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Y. Jack Weitsman 0 § and 1. Chung 0

Abta

I The validity of some basic premises employed in modelling of the
compressive response qf fiber-reinforced composites is examined in the
present article.

It is shown that the deformation fields associated with the compression3 of layered media yield inadmissible results when applied to hexagonal and
square arrays of circular fibers. Consequently, predictions of compressive
strength, which derive from the prevailing representations of layered

I geometry, may not apply to realistic circumstances.
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IIntroduction

With very few exceptions the modelling of the compressive response
of fiber-reinforced composites is based upon the proposition that fiber and
matrix regions can be considered as layered plates. In addition, the
deformation of the soft matrix material is assumed to vary linearly between
the boundary values imposed upon the matrix layer by the neighboring
fibrous plates.

In this article it is shown that the latter assumption yields inacceptable
deformation fields within the matrix when employed in conjunction with
realistic fiber geometries, such as hexagonal or square arrays of circular fibers.
This observation casts serious doubts about the validity of the basic premise
employed in the modelling of the compressive response of composites.

I Review of Current Modelling

Let X, Y, z denote rectilinear Cartesian coordinates and consider a
composite material consisting of periodic layers of fiber and matrix materiais,
with a cross section shown in Figure 1.

Let N denote a compressive load acting parallel to the z axis and
assume that the composite deforms in a "shear mode"1' 1 as shown in Figure 2.
Denote by Wm and Wf the components of displacement in the direction of z
in the matrix and fiber layers, respectively. The basic assumptions employed
in the modelling of the compressive response of composite are expressed by

Wm(X,Z) = Wf (c, z) - Wf (-c, z) X
2c

and
Um (X, z)= Uf(c + h, z) (2)

Equation (2) derives from the assumption that the transverse
translation of fiber and matrix regions is independent of X.

An essential simplification occurs when the fiber is assumed to rotate
rigidly about its mid-plane, in which case we have

Wf (-c, z) = - Wf (c, z) (3)

A most significant consequence of expressions (1), (2) and (3) is that the3 displacements in the matrix region take the forms

Wm (X, z)= Wf (c, z) X = F(z)X (la)

I and
Um (X, z) = P(z) (2a)
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Thereby, the shear strain in the matrix depends on the coordinate z
alone, namely

ym = F(z)+ P'(z) = Q(z) (4)

Obviously, we also have y9 = 0.
It will be shown in the next section that displacements of the forms

given in equation (1), or (la), are inacceptable for realistic fiber geometries
because they yield singular values for Y7. Those singular values give rise to
unbounded terms in the strain-energy of the matrix, and therefore render the
layered geometry unsuitable for modelling the compressive response of fiber-
reinforced composites.

Hexagonal Fiber Arrays

3 Consider the hexagonal array of circular fibers with a cross section
shown in Figure 3. Let all the rows of fibers parallel to the Y axis undergo
rigid rotations which are analogous to the rotations of the fiber layers shown
in Figure 2.

To focus ideas consider the representative cross-sectional area depicted
in Figure 4, and refer to Cartesian coordines x, y translated to the center of that
area.

Let C1 and C2 denote the arcs which separate the fibers and matrix
regions in the representative area, and divide the matrix into three sub-

regions A, B, and A'. Also, let a denote the radius of the fibers centered at
(a b( b-) and 1-2 b,-)•), as shown in Figure 4.2 2 222

We have
On Cl: (x - fb) 2 + ly- _,)2 = a2 (5)

2 2
3 hence

3On C2: (x+fi1b)2 +(y+b.)2 a2 (6)

hence

x(C)=-Ilb + a2- t ) 2 (a
2 a-y 2 ,()

I 3
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In analogy with the circumstance shown in Figure 2 we have

23 (7)

3 However, we now also have

2 Wm(_ biY)o(8)

3 In addition, in view of the presumed rigid rotations of the fibers we obtain

On C1:

I Wnm=Wf=W1=F(z)(x(CI)-ffb)=-F(z) a2(y-2 (a)

U while on C2:

I Wm Wf W =F(z)(x(CO)• 1 -zb) F(z) -(y (9b )

Assume that the matrix in sub-regions A, B, and A' deforms in
accordance with expressions (1) and (1a). In this case we obtain the following
expressions for Win:

SIn sub-region A:

am :b fz -f(y)
Wm= W1 2 -F(z)(x+fb (10a)

x (C1)+ lib2 f 3b - f(y)

In sub-region B:

Wm = W2 + (W1 - W2) x(¢1- x (¢)

=F (z) g (y)-(f (y) + g (y)) b-((y)+ab (10b)

I 4
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In sub-region A:

Wm=W22F(z)(ib-x) (Y)(
2I

In equations (9): f(y) a2-(y ) and g(y) a2

From equations (10) it is noted that, in clear contradiction withexpressions (1) or (la), a linear variation of Wm with x in hexagonally arrayedcircular fibers must take the form

Wm = F (z) (R(y)x + r (y)) (11)

Instead of Wm = F(z)x.

The qualitative distinction between the displacement fields which
correspond to expressions (1) and (10) is exhibited in Figure 5.

By hypothesis Vm = 0, therfore upon differentiation of expressions (10)3 with respect to y, one obtains the following expressions for PIN:

SIn sub-region A:

aW m = F (z) f3b(x + fb) y2(1

ay f (y)(f3 b - f(y))

I
In sub-region B:

[aWm fr3yb F(z) { +b. (f(y)+x-fib)

Iy o•Y [b-(f (y) + g (Y))]2 g(y)

+ Y-b-., (glt+ - g (y)) (12b)
f 5(y)
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Since f( - a)= g (a- 2y) = 0, expression (12b) yields unbounded values,

singular of power 1/2, along the lines y = + (a- 11) which separate sub-region

B form subregions A and A'. The above singular terms result in a non-
_I intergrable (power -1) singular expression for the strain-energy within the

matrix. Consequently, the basic premises employed in the "layered
formulation" in equations (1) or (la) fail to provide a meaningful
approximation to the response of fiber-reinforced composites.

It should be noted that Figures 4 and 5 correspond to the case a >

namely for fiber volume fractions Vf > 0.25.
The case of Vf < 0.25 corresponds to the configuration shown in Figure

6, in which case the expressions for Wm in sub-regions A and A' are still
given by equations (10a) and (10c) while in region B Wm = 0. In this case we

i again obtain singular values for 2Wm along y = + (h -a) with unbounded•2

strain energy.

Square Fiber Arrays

-- Square fiber arrays coirespond to the configuration shown in Figure 6,

i except that the fibers are centered at points (D-, D-) and (+b, .-_b The

displacement Wm in regions' A and A' is given by equations (10a) and (10c)

i upon replacing 2 by 2. aWm

In addition Wm vanishes region B. The singular nature of a and

the unboundedness of the strain-energy follow in the same manner as in3 hexagonal arrays with Vf < 0.25.

It has been shown that the replacement of hexagonal or square arrayed
fiber geometries by an equivalent, plate-like, layered geometry results in a
displacement field which is inappropriate to determine the compressive
strength of fiber-reinforced composites. A model based upon a plate-like
geometry obscures the three dimensional features of the displacement field
and may give highly unrealistic predictions.
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Fig. 1. A fiber reinforced composite medelled as a two dimensional lamellar region3 consisting of fiber and matrix plates.
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3 Fig. 2. Composite compressed in fiber direction. Deflection shape of all fibers are

assumed identical. Displacement of matix, wm varies linearly with respect to x.
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Fig. 3. Hexagonally arrayed fibers in composite. Part in dotted rectangle is repre-

sentative volume element.
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3 Fig. 4. Representative volume element for hexagonally arrayed composite with Vt >
0.25.
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Fig. 5. Out-of-plane displacement, w, of (a) RVE in Fig. 4 under compression (Pi
(i=l,...,8) indicates location corresponding to Fig. 4), and (b) two dimensional
model in Fig. 2.
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Fig. 6. Representative volume element for hexagonally arrayed composite with V, <

3 0,25.
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