be conservative. In

other words, these methods may predict stability margins

which are much smaller than the actual margins. To alleviate

some of the conservatism, it is possible to combine the

results of the two methods to improve the estimated stability

margins. (191  Accordingly, a positive gain margin GMpo3 is

defined by,

61

GMpo - max(-,I+3) (4.16)i-a

and a negaýJive gain margin as,

GMneq- min (, -1) (4.17)
1+a

The final gain margin estimate, which will be denoted by GM,
will be obtained by combining GMpos and GMneq to form a

"symmetric" (±) answer,

GM =- ± 20 log(min(GMIpO, I/GMneg)) (4.18)

and the final phase margin estimate is,

PM U ± max(PMI,PM2) (4.19)

Conservatism also results from the relative scaling of

the system where the loop is broken. This means that

depending on the units of the signals, different estimates of

GM and PM may result using these singular value relations.

At this point, it is necessary to either include an explicit

definition of signal units in the definition of multi-loop

stability margin requirements, or to propose an automatic

scaling algorithm which is reliable and readily available.
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The Frobenius norm scaling technique discussed in Section 3

has been successfully used to reduce the effect of scaling in
the definitions of a and 5. Results shown in Section 5 for

the F-16 aircraft will consider the effect of unit scaling in
more detail.

4.2.2. Open-loop Bandwidth

It is particularly appealing to measure stability
robustness using the open-loop vehicle response bandwidth

because of the relationship between open-loop bandwidth and
traditional single-loop gain" and phase margin definitions.

For example, the current flying qualities specification
includes a requirement on open-loop bandwidth of the pitch
axis transfer function in the short-term pitch axis

requirements, Para. 4.2.1.2, Part D. This bandwidth
requirement is intended to define the maximum frequency at

which closed-loop tracking can take place without threatening

stability. The system bandwidth, in this case, is defined as
the highest frequency at which the phase margin is at least

45 deg and the gain margin is at least 6 dB. The gain and
phase margin values are consistent with the stability margins

specified in the military flight control system

specification.
Generalizations of the open-loop bandwidth for a single-

loop system to multivariable system definitions have not been

very successfu.. For example, some researchers have proposed
the use of singular value plots to define open-loop bandwidth
frequencies. Doyle and Stein[51 have defined "...the

bandwidth of G, i.e., for (0 such that C(G(jO)] << 1." On the

other hand, Safonov, Chiang, and Flashner, [201 note that
"Loosely speaking, the bandwidth (ft of a control system is

the frequency range where the loop transfer function is
'big', i.e. j(G(JC)j >> I for all c) < 0)8." Most researchers

seem to agree that the open-loop bandwidth should be defined

somewhere between where M[G(J0)] >> 1 and c(G(jo))] << 1. The
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problem is complicated by the fact that the units of G(jw)

can affect the singular value computations such that a
different bandwidth can be computed for different signal

units.

To even further complicate the definition of bandwidth,
there exist flight control systems wherein the loop gain does
not cross unity magnitude at all. This situation occurs when
the control system is not providing stability augmentation
but merely an augmentation of the aircraft responses. A
specific example is when a pitch damper is used simply to
modify short-period damping and not necessarily to provide

good tracking capabilities.

The bandwidth of the multivariable system will be
defined, for this research, as the lesser of the frequencies
at which the multi-loop gain margin and the multi-loop phase
margin are determined. This definition is a direct analogy
of the pitch-axis bandwidth criterion currently included in
the aircraft flying qualities specification. The stability
margin definition also avoids the limitations of the maximum

or minimum singular value gain crossover frequency
definitions. Bandwidth in terms of stability margins also
does not require an open-loop gain crossover frequency and is
therefore applicable to simple response augmentation systems
(pitch and yaw dampers) as well as more sophisticated
tracking systems. Finally, if an reliable scaling algorithm
is used for multi-loop stability margin computation, the
issue of signal units is, at least, minimized.

To define the requirements for bandwidth, the pitch axis
requirements for the aircraft flying qualities will be used
as a start. The recommended bandwidth for a Level I rating
in the pitch axis is a minimum of 6.5 rad/sec and a maximum
of 11 rad/sec (with no assumed time delay). These values are
also consistent with a recent evaluation of the multi-loop

stability margins of the lateral-directional flight control
system of the X-29.[ 2 1] The multi-loop stability margins for
the X-29 were defined from frequencies between 4.3 to 9.8
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rad/sec for a variety of flight conditions. The recommended
bandwidth should be compared to the lesser of the frequencies

at which the multi-loop gain margin and the multi-loop phase
margin are determined, in the frequency range of 0.06 Hz to
the first aeroelastic mode frequency.

4.2.3. Departure Susceptibility

Early efforts to evaluate aircraft spin susceptibility
were based on design criteria for satisfactory spin recovery,

should a spin condition be encountered.[ 2 2 1 By government
suggestion, research since 1970 has focused on predicting and
evaluating an aircraft's resistance to departure.[ 2 3 1

Therefore, much of the more recent developments in analytic

measures for departure susceptibility have been based on
groundwork formed in the 1970's.[241

Investigation of the relationships between the post-
stall behavior and aircraft stability derivatives revealed a
strong relationships between departure susceptibility and
certain lateral-directional derivatives; namely, the
weathercock stability derivative CnA and the dihedral effect
Cift. Bihrle, for example, plotted CIp against CnA to yield

regions in which the aircraft is predicted to be susceptible

to roll reversal or departure.J 2 5l

Using Cnp and CIp, along with the yawing and roll moment
derivatives to lateral control deflection, Cn~a and Cj&,
Weissman developed a departure susceptibility criteria by

combining the stability derivatives to relate specific
transfer function numerators and denominator coefficients.[ 2 6 1
The variables of interest are,

Cno,dyn - CnP cos E - (1) Clp sin ( (4.20)

and the Lateral Control Departure Parameter (LCDP), defined

as,
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LCDP = Cn - C10 (2-k (4.21)

Weissman plotted CnP,dyn against LCDP and defined three

regions which correspond to a high departure susceptibility.

A sample plot of Weissman's departure criteria is shown in
Figure 4.1. From Figure 4.1, one can see that Weissman was
also able to predict the type of departure in the defined

regions.

The effects of non-zero'sideslip angles were first
investigated using root locus plots of the lateral-

directional mode poles for changing sideslip.C2 7 , 2 8] Stengel
investigated the effect of combined non-zero roll-rate with a

non-zero sideslip angle using this technique.[ 2 9] Along with
Berry, he then made use of stability maps by plotting (and

classifying) regions of instability for all of the airplane
modes with various combinations of non-zero aircraft

states.[301 A sample stability map of the type reported by
Stengel and Berry is shown in Figure 4.2.

Pelikan has reported a modification to the traditional
definition of CnA,dyn which uses a non-zero sideslip

explicitly. (311 His departure parameter, called Cna,apparent,

also includes the effects of various control inputs. T'e

definition of CnP,apparent is,

Cnp,apparent- Cn8,dyn + I u-(Cn1. iCOS - C Ij. sina) (4.22)
if, Ixi4

where ui is the deflection of the ith control surface.

Many of the analytical methods described above are based
on establishing regions of departure stability and

instability. Startiz.g from a known stable flight condition,

an alternative departure resistance criteria would consider

some measure of how close the aircraft is to an unstable

departure condition. Such a measure could be defined by
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considering the dynamic effects of extreme maneuverina as an
uncertainty in the nominally stable aircraft dynamics. -he

measure would relate the amount of uncertainty allowable
before a departure stability condition is violated. A
departure resistant aircraft would then be one which
tolerates a large amount of uncertainty while a departure
prone aircraft would be one which tolerates very little
uncertainty b4cause it is al'-ady very near an in4stabilit

Structured singular values have recently been considered
for departure analysis by measuring the effect of uncertainty
in some of the key airframe stability derivatives.[ 321 The
uncertainty matrix A will therefore represent a diagonal

matrix of uncertain stability derivatives. For stability
analysis, one must consider how the eigenvalues of the
vehicle state matrix are effected by the uncertainty from A.

