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The purpose of this research is to develop new measures of merit specifically for
multivariable aircraft flight control systems. This report provides a theoretical
development of the measures of merit based on "modern" multivariable control
analysis methods. The analysis techniques used to form the new criteria draw
from recent control theory research in Hankel singular values, matrix singular
values, and the so-called "structured" singular values. The proposed measures of
merit are computed for a high-fidelity linear model of the F-16 aircraft at one
cruise flight condition. The results of this investigation demonstrate the
usefulness, computational methods, and numerical values expected from the new
measures. It is hoped that this research will provide the foundation for compilation
of multivariable flight control system evaluation results such that the Air Force
and aircraft manufacturers can directly compare the performance of different
designs.
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l. Introduction

The objective of this research is to initiate the study
of new evaluation measures of merit specifically ZIor
multivariable flight control systems. A flight control
system is usually considered a multivarizble system if more
than one control effector (control surface, for example) or
more than one feedback variable is used to control the
aircraft motion. With this multivariable system definition,
almost all aircraft flying today can be considered to have a
multivariable flight control system. However, most older
aircraft control systems have been designed such that
interaction among each control effector and feedback variable
pair is minimized. Each feedback loop becomes independent
and can be designed and tested separately from the others.

Many of the recently developed aircraft have very
sophisticated control systems consisting of many different
control effectors and feedback variables. To optimize
performance, the control and feedback variable are no longer
separated but may actually be designed to interact - as in
the case of an integrated control system. Centralized flight
control systems are now being considered which combine many
other subsystems, such as an engine or rotor controller, with
the primary flight control system. An example is the control
system der Jjned for the B-1 aircraft which combines the
primary flight control system with a structural control
system designed to reduce vibration in the cockpit. Another
example is the use of thrust vectoring as a means of
producing additional pitch, roll, or yaw control
effectiveness.

New aircraft are also being designed with an increased
emphasis on low radar signature ai:’irame shapes. The B-2
bomber and the F-117A are recent examples. The low
observability design requirements have resulted in rather
unconventional airframe shapes which may degrade inherent
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stability of the design. A soopisticated, multivariable
control system nas undoubtedly rkeen used to improve the
stability and maneuverability of these stealth aircraft.

A future need for multivariable flight contrcl systems
is the area of aircraft flow control. Various boundary; layer
flow control devices, such as small movable chin fins or
surface blowing devices, are being considered to improve
aircraft maneuverability, especially at high angles of
attack. Additional flow control effectors will require a
multivariable control system to function in concert with the
primary control surfaces of ﬁhe aircraft.

To assess the effectiveness of any flight control system
design, criteria must be developed such that a minimum
acceptable performance can be specified. For military
aircraft, the flying qualities(l] (MIL-STD-1797) and flight
control system specifications(2] (MIL-F-87242) serve as the
principal flight control related performance specifications.
These military specifications have been formed after
compilation of many years of investigations and flight test
experience.

The current versions of the specifications, to a large
extent, are applicable only to aircraft with single-loop
control systems Although the current specifications have
been used successfully with many multivariable flight control
systems, this success is due to the fact the control system
have been designed such that individual contrcl loops can be
isolated and evaluated separately.

It has been only recently that analysis methods which
can be used for true multivariable control system evaluation
have matured to the point where they may be utilized to
assess actual aircraft flight control systems. Research in
the last ten years has resulted in many new analytical tools
for the evaluation (and design) of multivariable control
systems. Most important has been the research on the use of
matrix norms, such as the matrix singular value, as a method
to combine the characteristics of many control signals into
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one parameter which can be studied. Instead of evaluating

each control loop individually, all of the control loops are
evaluated at once. Thus, the analysis method can assess the
operation of the multivariable control system wherein all cf

the control loops are interacting simultaneously.

1.1 Phase T Program Querview

This report documents the results obtained during Phase
I work of a Small Business Innovative Research (SBIR)
contract. The objective of the research was to demonstrate
the feasibility of the developing new measures of merit
specifically for multivariable flight control systems. 1In
addition, the results of the Phase I work is intended to
provide a foundation through which Phase II development of
the research can follow.

The Phase I work was divided into several tasks. Task 1
was to select a control task and aircraft for study. An
existing linear model of the F-16 aircraft, actuators,
sensors and control system was used. Unfortunately, time was
not alloted in Phase I for a complete validation of this
model. Therefore, no specific conclusions should be drawn
from the research results reported herein regarding the
performance of the actual F-16 aircraft. For the purposes of
this initial study, the model represents a typical modern,
multivariable “light control system.

The purpose of Task 2 was to identify and define the new
measures of merit. Several sources of pertinent literature
were used to identify the measures of merit. Specifically,
recent technical papers regarding multivariable control
system evaluation and design technicues were used along with
papers describing recent successful multivariable flight
control system applications. Whenever possible, new measures
of merit where developed to address areas which are already
included in the current military flying qualities and flight
control system specifications. The idea was to form new

1-3

]




measures of merit which were, at least in spirit,
multivariable generalizations of established single-loop
criteria for flight control system evaluations. For example,
a new measure of merit is proposed for computing the
multivariable system bandwidth. Bandwidth usually defines
the expected maximum frequency of good tracking and
disturbance rejection behavior. The calculations required to
compute the multivariable system bandwidth are very different
from the bandwidth criteria specified in MIL-STD-1797. The
results obtained from the new bandwidth criteria should not
be compared directly to the criteria. However, both the MIL-
STD-1797 bandwidth criteria and the new multivariable
bandwidth measure of merit are intended to quantify some
concept of system bandwidth.

The proposed new measures of merit were not intended to
replace any of the current applicabie specifications, but
should be considered as an additional evaluation test
specifically designed for multivariable systems. The
measures where also chosen such that they do not favor one
design approach over another. The intent is to provide a
basis for comparison of multivariable flight control system
performance without regard to how the system was designed or
implemented.

Task 3 consisted of constructing analysis diagrams
suitable for describing each new measure. An example of each
measure is then computed using the linear model of the F-16
aircraft. Comparisons are made to any existing specification
or evaluation criteria which has a similar intent. These
comparisons are made to instill confidence in the new
measures of merit and are not meant to reflect on the
performance of the F-16 aircraft model or the adequacy of the
existing criteria used for the comparison.

Eight new measures of merit were defined in this
research: mode classification and nominal stability, multi-
loop stability margins, open-loop bandwidth, departure
susceptibility, effective response order, equivalent system

1-4




error, turbulence response, and response decoupling. The
technical feasibility of the proposed new measures was
demonstrated by application of the measures to a linear model
of the F~16 aircraft. The results of the F-16 model analysis
reveal that each of the new measures can be computed for a
realistic multivariable flight control system.

1.2 Renort Summary

The first task of this research was to select a control
task and aircraft for study: A high-~order linear model of
the F-16 aircraft was chosen for this study. The description
of the model is given in Section 2 of this report.

The purpose of Task 2 was to identify the new measures
of merit. Section 3 of the report reviews some of the
theoretical definitions and nomenclature needed to describe
the new measures. Section 4 describes each proposed
evaluation measure and, when possible, expected results are
reported from available literature and experience.

Task 3 consisted of constructing analysis diagrams
suitable for specifying each new measure. An example of each
measure is then computed using a linear model of the F-16
aircraft. The results of Task 3 are documented in Section 5
of this report. Conclusions obtained from this research are
given in Section 6 while recommendations for Phase II are

noted in Section 7. Technical references are listed in
Section 8. -




2. Aircraft Model and Control Task Selection

A high-fidelity model of the F-16 C/D aircraft was
chosen for this study primarily because a nonlinear
simulation of the aircraft has already been developed by
Systems Control Technology, Inc. personnel for a separate
contract (F33657-85-C-0027). The F-16 C/D simulation model
was initially used to verify the implementation of the
digital flight control system. The simulation is based on
the Block 15 aerodynamic characteristics(3! (angle-of-attack <
29 deg, altitude < 60000 ft, 0.2 < Mach < 2.0) and the Block
25 digital contzol laws. (4]

2.1 ©-18 Ajrcraft Madel

A linear model defined at 20,000 ft altitude and Mach
0.8 was used for the Phase I work. The linear model of the
aircraft has ten states: axial velocity, lateral velocity,
vertical velocity, pitch rate, roll rate, yaw rate, roll
Euler angle, pitch Euler angle, yaw Euler angle, and .
altitude. The eigenvalues of the bare airframe are shown in
Table 2.1. As indicated by the list of eigenvalues, the F-16
C/D model for the selected flight condition has an aperiodic
instability with a time-to-double amplitude of 6.6 seconds.

Table 2.1 Open-Loop Airframe Eigenvalues

Eigenvalue Mode Classification
0.0 heading
0.0 altitude

-0.0132 spiral
0.105 phugoid

-0.114 phugoid

-0.991+31.41
-0.991-j1.41
-2.78

-0.410+33.97
-0.410-33.97

short period
short period
roll

dutch roll
dutch roll




A block diagram of the complete control system, as
modeled, is given in Figure 2.1. The digital control laws
were first transformed to an analog equivalent so that all of
the subsequent analysis could be carried out in the
continuous time domain. First order lag approximations of
the digital sample-and-hold functions were utilized assuming
a sample rate of 64 Hz. The sensor and actuator models
included 5 states and 10 states, respectively. The primary
control system has 17 states. The Dryden turbulence model
was used to model turbulence in the axial, lateral, and
vertical velocity components. The turbulence model has five
states. The complete closed-loop system has 53 states.

2.2 Control Task Description

The F-16 multi-role fighter is considered a Class IV
aircraft by the current flying qualities specification. The
flight condition considered in this analysis is a nonterminal
flight phase wherein rapid maneuvering, precision tracking,
and precise flight-path control may be required. Therefore,
Category A flight phases are considered representative.
Category A flight phases directly applicable to this
investigation are: air-to-air combat (CO), reconnaissance
(RC), in-flight refueling (receiver) (RR), and close
formation £flying (FF).

. 2=2
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3. Review of Multivariable Contzrol System
Analysis Methods

This section is intended to introduce the terminology
which will be used in subsequent theoretical development.
The material to be covered is not new, but it is recent
enough to warrant a brief review. References are cited,
where appropriate, wherein further information can be found
concerning these concepts.

A continuous linear model will have the assumed form,

x(t) = Ax(t) + Bu(t)
y(t) = Cx(t) + Du(t) (3.1)

where x(t) represents a vector of system state, u(t)
represents a vector of system inputs, and y(t) is a vector of
system outputs. The overstrike dot denotes differentiation,
i.e. x(t) = dx(t)/dt.

The transfer function matrix of the continuous time
linear model is obtained from the Laplace transform of the
continuous state space model. The transfer function matrix
for the continuous model will be denoted G(s), and is defined
by,

y(s) = G(s)u(s) = ([C(sI-A)~1B + DJu(s) (3.2)

Frequency response of the individual elements of the transfer
function matrix are obtained by replacing 's' with 'j®' fo

selected frequency ® values. Traditional Bode magnitude and

phase curves can then be obtained for each transfer function
element.




