A CRITIQUE OF TYPE SYSTEMS
FOR GLOBAL OVERLOADING

by Dennis M. Volpano

October 1993

Approved for public release; distribution is unlimited.

Prepared for:

Naval Postgraduate School
Monterey, California 93943
Best Available Copy
This report was prepared with research funded by the Naval Research Laboratory under the Reimbursable Funding.

Reproduction of all or part of this report is authorized.

This report was prepared by:

Dennis M. Volpano
Professor of Computer Science

Reviewed by:

Yutaka Kanayama
Associate Chairman for Technical Research

Released by:

PAUL MARTO
Dean of Research
A Critique of Type Systems for Global Overloading

Proposed extensions of the ML type system to incorporate global overloading include the systems of [Kae88, CD091, Smi91, Kae92, Jon92] and those related to the design of the functional programming language Haskell [WaB89, CH092, niP93]. These systems have in common the notion of a constrained type scheme which in some is realized by type kinds and in others as explicit predicates. An analysis of these type systems reveals that some are unsound with regard to a suitable criterion for typability and some adopt a notion of type generality that is inconsistent with that of system ML [DaM82].
A Critique of Type Systems for Global Overloading

Dennis M. Volpano
Department of Computer Science
Naval Postgraduate School
Monterey, CA, USA

July 15, 1993

Abstract

Proposed extensions of the ML type system to incorporate global overloading include the systems of [Kae88, CDO91, Smi91, Kae92, Jon92] and those related to the design of the functional programming language Haskell [WaB89, CH992, NiP93]. These systems have in common the notion of a constrained type scheme which in some is realized by type kinds and in others as explicit predicates. An analysis of these type systems reveals that some are unsound with regard to a suitable criterion for typability and some adopt a notion of type generality that is inconsistent with that of system ML [DaM82].

1 Introduction

Much of the research in type theory is devoted to finding new type systems that offer programmers more flexibility without compromising the advantages of a strongly-typed language. One of the simplest type systems is Λ_0, the implicit, finitely-typed lambda calculus [Tiu90, BaH90]. It assigns finite types to type-free λ terms. For example, in Λ_0 one can derive the typing $\vdash \lambda x. x : \alpha \to \alpha$. In fact, one can derive $\vdash \lambda x. x : \tau \to \tau$ for any finite type τ. Consequently, $\lambda x. x$ can be assigned multiple types within a single term as is necessary in deriving a type for $(\lambda x. x) \lambda x. x$ in Λ_0.
Although λ_0 allows a term denoting a polymorphic value to be assigned multiple types, it does not allow a free identifier that denotes such a term to be given multiple types within a single λ term. For example, the term $(\lambda y. y y) \lambda x. x$ is untypable in λ_0 even though y, which is free in $y y$, denotes $\lambda x. x$. So although λ_0 has desirable properties like a decidable typability problem and principal types for all typable terms, it is for the most part unsuitable for direct use in a programming language.

This limitation was overcome in the ML type system [Mil78, DaM82] which is an extension of λ_0 with type schemes. A type scheme represents a very simple kind of polymorphism called parametric polymorphism. A free identifier may be asserted to have infinitely many types via a type scheme. However, in the interest of retaining principal types, lambda abstraction in system ML is monomorphic as in λ_0. Thus $(\lambda y. y y) \lambda x. x$ is untypable in system ML as well. How then does system ML allow free identifiers denoting polymorphic values to be assigned multiple types? Only through its let construct. So for example, $(\lambda y. y y) \lambda x. x$ is written let $y = \lambda x. x$ in $y y$.

Like λ_0, system ML has a decidable typability problem and typable terms have principal types. Further, it seems to offer an acceptable level of flexibility as evidenced by its incorporation in languages like Standard ML [HMM86] and Miranda [Tur86]. Yet it remains limited in some ways that appear to be solely of theoretical interest, and in others that are very obvious in practice.