Equivalently, one is interested in the eigenvalues of the

uncertain linear system,

x = (A - BAC) x (4.23)

where, A - diag({i} is diagonal matrix of stability

derivative uncertainties. The matrices B and C are defined
such that the stability derivative uncertainties are added to
the vehicle state matrix in the appropriate location. The
feedback system which results is shown in Figure 4.3, where
M(s) = C(sI - A)- 1 B. The relevant departure parameter DP is

defined by the largest structured singular value over
positive frequencies,

max
DP =O a 0 9(M(jO)) (4.24)

and the corresponding stability condition becomes,
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max

The expression above shows that if DP is small, the aircraft

is predicted to be departure resistant because it can

tolerate large amounts of uncertainty before the stability

condition is violated. Conversely, if DP is large, the

stability condition can be violated for small uncertainties

and the aircraft is not departure resistant.

The primary advantage of the structured singular value

formulation is that perturbations in any number of stability

derivatives can be studied by appropriate definitions of the
A matrix. Also, the structured singular value departure

methodology can be readily adapted to include the aircraft

control system. Until now, only Pelikan's CnP,apparent

parameter considered the effect of the control system.

Mathematically, the aircraft control system becomes imbedded

in the definition of M(s); i.e., M(s) is made up of airframe

states and control system states. Consequently, open-loop

(bare airframe) as well as closed-loop departure parameters

can be defined.

As an example, Stengel investigated the effect of
simultaneously perturbing the derivatives Np and Lp on the

stability of a fourth-order lateral-directional model of the

Space Shuttle Orbiter.[ 3 3] Stengel predicted stability

boundaries by "varying the aerodynamic derivatives, computing

the eigenvalues, and cross-plotting to define regions of

stability and instability as functions of the derivatives."

Similarly, the structured singular value technique can be

used to determine, from one calculation, the nearest

instability boundary from the (stable) nominal point.

Stengel considered a fourth-order airframe described by,

d J (p J (4.26)
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The stability derivatives describing the Space Shuttle
Orbiter at M - 1.5, a - 6. 6 are listed in Table 4.2. The

definition of M(s) for the simultaneous perturbations 5N5 and
SLp is shown in Table 4.3. Note that the A matrix is defined

to normalize the perturbations in each derivative by the

nominal derivative value so that an allowable perturbation
error percentage is predicted.

Figure 4.4 shows the inverse of the structured singular
values for the Space Shuttleexample. The minimum of the

curve defines 1/DP - 0.26, or DP - 3.85. Therefore, the

stability derivatives Np and Lp can be simultaneously

perturbed by 26% before instability can occur. The value of
DP also defines the following stability requirement,

max ( ' ILI DP M 0.26 (4.27)

In terms of the actual dimensional stability derivatives, the
equivalent stability condition above bounds the allowable

absolute variation of the derivatives,

0.44 < Np (1/sec 2 ) < 0.74 (4.29)

and,

-6.30 < Lp (1/sec) < -3.71 (4.30)

This result is compared to Stengel's result in Figure 4.5.

Note in Figure 4.5 that the departure parameter DP defines a

square which, in turn, determines the distance to the nearest

instability boundary.

To utilize the new departure parameter DP as an
indicator of departure susceptibility, one must plot DP

against angle-of-attack. Figure 4.6 depicts the expected
behavior of the departure parameter. It is expected that as
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Table 4.2 Space Shuttle Stability Derivatives

Derivatives Value

Nr -0.117 (1/sec)

No 0.587 (i/sec2 )

Np 0.053 (1/sec)

Yr -1.0
Yo -0.090 (1/sec)

YO 0.023 (1/sec)

Lr 0.203 (1/sec)

-5.003 (1/sec 2 )

LP -0.490 (1/sec)
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Table 4.3 Space Shuttle Uncertainty System

XT = r p

Nr Np N0 [NpG 1

A YrY0 B = B

LrLp• 0 0 0

[ o 1 o o ]
o 1 0 o4 8L
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angle-of-attack is increased, I/DP will be reduced until

ultimately it will come very close to zero. For all angles-
of-attack less than where I/DP - 0, the aircraft will be

considered departure resistant. For all angles-of-attack
greater than the point where I/DP - 0, the aircraft will be

considered departure prone.

Johnston has defined several open-loop airframe
dimensional stability derivatives which have been shown to
dominate aircraft departure warning, susceptibility, and
severity. [3 41  These derivatives are: NSA or NBDH, M0, L5, La,
Lp, Np, NQ, and Mp. Any number or grouping of these key

derivatives might be considered in developing the uncertainty
structure in A needed to predict departure susceptibility

reliably. The appropriate selection of key derivatives will
no doubt be a fruitful area of new research. For this
research effort, however, we will define the uncertainty
matrix A as,

A INOI (4.31)

IL0I

The selection of 8NO and 6LO in the uncertainty description is

prompted by the use of Cnp and CIp in the definitions of both

Cnp,dyn and LCDP.
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Nominal performance has been traditionally evaluated

using the military flying qualities and flight control system

specifications. The flying qualities specifications deal

primarily with response of the aircraft from pilot inputs.

The flight control system specification considers the

performance of auto-pilot modes and also defines stability

requirements.

Typically, specification compliance testing consists of

some type of analysis conducted from a particular input to

only one output. However, there are a few areas wherein a
multivariable measure may more accurately measure the nominal

performance of the aircraft. This section introduces four

areas in which multivariable measures can be used to evaluate

flight control systems. The four chosen areas are actually

generalizations of single-loop measures that are included in

the military specifications.

4.3.1. Effective Order

The current aircraft flying qualities specification,

MIL-STD-1797 and the proposed V/STOL specification MIL-F-

83300, (351 require the use of low order equivalent systems to

compute certain modal parameters for flying qualities

evaluation. This requirement was motivated by the fact that

little correlation was found between "dominant response"
parameters,-extracted directly from high-order models, and

flying qualities ratings.

There are many procedures available in the literature

for extracting reduced order models of dynamic systems. Each

of these methods have some characteristics of a high order
model as input and a linear low order equivalent system as

output. Generally, the particular method(s) used is left to

the choice of the individual contractor and the procuring

agency. Some of the methods mentioned in the military

standard are:
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"• matching frequency responses of high order
linearized models

"* matching frequency responses extracted from
flight time histories using a Fast Fourier
algorithm

"* matching frequency responses generated by stick
cycling in flight

* using a maximum likelihood technique to match
flight time history data

The acceptable forms for equivalent system models are
listed in Tables 4.4 and 4.5.(36] The order of the desired

response is dictated by specification of the structure of the

equivalent system models. In fact, it has been found that

pilot opinion ratings can be degraded when the response of

the closed-loop aircraft system are not of the same order as

the equivalent system model forms.[ 3 71 As a consequence, the

effective order of a higher order system is of critical

importance.

The relative magnitude of the Hankel singular values can
be used to measure the effective order of the system..[ 1 51 For

example, if the Hankel singular values are sorted in

descending order and the magnitude of the 'r' Hankel singular
value was much greater than the magnitude of the 'r+1' Hankel

singular value, the effective system order is 'r'. In other

words, the full order system can be well represented by a

system of order 'r'. Therefore, for the desired fourth order

equivalent system models shown in Tables 4.4 and 4.5, if the

Hankel singular values are sorted in ascending order, the

fourth Hankel singular value should be much larger that the

fifth.