1.2 Matw<is Sinannlar Yaluvae

The size of a matrix can be quantified by its norm. One
can think of the matrix norm as the maximum gain of the
matrix. In most recent multivariable control research, :he
spectral norm has been used to measure the size of a matrix.

The spectral norm of a matrix is also the maximum singular

value of a matrix, denoted G(A] and can be computed by,

G(A] = VAmax(A*A) (3.3)

where Amax(A®A) is the maximum eigenvalue of A*A. Algorithms
for computing singular values are readily available in
commercial computer-aided engineering packages such as Ctri-
co®.

Singular values have many applications in control system
analysis primarily because of the convenience it provides in
measuring the size of a transfer functicn matrix. Typically,
the maximum and minimum singular values of the transfer
function matrix are plotted against frequency, like Bode
plots. (5] For a continuous model, a(G(jmi)] is plotted for
selected frequency points ;.

The Hankel singular values of a linear system are
closely related to the controllability and observability
properties of the system. If the linear, continuous, state-
space model is stable, the controllability grammian P is
defined by,

P = | exp(At)BB*exp(A*t) dt (3.4)
0
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while the observability grammian Q is,

Q = | exp(A't)C*Cexp(At) dt (3.5)
0

It can be shown that the grammians also satisfy the following
Lyapunov equations,

AP + PA" + BB = 0 (3.6)
and,

A'"Q + QA + C*C = 0 (3.7)

The Hankel singular values of the system G(s) are then,

hi[G(s)] = ‘Qli(PQ) (3.8)

where, by convention, hj 2 hjs+;. (6]
The 2-Norm of a linear system is also obtained from the

controllability and observability grammians. (7] The 2-norm is
typically denoted by |[IG(s)ii2 and is,

11G(s) | 122 = trace{CPCT] = trace(BTQB] (3.9)

where the trace operator stands for the sum of the diagonal
elements. The 2-norm essentially measures the rms response
value if the system is excited by white noise. This property
is evident by noting that,

[1G(8) 1122 = 21—“ [ trace({G*(j0)G(jm) ]dm (3.10)

3-3




The expression above is the same as computing the rms
response of a transfer function matrix if the noise process
had an identity spectral density matrix. It also should be
noted that the direct feedthrough term of the transfer
function matrix (i.e. the D matrix in (3.1)) must be zero for
the 2-norm to be finite.

3.4 Stvynctured Singular Yalues

The structured singular value has been defined to
measure the robustness properties of linear, multivariable
contrcl systems.(8-10]1 The robustness measure determines
whether the system remains stable for a given set of
perturbations to the nominal model. Performance robustness
tests are also possible wherein the system is checked against
performance requirements (and remains stable) for a given set
of perturbations to the nominal model.

The robustness measure is intimately tied to the
definitions of the perturbations which are to be
investigated. Typically the perturbations are described by a
block diagonal matrix A = diag(Aji,...,An). The individual Aj
blocks may be either scalars or matrices and can be complex
in some cases.

The structured singular value of a complex matrix M,
denoted H(M), is defined by,

. in -
;f;; = fA {c(A] | det(I - AM) = 0} (3.11)

The value of 1/U(M) determines the size of the smallest
"destabilizing” A which satisfies det(I - AM) = Q0. Also,
1/u(M(sy,)) measures the size of the "worst case" or smallest
perturbation A which moves a closed-loop pole to Sq.

Computation of the structured singular value continues
to be an area of concentrated research. However, the
Frobenius norm scaling technique has proven to be a reliable
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alternative to exact computation of the structured singular
value. Algorithms which utilize the Frobenius norm scaling
technique are now widely available. Therefore, it is
reasonable to assume that a measure of merit based on a
structured singular value computation will be acceptable by
industry.

The Frobenius norm scaling technique makes use of the
fact that,

oo <. 2% aroMp-l) (3.12)

where D is a diagonal scaling matrix which is formed such
that each block in A is scaled by the associated diagonal
element in D. The equation above indicates that the scaling
matrix D must be found which minimizes &[DMD‘ll. The
Frobenius norm scaling technique typically uses Osborne;s
method of finding a scaling matrix D which minimizes the
Frobenius norm, ||DMD-l}|g.(11] The resulting D matrix is

then used to compute O({DMD~!] as an (upper bound)
approximation to H(M).
An approximation to the structured singular value is

also available for the special case when the model
perturbation A is strictly real.(12) For this special case,

the structured singular value will be denoted UR(M) and is
approximated by,

max i
Ha = g oo PL- %(Dm:-hb +# ODIM*D}]  (3.13)

where p is the spectral radius and ® is a permutation matrix
with the same form as D but with either a +1 or -1 on the

diagonal elements. The approximation involves searching for
the permutation matrix which maximizes pg(M) and therefore




redizss the sign (*) oOf the worst case real
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4. Measures of Merit £for Fi_ght Control Systems

In flight control system evaluation and analysis, one is
typically concerned with the criteria developed to test
nominal stability, nominal performance, robust stability and
robust performance. Nominal stability and performance
measures are used to define stability and performance
properties of the flight control system at the nominal design
conditions. Robust stability and performance measures deal
with how model uncertainty influences stability and
performance. The remainder of this section serves to
introduce the new multivariable measures of merit.

Nominal stability has been indirectly specified in the
military flying qualities specifications by requirements
regarding the location of dominant characteristics roots.
For example, damping and natural frequencies are specified
for the short period, phugoid, and dutch roll modes. 1In
addition, time-to-double amplitudes are specified for the
spiral mode.

The flight control or stability augmentation system may
introduce additional modes into the actual response of the
aircraft as commanded by the pilot. With control system
complexity increasing in an effort to maximize performance,
the order of the control system itself may be quite large.

The current aircraft flying qualities specification
takes into account these additional control system modes by
utilizing the definition of an equivalent system. An
equivalent system is simply a low-order equivalent
representation of the actual high-order response. The
equivalent system model includes a pure time delay as an
approximation of the effect of higher-order dynamics.
Assuming an appropriate equivalent system can be found, the
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parameters of the equivalent model are then used to assess
flying qualities. The equivalent system method works quite
well in measuring response characteristics but the roots of
the equivalent system model are not necessarily a good
indicator of nominal stability. For example, if the
recommended method of matching frequency response
characteristics is used to develop the equivalent system
model, it is possible that an unstable mode is approximately
(but not completely) cancelled by a non-minimum phase zero
and therefore will not appear in the low-order equivalent
system model. As a result, nominal stability should only be
measured on the highest fidelity model available.

The V/STOL aircraft flying qualities handles the nominal
stability assessment problem for hovering V/STOL aircraft by
specifying stability for all modes of the characteristic
equations as opposed to an approximation made by equivalent
systems modeling.(13]) The specification requires that alli
aperiodic roots of the longitudinal and lateral-directional
characteristic equation should be stable for Level I rating.
Oscillatory modes of frequency greater than 0.5 rad/sec
sl uld also be stable, but oscillatory modes cof frequency
less than or equal to 0.5 rad/sec can be unstable provided
the damping ratio is less than -0.1.

The nominal stability specification for V/STOL aircraft
provides a good model for new specifications concerning
conventional aircraft. Nominal stability requirements for
all of the modes represented in the highest possible fidelity
linear model should be specified. The aircraft flying
qualities specification allows for an unstable spiral mode;
as long as the time-to~-double amplituce is greater than 12
sec (Cat. A and C). Therefore, all unstable modes of the
high-order, closed-loop aircraft model should have an
equivalent time-to-double amplitude of greater than 12 sec.

This nominal stability requirement can be evaluated by
computing the eigenvalues of the entire, closed-loop model of
the aircraft. The complete model should include both
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longitudinal and lateral-directional dynamics, and the
complete operational control system. It is possible that cthe
.closed-loop model may have up to one hundred states, but it
is very important that all possible dynamic modes be
represented. The closed-loop eigenvalues snould then be
sorted to determine any which have a positive (unstable) real
part. The time-to-double amplitude of the unstable modes
should then be computed and shown to be greater than 12 sec.
The time-to~-double amplitude (t2q) can be computed for each

unstable aperiodic mode from the equation,

ln 2
t = = 4.1
2d = ( )

where p is the unstable root. For unstable oscilliatory
modes, the time~to-double amplitude is given by,

ln 2
Ly = 2% (4.2)

Con

where { is the damping ratio and ®, is the natural frequency
of the unstable mode. {14]

4.1.1. Mode Classification

The fact that the control system is multivariable does
not change its characteristic roots; however, it becomes more
difficult to classify the modes according to the traditional
bare-airframe rigid-body modes. Mode classification is also
complicated by the fact that the stability augmentation
system may introduce many extra modes which may or may not
influence the response of the aircraft to pilot stick inputs.
For these reasons, a mode classification procedure is
proposed to aid in measuring nominal stability of the
dominant modes of the longitudinal and lateral-directional
axes,
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With a model represented in modal form, the input-output
residues are readily available.(13] The magnitude of each
residue reflects the contribution of that mode to the iaput-
output response. A residue with zero magnitude indicates
that the mode is uncontrollable, unobservable, or both.
Assuming the continuous system has real, distinct
eigenvalues, the modal decomposition of the full order state
matrix is,

aM = MA (4.3)

were A = diag{(A;, A2, ..., Ag}, M is a real matrix of
eigenvectors, and A; are the (real) eigenvalues. A similar

decomposition is possible for systems with complex
eigenvalues.

The system can be transformed to modal form by defining
a new state vector q as, x = Mg, and then the linear model
can be written as,

q(t) = Ag(t) + Bgu(t)
y{t) = Cmq(t) + Du(t) : (4.4)

where A = M~1aAM, Cp= CM and By = M~1B, The continuous model

transfer function matrix is obtained by using the Laplace
transform and solving for y(s),

v(s) = ([Cu(SI - A)~1Bn + Dju(s) (4.5)

Because A is diagonal, the system transfer function matrix
can also be written as,

n R
y(s) = [ —_ D] u(s)

4.6

Ry is the residue matrix for the ith mode, computed from,




Cmibmi

R =
i As

(4.7)

where cpni is the ith column of Cm and bmy is the ith row of
Bm.

It should be clear that if R; is very small for some
given mode, the mode does not contribute significantly to the
response of the system. The maximum matrix singular value of
the residue matrix will be used to measure the size of
residue matrix. Therefore, all modes with residue matrices
such that,

G(Ri] > x (4.8)

can be considered as contributors to the response of the
system.
Equation (4.8) illustrates that the value of x

determines which modes are considered contributors to the
response of interest. Consequently, X should be chosen as

some small number so that only those modes with large residue
magnitudes are classified. Although X ultimately depends on
the units of the response variables, a value of x = 0.00001
was chosen for this study.

The aircraft military flying qualities specification
requires that the phugoid mode of the aircraft should be
stable and-have a damping ratio greater than 0.04.
Consequently, it should seem reasonable to specify that all
longitudinal axis modes should be stable. To determine the
longitudinal axis modes, the mode classification procedure
defined above will be used, with the longitudinal control
force input (lb) and responses of pitch rate g(rad/sec) and
vertical acceleration (g's).