One practical limitation is that it prohibits overloading by restricting to at most one the number of assumptions per identifier in a type assumption set, a limitation noted by Milner himself in [Mil78]. Suppose we wish to assert that a free identifier, say +, has precisely finite types $int \rightarrow int \rightarrow int$ and $real \rightarrow real \rightarrow real$. Any assumption set in which + has one of the two desired finite types precludes a derivation that it has the other. On the other hand, any assumption set that assigns type scheme $\forall \alpha. \alpha \rightarrow \alpha \rightarrow \alpha$ to + is one from which too many types can be derived for +. Thus there is no assumption set in system ML from which we can derive precisely the desired finite types for +. Even system ML with subtypes is inadequate. From

$$A = \{ int \subseteq real, \ + : real \rightarrow real \rightarrow real \}$$

one could derive $A \vdash + : int \rightarrow int \rightarrow real$ but not $A \vdash + : int \rightarrow int \rightarrow int$.

Many extensions of system ML have been proposed to incorporate overloading. There are the systems of [Kae88, CDO91, Smi91, Kae92, Jon92] and those related to the design of the functional programming language Haskell.
This paper reviews these systems. As we shall see, some are unsound under a proper notion of typability and some even adopt a notion of type generality that is inconsistent with the original notion proposed in [DaM82].

2 Constrained Type Schemes

The terms of the type systems we consider are typical. Every variable \(x\) is a term, and if \(M\) and \(N\) are terms then so are \(\lambda x. M\), \((M \cdot N)\), and let \(x = M\) in \(N\). There is no expression that overloads identifiers locally like the over expression proposed in [WaB89]. The only overloading the systems attempt to address is that which comes from an initial basis or sequence of top-level definitions, which we call *global* overloading.

Each system has the same set of finite types defined in the usual way. Every type variable \(\alpha\) is a finite type, and if \(\tau_1, \ldots, \tau_n\) are finite types then so are \(\tau_1 \rightarrow \tau_2\) and \(\chi(\tau_1, \ldots, \tau_n)\) where \(\chi\) is a type constructor of arity \(n\).

The systems have in common the notion of a *constrained type scheme* which in some is realized by a type of types called a *kind* and in others as an explicit *predicate*. A kind is a universe of types over which a type variable may be quantified. Kinds appear in [Kae88, CDO91, CHO92, NiP93] where the general form of a constrained type scheme is \(\forall \alpha : \rho. \sigma\) for some kind \(\rho\). Explicit predicates appear in the systems of [WaB89, Smi91, Jon92, Kae92] where the general form of a constrained type scheme is

\[
\forall \alpha_1, \ldots, \alpha_n \text{ with } x_1 : \tau_1, \ldots, x_m : \tau_m. \tau
\]

for predicates \(x_1 : \tau_1, \ldots, x_m : \tau_m\). Predicates also appeared earlier in the work of Holmstrom [Hol83].

Although syntactically different, constrained type schemes of all these systems may be interpreted as Horn clauses. For example, suppose multiplication (\(*\)) and the multiplicative identity (\(1\)) are overloaded in a type basis. Then if both were free in a definition of \(\text{expon}\) that raises a value to some integer power then \(\text{expon}\) should have as types \(\tau \rightarrow \text{int} \rightarrow \tau\) for any finite type \(\tau\) for which predicates \(1 : \tau\) and \(* : \tau \rightarrow \tau \rightarrow \tau\) are true. This may be expressed by a constrained type scheme using predicates as

\[
\text{expon} : \forall \alpha \text{ with } 1 : \alpha, * : \alpha \rightarrow \alpha \rightarrow \alpha, \alpha \rightarrow \text{int} \rightarrow \alpha.
\]
If $T_x(\tau)$ means $x : \tau$ then this is interpreted as the Horn clause

$$T_{expon}(\alpha \rightarrow int \rightarrow \alpha) \leftarrow T_1(\alpha) \land T_2(\alpha \rightarrow \alpha \rightarrow \alpha).$$

It is natural to consider Horn clauses with other kinds of predicates as well expressing, for example, subtype inclusions [Smi91, Jon92, Kae92] and even unification among finite types [Kae92]. The latter kind of predicate shows that typability in system ML is actually an instance of typability in a predicate-based system. Of course in system ML, the absence of a unifier implies the given term is untypable and if unification succeeds, then a unifying substitution can be reflected in an unconstrained type scheme, so no explicit predicates or kinds are needed.