4.3.2. Equivalent System Error

In the determination of equivalent systems for flying

qualities studies, some measure must be used to assess the

quality of the equivalent system match. The military flying
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Table 4.4 Longitudinal Equivalent System Model Structures

LongitudinaL Axis Models Reference

U Ks +* l/?eG2)e-'cs AAA7-
-1c s2 + 2+ 2cAIAA7+-1122

9Ke(s + l/?eI)(s + I/?02)ecsS NMI-STD-1797
Sion =(S 2 + 2ýws+ 0)1,2)(s2 + 2; 8sO)sps + (O~p 2)

9 Kis(s + l/T8i)(S + l/?O2)e-t~

Siona (S2 + 2;cp CIOP2 )(S 2 + 2;3paosps + cs2

and simuhauaomusly,

=ý Kns(s + l/TChi)CIIS -SD19
Sim (s2 +~ 2;pcops + CDP 2 )(s 2 + 2;spOgp S + (Osp2 ) MLSD19
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Table 4.5 Uzeral-Direcuional Equivalent System Model Smitrucus

Latreml-Directional Axis Models Reference

* K~e-W ALAA 77-1122

K~~e-~PMIL-STD- 1797
Spe s + 2 4 0dr(os + Od,

0 KC.(s2 + 2ýcb + co,2)e-4*s

81K (s + lI'TS)(S + 1/'C)(s7 + 2ýjgO)rs + (ad~r 2 )

and sitmultanously,

A . KO(s + 1Itca)(s + 1/'CB2)(S 4- 1I'9B3)C-4PMI-5 D19
81K (S + lIrTS)(s + 1f'tR)(s 2 + 2ýj&w~gs + (od2) MLSD19

10 K.6(s72 + 2;,6o~s + (o42 )e-T'6

SIM (s + lftCS)(S + IftCR)(s 2 + 2ýw~ + o~d2)

and simultaneously,

0 . (AIs 3 + A232 + Als + Aa)c 4 P~s MLSD1
Sped (s + lftCS)(S + l/?R)(s2 + 2 ý,Odrs + (O3r2)
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qualities specification recommends the use of the following
mismatch function,

0020J i2 [(gainHos-gainLos) 2 + 0.02 (phaseHos-phaseLos) 2 ] (4.32)

where 'gain' and 'phase' represent the gain and phase of the
frequency response to be matched and HOS refers to the
original high-order model and LOS refers to the low-order
equivalent system model. The matching function is to be
evaluated at twenty frequency points in the range from oi. to

C022 .

The mismatch function above attempts to measure the
error in the frequency response gain and phase. To
generalize this idea, we will consider a measure of the
transfer function error between the original high-order model
and that of the low-order equivalent system model. Matrix
singular values will then be used to indicate the size of the
error. Expressed mathematically, the equivalent system error
will be,

O'(GHos(jo)) - GLOS(jo))I < e(0)) (4.33)

where GHOs(jo) is the transfer function matrix of the high-
order model and GLos(J0) is the transfer function matrix of

the low-order equivalent system model. The frequency
dependent function e()) will specify the allowable equivalent

system error.
A suitable definition for e(0)) can be obtained from the

current military flying qualities specification requirement
on the "added dynamics" which frequently result from
additional control system modes and can degrade pilot opinion
ratings. [381 The requirement was obtained by examining pilot
rating differences between pairs of in-flight simulated
responses which included various dynamic modes added to low-
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order eauivalent models. The low-order equivalent models
each reflected Level I flying qualities. Additional modes
which caused a change in pilot rating of one unit (Cooper-
Harper scale) were used to define an envelope of maximum
unnoticeable added dynamics.

The "added dynamics" includes any dynamics in the
vehicle closed-loop response which are not represented in the
equivalent system dynamics. Therefore, the added dynamics
specification limits the deviation of the actual closed-loop
response from the low-order equivalent system. The added
dynamics specification consists of upper and lower magnitude
and phase bounds which are depicted in Figure 4.6. The
response of the added dynamics alone should lie inside the
envelopes pictured in Figure 4.6.

The upper and lower magnitude bounds of the added
dynamics requirement are frequency dependent functions. The
upper bound, which will be referred to as mu(C)) is defined

by,

mu(O)) -13.16S2 + 31.61s + 22.79(s2 + 27.14s + 1.84 sm-j(O

while the lower bound, ml(CD), is expressed by,

m (O) 0.I0"095s 2 + 9.92s + 2.151

S2 + 1l.6s + 4.95 -j (4.35)

It is interesting to note that these functions are most
restrictive near the probable crossover frequency of the
pilot/vehicle system.

The added dynamics magnitude envelopes are meant to form
the following inequality,

ml(0) 1IgLos(JO) 1 1 gKos(J0))I mu(CO) IgLos(j)) I (4.36)
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where gHos(jO)) is the high-order transfer function frequency

response and gLO5(jO)) is the low-order equivalent system

frequency response. To generalize this inequality to the

multivariable case, the maximum singular value will be used

to measure the size of the transfer function matrices such

that,

mi ((0)) CY CGLoS (jCO•) 1 <5 C(GHos (jO) ] < mu ((.) (Y(GLoS(jO)) ] (4.37)

By adding and subtracting GLOS(j(O) from GHOS(jO)), the left

side of the inequality becomes,

Ml(O))C(GLos(j(O) ] 5 T[GLos(jO)) - (GLos(jW) - GHos(j(i)))] (4.38)

If 0( GLos(JCO) I > e(GLos(J(O) - GRos(JO))], the following

inequality insures (4.38),

(GLos(jo)) - GHos(JCD)] : (1 - mi(O))e[GLos(JCO)] (4.39)

By a similar development, the upper bound will be met if,

O(Gmos(j•o) - GLOs(JCO)] S (mu(03) - 1)G(GLos(jO))] (4.40)

As a result, an effective measure of equivalent system error

for multivariable flight control systems is,

,UCGRO S(jco) - GwS(JO)) 1 e(Ca ) (4.41)

o[GLos (j(O) ]

where e (co) is chosen such that,

e(0) < mu(CO)-1 and e(Co) < 1-mi(CO) (4.42)
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The frequency dependent functions mu(O))-! and 1-m1 (CO) are

plotted in Figure 4.7. This figure was used to choose a
suitable e(CO), which is,

e (O) = .1 s2 + 4.1s + 4.4 (4.43)
S1.17S2+ 29.63s + 7.3 ,-j4.

4.3.3. Turbulence Response

A measure of merit for the turbulence response of the
vehicle can be defined to assess ride quality of the aircraft

in turbulence. To provide a measure of merit for aircraft
turbulence response, one might consider specifying the shape
of the aircraft response spectral density. The power
spectral density of some scalar response 'y' of the aircraft,
denoted 0y(w), to turbulence inputs is given by,

( ) = If(jCo)1 2  'Dt(CD) (4.44)

where 0 t(0)) is the power spectral density of the turbulence

input and f(s) is the transfer function from the turbulence
input to the aircraft response of interest. The spectral
densities of turbulence, in both the Dryden and von Karman

form, are specified in the military flying qualities
specification.