As stated earlier, the aircraft flying qualities
specification allows for an unstable spiral mode as long as
the time to double is greater than 12 sec. Therefore, we
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will measure lateral-directional axis nominal stability by
requiring that all lateral-directional axis modes have a time
to double greater than 12 sec. The lateral-directional axis
modes are to be determined by the classification of modes
procedure with lateral stick and directional pedal force (1lb)

input. Responses of interest are roll attitude (deg) and
sideslip (degq).
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The purpose of this section is to review the concepts
related to stability robustness. Stability robustness is the
the property whereby the system remains stable in spite of
the existence of various sources of uncertainty (modeling
errors). Model uncertainty may be due to a number of sources
including the ones mentioned in the military flight control
specifications:

a. Mathematical modeling and errors in defining the
nominal system model and the plant:;

b. Variations in dynamic characteristics caused by
changes in environmental conditions, manufacturing
tolerances, aging, wear, noncritical materiai
failures, and off-nominal power supplies;

c. Maintenance induced errors in calibration,
installation, and adjustment;

d. Errors due to modeling of airframe structural
dynamics/inertial coupling between axes and
frequency dependency of stability derivatives:

e. Digitization effects due to digital control
implementation (phase shift due to sampling).

This research will consider three measures of stability
robustness. The first measure is a multi-loop equivalent of
the traditional single-loop stability margins which are
specified in the flight control system specifications. The
second measure, open-loop bandwidth, stems largely from
flight control design concepts which rely on the importance
of bandwidth to gain and phase margin definition, tracking
performance and disturbance rejection. The last stability
robustness measure is a measure of the susceptibility of an
aircraft to depart from controlled flight. The departure
susceptibility metric is based on measuring the robustness of
the control system to variations in aerodynamic stability




derivatives which are known to dominate aircraft departure

warning, susceptibility, and severity.

4.2.1. Multi-loop Stability Margins

It has been standard practice in control engineering to
represent model uncertainty in two distinctive types: loop
gain uncertainty and phase uncertainty. The standard single-
loop gain margin is a measure of the amount of tolerance of
the system to only loop gain uncertainty such that the system
remains stable. The phase mgrgin is a measure of the
tolerance of the system to only phase lag or delay, i.e. loop
phase uncertainty such that the system remains stable.

The military flight control system specification uses
gain and phase margins to asses stability robustness. A
typical form of the phase and gain margins required to pass
the military specifications is shown in Table 4.1. The phase
and gain margins include both positive and negative entries
corresponding to gain amplification or attenuation and phase
advance or phase delay uncertainty.

Table 4.1 MIL-F-87242 Gain and Phase Margin Specification

Mode Frequency fm, Hz GM PM

(dB) (deg)
fm < 0.06 +t 4.5 + 30
0.06 é fm < first aercelastic mode + 6.0 + 45
fm > first aercelastic mode +£ 8.0 + 60

The military specification requires computation of a
gain and phase margin for each feedback loop. The loop in
question is tested while all other loops are closed at their
nominal gain values. It has been pointed out by many
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researchers that this type of one-loop-at-a-time uncerzainty
representation is not realistic for a multi-loop system. It
is possible for a lightly damped system to have acceptable
single-loop gain and phase margins yet very small
simultaneous gain and phase variations could drive the system
unstable. A more realistic measure of system robustness
should allow simultaneous perturbations in all the feedback
loops.

The stability margin of a system can be assessed by
examining the Nyquist plot and determining its closest
approach to the -1 point. To aid in this analysis, Smith
introduced a vector margin which was defined to be the
distance to the ~1 point from the closest approach of the
Nyquist plot.(16] For a multi-loop system, the Nyquist
Stability Criterion still applies except that the stability
is related to the closeness of the determinant det[I+G(s)] to
the -1 point.

Using a multivariable version of the Nyquist Stability
Criterion, a non-unique (estimate) of the multi-loop gain
margin is, (171

1
GM = 4.9
1 L + o ( )
where,
a = min 1 (4.10)
w20 - *
c(S(jo) ]

The parameter @ is essentially the magnitude of the vector

distance from a multivariable Nyquist plot generalization to
the -1 point.
The transfer function matrix S(jw) is the system

sensitivity function, typically defined as,

S(s) = (I + G(s)]~! (4.11)




where G(s) is the open-loop system return ratio matrix. The
open-loop return ratio matrix is essentially all of the
feedback system components placed in series from the loop
breaking point. In contrast to the single-loop stability
margins described previously, the return ratio matrix is
obtained by opening all of the feedback loops at the same
time.

Note also that the multi-loop margin can be defined for
any loop breaking point in the feedback system. Typically,
loop stability margins are defined at the interface between
the control system and the actuators, or the "input"” to the
controlled system and the "output” of the system which is the
interface between the sensors and the control system.

The multi-loop phase margin PM;, computed using the
' system sensitivity function, is given by,

o
PM; = cos~l(1 -7 (4.12)

Another multi-loop stability margin can be defined using

the equivalent of an inverse Nyquist plot. The gain margin
GM2 is then defined, (18]

GM2 =1 %P (4.13)
where
min
ﬂ =2 o0 - L (4.14)
C(T(jw) ]

and T(s) = G(s) (I + G(s)]~! is the complimentary sensitivity
function. The multi-loop phase margin PM2 is,

p2

PM2 = cos~l(1 - ) (4.15)




The multi-loop stability margin estimates obtained using
the system sensitivity functions may be conservative. In
other words, these methods may predict stability margins
which are much smaller than the actual margins. To alleviate
some of the conservatism, it is possible to combine the
results of the two methods to improve the estimated stability
margins. (191 Accordingly, a positive gain margin GMpes is
defined by,

GMpos = max ('_1-' 1+B) (4.16)

and a nega® ive gain margin as,

. 1
G = min(——, 1l- 4.17
Mneg ( L+a ) ( )

The final gain margin estimate, which will be denoted by GM,
will be obtained by combining GMpos and GMpeg to form a
"symmetric" (%) answer,

GM = * 20 log(min(GMpos,l/GMpeg)) (4.18)

and the final phase margin estimate is,

PM = % max(PMjp,PM2) (4.19)

Conservatism also results from the relative scaling of
the system where the loop is broken. This means that
depending on the units of the signals, different estimates of
GM and PM may result using these singular value relations.

At this point, it is necessary to either include an explicit
definition of signal units in the definition of multi-loop
stability margin requirements, or to propose an automatic
scaling algorithm which is reliable and readily available.




The Frobenius norm scaling technique discussed in Section 3
has been successfully used to reduce the effect of scaling in
the definitions of @ and . Results shown in Section 5 for
the F-16 aircraft will consider the effect of unit scaling in
more detail.

4.2.2. Open-loop Bandwidth

It is particularly appealing to measure stability
robustness using the open-loop vehicle response bandwidth
because of the relationship between open-locop bandwidth and
traditional single-loop gaid'and phase margin definitions.
For example, the current flying qualities specification
includes a requirement on open-loop bandwidth of the pitch
axis transfer function in the short-term pitch axis
requirements, Para. 4.2.1.2, Part D. This bandwidth
requirement is intended to define the maximum frequency at
which closed-loop tracking can take place without threatening
stability. The system bandwidth, in this case, is defined as
the highest frequency at which the phase margin is at least
45 deg and the gain margin is at least 6 dB. The gain and
phase margin values are consistent with the stability margins
specified in the military flight control system
specification.

Generalizations of the open-loop bandwidth for a single-
loop system to multivariable system definitions have not been
very successfu.. For example, some researchers have proposed
the use of singular value plots to define open-loop bandwidth
frequencies. Doyle and Stein(5] have defined "...the

bandwidth of G, i.e., for ® such that O(G(j®)] << 1." On the

other hand, Safonov, Chiang, and Flashner, [20] pote that
"Loosely speaking, the bandwidth ®p of a control system is

the frequency range where the loop transfer function is
'big’, i.e. GIG(jw)] >> 1 for all @ < Wg." Most researchers

seem to agree that the open-loop bandwidth should be defined
somewhere between where g(G(jw)] >> 1 and O(G(jw)] << 1. The




problem is complicated by the fact that the units of G(jw)
can affect the singular value computations such that a
different bandwidth can be computed for different signal
units.

To even further complicate the definition of bandwidth,
there exist flight control systems wherein the loop gain does
not cross unity magnitude at all. This situation occurs when
the control system is not providing stability augmentation
but merely an augmentation of the aircraft responses. A
specific example is when a pitch damper is used simply to
modify short-period damping and not necessarily to provide
good tracking capabilities.

The bandwidth of the multivariable system will be
defined, for this research, as the lesser of the frequencies
at which the multi-loop gain margin and the multi-loop phase
margin are determined. This definition is a direct analogy
of the pitch-axis bandwidth criterion currently included in
the aircraft flying qualities specification. The stability
margin definition also avoids the limitations of the maximum
or minimum singular value gain crossover frequency
definitions. Bandwidth in terms of stability margins also
does not require an open-loop gain crossover frequency and is
therefore applicable to simple response augmentation systems
(pitch and yaw dampers) as well as more sophisticated
tracking systems. Finally, if an reliable scaling algorithm
is used for multi-loop stability margin computation, the
issue of signal units is, at least, minimized.

To define the requirements for bandwidth, the pitch axis
requirements for the aircraft flying qualities will be used
as a start. The recommended bandwidth for a Level I rating
in the pitch axis is a minimum of 6.5 rad/sec and a maximum
of 11 rad/sec (with no assumed time delay). These values are
also consistent with a recent evaluation of the multi-loop
stability margins of the lateral-directional flight control
system of the X-29.[21] The multi-loop stability margins for
the X-29 were defined from frequencies between 4.3 to 9.8




rad/sec for a variety of flight conditions. The recommended
bandwidth should be compared to the lesser of the frequencies
at which the multi-loop gain margin and the multi-loop phase
margin are determined, in the frequency range of 0.06 Hz to
the first aercelastic mode frequency.

4.2.3. Departure Susceptibility

Early efforts to evaluate aircraft spin susceptibility
were based on design criteri§ for satisfactory spin recovery,
should a spin condition be encountered.[22] By government
suggestion, research since 1970 has focused on predicting and
evaluating an aircraft's resistance to departure. (23]
Therefore, much of the more recent developments in analytic
measures for departure susceptibility have been based on
groundwork formed in the 1970's. [24]

Investigation of the relationships between the post-
stall behavior and aircraft stability derivatives revealed a
strong relationships between departure susceptibility and
certain lateral-directional derivatives; namely, the
weathercock stability derivative Cnp and the dihedral effect
CiB. Bihrle, for example, plotted Cip against Cnf to yield
regions in which the aircraft is predicted to be susceptible
to roll reversal or departure. (25]

Using Cnhg and C;g, along with the yawing and roll moment
derivatives to lateral control deflection, Cp§a and Cjg,,
Weissman developed a departure susceptibility criteria by
combining the stability derivatives to relate specific
transfer function numerators and denominator coefficients. (26]
The variables of interest are,

I
Cnf,dyn = Cnp cos a - (Ei) Cip sin (4.20)

and the Lateral Control Departure Parameter (LCDP), defined
as,




c
LCDP = Cpp =~ Ci1p (E‘llg:) (4.21)

Weissman plotted Cnf,dyn against LCDP and defined three
regions which correspond to a high departure susceptibility.
A sample plot of Weissman's departure criteria is shown in
Figure 4.1. From Figure 4.1, one can see that Weissman was
also able to predict the type of departure in the defined
regions.