3 A Criterion for Typability

When is a term typable with respect to a set of type assumptions? One criterion for typability often used for system ML is called strong type inference [Tiu90]. Under it, a term M is typable with respect to an assumption set B if there is an assumption set A and type σ such that $B \subseteq A$ and $A \vdash M : \sigma$ is derivable. Thus in a formulation of the typability problem, M and B are considered input. Yet the problem only requires finding an A that contains B so there is considerable latitude in the choice of A. In fact, within the context of overloading, there is too much. Consider the term $true + true$, where $true$ denotes a truth value and $+$ integer addition as conveyed by the assumption set

$$B = \{true : bool, + : int \rightarrow int \rightarrow int\}.$$

Then the term could be typable under B in a sound type system since with

$$A = B \cup \{+ : bool \rightarrow bool \rightarrow bool\}$$

we can derive $A \vdash true + true : bool$. But $B \vdash true + true : bool$ is not derivable, since $+$ does not have an instance for type $bool$ within B. Therefore the term should not be typable under B.

Thus a suitable criterion for typability is strong type inference with the requirement that $B \vdash M : \sigma$ be derivable. However σ is constrained so unless a type system prevents quantification over an empty type universe, it may be unsound in that terms with domain incompatibilities are typable.
4 Soundness of the Proposed Systems

The early work of Kaes [Kae88] led to an extension of system ML based on type kinds. It permits a restricted form of overloading called \textit{parametric overloading} which, when extended to allow overloading of constants, corresponds to the kind allowed in Haskell. Kaes gives a type inference algorithm where unification is done with variables having kinds. This was later discovered to be an application of order-sorted unification in [NiS91] where type inference in Haskell, which permits overloading via classes, is implemented in the context of order-sorted algebras.

Kaes's extension has two kinds of assumption sets, one for ordinary type assumptions and the other for overloading assumptions. For example,

$$A = \{ f : \forall \alpha(f) \cdot \alpha(f) \rightarrow \alpha(f), \\ g : \forall \alpha(g) \cdot \alpha(g) \rightarrow \alpha(g) \}$$

is a type assumption set and

$$O = \{ f : (\omega \rightarrow \omega, \{\text{int, real}\}), \\ g : (\omega \rightarrow \omega, \{\text{bool, char}\}) \}$$

is an overloading assumption set. Set O specifies the different finite types for the overloaded identifiers f and g. The types of f, for example, are formed by replacing ω in $\omega \rightarrow \omega$ by int and real.

A type variable may be annotated with a set of identifiers that effectively specifies its kind. The variable ranges only over those finite types for which all functions in the set are simultaneously defined. So α_f, for example, ranges over types int and real, but not bool, with respect to O.

Under the strong type inference criterion, a term M would be typable with respect to A and O in this system if

$$A, O \vdash M : \sigma$$

for some type σ.

But the system is unsound under this criterion, for even though O specifies that f and g have no finite types in common, we can derive

$$A, O \vdash \lambda x. g(f\, x) : \forall \alpha(f,g) \cdot \alpha(f,g) \rightarrow \alpha(f,g)$$
In the system:

\[
\begin{align*}
\alpha(f, g) &\rightarrow \alpha(f, g) <_{\alpha} \forall_{\alpha(f)} \cdot \alpha(f) \rightarrow \alpha(f) \quad (<_{\alpha}) \\
A \cup \{x : \alpha(f, g)\}, O \vdash f : \alpha(f, g) &\rightarrow \alpha(f, g) \quad (\var) \\
\alpha(f, g) &\rightarrow \alpha(f, g) <_{\alpha} \forall_{\alpha(g)} \cdot \alpha(g) \rightarrow \alpha(g) \quad (<_{\alpha}) \\
A \cup \{x : \alpha(f, g)\}, O \vdash g : \alpha(f, g) &\rightarrow \alpha(f, g) \quad (\var) \\
A \cup \{x : \alpha(f, g)\}, O \vdash g(f, x) : \alpha(f, g) &\quad (\text{app})^2 \\
A, O \vdash \lambda x. g(f, x) : \alpha(f, g) \rightarrow \alpha(f, g) &\quad (\text{abs}) \\
A, O \vdash \lambda x. g(f, x) : \forall_{\alpha(f, g)} \cdot \alpha(f, g) &\rightarrow \alpha(f, g) \quad (\text{closure}) \\
\end{align*}
\]