Unfortunately, a measure of merit based on the shape of
the response spectral density may be too restrictive. As an
alternative, the root-mean-square (rms) of the cockpit
acceleration response to turbulence should provide an
adequate measure of turbulence response. The rms value ay is

given by,

l'2 f If (ji) 12 Ot (W) do) (4.45)
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Typically, the rms value of the aircraft response in one

axis can be specified for turbulence in the same axis. For

multivariable flight control systems, it is possible that the

longitudinal and lateral-directional axes are coupled in some

manner. When the two axes are coupled, the effect of

simultaneous turbulence should be considered. When more than

one response variable is of interest, the rms response

variables are most easily determined using the state space

equations,

x(t) - Ax(t) + Bw(t)

y(t) - Cx(t) (4.46)

where w(t) is assumed to be white noise with intensity

e(w(t)wT(C)] - Q8(t-¶). It is assumed that a state space

representation of the turbulence spectral density has been

augmented with the aircraft state equations in order to form

(4.46). The rms values of the output vector are found as the

diagonal elements of the matrix CXCT where X (the state

covariance) is obtained from,

AX + XAT + BQBT - 0 (4.47)

The 2-norm of the system is the trace of the matrix CXCT and,

therefore, it represents the sum of the squares of the rms

values. The 2-norm of the aircraft excited by turbulence

input will become the measure of turbulence response.

Obviously, a smaller 2-norm value will indicate a greater

degree of turbulence rejection.

To measure ride quality, the responses of interest are

generally the vertical and lateral accelerations at the pilot

station. The turbulence input should include, at least,

turbulence in both the vertical velocity and side velocity

directions. The matrix Q usually contains the rms intensity
of the turbulence inputs, i.e., Q - diag([wq2 , avq2 ]. But in
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order to standardize the results of the linear analysis, unit

intensities should be considered, Q - diag(l, 1I.

Requirements for turbulence response 2-norm will be

established using the F-16 model. However, there is some
guidance available from the flight control system

specifications with regard to acceptable comfort levels. The
background guide to MIL-F-9490D specifies a ride requirement
limit of t 0.1g, zero to peak, for all single frequency
vibrations below 22 Hz.[ 3 9] The equivalent rms value of a 0.1

zero-to-peak sinusoid is 0.07 g's. As a result, for a system
including both vertical and horizontal axis accelerations,

the 2-norm of the system should be less than NF2 times the
expected rms value. For a 0.07 g acceleration in both axes,

the expected 2-norm value is 0.10 g's. Normalizing this
result by turbulence intensity of 5 ft/sec yields an expected

2-norm value of 0.02 (g/ft/sec).

For nominally unstable systems, the Lyapunov equation
does not have a bounded solution. However, some indication

of the response to turbulence can be obtained by numerically
integrating the transfer function matrix frequency response
to obtain an approximation of the 2-norm. The approximation

is,

I G(s)112 2  f I trace(G*(jo))G(jo)]dJa) (4.48)

where the frequency range of integration is from wi to (02

(rad/s). The transfer function matrix is defined by G(s) =

C(sI-A)- 1 B.

4.3.4. Response Decoupling

The most important aircraft cross-axis coupling problem
occurs when the aircraft is rolling. When the aircraft is
rolling, objectionable transients in pitch rate, roll rate,

and lateral acceleration may occur. The military
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specifications include many different criteria aimed at

measuring this coupling behavior. The flying qualities

specifications of interest are: Para. 4.8.1 Cross-Axis

Coupling in Roll Maneuvers and Para. 4.5.4 Lateral

Acceleration at the Pilot Stations. The applicable flight

control system specification is Para. 3.1.2.4.2 Lateral

Acceleration Limits, Rolling. Each of these requirements are

designed to limit the allowable amount of cross-axis coupling

when the aircraft is rolling.

Clearly, several responses are of interest in assessment

of cross-axis coupling. The size of these responses should

be the measure of merit. Therefore, it is recommended that

the size of these cross-axis responses be measured using

singular values. A limit on the size of these responses will

limit the magnitude of their response in a rolling maneuver.

As a result, the measure of cross-axis coupling will be,

max -

(0 a G(G(JD)] < V (4.49)

where G(s) is the transfer function matrix from the lateral

stick force (lb) to the cross-axis variables of interest:

pitch rate (rad/s), yaw rate (rad/s), and side acceleration
(g's). The parameter V will be determined using the F-16

model.

Note that the aircraft state equations must be modified

for this assessment because the aircraft should be rolling at

some constant rate Po (rad/sec). The linearized equations of

motion, in the body-axis, must be modified by the underlined

terms shown in Table 4.6 to reflect the non-zero roll rate.

The effect of a non-zero roll rate on the linearized

airframe stability has been considered before by Stengel.[30]

Stengel showed that the short-period and Dutch roll modes

typically decrease in damping and increase in natural

frequency, for increasing body-axis roll rate. When

computing the proposed cross-axis coupling measure, the
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Table 4.6 Linearized Aircraft Equations with Non-zero Roll Rate

m (u + Wjq) -Mg 0 COSOI + FAX + FTX

m + Ujr WIp Mg 0 COSOI + FAY + FTY

m (w Ujq + P-1y) FAZ + FTZ

Aia LA

IXZ p I x Z Izz + LT

IYY q + MA + MT

IZZ IXZ P + NA + NT

4-41



maximum achievable rcll rate should be used for the given

flight condition.

4-4- tZnhh,' 4 rn-nce Magsures

The variation in performance due to model uncertainty
defines the performance robustness of the closed-loop system.
There are very few robust performance requirements directly
relevant to aircraft flight control system assessment.
Consequently, the measures of performance robustness
considered herein constitute one of the few new research
efforts aimed at quantifying the effect of model uncertainty
on the - of multivariable flight control systems.

There are at least two ways in which robust performance
of a system can be measured. The first would be to compute
the sensitivity of a particular performance parameter to
model ui.certainty. The measure, in this case, would be some
ratio of the change in performance divided by the change in
model parameters. The sensitivity approach has the distinct
appeal of being somewhat analytical in that an analytical
expression must be formed to describe the sensitivities of

interest. As a result, valuable insight might be obtained in
the development of the sensitivity expressions which may
ultimately lead to a better understanding of which model
uncertainty sources lead to the largest changes in aircraft

performance.

As an example, the matrix Lyapunov equation has been
used to propose nominal performance measures for effective

system order and for turbulence response. It has been shown
that the sensitivity of the Lyapunov solution to a parameter

p is given by, [40]

ax ax aA aAT aB aBT
AI --AT + ("X+ x . ;BT + ) = 1 (4.50)

ap p p4-p

4-42



With the partials aA/ap and aB/Ip defined, :he above eauat•cn

can be used to solve for aX/ap, which is the sensitivity ot

the Lyapunov equation solution to the parameter variation p.

While the sensitivity approach is by far the most

intellectually appealing, it suffers from the fact that very

little research has been conducted in this area. As a

result, only a few of the proposed nominal performance
measures have a direct analytical solution describing the

sensitivity of the solution to parameter variations.
Furthermore, verification of the predicted performance

robustness would be very difficult to conduct in practice,
especially given the highly nonlinear model structure of some

airplanes.

The second approach is to actually vary the aircraft
model dynamics by some standardized method and retest the
nominal performance measures. This approach is equivalent to

evaluating the performance sensitivity numerically. The
numerical perturbation approach also offers a straightforward

verification process wherein the model dynamics or high-

fidelity simulation dynamics are perturbed and well defined
performance metrics are retested. In order to implement such
an approach, a standard uncertainty set must be defined. The

standard uncertainty set proposed for this research is
defined in the next section.

4.4.1. The Standard Uncertainty Set

It is.expected that the manufacturer of the airplane
will consider uncertainty modeling specific to the airplane

as an integral part of the development of the airplane.
Therefore, the standard uncertainty set, which will be usid
to measure the performance robustness of a variety of
aircraft, should not contain specific uncertainties which
might favor one particular aircraft or control system type

over another. For this reason, the standard uncertainty set

defined for this research will only include gain and phase
uncertainty at pre-determined levels.
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The magnitude of the gain and phase uncertainty levels

might be expressed in either absolute values or as a

percentage of the specified minimum multi-loop gain and phase

margins. Obviously, the standard uncertainty set for

performance robustness testing cannot be larger in magnitude

than the recommended stability margins.