The effects of non~zero‘sideslip angles were first
investigated using root locus plots of the lateral-
directional mode poles for changing sideslip. (27,281 gstengel
investigated the effect of combined non-zero roll-rate with a
non-zero sideslip angle using this technique. (291 Along with
Berry, he then made use of stability maps by plotting (and
classifying) regions of instability for all of the airplane
modes with various combinations of non-zero aircraft
states.(30] A sample stability map of the type reported by
Stengel and Berry is shown in Figure 4.2.

Pelikan has reported a modification to the traditional
definition of Cpp,dyn which uses a non-zero sideslip
explicitly. (311 His departure parameter, called Cng,apparent:
also includes the effects of various control inputs. The
definition of Cnf, apparent is,

u Iz
Cnﬂ'app‘ggn; S Cnﬂ'dyn + £ ’B_:(Cnui cosax - 'I_: Ciui sina) (4.22)

where uj; is the deflection of the ith control surface.

Many of the analytical methods described above are based
on establishing regions of departure stability and
instability. Starting from a known stable flight condition,
an alternative departure resistance criteria would consider
some measure of how close the aircraft is to an unstable
departure condition. Such a measure could be defined by
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considering the dynamic erfZscts of extreme maneuvering as an
uncertainty in the nominally stable aircrarft dynamics. The
measure would relate the amocunt of uncertainty allowable
before a departure stability condition is violated. 2
departure resistant aircratft would then be one which
tolerates a large amount of uncertainty while a departure

prone aircraft would be one which tolerates very little
uncertainty hegause it is already very near ap instabilic-

boundaxy.

Structured singular values have recently been considered

for departure analysis by measuring the effect of uncertainty
in some of the key airframe stability derivatives.(32] rThe
uncertainty matrix A will therefore represent a diagonal
matrix of uncertain stability derivatives. For stability
analysis, one must consider how the eigenvalues of the
vehicle state matrix are effected by the uncertainty from A.
Equivalently, one is interested in the eigenvalues of the
uncertain linear system,

x = (A - BAO)X (4.23)

where, A = diag{(0j} is diagonal matrix of stability
derivative uncertainties. The matrices B and C are defined
such that the stability derivative uncertainties are added to
the vehicle state matrix in the appropriate location. The
feedback system which results is shown in Figure 4.3, where
M(s) = C(sI - A)~lB. The relevant departure parameter DP is
defined by the largest structured singular value over
positive frequencies,

max )
DP = o5 o K(M(F0)) (4.24)

and the corresponding stability condition becomes,
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Figﬂre 4.3 Block Diagram for Departure Analysis




81 < /o (4.25)
The expression above shows that if DP is small, the aircrart
is predicted to be departure resistant because it can
tolerate large amounts of uncertainty before the stability
condition is violated. Conversely, if DP is large, the
stability condition can be violated for small uncertainties
and the aircraft is not departure resistant.

The primary advantage of the structured singular value
formulation is that perturbations in any number of stability
derivatives can be studied by appropriate definitions of the
A matrix. Also, the structured singular value departure
methodology can be readily adapted to include the aircraft
control system. Until now, only Pelikan's CpB,apparent
parameter considered the effect of the control system.
Mathematically, the aircraft control system becomes imbedded
in the definition of M(s); i.e., M(s) is made up of airframe
states and control system states. Consequently, open-loop
(bare airframe) as well as closed-loop departure parameters
can be defined.

As an example, Stengel investigated the effect of
simultaneously perturbing the derivatives N and Lg on the
stability of a fourth-order lateral-directional model of the
Space Shuttle Orbiter.(33] Stengel predicted stability
boundaries by "varying the aerodynamic derivatives, computing
the eigenvalues, and cross-plotting to define regions of
stability and instability as functions of the derivatives."
Similarly, the structured singular value technique can be
used to determine, from one calculation, the nearest
instability boundary from the (stable) nominal point.

Stengel considered a fourth-order airframe described by,

r Nr N Np 0 T
a1 B | _ Y Y3 0 Y ( 4 26
at | p Ne N3 Np O P (4.26)
o o o0 1 0 o
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The stability derivatives describing the Space Shuttle
Orbiter at M = 1.5, & = 6.6  are listed in Table 4.2. The

definition of M(s) for the simultaneous perturbations SNg and
dLg is shown in Table 4.3. Note that the A matrix is defined

to normalize the perturbations in each derivative by the
nominal derivative value so that an allowable perturbation
error percentage is predicted.

Figure 4.4 shows the inverse of the structured singular
values for the Space Shuttle, example. The minimum of the
curve defines 1/DP = 0.26, or DP = 3.85. Therefore, the
stability derivatives N and Lg can be simultaneously
perturbed by 26% before instability can occur. The value of
DP also defines the following stability requirement,

| 3N | 198 b o< oo

max { Tmgi ¢ Tizpl DP

.26 (4.27)

In terms of the actual dimensional stability derivatives, the
equivalent stability condition above bounds the allowable
absolute variation of the derivatives,

0.44 < N (1/sec?) < 0.74 (4.29)
and,
~6.30 < Lg (l/sec) < =-3.71 (4.30)

This result is compared to Stengel's result in Figure 4.5.
Note in Figure 4.5 that the departure parameter DP defines a
square which, in turn, determines the distance to the nearest
instability boundary.

To utilize the new departure parameter DP as an
indicator of departure susceptibility, one must plot DP
against angle-of-attack. Figure 4.6 depicts the expected
behavior of the departure parameter. It is expected that as
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Table 4.2 Space Shuttle Stability Derivatives

Derivatives ' Value
Ng -0.117 (1l/sec)
Ng 0.587 (1/sec?)
Np 0.053 (1l/sec)
Ye -1.0
Yg -0.090 (1/sec)
Yo 0.023 (1/sec)
Le 0.203 (1l/sec)
Lg -5.003 (1/sec?)
Lp =0.490 (1/sec)
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Table 4.3 Space Shuttle Uncertainty System
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angle~-of-attack is increased, 1/DP will be reduced until
ultimately it will come very close to zero. For all angles-
of-attack less than where 1/DP = 0, the aircraft will be
considered departure resistant. For all angles-of-attack
greater than the point where 1/DP = 0, the aircraft will be
considered departure prone.

Johnston has defined several open-loop airframe
dimensional stability derivatives which have been shown to
dominate aircraft departure warning, susceptibility, and
severity. (341 These derivatives are: N§a» or Ngpu, M3, L8, Lq,
Lp, Ng, Na, and M. Any number or grouping of these key
derivatives might be considered in developing the uncertainty
structure in A needed to predict departure susceptibility
reliably. The appropriate selection of key derivatives will
no doubt be a fruitful area of new research. For this

research effort, however, we will define the uncertainty
matrix A as,

dNg 0
A = | INgl SLg (4.31)
0
| Lg|

The selection of 3N and 8Lg in the uncertainty description is

prompted by the use of Cpg and C;g in the definitions of both
CnB,dyn and LCDP.
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4 .3 Nomirnal Darfarmanca Maagprag

Nominal performance has been traditionally evaluated
using the military flying qualities and £flight control system
specifications. The flying qualities specifications deal
orimarily with response of the aircraft from pilot inputs.
The flight control system specification considers the
performance of auto-pilot modes and also defines stability
requirements.

Typically, specification compliance testing consists of
some type of analysis conducted from a particular input to
only one output. However, there are a few areas wherein a
multivariable measure may more accurately measure the nominal
performance of the aircraft. This section introduces four
areas in which multivariable measures can be used to evaluate
flight control systems. The four chosen areas are actually
generalizations of single-loop measures that are included in
the military specifications.

4.3.1. Effective Order

The current aircraft flying qualities specification,
MIL-STD-1797 and the proposed V/STOL specification MIL-F-
83300, (33] require the use of low order equivalent systems to
compute certain modal parameters for flying qualities
evaluation. This requirement was motivated by the fact that
little correlation was found between "dominant response”
parameters,- extracted directly from high-order models, and
flying qualities ratings.

There are many procedures available in the literature
for extracting reduced order models of dynamic systems. Each
of these methods have some characteristics of a high order
model as input and a linear low order equivalent system as
output. Generally, the particular method(s) used is left to
the choice of the individual contractor and the procuring
agency. Some of the methods mentioned in the military
standard are:
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* matching frequency responses of high order
linearized models

+ matching frequency responses extracted from
flight time histories using a Fast Fourier
algorithm

* matching frequency responses generated by stick
cycling in flight

* using a maximum likelihood technique to match
flight time history data

The acceptable forms for equivalent system models are
listed in Tables 4.4 and 4.5.(36] The order of the desired
response is dictated by specification of the structure of the
equivalent system models. In fact, it has been found that
pilot opinion ratings can be degraded when the response of
the closed-loop aircraft system are not of the same order as
the equivalent system model forms.(37] As a consequence, the
effective order of a higher order system is of critical
importance.

The relative magnitude of the Hankel singular values can
be used to measure the effective order of the system..(13] For
example, if the Hankel singular values are sorted in
descending order and the magnitude of the 'r' Hankel singular
value was much greater than the magnitude of the 'r+l1' Hankel
singular value, the effective system order is 'r'. In other
words, the full order system can be well represented by a
system of order 'r'. Therefore, for the desired fourth order
equivalent system models shown in Tables 4.4 and 4.5, if the
Hankel singular values are sorted in ascending order, the
fourth Hankel singular value should be much larger that the
£ifth.

4.3.2. Equivalent System Error

In the determination of equivalent systems for flying
qualities studies, some measure must be used to assess the
quality of the equivalent system match. The military flying
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Table 4.4 Longitudinal Equivaient System Model Structures

Longitudinal Axis Models Reference

0 _ _Ke(s+ 1/1g2)e-Tes 71122
8|on 82 + zcsp“)sps + (Dgpz

-198

9 - Ko(s + 1/791)(s + 1/tg2)e MIL-STD-1797
Ston (52 + 2Lpwps + Wp2)(s2 + 2 gpeps + Wsp?)