In essence we can hypothesize overlap in the types of \(f\) and \(g\) through type \(\alpha(f, g)\) for the sake of showing \(\lambda x. g(f, x)\) is typable, yet we are not required to show that any overlap exists. Thus a type can be derived for the term under \(A\) and \(O\) even though the term has a type incompatibility. A sound variant of this system is given in [Rou90, Kae92].

Parametric overloading prevents certain kinds of overloading like

\[
\{ + : \text{int} \rightarrow \text{real} \rightarrow \text{real}, + : \text{real} \rightarrow \text{complex} \rightarrow \text{complex} \}
\]

which is useful for describing mixed-mode arithmetic. In an attempt to permit more general kinds of overloading, Wadler and Blott give a predicate-based extension of system \(\mathcal{ML}\) [WaB89]. But like [Kae88], it too is unsound under strong type inference. Further, unlike Kaes's system which restricts overloading, typability in their system under a revised criterion is undecidable [VoS91]. A restriction that allows overloading for mixed-mode arithmetic and for which typability is decidable is given in [VoS91].

The type system \(\mathcal{ML}\) described in [Smi91] is sound. It replaces the type generalization and instantiation rules of \(\mathcal{ML}\) by the following rules.

\[
\begin{align*}
(\forall\text{-intro}) &\quad \frac{A \cup C \vdash M : \tau', A \vdash \mathcal{C}[\alpha := \overline{\tau}]}{A \vdash M : \forall \alpha \text{ with } C. \tau'} \quad (\alpha \text{ not free in } A) \\
(\forall\text{-elim}) &\quad \frac{A \vdash M : \forall \alpha \text{ with } C. \tau', A \vdash \mathcal{C}[\alpha := \overline{\tau}]}{A \vdash M : \tau'[\overline{\alpha} := \overline{\tau}]}
\end{align*}
\]
To illustrate these rules, consider a term \(M = \lambda x. (x + x) \), with free identifier +, and a type assumption set \(B \) defined as follows.

\[
B = \left\{ \begin{array}{l}
+ : \text{int} \to \text{int} \to \text{int}, \\
+ : \text{real} \to \text{real} \to \text{real}, \\
\leq : \text{char} \to \text{char} \to \text{bool}, \\
\leq : \forall \alpha \text{ with } \leq : \alpha \to \alpha \to \text{bool} . \seq(\alpha) \to \seq(\alpha) \to \text{bool}
\end{array} \right\}.
\]

We show a derivation of \(B \vdash M : \forall \alpha \text{ with } + : \alpha \to \alpha \to \alpha \). \(\alpha \to \alpha \) in \(ML_0 \).

\[
\begin{align*}
B \cup \{+ : \alpha \to \alpha \to \alpha\} \cup \{x : \alpha\} & \vdash x : \alpha \quad \text{(hypothesis)} \\
B \cup \{+ : \alpha \to \alpha \to \alpha\} \cup \{x : \alpha\} & \vdash + : \alpha \to \alpha \to \alpha \quad \text{(hypothesis)} \\
B \cup \{+ : \alpha \to \alpha \to \alpha\} \cup \{x : \alpha\} & \vdash (x + x) : \alpha \quad \text{(\to-elim)}^2 \\
B \cup \{+ : \alpha \to \alpha \to \alpha\} & \vdash \lambda z . (x + x) : \alpha \to \alpha \quad \text{(\to-intro)} \\
B & \vdash \{+ : \alpha \to \alpha \to \alpha\} \ [\alpha := \text{real}] \quad \text{(hypothesis)} \\
B & \vdash \lambda z . (x + x) : \forall \alpha \text{ with } + : \alpha \to \alpha \to \alpha . \alpha \to \alpha \quad \text{(\forall-intro)}
\end{align*}
\]