For gain uncertainty, the standard uncertainty set will
consist of a gain perturbation of ±1.5 dB introduced into

each feedback loop. A perturbation of ±1.5 dB represents

1/4th of the military specification single-loop stability
margin of ±6 dB and yields approximately ±19% variation in

loop gain.

The feedback loops should also be perturbed in the worst

case direction. The "direction" for gain variations means

whether +1.5 dB or -1.5 dB is added to the loop gain. The

sign of the worst case direction can be found using the real

approximation to the structured singular vali"' (see Section
3.4). At the bandwidth frequency, the permutation matrix (D

which maximizes the structured singular value reveals the

worst case directions of the standard gain uncertainty

set. [41]

Pure phase uncertainty is difficult to implement into

state space models and it is therefore difficult to analyze

and verify the effect of pure phase uncertainty in linear

models. As an alternative, the standard phase uncertainty

set v'ill consist of a transport or time delay introduced into

each feedback path. The pure time delay is modeled by the
transfer function eTs where T is the effective time delay in

seconds. The time delay T will be defined for the phase

uncertainty set as the delay which introduces 10 degrees of

phase loss at the bandwidth frequency. A phase loss of 10

degrees is approximately i/Sth of the recommended single-loop

phase margin. Therefore, the standard phase uncertainty time

delay is,
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ION
= (4 .51)1800)Sw

where Oftw is the multi-loop bandwidth in rad/sec and T is the

time delay in seconds.

A Pade' approximation of the pure time delay will be

utilized for analysis of continuous time models. The first-

order Pade approximation is, [42]

1 - Ts/2e-zs _ ( 4.52 )
1 + Ts/2

With the preceding definitions of the standard
uncertainty set, performance robustness measurement will

commence by perturbing the aircraft system dynamics by the

amounts defined in the standard uncertainty set. Each of the

nominal performance measures are then computed using the

perturbed aircraft system dynamics. The computed measures
using the perturbed system dynamics are the measures of

performance robustness.
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5. Measure of Merit Results for the F-16 Aircraft

In this section, the proposed new measures of merit are
computed for the F-16 aircraft model. While the results are
only applicable to one flight c.ndition, they are
representative of the numerical values and computational
requirements of the new measures. The results of the
application to the F-16 also reveal areas where the measures
need to be refined, based on a comparison of the results to
the expected characteristics described in Section 4.

5-1- Nminal Rl hilt-v Mesasirs

To test nominal closed-loop stability, the eigenvalues
of the complete closed-loop system were first computed. The
complete closed-loop system has 53 eigenvalues ranging in
equivalent natural frequency from 0.0 to 351.0 rad/sec. Only
one eigenvalue was found to be unstable. The unstable mode
is a real eigenvalue located at +0.02 rad/s. The time-to-
double amplitude for this mode is 34.7 seconds. It was
recommended in Section 4.1, based on current specifications,
that all closed-loop eigenvalues have an equivalent time-to-
double of greater than 12 seconds. Therefore, the F-16 model
meets this measure of merit.

5.1.1. Mode Classification
The proposed new nominal stability measure requires

classification of each of the characteristics roots of the
closed-loop system. Once the modes have been classified, the
stability or instability of each mode is tested. The mode
classification was carried out using the modal residue method
described in Section 4.1.1.

Of the 53 closed-loop eigenvalues, 15 were classified as
longitudinal modes. All of the longitudinal modes were found
to be stable except that the unstable mode located at +0.02
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rad/s was classified as a longitudinal mode. it is believed

that the unstable mode results because the control system has

failed to stabilize the open-loop unstable phugoid mode of

the airplane. The open-loop airframe eigenvalues were listed

in Table 2.1 where it was noted that the phugoid mode

consisted of two real eigenvalues located at +0.1 and -0.01

rad/s. The time-to-double amplitude for the open-loop

unstable phugoid root is 6.6 seconds. As a result, the

control system has increased the time-to-double for this mode

from 6.6 to 34.7 seconds, but the mode has not been

stabilized. Consequently, the F-16 model does not meet the

recommended requirement of all stable longitudinal modes.

Twenty-one eigenvalues were classified as lateral-

directional modes. All of the classified lateral-directional

modes were found to be stable. Thus, the recommended 12

second or greater time-to-double amplitude requirement for

lateral-directional modes has been met for this F-16 model.

It is interesting to note that only 36 of the total 53

eigenvalues were classified as longitudinal or lateral-

directional. Therefore, there are 17 eigenvalues which do

not appear to contribute to the longitudinal or lateral-

directional motion of the aircraft, as commanded by the

pilot. Five of these states stem from the turbulence model,

which is not excited by pilot inputs. It is possible that

the other unclassified modes stem from parts of the control

system which are not in use at this particular flight

condition.

; Rnobn"t _qthilitv MNAurag

The stability robustness measures are intended to

quantify the effect of model uncertainty on the stability of

the aircraft. It has already been shown in the previous

section that the nomi: ,1 closed-loop system is unstable. As

a result, these stability robustness measures must be
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interpreted as the amount of tolerable uncertainty before an

additional closed-loop eigenvalue becomes unstable.

5.2.1. Multi-loop Stability Margins

Multi-loop stability margins were computed at both the

input to the actuator model (output of the control system)

and the output of the sensor model (input to the control

system within the feedback loop). The block diagram

manipulations required to form the appropriate sensitivity

functions were completed using SCT's the graphical modeling

tool Model-CrM.

Figure 5.1 shows a Model-Cm diagram with an uncertainty

block inserted at the actuator input in the closed-loop

system diagram. The uncertainty block serves as a

placeholder such that the response from the input of the

uncertainty block to the output of the block is the same as

the complementary sensitivity function.

Figure 5.2 shows a plot of the inverse of the maximum

complimentary sensitivity function singular value as a
function of frequency. From this figure, one can see that

- 0.902 at 5.3 rad/s for this configuration.
The equivalent Model-Cm diagram to compute a from the

system sensitivity function is shown in Figure 5.3. A plot
of the inverse of the maximum sensitivity function singular

value is shown in Figure 5.4. The minimum value shown in
Figure 5.4 reveals that a - 0.57 at 12.3 rad/s. As a

comparison; a recent study of the X-29 lateral directional
flight control system resulted in a value of a = 0.67 at 7.9

rad/s.[ 2 1] This value of a was also obtained at the input

node of the control system and a similar flight condition (M

0.7, 30,000 ft altitude).

The multi-loop gain and phase margins, at the actuator
input, are computed from a and ( obtained above.

GMpO8 = -max(_,l+(+) = max(l.9,2.3) = 2.3 (5.1)
1-a
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1]

GMneq - min( l--',-0) = min(0.10,0.64) = 0.10 (5.2)
1. +Q

The final gain margin estimate is then

GM - ±20 log(min(GMpos, I/GMneg)) = ± 7.3 dB (5.3)

The phase margin estimates are,

a2

PM1 - cos-1 (l - a2 33.00 (5.4)

32)

PM2 = COS- 1 (1 - 7) = 53.60 (5.5)

and the final phase margin estimate is,

PM = ± max(PMI,PM2) - ± 53.60 (5.6)

In an attempt to reduce any conservatism inherent in
these results, the computations were repeated using the
Frobenius norm scaling technique. There was no significant
improvement in either the gain margin or phase margin

estimates. This result is undoubtedly due to the fact that
all of the actuator inputs have units in degrees of surface

deflection..