9 - Kos(s + 1/191)(s + 1/tg2)e 08
Ston (52 + 2Gpwps + Wp2)(s2 + 2 gpsps + Wep?)
and simultaneously,

' TS
2z Ras(s + n1)e> MIL-STD-1797

Ston (32 + 2QpWwps + Wp2)(s2 + 24 pepS + Wep2)
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Table 4.5 Lateral-Directional Equivalent System Model Structures

Lateral-Directional Axis Modeis Reference
& _ Kjeus AIAA T7-1122
Ole s+ l/tp
B _ Kge'ts MIL-STD-1797
Sped 52 + 20 ardrs + Ogr?
o Ko(s2 + 2Lo0es + My2)e-ToS
S (s + 1/25)(s + 1/TR)(s? + 2§ ar0drs + Odr?)
and simuitanzously,
B _ _Ka(s + 1/eg1)(s + 1/tp2)(s + 1/tp3)e"hs MIL-STD-1797
Sir (s + 1/)(s + 1/TR)(s? + 2LdrdrS + Wdr2)
o Ko(s2 + 25pwes + my2)e-Tes
Star (5 + 1/15)(s + 1/TR)(s2 + 2{drdds$s + Wdr?)
and simuitaneously,
B _ (A3s3 + A2s2 + Ays + Ag)et8s MIL-STD-1797

Sped (s + 1/Ts)(s + L/TR)(s2 + 25 dr@drs + Odr?)
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qualities specification recommends the use of the following
mismatch function,

w2
J = 2,1—02 ( (gaingos~gainrpos) 2 + 0.02(phaseygs-phasergs) 2] (4.32)
oy

where 'gain' and 'phase' represent the gain and phase of the
frequency response to be matched and HOS refers to the
original high-order model and LOS refers to the low-order
equivalent system model. The matching function is to be
evaluated at twenty frequency points in the range from ®; to
2.

The mismatch function above attempts to measure the
error in the frequency response gain and phase. To
generalize this idea, we will consider a measure of the
transfer function error between the original high-order model
and that of the low-order equivalent system model. Matrix
singular values will then be used to indicate the size of the

error. Expressed mathematically, the equivalent system error
will be,

O(Gros (10) - Gros (@1 < e(®) (4.33)

where Gyos(j®) is the transfer function matrix of the high-
order model and Gros(j®) is the transfer function matrix of
the low-order equivalent system model. The frequency
dependent function e(®) will specify the allowable equivalent
system error.

A suitable definition for e(®) can be obtained from the
current military flying qualities specification requirement
on the "added dynamics” which frequently result from
additional control system modes and can degrade pilot opinion
ratings.(38] The requirement was obtained by examining pilot
rating differences between pairs of in-flight simulated
responses which included various dynamic modes added to low-
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order eguivalent models. The low-order equivalent models
each reflected Level I flying qualities. Additional modes
which caused a change in pilot rating of one unit (Cooper-
Harper scale) were used to define an envelope of maximum
unnoticeable added dynamics.

The "added dynamics" includes any dynamics in the
vehicle closed~loop response which are not represented in the
equivalent system dynamics. Therefore, the added dynamics
specification limits the deviation of the actual closed-loop
response from the low-order equivalent system. The added
dynamics specification consists of upper and lower magnitude
and phase bounds which are depicted in Figure 4.6. The
response of the added dynamics alone should lie inside the
envelopes pictured in Figure 4.6.

The upper and lower magnitude bounds of the added
dynamics requirement are frequency dependent functions. The
upper bound, which will be referred to as my(®) is defined

by,

3.1682 + 31.618 + 22.79

mu (@) = s2 + 27.14s + 1.84 |s=jo (4.34)
while the lower bound, m;(®), is expressed by,
0.09582 + 9.92s + 2.15

my. () s2 + 11.68 + 4.95 |s=ja (4.335)

It is intefesting to note that these functions are most
restrictive near the probable crossover frequency of the
pilot/vehicle system.

The added dynamics magnitude envelopes are meant to form
the following inequality,

my (W) Igros(J® | S Igos (3@ | < my (W) Igros(j0) | (4.36)
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Figure 4.7 Added Dynamics Specification
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where gygs(j®) is the high~order transfer function frequency
response and gpos(j®) is the low-order equivalent system
frequency response. To generalize this inequality to the
multivariable case, the maximum singular value will be used
to measure the size of the transfer function matrices such
that,

my (@) G(Gros (301 S O(Guos(J® 1 € me(® G(Gros (3O 1  (4.37)

By adding and subtracting Gres(j®) from Guos(j®), the left
side of the inequality becomes,

my (W) G {Gros(j®) ] S O(Gros(J®W - (Gros(j® - Guos(jw®W))] (4.38)

If O(Gros(j®] > O(Gros(j® - Guos(j®)}, the following
inequality insures (4.38),

C(Gros (J®W) = Gros(J® ] S (1 - m(®))C(Gros(JW ] (4.39)
By a similar development, the upper bound will be met if,
O(Gros (J®) = Gros(JW)] S (my(W) - 1)0(Gros(j®) ] (4.40)

As a result, an effective measure of equivalent system error
for multivariable flight control systems is,

O(Guos (J®) - Gros(jm) ]

- S e(®) (4.41)
O(Gros (W )
where e(®) is chosen such that,
e(®) S my(W~1 and e(wW) S 1-my (W) (4.42)
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The frequency dependent functions my (W) -1 and l-m3; (W) are

plotted in Figure 4.7. This figure was used to choose a
suitable e(w), which is,

s2 + 4.1s + 4.4
1.17s2 + 29.63s + 7.33|s=j0

e(w) (4.43)

4.3.3. Turbulence Response

A measure of merit for the turbulence response of the
vehicle can be defined to assess ride quality of the aircraft
in turbulence. To provide a measure of merit for aircraft
turbulence response, one might consider specifying the shape
of the aircraft response spectral density. The power

spectral density of some scalar response 'y' of the aircraft,
denoted'¢y(m), to turbulence inputs is given by,

Oy(@) = [£(30)I12 D () (4.44)

where @, (®) is the power spectral density of the turbulence

input and £(s) is the transfer function from the turbulence
input to the aircraft response of interest. The spectral
densities of turbulence, in both the Dryden and von Karman
form, are specified in the military flying qualities
specification.

Unfortunately, a measure of merit based on the shape of
the response spectral density may be too restrictive. As an
alternative, the root-mean-square (rms) of the cockpit

acceleration response to turbulence should provide an
adequate measure of turbulence response. The rms value Oy is

given by,

oy2 = 21—:c [ 1£(30)12 Op () do (4.45)
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Typically, the rms value of the aircraft response in one
axis can be specified for turbulence in the same axis. For
multivariable flight control systems, it is possible that the
longitudinal and lateral-directional axes are coupled in some
manner. When the two axes are coupled, the effect of
simultaneous turbulence should be considered. When more than
one response variable is of interest, the rms response
variables are most easily determined using the state space
equations,

x(t) = Ax(t) + Bw(t)
y(t) = Cx(t) (4.46)

where w(t) is assumed to be white noise with intensity
el(w(t)wl(t)] = Q8(t-t). It is assumed that a state space
representation of the turbulence spectral density has been
augmented with the aircraft state equations in order to form
(4.46). The rms values of the output vector are found as the
diagonal elements of the matrix CXCT where X (the state
covariance) is obtained from,

AX + XaT + BQpT = O (4.47)

The 2-norm of the system is the trace of the matrix CXCT and,
therefore, it represents the sum of the squares of the rms
values. The 2-norm of the aircraft excited by turbulence
input will become the measure of turbulence response.
Obviously, a smaller 2-norm value will indicate a greater
degree of turbulence rejection.

To measure ride quality, the responses of interest are
generally the vertical and lateral accelerations at the pilot
station. The turbulence input should include, at least,
turbulence in both the vertical velocity and side velocity

directions. The matrix Q usually contains the rms intensity
of the turbulence inputs, i.e., Q = diag(Gwg?, Ovwg?]. But in
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order to standardize the results of the linear analysis, unit
intensities should be considered, Q = diag(l, 1].

Requirements for turbulence response 2-norm will be
established using the F-~16 model. However, there is some
guidance available from the flight control system
specifications with regard to acceptable comfort levels. The
background guide to MIL-F-9490D specifies a ride requirement
limit of % 0.1g, zero to peak, for all single frequency
vibrations below 22 Hz.(39] The equivalent rms value of a 0.1
zero-to-peak sinusoid is 0.07 g's. As a result, for a system
including both vertical and horizontal axis accelerations,
the 2-norm of the system should be less than JE-times the
expected rms value. For a 0.07 g acceleration in both axes,
the expected 2-norm value is 0.10 g's. Normalizing this
result by turbulence intensity of 5 ft/sec yields an expected
2-norm value of 0.02 (g/ft/sec).

For nominally unstable systems, the Lyapunov equation
does not have a bounded solution. However, some indication
of the response to turbulence can be obtained by numerically
integrating the transfer function matrix frequency response

to obtain an approximation of the 2-norm. The approximation
is,

Py
11G(s) 1122 = i | trace(G*(imG(jw)ldew  (4.48)
oy

where the frequency range of integration is from ®; to @;

(rad/s) . The transfer function matrix is defined by G(s) =
C(sI-A)-lB.

4.3.4. Response Decoupling

The most important aircraft cross-axis coupling problem
occurs when the aircraft is rolling. When the aircraft is
rolling, objectionable transients in pitch rate, roll rate,
and lateral acceleration may occur. The military
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spec:fications include many different criteria aimed at

measuring this coupling behavior. The flying qualities
specifications of interest are: Para. 4.8.1 Cross-Axis
Coupling in Roll Maneuvers and Para. 4.5.4 Lateral
Acceleration at the Pilot Stations. The applicable flight
control system specification is Para. 3.1.2.4.2 Lateral
Acceleration Limits, Rolling. Each of these requirements are
designed to limit the allowable amount of cross-axis coupling
when the aircraft is rolling.

Clearly, several responses are of interest in assessment
of cross-axis coupling. The size of these responses should
be the measure of merit. Therefore, it is recommended that
the size of these cross-axis responses be measured using
singular values. A limit on the size of these responses will
limit the magnitude of their response in a rolling maneuver.
As a result, the measure of cross—axis coupling will be,

max -~
® =0 o(G(jo)] < Vv (4.49)

where G(s) is the transfer function matrix from the lateral
stick force (lb) to the cross—axis variables of interest:

pitch rate (rad/s), yaw rate (rad/s), and side acceleration
(g's). The parameter V will be determined using the F-16

model.

Note that the aircraft state equations must be modified
for this assessment because the aircraft should be rolling at
some constant rate Po (rad/sec). The linearized equations of
motion, in the body-axis, must be modified by the underiined
terms shown in Table 4.6 to reflect the non-zero roll rate.

The effect of a non-zero roll rate on the linearized
airframe stability has been considered before by Stengel. (30]
Stengel showed that the short-period and Dutch roll modes
typically decrease in damping and increase in natural
frequency, for increasing body-axis roll rate. When
computing the proposed cross-axis coupling measure, the
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Table 4.6 Linearized Aircraft Equations with Non-zero Roll Rate

m (0 + Wyq) = -mg O cosfy + Fax + Frx

m (v + Uir - Wip - Raw) = mg ¢ cosfy + Fay + Froy
m (w - Uyq + Bjy) = Faz + Frpz

Inx P - Ixz T - IzzP1Q = La + L

Iyy @ + (Iax~TzzlB1r - 2LgRIR = Ma + Mr

Izz T -~ Iz P + (Iyy = Igg) P1q = Na + Np
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maximum achievable r2ll rate should be used for the given
flight condition.

