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EXECUTIVE SUMMARY

As part of the Navy’s cleanup program under the Defense Environmental Restoration Act
(DERA), we are conducting research to provide more effective assessment, remediation, and res-
toration strategies for sites that contain sediments contaminated with toxic compounds. Toward
this goal, we have developed a remote instrument for in siiu measarement of toxicant flux rates
from contaminated sediments. A flux out of—or into— the sediment is measured by isolating a
volume of water above the sediment, drawing off samples from this volume over time, and
analyzing these samples for an increase or decrease in toxicant concentration. The device that
performs this task is an autonomous sampliing instrument, consisting of an open-botiomed cham-
ber mounted in a tripod-shaped framework with associated sampling gear, sensors, control sys-
tem, power supply, and deployment/retrieval equipment. It is used in coastal and inland waters to
depths of 50 m, with 2 maximum deployment time of about 4 days, based on available battery
capacity. The instrument is easily deployed from a small boat by lowering it to a position just
above the sediment and then allowing it to free fall to the bettom. All sampling, data logging,
and control functions are then carried out automatically, based on user-programmable
experimental parameters. Upon completion, the system is retrieved using an acoustically
triggered buoy that carries a line to the surface for lifting the device back on board.

Results from a series of test deployments indicate that the system can quantity flux rates of
contaminants and other biogeochemical compounds at realistic levels for coastal and inshore
sediments using a sample period of 2-4 days. The resulting flux rates will be useful in evaluating
the risks posed by in-place sediment contamination from several aspects, including

* Source quantification for comparison to other sources and input to models.

¢ As an indicator of bioavailability, since many studies indicate that resolubilized
contaminants are more readily available for uptake.

¢ Determining the cleansing rate of a contaminated sediment site due to natural bio-
geochemical cycling of the in—place contaminants.

* Providing a nonintrusive monitoring tool for sitcs capped or sealed to minimize
biological exposure.

* As a scientific tool for a realistically testing and validating hypotheses and models
for predicting the response of marine sedimeats to various contaminants.
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INTRODUCTION

Sediments in many U.S. bays, harbors, and coastal waters are contaminated with potentially
harmful metal and organic compounds. The United States Environmental Protection Agency
(EPA) (1988) reports 134 toxic hot spots where in-place pollutants are a serious problem. A
review of Navy hazardous waste sites (Johnston, et al., 1988) found 367 sites at S8 Navy and
Marine Corps activities with a significant potential for affecting aquatic environments. Histori-
cally, contamination has occurred directly through industrial discharge, chemical spills, improper
disposal of shipyard and shipboard waste, and indirectly through urban runoff and ground-water
exchange with land sites. These pollutants pose a threat—directly to benthic organisms via pore-
water and particulate-bound contaminate exchange and indirectly to aquatic organisms through
leaching and resuspension.

Difficulties in assessing sediment contamination have led to a myriad of approaches to sedi-
ment quality assessment and criteria (Giesy & Hoke, 1990). Many of the disadvantages cited for
various approaches relate to removal of the contaminated material for submission to the labora-
tory for chemical and biological assays. These methods are very costly in terms of sample collec-
tion and analysis, and they aiso represent an unrealistic departure from natural conditions. In
many instances, identification of chemical contamination in sediments, based on bulk concentra-
tions, has led to extensive assessment and remedial measures. However, the bulk concentration
of a toxic substance in sediment is not always a good measure for predicting biological risk
(Di Toro, 1989). Bioassay methods in which indicator species are exposed to sediment removed
from the site for submission to a laboratory environment may also represent an unrealistic
departure from natural conditions. Neither of these techniques addresses the potential for
sediments to act as a source to the water column through leaching of toxicants.

Previous studies indicate that biological uptake, accumulation, and toxicity result primarily
from the fraction of the toxicant pocl that is readily solubilized (Anderson & Morel, 1982). In
surface sediments, the production of this soluble fraction will usually cause it to migrate through
the pore water and across the sediment-water interface. For these reasons, benthic toxicant fluxes
can provide a unique in situ measure of the source potential of contaminated sediments as well as
an indication of bioavailability. In concert with traditional monitoring and assessment tech-
niques, these flux measurements can lead to a better understanding of the environmental signifi-
cance of historically contaminated scdiments.