The above computations were repeated with the
uncertainty inserted at the sensor outputs. Figure 5.5 shows

a Model-CTm diagram with an uncertainty block inserted at the

output of the sensors. Figure 5.6 shows a plot of the
inverse of the maximum complimentary sensitivity function

singular values (solid line) with the loops effectively

broken at the output of the sensors. Figure 5.6 revsals that
- 0.021 at 0.001 rad/s.
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To compute the stability margins using the sensor output

sensitivity function, an uncertainty block was inserted as in

Figure 5.7. The solid line in Figure 5.8 shows a plot of the

inverse of the maximum sensitivity function singular values

with the loops broken at the output of the sensors. The

parameter a - 0.022 at 0.001 rad/sec is defined in Figure

5.8.
The values of a and 0 seem unusually small when compared

to a - 0.66 at 8.0 rad/s obtained from the comparable X-29

study. In order to reduce the apparent conservatism, the

computations were repeated w'ith the Frobenius scaling method.

The dashed lines in Figures 5.6 and 5.8 show the scaled

versions of the singular value plots for the complimentary

sensitivity and the sensitivity functions, respectively. The

effect of scaling in this case is very dramatic! Figures 5.6
and 5.8 reveal values of 0 - 0.83 at 5.3 rad/s and a - 0.67

at 24.7 rad/s , after scaling. The improvement after scaling

results because the units of the feedback variables are very

different. For example, the angular rate feedbacks are in

units of rad/s while the accelerations are in ft/s 2 . Using
the parameters obtained after scaling, a gain margin of ± 9.6

dB and a phase margin of ± 49.20 were obtained.

5.2.2. Open-loop Bandwidth

The measure of open-loop bandwidth was defined in

Section 4.2.2 as the lesser of the frequencies at which the
stability margin values of a and 0 were determined. From the

Section 5.2.1 results, we find that an open-loop bandwidth of

5.3 rad/s was determined for both the input and output nodes

of the control system. An open-loop bandwidth of 5.3 rad/s

compares favorably with the Section 4.2.2 recommended values.

5.2.3. Departure Susceptibility

In order to compute the departure parameter metric, a

structured uncertainty block was inserted into the Model-CN

diagram as shown in Figure 5.9. The block diagram consist of
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two '.ierarchical block diagrams where one block diagram is
actually represented a one block within the other diagram.

Figure 5.9(a) is the overall system diagram consisting of all
of the model subsystems: actuators, sensors, airframe, and
control system Figure 5.9(b) shows an expansion of the

"Airframe" labeled block in Figure 5.9(a). The two uncertain
stability derivatives are L, and Nv and are assumed to be
perturbed simultaneously. These two derivatives only effect
the aircraft state matrix which is represented by the block
labeled "Aa" in Figure 5.9(b). The uncertainty in Lv and Nv

are represented by the block labeled "dAa". The
uncertainties are normalized by their nominal values so that
the resulting departure metric indicates a percentage of
uncertainty rather that an absolute value. To compute the
departure metric, the structured singular values are computed
for the transfer function from the uncertainty input (labeled

"dai") to the uncertainty output (labeled "dao").
Figure 5.10 shows the structured singular value plot for

the departure metric. The solid line in Figure 5.10 is the

structured singular value obtained using the Frobenius norm
scaling technique while the dashed line shows that structured
singular value approximation for real parameter variations.
Because the perturbations in Lv and Nv are real, the value of

the departure susceptibility m-tric is defined from the peak
in the dashed line and is DP - 1.1 at 1.2 rad/s. As a
result, the stability derivatives Lv and Nv can be perturbed

by approximately 91% before an instability will occur.

As a comparison, the departure metric computations were
repeated for the open-loop aircraft system. The open-loop

computations were made by simply opening the control system
loop in Figure 5.9(a) and repeating the structured singular
value computation. The associated structured singular value
plot is as shown in Figure 5.11. The dashed line is the real
approximation of the structured singular value while the
solid line is the complex, Frobenius norm approximation,

given for reference. From this figure, we note that DP is at
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least 2.5 at 4.0 rad/s. Consequently, the open-loop airframe

can tolerate only a 40% variation in Lv and Nv before

instability occurs. These results indicate that the control

system has decreased the sensitivity of the aircraft to

uncertainty in Lv and Nv and, therefore, improved the

departure characteristics as measured by the new departure

susceptibility metric.

While the departure metric is relatable to the amount of

uncertainty tolerable in the derivatives Lv and Nv, its most

important value will be to assess the aircraft departure

susceptibility throughout its flight envelope. The trim

angle-of-attack for the flight condition considered in this

report is approximately 2 degrees; hardly a "high" angle-of-

attack flight condition where departure susceptibility

measurement is most important. Departure susceptibility

should be measured throughout the angle-of-attack operating

limits and anticipated sideslip angles. The departure

susceptibility metric could also be computed using linear

models obtained by trimming at nonzero angular rates as well.

S.3 ?NTm~nm1 perfOrwtmnim MemR¶u-p

The nominal performance measures are based on
interpvetations of the current military flying qualities

specifications. These measures are multivariable

generalizations of existing single-axis criteria. They will

also be used to test robust performance (in Section 5.4)

wherein the closed-loop system is perturbed using the
standard uncertainty gain and phase variations.

5.3.1. EffectIve Order
The effective order of the longitudinal response of the

F-16 aircraft was determined by computing the Hankel singular

values of the pitch rate (deg/s) and vertical acceleration

(g's) responses to longitudinal stick force (lb) input.
Before computing the Hankel singular values, however, the 15
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modes associated with the eigenvalues which were class.fiea

as longitudinal (from the mode classification study in

Section 5.1.1) were extracted from the complete closed-loop

model. The extraction was performed by transforming the
complete closed-loop model into real, modal form and
truncating all modes which were not classified as

longitudinal.

One of the 15 longitudinal modes was previously shown to
be unstable. This mode was also extracted from the closed-
loop model because the Hankel singular values are not defined
for an unstable system. (The unstable mode will be factored
back into the model for equivalent system analysis in the
next section).

For the longitudinal response, the five largest Hankel
singular values are: 0.032, 0.018, 0.0078, 0.0029, and
0.0015. Counting the factored unstable mode as one state, an
effective fourth-order response would be obtained if the
third Hankel singular value was much larger than the fourth.
In this case, the third Hankel singular value is 2.7 times
the fourth. Bacon and Schmidt have considered a factor

greater than 5.0 as a good relative indicator of effective
order. (14]

The aircraft roll rate (rad/s) and sideslip (deg)
response to lateral stick force (lb) and directional pedal
force (lb) inputs were considered for the lateral-directional
response effective order. After extracting the 21 lateral-

directional-states, the largest six Hankel singular values
were: 0.42, 0.092, 0.041, 0.038, 0.014, and 0.010. The
ratio of the fourth to the fifth Hankel singular value is
2.7. The value of 2.7 is still less than the recommended
value of 5.0, but is much greater than unity.

5.3.2. Equivalent System Error

A third-order longitudinal equivalent system model was
obtained using the balanced model reduction algorithm on the
14 state (15 state model without the unstable mode)
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longitudinal model described in the preceding section. After

the balanced model reduction, the unstable mode was factored

back into the model so that a fourth-order equivalent system

model was obtained. The transfer functions describing this

fourth order model are given in Table 5.1. No attempt was

made at this time to model the equivalent time delay found in

the standard equivalent system representations shown in

Tables 4.4 and 4.5.

A frequency response comparison of the low order

equivalent system model and the complete (53 state) closed-

loop model is shown in Figure 5.12. The dashed lines in

Figure 5.12 depicted the response of the low-order equivalent

system while the solid lines are the full-order system

response.

The equivalent system error was then computed using the

relation derived in Section 4.3.2. and repeated here,

cY(GHos(jCo) - GLOs(jo))] : e(co)
a(Gros (JO)) ]

The left side of the above expression is shown as the solid

line, while e(c)) on the right side is shown as the dashed

line in Figure 5.13. Figure 5.13 shows that the equivalent

system error stays below the recommended specification for

all frequencies considered except a small range from about 30

to 90 rad/s. The error specification violation at high

frequency is not considered serious and would probably not

occur if an equivalent time delay was included in the

analysis.