4 4 20hner ParFarmance Maasures

The variation in performance due to model uncertainty
defines the performance robustness of the closed-loop system.
There are very few robust performance requirements directly
relevant to aircraft flight control system assessment.
Consequently, the measures of performance robustness
considered herein constitute'one of the few new research
efforts aimed at quantifying the effect of model uncertainty
on the performance of multivariable flight control systems.

There are at least two ways in which robust performance
of a system can be measured. The first would be to compute
the sensitivity of a particular performance parameter to
model ut.certainty. The measure, in this case, would be some
ratio of the change in performance divided by the change in
model parameters. The sensitivity approach has the distinct
appeal of being somewhat analytical in that an analytical
expression must be formed toc describe the sensitivities of
interest. As a result, valuable insight might be obtained in
the development of the sensitivity expressions which may
ultimately lead to a better understanding of which model
uncertainty sources lead to the largest changes in aircrar:
performance.

As an example, the matrix Lyapunov equation has been
used to propose nominal performance measures for effective
system order and for turbulence response. It has been shown
that the sensitivity of the Lyapunov solution to a parameter
p is given by, (40]

X 9dX dA dAT oB dBT
A + AT + (X + X— + 0BT + BQ—) =0 (4.50)

d dp  dp  dp 9p dp




With the partiais JA/dp and 0B/dp defined, the above egquat:icn
can be used to solve for 0X/dp, wnich is the sensitivity or

the Lyapunov equation solution to the parameter variation r.

While the sensitivity approach is by far the most
intellectually appealing, it suffers from the fact that very
little research has been conducted in this area. As a
result, only a few of the proposed nominal performance
measures have a direct analytical solution describing the
sensitivity of the soiution to parameter variations.
Furthermore, verification of the predicted performance
robustness would be very difficult to conduct in practice,
especially given the highly nonlinear model structure of some
airplanes.

The second approach is to actually vary the aircraft
model dynamics by some standardized method and retest the
nominal performance measures. This approach is equivalent to
evaluating the performance sensitivity numerically. The
aumerical perturbation approach also offers a straightforward
verification process wherein the model dynamics or high-
fidelity simulation dynamics are perturbed and well defined
performance metrics are retested. In order to implement such
an approach, a standard uncertainty set must be defined. The
standard uncertainty set proposed for this research is
defined in the next section.

4.4.1. The Standard Uncertainty Set

It is .expected that the manufacturer of the airplane
will consider uncertainty modeling specific to the airplane
as an integral part of the development of the airplane.
Therefore, the standard uncertainty set, which will be usad
to measure the performance robustness of a variety of
aircraft, should not contain specific uncertainties which
might favor one particular aircraft or control system type
over another. For this reason, the standard uncertainty set
defined for this research will only include gain and phase
uncertainty at pre-determined levels.
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The magnitude of the gain and phase uncertainty levels
might be expressed in either absolute values or as a
percentage of the specified minimum multi-loop gain and phase
margins. Obviously, the standard uncertaincy set for
performance robustness testing cannot be larger in magnitude
than the recommended stability margins.

For gain uncertainty, the standard uncertainty set will
consist of a gain perturbation of *1.5 dB introduced into

each feedback loop. A perturbation c¢f *1.5 dB represents

1/4th of the military specig;cation single-loop stability

margin of *§ dB and yields approximately *19% variation in
loop gain.

The feedback loops should also be perturbed in the worst
case direction. The "direction" for gain variations means
whether +1.5 dB or -1.5 dB is added to the loop gain. The
sign of the worst case direction can be found using the real
approximation to the structured singular valv- (see Section
3.4). At the bandwidth frequency, the permutation matrix @
which maximizes the structured singular value reveals the
worst case directions of the standard gain uncertainty
set , [41] A

Pure phase uncertainty is difficult to implement into
state space models and it is therefore difficult to analyze
and verify the effect of pure phase uncertainty in linear
models. As an alternative, the standard phase uncertainty
set will consist of a transport or time delay introduced into

each feedback path. The pure time delay is modeled by the
transfer function e™S where T is the effective time delay in

seconds. The time delay T will be defined for the phase

uncertainty set as the delay which introduces 10 degrees of
phase loss at the bandwidth frequency. A phase loss of 10
degrees is approximately 1/5th of the recommended single-loop
phase margin. Therefore, the standard phase uncertainty time
delay is,
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10Kk
= (4.51)
180Way

where Wpyw is the multi-loop bandwidth in rad/sec and T is the

time delay in seconds.

A Pade' approximation of the pure time delay will be
utilized for analysis of continuous time models. The firs:c-
order Pade' approximation is, [42]

1 - ts/2
et = (4.52)
1 + Ts/2

With the preceding definitions of the standard
uncertainty set, performance robustness measurement will
commence by perturbing the aircraft system dynamics by the
amounts defined in the standard uncertainty set. Each of the
nominal performance measures are then computed using the
perturbed aircraft system dynamics. The computed measures
using the perturbed system dynamics are the measures of
performance robustness.




5. Measure of Merit Results for the F-16 Aircraft

In this section, the proposed new measures of merit are
computed for the F-16 aircraft model. While the results are
only applicable to one flight cindition, they are
representative of the numerical values and computational
requirements of the new measures. The results of the
application to the F~16 also reveal areas where the measures
need to be refined, based on a comparison of the results to
the expected characteristics described in Section 4.

5.1 ijna] s:ah:‘]":x Measures

To test nominal closed-loop stability, the eigenvalues
of the complete closed-loop system were first computed. The
complete closed-loop system has 53 eigenvalues ranging in
equivalent natural frequency from 0.0 to 351.0 rad/sec. Only
one eigenvalue was found to be unstable. The unstable mode
is a real eigenvalue located at +0.02 rad/s. The time-to~
double amplitude for this mode is 34.7 seconds. It was
recommended in Section 4.1, based on current specifications,
that all closed-loop eigenvalues have an equivalent time-to-
double of greater than 12 seconds. Therefore, the F-16 model
meets this measure of merit.

5.1.1. Mode Classification

The proposed new nominal stability measure requires
classification of each of the characteristics roots of the
closed-locp system. Once the modes have been classified, the
stability or instability of each mode is tested. The mode
classification was carried out using the modal residue method
described in Section 4.1.1.

Of the 53 closed-loop eigenvalues, 15 were classified as
longitudinal modes. All of the longitudinal modes were found
to be stable except that the unstable mode located at +0.02




rad/s was classified as a longitudinal mode. It is believed
that the unstable mode results because the control system has
failed to stabilize the open-loop unstable phugoid mode of
the airplane. The open-loop airframe eigenvalues were listed
in Table 2.1 where it was noted that the phugoid mode
consisted of two real eigenvalues located at +0.1 and -0.01
rad/s. The time-to-double amplitude for the open-loop
unstable phugoid root is 6.6 seconds. As a result, the
control system has increased the time-to-double for this mode
from 6.6 to 34.7 seconds, but the mode has not been
stabilized. Consequently, the F-16 model does not meet the
recommended requirement of all stable longitudinal modes.

Twenty-one eigenvalues were classified as lateral-
directional modes. All of the classified lateral-directional
modes were found to be stable. Thus, the recommended 12
second or greater time-to-double amplitude requirement for
lateral-directional modes has been met for this F-16 model.

It is interesting to note that only 36 of the total 53
eigenvalues were classified as longitudinal or lateral-
directional. Therefore, there are 17 eigenvalues which do
not appear to contribute to the longitudinal or lateral-
directional motion of the aircraft, as commanded by the
pilot. Five of these states stem from the turbtlence model,
which is not excited by pilot inputs. It is possible that
the other unclassified modes stem from parts of the control
system which are not in use at this particular flight
condition. -

2.2, Robust Stability Measurss

The stability robustness measures are intended to
quantify the effect of model uncertainty on the stability of
the aircraft. It has already been shown in the previous
section that the nomi: .1 closed~loop system is unstable. As
a result, these stability robustness measures must be
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interpreted as the amount of tolerable uncertainty before an
additional closed-loop eigenvalue becomes unstable.

5.2.1. Multi-loop Stability Margins

Multi-loop stability margins were computed at both the
input to the actuator model (output of the control system)
and the output of the sensor model (input to the control
system within the feedback loop). The block diagram
manipulations required to form the appropriate sensitivity
functions were completed using SCT's the graphical modeling
tool Model-C™.

Figure 5.1 shows a Model-C™ diagram with an uncertainty
block inserted at the actuator input in the closed-loop
system diagram. The uncertainty block serves as a
placeholder such that the response from the input of the
uncertainty block to the output of the block is the same as
the complementary sensitivity function.

Figure 5.2 shows a plot of the inverse of the maximum
complimentary sensitivity function singular value as a
function of frequency. From this figure, one can see that f

= 0.902 at 5.3 rad/s for this configuration.

The equivalent Model-C™ diagram to compute & from the
system sensitivity function is shown in Figure 5.3. A plot
of the inverse of the maximum sensitivity function singular
value is shown in Figure 5.4. The minimum value shown in
Figure 5.4 reveals that o = 0.57 at 12.3 rad/s. As a
comparison, a recent study of the X-29 lateral directional
flight control system resulted in a value of ¢ = 0.67 at 7.9
rad/s. (211 This value of @ was also obtained at the input

node of the control system and a similar flight condition (M
= (0,7, 30,000 £t altitude).

The multi-loop gain and phase margins, at the actuator
input, are computed from & and B obtained above.

GMpos = mx(l—l-;,“ﬁ) = max(1.9,2.3) = 2.3 (5.1)
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GMneg = min(;f:;,l-ﬁ) = min(0.10,0.64) = 0.10  (5.2)

The final gain margin estimate is then

The phase margin estimates are,

2

a

PM; = cos~l(1 - ) = 33.0° (5.4)
B2

PM2 = cos-1l(1 - 3 = 53.6° (5.5)

and the final phase margin estimate is,

PM = + max(PM;,PM3) = + 53.6° (5.6)

In an attempt to reduce any conservatism inherent in
these results, the computations were repeated using the
Frobenius norm scaling technique. There was no significant
improvement in either the gain margin or phase margin
estimates. This result is undoubtedly due to the fact that
all of the actuator inputs have units in degrees of surface
deflection..

The above computations were repeated with the
uncertainty inserted at the sensor outputs. Figure 5.5 shows
a Model-C™ diagram with an uncertainty block inserted at the
output of the sensors. Figure 5.6 shows a plot of the
inverse of the maximum complimentary sensitivity function
singular values (solid line) with the loops eiffectively

broken at the output of the sensors. Figure 5.6 rev=2als that
B = 0.021 at 0.001 rad/s.
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ﬁ—

To compute the stability margins using the sensor output
sensitivity function, an uncertainty block was inserted as in
Figure 5.7. The solid line ia Figqure 5.8 shows a plot of the
inverse of the maximum sensitivity function singular values

with the loops broken at the output of the sensors. The
parameter & = 0.022 at 0.001 rad/sec is defined in Figure

5.8.