As part of the Navy’s cleanup program (the Installation Restoration (IR) program), methods
are being evaluated to better assess suitable remediation and restoration strategies for sites that
contain sediments contaminated with toxic compounds. Toward this goal, we have developed a
Benthic Flux Sampling Device (BFSD) to quantify toxicant mobility from contaminated sedi-
ments. The BFSD is a remote instrument for in-situ measurement of toxicant flux rates from sed-
iments. A flux out of—or into—the sediment is measured by isolating a volume of water above
the sediment, drawing off samples from this volume over time, and analyzing these samples for
an increase or decrease in toxicant concentration. Increasing concentrations indicate that the tox-
icant is fluxing out of the sediment. Decreasing concentrations indicate a sediment uptake. Initial
tests carried out in conjunction with Scripps Institution of Oceanography and the Environmental
Protection Agency’s Environmental Research Laboratory (Newport, OR) show that the system
can measure a variety of contaminant and nutrient fluxes.




INSTRUMENTATION

DESIGN PARAMETERS

During the design of the Benthic Flux Sampling Device (BFSD), two majer categorics of
design constraints were identified. The first category included all the requirements needed to
perform the basic sampling operations. These requirements are similar to those of previous
chamber designs (Berelson et al., 1987) and include the following:

* Sediment Disturbance. The BFSD and associated landing gear must be emplaced
with minimum disturbance of the sediment surface.

* Isolation of Chamber Volume. The chamber design must provide an adequate seal
at the sediment-water interface to isolate the chamber volume during the experi-
ment.

e Chamber Mixing. The water inside the chamber must be mixed artificially to
avoid its stagnation and stratification within the ckamber and to ensure the sam-
ples collected represent the water at the interface.

*  Sampling Effects. Chamber-induced effects, such as oxygen depletion, must be
minimized to ensure that changes in one parzmeter do not affect the exchange
rates of the target contaminates.

The second category included additional constraints defined by (1) the environment in which
the chamber would be utilized and (2) the need to monitor pollutants as well as nutrients. The
BFSD system was designed primarily for use in industnialized coastal bays and estuaries where
sediment contamination is prevalent. These areas present significant operational challenges in
addition to the known hardships imposed upon scientific instrumentation by the marine environ-
ment. Shipping traffic, strong currents, bottom debris, low visibility, and vandalism are all major
hazards when deploying systems at such sites. We developed the following design parameters to
address these issues:

* Operation Time. The device must be capabie of continuous, unattended operation
for a minimum of 72 hours. Based on previous measurements performed in labo-
ratory settings (Hunt & Smith, 1983) and analytical detection limits for target
contaminants, we estimated this period of time would suffice for detecting release
rates at significant levels.

* Operation Depth. A depth capability of S0 m is sufficient to perform studies in
most U.S. bays and estuaries.

¢ Deployment and Recovery. The system must be capable of deployment and recov-
ery from a small craft using light-duty handling equipment. Operations must be
done without diver assistance to minimize costs and scheduling constraints
associated with diver emplacement and retrieval.

» Autonomous Operaiion. The device must operate in a compietely autonomous
(untethered) mode after it has been placed at the site. This is essential to minimize
exposure to navigation hazards and vandalism.



» Sample Size. Samples collected by the system must have sufficient volume to
facilitate analysis for trace levels of organic and metal compounds.

s Construction. All materials used in the system must be suitable for use and
prolonged exposure in the marine environment. All materials that contact the
sample water must be noncontaminating with respect to trace-level measurement
of organic and meral compounds.

* Environmental Considerations. The system must be operational under a wide
range of environmental conditions, and the device should be stable in bottom
currents up to 5 knots. In poor visibility conditions, the system must be deploy-
able without diver assistance. In addition, the system must provide an adequate
seal and supportive footprint for sediments ranging from course sand to soft
organic ooze.