The last step of the derivation discharges assumption + : \(\alpha \to \alpha \to \alpha \) which was used to derive a type for \(M \), making a type derivation possible from the initial set \(B \). Before this could be done however, we needed to establish that the assumption is derivable with \(\alpha \) instantiated to some finite type (\text{real} was chosen in our example although \text{int} would have sufficed). For some terms and type assumptions, this is impossible. The term \(M = \lambda x . \lambda y . y \leq (x + x) \) together with \(B \) is an example. We can hypothesize a type assumption set \(C \) in which + and \(\leq \) overlap on some finite type, say \(\alpha \), by defining \(C \) as

\[
C = \{+ : \alpha \to \alpha \to \alpha, \ \leq : \alpha \to \alpha \to \text{bool}\}
\]

and then derive \(B \cup C \vdash M : \alpha \to \alpha \to \text{bool} \). But the derivation must end here because there is no finite type for \(\alpha \) that allows us to derive \(C \) from \(B \), so \(M \) is untypable.

The work of [CDO91] is an effort to relax the restrictions of a parametric overloading. They give a kind-based extension of system \(ML \) that restricts recursive overloading slightly less than parametricity and for which typability is decidable. Yet assumptions for mixed-mode arithmetic are still prohibited.

The system however is sound under strong type inference. It is interesting to see how the system prevents a type from being derived for term \(\lambda x . g(f x) \) when free identifiers \(f \) and \(g \) have no finite types in common.
Derivations are made with respect to a traditional type environment A and a kind environment Γ that maps type variables to kinds. There are two operators on kinds, fix and a union operator \cup. Kinds are partially ordered by a containment relation \leq such that $\bot \leq \rho$ for any kind ρ.

The type instantiation and generalization rules of system ML are modified to accommodate constrained type schemes with kinds:

\[
\text{(inst) } \frac{\Gamma; A \vdash M : \forall \alpha : \rho. \sigma}{\Gamma; A \vdash M : \sigma[\alpha := \tau]} \quad (\Gamma(\tau) \leq \rho)
\]

\[
\text{(gen) } \frac{\Gamma, \alpha : \rho; A \vdash M : \sigma}{\Gamma; A \vdash M : \forall \alpha : \rho. \sigma} \quad (\alpha \text{ not free in } A \land \rho \neq \bot)
\]

Here $\Gamma(\tau)$ is finite type τ with all free type variables replaced by the kinds prescribed for them by Γ.

Suppose

\[
A = \{ f : \forall \alpha : \text{int} \cup \text{real}. \alpha \rightarrow \alpha, \quad g : \forall \alpha : \text{bool} \cup \text{char}. \alpha \rightarrow \alpha \}
\]

The only way we can hypothesize any overlap between f and g is through use of kind \bot since $\bot \leq \rho$ for any kind ρ. Proceeding in this way yields

\[
\{\beta : \bot\}; A \cup \{x : \beta\} \vdash x : \beta \quad (\text{var})
\]

\[
\Gamma(\beta) = \bot \leq \text{int} \cup \text{real} \quad (\leq)
\]

\[
\{\beta : \bot\}; A \cup \{x : \beta\} \vdash f : \forall \alpha : \text{int} \cup \text{real}. \alpha \rightarrow \alpha \quad (\text{var})
\]

\[
\{\beta : \bot\}; A \cup \{x : \beta\} \vdash f : \beta \rightarrow \beta \quad (\text{inst})
\]

\[
\Gamma(\beta) = \bot \leq \text{bool} \cup \text{char} \quad (\leq)
\]

\[
\{\beta : \bot\}; A \cup \{x : \beta\} \vdash g : \forall \alpha : \text{bool} \cup \text{char}. \alpha \rightarrow \alpha \quad (\text{var})
\]

\[
\{\beta : \bot\}; A \cup \{x : \beta\} \vdash g : \beta \rightarrow \beta \quad (\text{inst})
\]

\[
\{\beta : \bot\}; A \cup \{x : \beta\} \vdash g(f \ x) : \beta \quad (\text{app})
\]

\[
\{\beta : \bot\}; A \vdash \lambda x. g(f \ x) : \beta \rightarrow \beta \quad (\text{abs})
\]

The generalization rule cannot be applied at this point to discharge the remaining kind assumption $\{\beta : \bot\}$ so $\lambda x. g(f \ x)$ is untypable under A.