The values of a and § seem unusually small when compared
to ¢ = 0.66 at 8.0 rad/s obtained from the comparable X-29
study. In order to reduce the apparent conservatism, the
computations were repeated with the Frobenius scaling method.
The dashed lines in Figures 5.6 and 5.8 show the scaled
versions of the singular value plots for the complimentary

sensitivity and the sensitivity functions, respectively. The
@ effect of scaling in this case is very dramatic! Figures £.6
and 5.8 reveal values of B = 0.83 at 5.3 rad/s and a = 0.67
at 24.7 rad/s , after scaling. The improvement after scaling
results because the units of the feedback variables are very
different. For example, the angular rate feedbacks are in

units of rad/s while the accelerations are in ft/s2. Using
the parameters obtained after scaling, a gain margin of * 9.6

dB and a phase margin of * 49.2° were obtained.

i 5.2.2. Open-loop Bandwidth
The measure of open-loop bandwidth was defined in

Section 4.2.2 as the lesser of the frequencies at which the
stability qa:gin values of & and B were determined. From the
Section 5.2.1 results, we find that an open-loop bandwidth of
5.3 rad/s was determined for both the input and output nodes
of the control system. An open-loop bandwidth of 5.3 rad/s
compares favorably with the Section 4.2.2 recommended values.

5.2.3. Departure Susceptibility

In order to compute the departure parameter metric, a
structured uncertainty block was inserted into the Model-C™
diagram as shown in Figure 5.9. The block diagram consist of
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two nfierarchical block diagrams where one tlock diagram is
actually represented a one block within the other diagram.
Figure 5.9(a) is the overall system diagram consisting of all
of the model subsystems: actuators, sensors, airframe, and
control system Ffigure 5.9(b) shows an expansion of the
"AirZrame” labeled block in Figure 5.9(a). The two uncertain
stability derivatives are Ly and Ny and are assumed to be
perturbed simultaneously. These two derivatives only effect
the aircraft state matrix which is represented by the block
labeled "RAa" in Figure 5.9(b). The uncertainty in Ly and N,
are represented by the blockllabeled "daa". The
uncertainties are normalized by their nominal values so that
the resulting departure metric indicates a percentage of
uncertainty rather that an absolute value. To compute the
departure metric, the structured singular values are computed
for the transfer function from the uncertainty input (labeled
"dai") to the uncertainty output (labeled "dao").

Figure 5.10 shows the structured singular value plot for
the departure metric. The solid line in Figure 5.10 is the
structured singular value obtained using the Frobenius norm
scaling technique while the dashed line shows that structured
singular value approximation for real parameter variations.
Because the perturbations in Ly and Ny, are real, the value of
the departure susceptibility m~tric is defined from the peak
in the dashed line and is DP = 1.1 at 1.2 rad/s. As a
result, the stability derivatives Ly and Ny can be perturbed
by approximately 91% before an instability will occur.

As a comparison, the departure metric computations were
repeated for the open-loop aircraft system. The open-loop
computations were made by simply opening the control system
loop in Figure 5.9(a) and repeating the structured singqular
value computation. The associated structured singular value
plot is as shown in Figure 5.11. The dashed line is the real
approximation of the structured singular value while the
solid line is the complex, Frobenius norm approximation,
given for reference. From this figure, we note that DP is at
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least 2.5 at 4.0 rad/s. Consequently, the open-loop airframe
can tolerate only a 40% variation in Ly and Ny before
instability occurs. These results indicate that the control
system has decreased the sensitivity of the aircraft to
uncertainty in Ly and Ny and, therefore, improved the
departure characteristics as measured by the new departure
susceptibility metric.

While the departure metric is relatable to the amount of
uncertainty tolerable in the derivatives Ly and Ny, its most
important value will be to assess the aircraft departure
susceptibility throughout its flight envelope. The trim
angle-of-attack for the flight condition considered in this
report is approximately 2 degrees; hardly a "high" angle-of-
attack flight condition where departure susceptibility
measurement is most important. Departure susceptibility
should be measured throughout the angle-of-attack operating
limits and anticipated sideslip angles. The departure
susceptibility metric could also be computed using linear
models obtained by trimming at nonzero angular rates as well.

2.3, Nominal Performance Measures

The nominal performance measures are based on
interpretations of the current military flying qualities
specifications. These measures are multivariable
generalizations of existing single-axis criteria. They will
also be used to test robust performance (in Section 5.4)
wherein the closed-loop system is perturbed using the
standard uncertainty gain and phase variations.

5.3.1. Effective Order

The effective order of the longitudinal response of the
F-16 aircraft was determined by computing the Hankel singular
values of the pitch rate (deg/s) and vertical acceleration
(g's) responses to longitudinal stick force (lb) input.
Before computing the Hankel singular values, however, the 15




modes associated with the eigenvalues which were class:Zied
as longitudinal (from the mode classification study in
Section 5.1.1) were extracted from the complete closed-loop
model. The extraction was performed by transforming the
complete closed-loop model into real, modal form and
truncating all modes which were not classified as
longitudinal.

One of the 15 longitudinal modes was previously shown to
be unstable. This mode was also extracted from the closed-
loop model because the Hankel.singular values are not defined
for an unstable system. (The unstable mode will be factored
back into the model for equivalent system analysis in the
next section).

For the longitudinal response, the five largest Hankel
singular values are: 0.032, 0.018, 0.0078, 0.0029, and
0.001S. Counting the factored unstable mode as one state, an
effective fourth-order response would be cbtained if the
third Hankel singular value was much larger than the fourth.
In this case, the third Hankel singular value is 2.7 times
the fourth. Bacon and Schmidt hrave considered a factor
greater than 5.0 as a good relative indicator of effective
order. (14]

The aircraft roll rate (rad/s) and sideslip (deg)
response to lateral stick force (lb) and directional pedal
force (1b) inputs were considered for the lateral-directional
response effective order. After extracting the 21 lateral-
directional-states, the largest six Hankel singular values
were: 0.42, 0.092, 0.041, 0.038, 0.014, and 0.010. The
ratio of the fourth to the fifth Hankel singular value is
2.7. The value of 2.7 is still less than the recommended
value of 5.0, but is much greater than unity.

5.3.2. Equivalent System Error

A third-order longitudinal equivalent system model was
obtained using the balanced model reduction algorithm on the
14 state (15 state model without the unstable mode)
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longitudinal model described in the preceding section. After
the balanced model reduction, the unstable mode was factored
back ianto the model so that a fourth-order equivalent system
model was obtained. The transfer functions describing this
fourth order model are given in Table 5.1. No attempt was
made at this time to model the equivalent time delay found in
the standard equivalent system representations shown in
Tables 4.4 and 4.5. ‘

A frequency response comparison of the low order
equivalent system model and the complete (53 state) closed-
loop model is shown in Figure 5.12. The dashed lines in
Figure 5.12 depicted the response of the low-order equivalent
system while the solid lines are the full-order system
response.

The equivalent system error was then computed using the
relation derived in Section 4.3.2. and repeated here,

O(Guos (J®) - Gros(jw) ]

G(Gros (3 ]

< e(W)

The left side of the above expression is shown as the solid
line, while e(®) on the right side is shown as the dashed
line in Figure 5.13. Figure 5.13 shows that the equivalent
system error stays below the recommended specification for
all frequencies considered except a small range from about 30
to 90 rad/s. The error specification violation at high
frequency is not considered serious and would probably not
occur if an equivalent time delay was included in the
analysis.

Note that effective order and equivalent system
calculations can vary with different choices of input and
output response units. The response units which seemed to
minimize the error apparent in Figure 5.13 were selected for
the effective order and equivalent system error studies. The
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Table 5.1 Nominal Equivalent System Transfer Functions

I | tudinal

g(deg/s) _ ~0.053 (s-0.005) (s + 0.63) (s=67.9)
Flon (1b) (s - 0.02)(s + 2.48) (s? + 2(.57)(8.73)s + 8.732)

nzi(g's) . =0.0085 (s - 0.011) (s?2 + 2(.26) (13.51)s + 13.512)

Fion(1lb) A

T » - o

p(rad/s) _ 0.10 (s = 0.0017) (s? + 2(.68) (3.39)s + 3.392)
Flat (1b) (s + 0.0036) (s + 1.31) (s? + 2(.46) (3.66)s + 3.662)
B(deg)  -0.051 (s + 0.19)(s + 0.45)(s - 12.34)

F]_at(lb) A

plrad/s) _ 0.021(s + 0.0024)(s - 3.12)(s = 5.26)

B(deg) ~_ 0.066 (s + 0.0017)(s + 1.66) (s - 17.01)
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Figure 5.12 Nominal Longitudinal Equivalent System Comparison
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response units selected were pitch rate (deg/s) and vertical
acceleration (g's) to longitudinal stick force (lb) input.

A fourcth-order lateral-directional equivalent system
model was obtained via balanced model reduction of the 21
lateral-directional axis states. The input and output units
were selected to minimize the equivalent system error. The
units of aircraft roll rate (rad/s) and sideslip (deq)
response to lateral stick force (lb) and directional pedal
force (lb) inputs were selected. Note that roll rate was
matched instead of the usual roll attitude signal (see Table
2.1) because the equivalent'roll mode time constant seemed to
be matched better. The resulting transfer functions for the
lateral-directional equivalent system model are shown in
Table 5.1. A frequency response comparison is made in Figure
S5.14.

The equivalent system error is computed for the lateral-
‘irectional equivalent system model in Figure 5.15. The
recommended error specification is violated at frequencies
greater than about 0.5 rad/s with significant deviation
occurring from about 6 to 40 rad/s. The peak in the error
response curve is most likely due to the relatively large
difference in this frequency range from the low-order and
full-order lateral stick force to roll rate transfer
function. Figure 5.14 shows that the full order lateral
stick to roll rate response appears Lo be at least second
order as opposed to the approximate first-order form obtained
from the equivalent system match. It is probably not
possible to reduce the response error without increasing the
order of the equivalent system model or sacrificing the
matching fidelity of the cther responses.

5.3.3. Turbulence Response

The aircraft response to turbulence in the vertical and
side velocity directions was determined by computing the 2-
norm of the full-order closed-loop system. The output
responses of interest are n;p(g's) and nyp(g's). The input
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consists of vertical velocity wg(ft/sec) and side velocity
vg(ft/sec) turbulence. The Dryden turbulence model was used.
Because the closed-loop system is nominally unstable,
the usual 2-norm is not defined. However, some indication of
the turbulence response can be obtained by computing the 2-

norm over a selected range of frequencies. The 2-norm for
the F-16 model was computed from 0.1 to 1000 rad/sec using a
simple trapezoidal integration approximation. The resulting
2-norm value was 0.023 (g's/ft/s). This value is greater
than the expected value of 0.02. However, the expected value
does not take into account contributions of the cross-axis
components (lateral velocity turbulence influence on vertical
acceleration, for example), which is included in the 2-norm
calculation.

5.3.4. Response Decoupling

Aircraft response decoupling in a roll was measured by
computing the maximum singular value of the transfer function
from lateral stick force input (1lb) to the cross-axis
variables of interest: pitch rate (rad/sec), yaw rate
(rad/sec), and side acceleration (g's). Before computing the
matrix singular values, the airframe state equations are
modified to reflect a body-axis roll rate of 128 deg/sec.