BFSD PROTOTYPE SYSTEM DESCRIPTION

The BFSD prototype system shown in figure 1 consists of an open-bottomed chamber
mounted in a tripod-shaped framework with associated sampling gear, sensors, control system,
power supply, and deployment/retrieval equipment. The device is approximately 1.2 by 1.2 m
from leg to leg. The lower part of the framework contains the chamber, sampling valves, sam-
pling bottles, and batteries. Mounted on the vertical members are the acquisition and control
unit, the oxygen supply bottle, a video camera, and the retrieval line canister. The upper frame
houses an acoustic release embedded in a syntactic foam retrieval buoy. The BFSD is designed
for use in coastal and inland waters to depths of 50 m. Maximum deployment time is approxi-
mately 4 days, based on available battery capacity. Descriptions of the major system components
follow. Appendix A contains construction drawings and details.

Chamber Enclcsure

The chamber (figure 2) is a bottomless box approximately 40 cm square by 25 cm tail and
isolates 32.7 / of seawater. As samples are drawn frum this volume, bottom water is allowed to
replace it via a length of 4-mm Teflon tubing. The volume was chosen to allow for a maximum
overall dilution of 10 percent due to sampling withdrawal and subsequent replacement of six
samples of S00 ml each. The chamber is constructed of clear polycarbonate to avoid disrupting
any exchanges that may be biologically driven and, thus, light sensitive. To prevent stagnation in
the corners of the chamber, triangular blocks of polycarbonate occupy the 90-degree angles.

Sediment disturbance must be minimized, since the surface sediment may be quite
flocculent, and a bow wave propagating in front of the descending chamber could remove the
most reactive material. To minimize such a disturbance, the lid of the chamber is hinged and left
open during deployment. Once the chamber is in place, the computer control system closes the
lid. A gasket around the perimeter of the chamber ensures a positive seal between the chamber
and the lid. Exact alignment is not required, because the lid is slightly larger than the sealing
perimeter of the gasket and pivots about two sets of hinges. The lid is held closed by rows of
magnets placed along the chamber perimeter. The bottom of the chamber forms a knife edge;

and a flange, circling it 5 cm above the base, provides a positive seal between the chamber and
the sediment. ,
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Figure 2. Chambe: enclosure.

Acquisition and Control System

The acquisition and control unit (figure 3) is a Seabird Electronics, Model SBE-19 Seacat
Profiler, modified to allow control of the BFSD. It consists of a data logger that acquires and
stores data from sensors. and a control unit that regulates sampling and other functions of the
BFSD. The data logger collects data from a suite of sensors mounted in a flow-through loop on
the lid of the chamber; these data include temperature, oxygen, pH, and salinity. The control unit,
an integrated part of the data logger, performs several functions; for exa.nple. it closes the lid,
activates the flow-through/mixing pump, ana opens the sampling valves.

R A 2

Figure 3. Acquisition and control unit.




Sampling System

The sampling system is shown schematically in tigure 4. Discrete samples are obtained using
a hydrostatic collection system consisting of sample containers, fill and vent lines, a check valve
on the vent line, and a water-tight solecoid control valve on the fill line (figures 5 and 6). Off-
the-shelf collection bottles are modified to allow filling and venting through the cap. Sampling
containers of any volume, material, or shape may be used—provided the cap can be modified to
accept the fill and vent line connection, the bottle walls are strong enough to withstand the sam-
pling depth pressure, and the cap seal is watertight at the sampling depth pressure. Glass, Teflon,
and polycarbonate bottles have been tested and used successfully with this system. All valves,
fittings, and tubes are made of Teflon to minimize potential contamination of samples and to
facilitate cleaning. Samples are drawn from the chamber through a 4-mm Teflon tube conuected
to a manifold of valves and into the air-filled sampling bettles. If necessary, prior to deployment,
preservaiives may be added to the sample containers. Sampling is initiated by the control system
that opens the valves at preprogrammed intervals. Hydrostatic pressure then causes the bottles to
fill while venting through check valves mounted at the top of the frame. The head difference
between the chamber level and the vent level is sufficient to open the check valves. Once the
bottle and vent line have filled, tne head difference equalizes, the check valve closes, and the
sample volume is sealed.

CHECK VALVES

VENT LINES

Figure 4. Sampling system schematic.



Figure 5. Sampling system components.
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Figure 6. Hydrostatic collection svstem schematic.