Note that effective order and equivalent system

calculations can vary with different choices of input and

output response units. The response units which seemed to

minimize the error apparent in Figure 5.13 were selected for

the effective order and equivalent system error studies. The
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Table 5.1 Nominal Equivalent System Transfer Functions

Lonaitudinal

z(deg/s) -0.053 (s-0.005) (s + 0.63) (s-67.9)
Fjon(lb) (s - 0.02)(s + 2.48) (s2 + 2(.57) (8.73)s + 8.732)

n z (g's) -0.0085 (s - 0.011)-(s2 + 2(.26) (13.51)s + 13.512)
F l0n (lib) A

Lal-o-A I-Di r-c-r-i nnmg I

P(rad/s) 0.10 (S - 0.0017) (S2 + 2(.68) (3.39)s + 3.392)

Flat(lb) (s + 0.0036) (s + 1.31) (s2 + 2(.46) (3.66)s + 3.662)

P(deg) -0.051 (s + 0.19)(s + 0.45)(s - 12.34)
Flat (lb) A

P(rad/s) 0.021(s + 0.0024)(s.- 3.12)(s - 5.26)
Fpe(lb)

P(deg) 0.066 (s + 0.0017) (s + 1.66)(s - 17.01)
Fpd(lb)
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response units selected were pitch rate (deg/s) and vertical

acceleration (g's) to longitudinal stick force (ib) input.

A fourth-order lateral-directional equivalent system

model was obtained via balanced model reduction of the 21

lateral-directional axis states. The input and output units

were selected to minimize the equivalent system error. The

units of aircraft roll rate (rad/s) and sideslip (deg)

response to lateral stick force (lb) and directional pedal

force (lb) inputs were selected. Note that roll rate was

matched instead of the usual roll attitude signal (see Table

2.1) because the equivalent roll mode time constant seemed to

be matched better. The resulting transfer functions for the

lateral-directional equivalent system model are shown in

Table 5.1. A frequency response comparison is made in Figure

5.14.

The equivalent system error is computed for the lateral-

:irectional equivalent system model in Figure 5.15. The

recommended error specification is violated at frequencies

greater than about 0.5 rad/s with significant deviation

occurring from about 6 to 40 rad/s. The peak in the error

response curve is most likely due to the relatively large

difference in this frequency range from the low-order and

full-order lateral stick force to roll rate transfer

function. Figure 5.14 shows that the full order lateral

stick to roll rate response appears to be at least second

order as opposed to the approximate first-order form obtained

from the equivalent system match. It is probably not

possible to reduce the response error without increasing the

order of the equivalent system model or sacrificing the

matching fidelity of the other responses.

5.3.3. Turbulence Response

The aircraft response to turbulence in the vertical and

side velocity directions was determined by computing the 2-

norm of the full-order closed-loop system. The output

responses of interest are nzp(g's) and nyp(g's). The input
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consists of vertical velocity wg(ft/sec) and side velocity

vg(ft/sec) turbulence. The Dryden turbulence model was used.

Because the closed-loop system is nominally unstable,
the usual 2-norm is not defined. However, some indication of
the turbulence response can be obtained by computing the 2-
norm over a selected range of frequencies. The 2-norm for

the F-16 model was computed from 0.1 to 1000 rad/sec using a
simple trapezoidal integration approximation. The resulting

2-norm value was 0.023 (g's/ft/s). This value is greater

than the expected value of 0,02. However, the expected value
does not take into account contributions of the cross-axis
components (lateral velocity turbulence influence on vertical
acceleration, for example), which is included in the 2-norm

calculation.

5.3.4. Response Decoupling

Aircraft response decoupling in a roll was measured by
computing the maximum singular value of the transfer function
from lateral stick force input (lb) to the cross-axis

variables of interest: pitch rite (rad/sec), yaw rate
(rad/sec), and side acceleration (g's). Before computing the

matrix singular values, the airframe state equations are
modified to reflect a body-axis roll rate of 128 deg/sec.

The roll rate of 128 deg/sec was chosen from the MIL-STD-1797

requirements for roll control effectiveness wherein a Class

IV, Category A, Flight Phase CO aircraft should be able to
roll 360* in 2.8 seconds.

Figure 5.16 shows the maximum transfer function matrix

singular values plotted for frequencies from 0.01 to 1000

rad/s. The singular value are shown to be large at low

frequencies before peaking again near 10 rad/s. The second

peak is near the bandwidth of the system and therefore
defines the region of interest. The maximum value of the
high frequency peak is U - 0.020 at a frequency of 9.5 rad/s.

Unfortunately, there is no existing standard for comparison.
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The robust performance measures are tested by perturbing

the aircraft system dynamics and retesting the nominal

performance measures established in the previous section.
The standard uncertainty set, as defined in Section 4.4.1,
consists of a gain and a phase uncertainty description.

For the gain uncertainty, the feedback gains are
perturbed in the "worst case" direction, which is established
using a real, structured singular value calculation. For

this study, perturbations in the sensor output feedback
signals are considered, although a similar study can be

completed using the actuator input signals. Figure 5.17
shows the approximate structured singular value for real
perturbations. The block diagram used to generate this curve

is shown in Figure 5.5. The peak of the structured singular
value curve occurs at the system bandwidth of 5.3 rad/s. At
this frequency point, the permutation matrix which defines
the worst case gain variations is 0 - diag(l, -1, 1, 1, 1,

1). The six feedback signals aie (in order): roll rate
(rad/s), pitch rate (rad/s), yaw rate (rad/s), angle-of-
attack (rad), vertical acceleration (ft/s2 ), and side
acceleration (ft/s2 ). The signs of the permutation matrix
elements define the direction of the worst case uncertainty.

A +1 indicates gain increase while a -1 indicates a gain
decrease. As a result, the worst case gain uncertainty
involves an increase in gain for all of the feedback signals
except the pitch rate feedback gain, which should be reduced.
Assuming a gain perturbation magnitude of ± 1.5 dB, the pitch

rate feedback signal should be reduced by 0.84 while all

other signals increased by a factor of 1.19.

Once the gain uncertainty set has been defined, the
nominal aircraft dynamics are perturbed and the nominal

performance measures are re-evaluated. For the F-16 model,
however, very little performance degradation was noted in any
of the performance measures. The multi-loop gain margin of ±
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9.6 dB computed for F-16 model provides evidence that the

model will not be sensitive to gain variations. One might

consider increasing the magnitude of the gain uncertainty;

but it is expected that the multi-loop gain margin
specification should be around ± 4.5 dB and robust

performance measures based on a gain perturbation of greater
than ± 1.5 dB may be too difficult to achieve. Therefore,

data concerning the robust performance measures for gain
variations of the F-16 model will not be presented.

The standard phase uncertainty set is defined in Section

4.4.1 as an equivalent first-order Pade' approximation of a
pure time delay. The time delay is to be chosen using the

following relation,

10o

180O)aw (5.7)

With the system bandwidth previously found as 0)9w = 5.3

rad/s, the computed time delay is T - 0.033 seconds. The

remainder of this section presents the results of the robust
performance measures for the standard phase uncertainty.

5.4.1. Robustness of Effective Order

The effective order of the phase perturbed system was
computed in the same manner as in the nominal performance
measure except that the Pade' time delay approximation has
been included in the closed-loop F-16 aircraft model. in the
longitudinal axis, the unstable root at +0.02 remains and the
largest five Hankel singular values (without the unstable

mode) are: 0.038, 0.022, 0.013, 0.0047, and 0.0029. The
ratio of the third to the fourth Hankel singular value is
2.7, which was the same as the nominal case. Therefore, no
degradation in effective order is noted in the longitudinal

axis.