The roll rate of 128 deg/sec was chosen from the MIL-STD-1797
requirements for roll control effectiveness wherein a Class
IV, Category A, Flight Phase CO aircraft should be able to
roll 360° in 2.8 seconds.

Figure 5.16 shows the maximum transfer function matrix
singular values plotted for frequencies from 0.01 to 1000
rad/s. The singular value are shown to be large at low
frequencies before peaking again near 10 rad/s. The second
peak is near the bandwidth of the system and therefore
defines the region of interest. The maximum value of the
high frequency peak is v = 0.020 at a frequency of 9.5 rad/s.

Unfortunately, there is no existing standard for comparison.
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The robust performance measures are tested by perturbing
the aircraft system dynamics and retesting the nominal
performance measures established in the previous section.

The standard uncertainty set, as defined in Section 4.4.1,
consists of a gain and a phase uncertainty description.

For the gain uncertainty, the feedback gains are
perturbed in the "worst case'" direction, which is established
using a real, structured singular value calculation. For
this study, perturbations in the sensor output feedback
signals are considered, although a similar study can be
completed using the actuator input signals. Figure §5.17
shows the approximate structured singular value for real
perturbations. The block diagram used to generate this curve
is shown in Figure 5.5. The peak of the structured singular
value curve occurs at the system bandwidth of 5.3 rad/s. at
this frequency point, the permutation matrix which defines
the worst case gain variations is ® = diag(1, -1, 1, 1, 1,
l). The six feedback signals are (in order): roll rate
(rad/s), pitch rate (rad/s), yaw rate (rad/s), angle-of-
attack (rad), vertical acceleration (ft/s?), and side
acceleration (ft/s?). The signs of the permutation matrix
elements define the direction of the worst case uncertainty.
A +1 indicates gain increase while a -1 indicates a gain
decrease. As a result, the worst case gain uncertainty
involves an increase in gain for all of the feedback signais
except the pitch rate feedback gain, which should be reduced.
Assuming a gain perturbation magnitude of * 1.5 dB, the pitch
rate feedback signal should be reduced by 0.84 while all
other signals increased by a factor of 1.19.

Once the gain uncertainty set has been defined, the
nominal aircraft dynamics are perturbed and the nominal
performance measures are re-evaluated. For the F-16 model,

however, very little performance degradation was noted in any
of the performance measures. The multi-loop gain margin of *
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3.6 dB computed for £-16 model provides evidence that the
model will not be sensitive to gain variations. One might
consider increasing the magnitude of the gain uncertainty;
but it is expected that the multi-loop gain margin
specification should be around * 4.5 dB and robust

verformance measures based on a gain perturbation of greater
than £ 1.5 dB may be too difficult to achieve. Therefore,
data concerning the robust performance measures for gain
variations of the F-16 model will not be presented.

The standard phase uncertainty set is defined in Section
4.4.1 as an equivalent firsﬁ-order Pade' approximation of a
pure time delay. The time delay is to be chosen using the
following relation,

10x
180wpy

With the system bandwidth previously found as Way = 5.3
rad/s, the computed time delay is T = 0.033 seconds. The

remainder of this section presents the results of the robust
performance measures for the standard phase uncertainty.

5.4.1. Robustness of Effective Order

The effective order of the phase perturbed system was
computed in the same manner as in the nominal performance
measure except that the Pade' time delay approximation has
been included in the closed-loop F-16 aircraft model. 1in =he
longitudinal axis, the unstable root at +0.02 remains and the
largest five Hankel singular values (without the unstable
mode) are: 0.038, 0.022, 0.013, 0.0047, and 0.0029. The
ratio of the third to the fourth Hankel singular value is
2.7, which was the same as the nominal case. Therefore, no

degradation in effective order is noted in the longitudinal
axis.

For the lateral-directional system, the six largest
Hankel singular values were computed as: 0.63, 0.15, ¢.081,




0.047, 0.020, and 0.013. The ratio of the fzourth to the
fifth Hankel singular value is 2.3. Recall that the nominal
value was computed as 2.7. Thus, a small amount of
degradation in effective order is caused by phase
perturbation in the feedback loops.

5.4.2. Robustness of Equivalent System Error

A fourth-order longitudinal equivalent system was
computed for the phase perturbed F-16 model. The transfer
functions for the equivalent .model are shown in Table 5.2
while a frequency response comparison of the full-order
(which now has S9 states) and the fourth order equivalent
model (dashed line) is shown in Figure 5.18.

The longitudinal equivalent system error is plotted in
Figure 5.19 for the phase perturbed system. In comparison
with the nominal equivalent system error, shown in Figure
5.i3, one should see that the perturbed system error is
larger at nearly all frequencies. However, the perturbed
system error has nearly the same characteristics wherein it
remains relatively small in the” frequency range of 1 to 10
rad/s and relatively large outside of this range. In.
summary, it appears that the effective order of the perturbed
system has not been degraded, but the relative error is
certainly larger.

The lateral-directional equivalent system representation
of the phase perturbed system is shown in transfer function
form in Table 5.2 and the frequency response comparison is
shown in Figure 5.20. The equivalent system error is plotted
in Figure 5.21. 1In comparison with the nominal lateral-
directional equivalent system error shown in Figure 5.15, we
note that the perturbed error is much larger at all
frequencies tested but, more importantly, the error is no
longer relatively small in the 1 to 10 rad/s range. The
increase in mid-frequency error may be a result of the
degraded effective order noted in the previous section.
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Table 5.2 Phase Perturbed Equivalent System Transfer Functions

Longitudina]

g(dea/s) _ -0.086(s + 0.0074) (s + 0.18)(s -~ 50.44)

Flon(1Db) (s - 0.020) (s + 1.07)(s? + 2(.37)(10.81)s + 10.812)
ng(g)  _ =0.0077(s - 0.013)(s? + 2(.47) (13.64)s + 13.642)

Fion(1b) A

p(rad/s) 0.081(s - 0.001p) (s + 2.088) (s + 5.27)

Fiac (1b) (s + 0.0042) (s + 1.02) (s? + 2(.40) (3.84)s + 3.842)
B(deg) ~ 0.086(s + 0.060) (g ~ 1.86) (s - 8.77)

Fiat (1b) A

p(rad/s) _ =0.077(s + 0.011 82 - 2(.94)(1.10)s + 1.10?%)

B (deg) _ 0.050(s + 0.00078) (s + 2.77) (s = 22.59)

-y 4
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It would appear that the ropust performance measure of
merit for equivalent system error should be posed as some
multiple of the expected nominal measure, represented by
e(w). From the longitudinal axis results, it would seem
appropriate to multiply the nominal measure by about a factor
of 2.0 to define the robust performance measure. However,
the lateral-directional axis equivalent system error would
violate this robust performance measure.

5.4.3. Turbulence Response Robustness

The turbulence response robustness measure was computed
in the identical manner as the nominal case except the phase
perturbed F-16 model was used. The resulting 2-norm value
was 0.023, which is the same as the nominal value.

5.4.4. Response Decoupling Robustness
A plot of the response decoupling metric is shown in

Figure 5.22 for the F~16 phase perturbed model. The metric
was computed in the same manner as in the nominal case,
except that the phase perturbed-aircraft model was utilized.
The figure reveals the same shape and characteristics as the
nominal case, shown in Figure 5.16. The magnitude of the
high-frequency peak has increased from a nominal value of
V= 0.020 at 9.5 rad/s to a value of vV = 0.027 at 9.5 rad/s
for the phase perturbed model. The introduction of phase

- uncertainty has therefore lead to an apparent increase in
aircraft roll coupling.
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6. Conclusions

Eight new measures of merit, specifically designed to
evaluate multivariable flight control systems, were proposed,
developed, and tested in this report. These new measures
represent an innovative application of recently developed
multivariable control system evaluation techniques to the
problem of adequate acceptance testing for complicated,
multi-loop flight control systems.

This report provided a fheoretical development of the
measures of merit based on "modern" multivariable control
analysis methods. The analysis techniques used to form the
new criteria draw from recent control theory research in
Hankel singular values, matrix singular values, an«< the so-
called "structured"” singular values. These methods were used
to develop new measures of merit for: mode classification and
nominal stability, multi-loop stability margins, open-loop
bandwidth, departure susceptibility, effective response
order, equivalent system error, turbulence response, and
response decoupling. | .

The scientific and technical feasibility of the proposed
new measures was demonstrated by application of the measures
to a high fidelity linear model of the F-16 aircraft. The F-
16 aircraft model was chosen to represent a high performance
aircraft which is actually in production. Therefore, the
linear model used in this evaluation cannot be viewed as a
simple "academic" demonstration but as a realistic test which
would likely be used in a commercial application. The
results of this investigation, although limited in scope,
provide an indication of the usefulness, computational
methods, and numerical values expected from the new measures.
It is hoped that this research will provide the foundation
for a standardized form for multivariable flight control
system evaluation results such that the performance of
different designs and aircraft can be compared directly.
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7. Recoamendations for Phase II

Based on the Phase I results reported herein, the
potential of a Phase II continuance to yield a product of
importance to the government and application in industry is
excellent. The F-16 results obtained in this research
represent the initial formation of a "data base" of measure
of merit results. The data base results can ultimately be
used by the Air Force as a jﬁstification for flight control
and flying qualities performance specifications for future
multivariable aircraft £light control systems. The data base
results could also potentially become a resource for airframe
manufacturers and flight control design contractors for in-
house evaluation of preliminary flight control designs.

To succeed with commercial application of this research
(Phase III), there are three objectives that must be met in
Phase II development. The first is to expand the
applicability of the data base results in order instill
confidence and broaden industry acceptance of the evaluation
procedures. The data base requirements can be accomplished
by continued testing of the measures in expanded regions of
the F-16 aircraft flight envelope, nonlinear validation of
the results using F-16 model simulations, and a comparison of
results with a second aircraft.

The sgcond cbjective is to prepare for a transfer of
technology to the Air Force and commercial firms. Primarily,
the transfer of technology must provide a method through
which companies can compare their own designs to those
represented in the data base. This need can be accomplished
by providing a specialized software product which will
simplify the computations required for the new measures of
merit. In addition, the data base results which are
determined during the data base expansion will be made
available to commercial firms either in report or magnetic
media form.




The third objective is to continue development of the
measures defined in Phase I and to propose additional
measures. After careful review of this report, Air Force
personnel have identified a number of refinements to the
currently studied measures of merit which promise to improve
the usefulness of the measure results. Specifically, it has
been noted that the effective order measure proposed in Phase
I should ke restated such that the ratios of several
sequential Hankel singular values are computed. This new
definition would measure an effective order of less than
four, but would also insure that the true effective order is
no larger than that predicted by the greatest computed ratio.
Also, it has been suggested that a weighting filter should be
added to the turbulence response measure definition so that
the natural resonance of the human body is incorporated in
the measure. Refinements to the current measures will
compliment the continued theoretical research to develop
additional measures, especially in the area of analytical
performance robustness.
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