The type system of [CHO92] is another kind-based extension of system ML, that unlike [CDO91], is unsound under strong type inference. This work
is not an attempt to relax the restrictions of parametric overloading but rather to formalize a type system for Haskell with parametric type classes.

Derivations in [CHO92] are also made with respect to a traditional type environment A and a kind environment, which they call a context C, mapping type variables to kinds. Kinds here are taken to be sets of class names Γ with each class having an optional finite type as parameter. So for example, if F and G are class names, then $\{\alpha :: \{F, G\}\}$ is a kind environment that asserts α is a class instance of F and G, meaning that α is a type over which the operations of both classes F and G are defined.

The type instantiation and generalization rules of system ML are replaced by rules $(\forall$-elim) and $(\forall$-intro):

\[
\frac{A, C \vdash M : \forall\alpha : \Gamma. \sigma}{A, C \vdash M : \sigma[\alpha := \tau]} \quad (C \vdash \tau :: \Gamma)
\]

\[
\frac{A, C, \alpha :: \Gamma \vdash M : \sigma}{A, C \vdash M : \forall\alpha : \Gamma. \sigma} \quad (\alpha \text{ not free in } A \text{ or } C)
\]

where $C \vdash \tau :: \Gamma$ is derived using a set of entailment inference rules with class instance declarations D as axioms. For example, if $D = \{\text{int :: } F\}$ then $\emptyset \vdash \text{int :: } F$.

Suppose that

\[D = \{\text{int :: } F, \text{real :: } F, \text{bool :: } G, \text{char :: } G\}\]

which asserts that class F has as instances finite types int and real, and class G, types bool and char. So with respect to D, there is no finite type over which the operations of F and G are defined. But with

\[
A = \{ f : \forall\alpha :: \{F\}. \alpha \rightarrow \alpha, \ \ g : \forall\alpha :: \{G\}. \alpha \rightarrow \alpha \}
\]

we can derive

\[A \vdash \lambda x. g(f(x)) : \forall\beta :: \{F, G\}. \beta \rightarrow \beta\]

in the system, thus establishing that $\lambda x. g(f(x))$ is typable with respect to A under the strong type inference criterion even though the derived type scheme
has no finite types as instances with respect to \(D \). Using kind \(\{ F, G \} \), we hypothesize overlap between \(f \) and \(g \) yielding the derivation

\[
A \cup \{ x : \beta \}, \{ \beta :: \{ F, G \} \} \vdash x : \beta \quad \text{(var)}
\]

\[
\{ \beta :: \{ F, G \} \} \vdash \beta :: F \quad \text{\(F \in \{ F, G \} \)}
\]

\[
\{ \beta :: \{ F, G \} \} \vdash \beta :: \{ F \} \quad \text{(H)}
\]

\[
A \cup \{ x : \beta \}, \{ \beta :: \{ F, G \} \} \vdash \forall \alpha :: \{ F \}. \alpha \rightarrow \alpha \quad \text{(var)}
\]

\[
A \cup \{ x : \beta \}, \{ \beta :: \{ F, G \} \} \vdash f : \forall \alpha :: \{ F \}. \alpha \rightarrow \alpha \quad \text{(H)}
\]

\[
A \cup \{ x : \beta \}, \{ \beta :: \{ F, G \} \} \vdash f : \beta \rightarrow \beta \quad \text{(\(\forall \)-elim)}
\]

\[
\{ \beta :: \{ F, G \} \} \vdash \beta :: G \quad \text{\(G \in \{ F, G \} \)}
\]

\[
\{ \beta :: \{ F, G \} \} \vdash \beta :: \{ G \} \quad \text{(H)}
\]

\[
A \cup \{ x : \beta \}, \{ \beta :: \{ F, G \} \} \vdash g : \forall \alpha :: \{ G \}. \alpha \rightarrow \alpha \quad \text{(var)}
\]