For the lateral-directional system, the six largest
Hankel singular values were computed as: 0.63, 0.15, 0.081,
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0.047, 0.020, and 0.013. The ratio of the four:h to the

fifth Hankel singular value is 2.3. Recall that the nominal
value was computed as 2.7. Thus, a small amount of

degradation in effective order is caused by phase

perturbation in the feedback loops.

5.4.2. Robustness of Equivalent System Error

A fourth-order longitudinal equivalent system was

computed for the phase perturbed F-16 model. The transfer
functions for the equivalent.model are shown in Table 5.2

while a frequency response comparison of the full-order

(which now has 59 states) and the fourth order equivalent

model (dashed line) is shown in Figure 5.18.

The longitudinal equivalent system error is plotted in

Figure 5.19 for the phase perturbed system. In comparison

with the nominal equivalent system error, shown in Figure
5.13, one should see that the perturbed system error is

larger at nearly all frequencies. However, the perturbed
system error has nearly the same characteristics wherein it
remains relatively small in the-frequency range of 1 to 10
rad/s and relatively large outside of this range. In

summary, it appears that the effective order of the perturbed
system has not been degraded, but the relative error is
certainly larger.

The lateral-directional equivalent system representation
of the phase perturbed system is shown in transfer function
form in Table 5.2 and the frequency response comparison is

shown in Figure 5.20. The equivalent system error is plotted
in Figure 5.21. In comparison with the nominal lateral-

directional equivalent system error shown in Figure 5.15, we
note that the perturbed error is much larger at all

frequencies tested but, more importantly, the error is no
longer relatively small in the 1 to 10 rad/s range. The
increase in mid-frequency error may be a result of the

degraded effective order noted in the previous section.
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Table 5.2 Phase Perturbed Equivalent System Transfer Functions

Longaitudinal

g(dea/s) -0.086(s + 0.0074)(s + 0.18)(s - 50.44)

Flon(lb) = (s - 0.020) (s + 1.07) (s2 + 2(.37) (10.81)s + 10.812)

nz(g) -0.0077(s - 0.013)(s 2 + 2(.47)(13.64)s + 13.642)
Flon (lb) A

'a t P• I-%R I -r) ea

P(rad/s) 0.081(s - 0.0012) (s + 2.088)(s + 5.27)

FIat(lb) (s + 0.0042)(s + 1.02) (S 2 + 2(.40)(3.84)s + 3.842)

0(deq) 0.086(s + 0.060)(s - 1.86)(s - 8.77)

Flat (lb) a

,P(rad/s) -0.077(s + 0.011)(s2 - 2(.94)(1.10)s + 1.102)

Fped (b) A

0(deg) 0.050(s + 0.00078)(s + 2.77)(s - 22.59)
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:t would appear that the robust performance measure of

meriz for equivalent system error should be posed as some

multiple of the expected nominal measure, represented by
e(a). From the longitudinal axis results, it would seem

appropriate to multiply the nominal measure by about a factor
of 2.0 to define the robust performance measure. However,

the lateral-directional axis equivalent system error would
violate this robust performance measure.

5.4.3. Turbulence Response Robustness
The turbulence response robustness measure was computed

in the identical manner as the nominal case except the phase

perturbed F-16 model was used. The resulting 2-norm value
was 0.023, which is the same as the nominal value.

5.4.4. Response Decoupling Robustness

A plot of the response decoupling metric is shown in
Figure 5.22 for the F-16 phase perturbed model. The metric
was computed in the same manner as in the nominal case,
except that the phase perturbed-aircraft model was utilized.

The figure reveals the same shape and characteristics as the

nominal case, shown in Figure 5.16. The magnitude of the
high-frequency peak has increased from a nominal value of
U - 0.020 at 9.5 rad/s to a value of iU - 0.027 at 9.5 rad/s

for the phase perturbed model. The introduction of phase
uncertainty has therefore lead to an apparent increase in

aircraft roll coupling.

5-41



~~~~~a isi i | l l l

0.14

1 0.14
0 0.12

,4

0.10
x
1.4

,w

0

N

00

0.0

-.- 4

-2-N
A' 0 041 01 01

0rQmz(~)sc

Utue52 hs e~re epneOculnN!
0.02

05-0



6. Conclusions

Eight new measures of merit, specifically designed to

evaluate multivariable flight control systems, were proposed,
developed, and tested in this report. These new measures

represent an innovative application of recently developed

multivariable control system evaluation techniques to the

problem of adequate acceptance testing for complicated,

multi-loop flight control systems.

This report provided a theoretical development of the
measures of merit based on "modern" multivariable control

analysis methods. The analysis techniques used to form the

new criteria draw from recent control theory research in

Hankel singular values, matrix singular values, ant- the so-
called "structured" singular values. These methods were used

to develop new measures of merit for: mode classification and
nominal stability, multi-loop stability margins, open-loop

bandwidth, departure susceptibility, effective response
order, equivalent system error,-turbulence response, and

response decoupling.

The scientific and technical feasibility of the proposed

new measures was demonstrated by application of the measures
to a high fidelity linear model of the F-16 aircraft. The F-

16 aircraft model was chosen to represent a high performance

aircraft which is actually in production. Therefore, the

linear model used in this evaluation cannot be viewed as a

simple "academic" demonstration but as a realistic test which

would likely be used in a commercial application. The

results of this investigation, although limited in scope,

provide an indication of the usefulness, computational

methods, and numerical values expected from the new measures.

It is hoped that this research will provide the foundation

for a standardized form for multivariable flight control

system evaluation results such that the performance of

different designs and aircraft can be compared directly.
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7. Recommendations for Phase I1

Based on the Phase I results reported herein, the

potential of a Phase II continuance to yield a product of
importance to the government and application in industry is

excellent. The F-16 results obtained in this research

represent the initial formation of a "data base" of measure
of merit results. The data base results can ultimately be
used by the Air Force as a justification for flight control
and flying qualities performance specifications for future
multivariable aircraft flight control systems. The data base
results could also potentially become a resource for airframe

manufacturers and flight control design contractors for in-
house evaluation of preliminary flight control designs.

To succeed with commercial application of this research
(Phase I11), there are three objectives that must be met in
Phase II development. The first is to expand the
applicability of the data base results in order instill

confidence and broaden industry acceptance of the evaluation
procedures. The data base requirements can be accomplished

by continued testing of the measures in expanded regions of

the F-16 aircraft flight envelope, nonlinear validation of
the results using F-16 model simulations, and a comparison of

results with a second aircraft.

The second objective is to prepare for a transfer of
technology to the Air Force and commercial firms. Primarily,

the transfer of technology must provide a method through
which companies can compare their own designs to those
represented in the data base. This need can be accomplished

by providing a specialized software product which will
simplify the computations required for the new measures of
merit. In addition, the data base results which are

determined during the data base expansion will be made

available to commercial firms either in report or magnetic
media form.
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The third objective is to continue development of the

measures defined in Phase I and to propose additional

measures. After careful review of this report, Air Force

personnel have identified a number of refinements to the
currently studied measures of merit which promise to improve

the usefulness of the measure results. Specifically, it has
been noted that the effective order measure proposed in Phase

I should be restated such that the ratios of several

sequential Hankel singular values are computed. This new
definition would measure an effective order of less than
four, but would also insure that the true effective order is
no larger than that predicted by the greatest computed ratio.

Also, it has been suggested that a weighting filter should be
added to the turbulence response measure definition so that

the natural resonance of the human body is incorporated in
the measure. Refinements to the current measures will

compliment the continued theoretical research to develop
additional measures, especially in the area of analytical

performance robustness.
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