\[
A \cup \{ x : \beta \}, \{ \beta :: \{ F, G \} \} \vdash g : \beta \rightarrow \beta \quad \text{(\(\forall \)-elim)}
\]

\[
A \cup \{ x : \beta \}, \{ \beta :: \{ F, G \} \} \vdash g(f x) : \beta \quad \text{(\(\lambda \)-elim)}
\]

\[
A \vdash \lambda x. g(f x) : \forall \beta :: \{ F, G \}. \beta \rightarrow \beta \quad \text{(\(\forall \)-intro)}
\]

In the final step, the entire context is discharged even though there is no finite type that satisfies it with respect to \(D \). An almost identical derivation can be constructed in the system of [NiP93] and in the predicate-based extension of system \(ML \) given in [Jon92]. With a minor reformulation of \(A \) and \(D \) requiring kinds to be interpreted as predicate sets so that for example \(D \) is

\[
\{ F \text{ int}, F \text{ real}, G \text{ bool}, G \text{ char} \}
\]

viewing \(F \) and \(G \) as predicates, one can derive in the system of [Jon92]

\[
D \mid A \vdash \lambda x. g(f x) : \forall \alpha. \{ F \alpha, G \alpha \} \Rightarrow \alpha \rightarrow \alpha.
\]

Although \(D \) specifies no overlap for \(f \) and \(g \), we can prove the judgement.

5 Type Generality

In order to define in the systems considered here a notion of principal type among derivable types, a generic instance relation is needed that tells us whether one type is more general than another [DaM82]. In the context of constrained type schemes, this relation becomes a preorder rather than a
partial order since two distinct types can each be a generic instance of the other.

Some of the proposed type systems require that in order for a constrained type scheme \(\sigma' \) to be a generic instance of another such scheme \(\sigma \), it must be possible to replace the bound variables of \(\sigma \) by finite types so as to make the bodies of \(\sigma \) and \(\sigma' \) syntactically equal [WaB89, CHO92, Kae92, Jon92]. This is an artifact of the original relation of [DaM82], which for system ML, gives a way to check that \(\sigma \) has as instances all finite types that are instances of \(\sigma' \), or in other words, that \(\sigma \) is more general than \(\sigma' \). However, the relation is also typically defined relative to some form of assumptions from which an attempt can be made to show that a finite type is an element of a kind or that a predicate is true. Now it is no longer appropriate to demand syntactic equality of type bodies in order to establish that one constrained type scheme is more general than another.

For example, in the system of [CHO92], constrained type scheme

\[
\forall \alpha::\{F\}. \forall \beta::\{F\}. \alpha \rightarrow \beta
\]

is not a generic instance of

\[
\forall \gamma::\{F\}. \gamma \rightarrow \gamma
\]

with respect to any set of class instance declarations since there is no substitution on \(\gamma \) that when applied to \(\gamma \rightarrow \gamma \) gives \(\alpha \rightarrow \beta \). Yet in the context of a single declaration, say \(\{\text{int} :: F\} \), the latter type does indeed have as instances all finite types that are instances of the former (only int \(\rightarrow \) int) and is therefore more general in this context. Similar examples can be given in the systems of [WaB89, Kae92, Jon92].

References

Distribution List

Defense Technical Information Center
Cameron Station
Alexandria, VA 22314

Library, Code 52
Naval Postgraduate School
Monterey, CA 93943

Director of Research Administration
Code 08
Naval Postgraduate School
Monterey, CA 93943

Dr. Neil C. Rowe, Code CSRp
Naval Postgraduate School
Computer Science Department
Monterey, CA 93943-5118

Prof. Robert B. McGhee, Code CSMz
Naval Postgraduate School
Computer Science Department
Monterey, CA 93943-5118

Dr. Ralph Wachter
Software Program
Office of Naval Research
800 N. Quincy St.
Arlington VA 22217-5000

Dr. Dennis Volpano, Code CSVo
Naval Postgraduate School
Computer Science Dept.
Monterey, CA 93943-5118