Flow-Through Sensor System

Sensors, manufactured by Seabird Electronics, are mounted on the chamber lid (figure 7) and
used for monitoring conditions within the chamber, including temperature, salinity, pH, and
dissolved oxygen. The temperature sensor, Model SBE 3, is a pressure-protected, shock- and
vibration-resistant, aged thermistor. Salinity is measured using a Model SBE-4 Conductivity
Meter containing a two-terminal, three-electrode (platinum), flow-through sensing element. A
Model SBE-18 pH Sensor measures the pH with a combination probe, using a pressure-balanced
Teflon-junction Ag/Ag-Cl reference electrode. The Dissolved Oxygen Sensor, Model SBE 13, is
a “Beckman” polarographic sensor that produces ar oxygen-dependent electrical current.
Circulation in the flow-through sensor system is maintained using a Model SBE-3 Submersible
Pump with a flow rate of 90 mls/sec.

Figure 7. Flow-through sensor system.

Stirring System

In the experimental chamber, the process in question is the exchange of chemical toxicants at
the sediment-water interface. The hydrodynamics inside the chamber must adequately simuia?:
movement of water from near bottom currents outside the chamber. For this purpose, a helical
diffuser mounted vertically on the central axis of the chamber is used to mix the enclosed
volume.

The diffuser system was tested by constructing a mock chamber and performing a series of
mixing experiments with varying geometries and flow rates. A stirring-bar configuration was
also tested using two orthogonai a-inch diameter glass rods 1otating on a vertical shaft at the



center of the chamber. Based on these experiments, we found the diffuser provided a uniform,
gentle mixing action that effectively dispersed dye injected into the chamber—without disturb-
ing the sediment layer on the chamber bottom. At rotation rates sufficient to provide adequate
mixing, the stirring bar system tended to suspend light sediments from the chamber bottom.

The final diffuser system consisted of a standard Model SBE-5 Submersible Pump outfitted
with a custom polycarbonate head to minimize potential contamination (see Appendix A). The
pump circulates water from an inlet on the lid of the chamber, over the flow-through sensors, and
back into the chamber via a rigid Teflon pipe 0.25 m long. The vertically mounted pipe is capped
at the discharge end and has eight 5-mm holes drilled in a helix pattern along its length. The tests
showed that within 30 to 60 seconds, this method visually dispersed a dye injection of
Rhodamine W7

Oxygen Control System

The oxygea regulating system consists of a supply tank, pressure regulator, control valve,
diffusion coil, and oxygen sensor, and control hardware and software (figure 8). The supply tank
is a 13-cubic foot aluminum diving tank equipped with a first-stage regulatcr that allows adjust-
ment of output pressure to the system. The control valve is a 12-volt, latching-solenoid valve
hovsed within a watertight pressure case with connections through bulkhead fittings on the end
cap. The diffusion coil is thin-walled, 4-mm, oxygen-permeable, Teflon tubing approximately 15
m long. Oxygen is monitored using the oxygen sensor in the flow-through system described pre-
viously. The oxygen control system is incorporated into the control system of the BFSD.

During an experiment, when the flux chamber is initially depioyed, the ambient oxygen level
is recorded by averaging a user-specified number of samples from the oxygen sensor. The con-
troi system then establishes maximum and minimum allowable oxygen levels based on a user-
specified range about the average. Once the chamber is sealed, the oxygen level inside the cham-
ber is monitored continuously. If the level drops below the allowable minimum, the control valve
is opened, the diffusion coil is pressurized, and the oxygen level in the chamber begins to
increase. When the oxygen level reaches the maximum allowable level, the control valve is
closed. This sequence is repeated continuously during the deployment, maintaining the oxygen
level in the chamber closely to that of the ambient level.

Deployment and Retrieval Systems

During deployment and prior to landing, the test site is surveyed for obstacles. This is done
using a SeaCam-2000 video camera and SeaLite, manufactured by DeepSea Power & Light, on
board the BFSD. The BFSD is also equipped with an Endeco Type-900 Acoustic Release,
encased in a retricval buoy (figure 9). Upon completion of the experiment, the release is
triggered by the Deck Command Unit, the retrieval buoy surfaces, and the BFSD is recovered.
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Figure 9.

Acoustic relesse and retrieval buoy.
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METHODS

This chapter brief:y describes the methods for conducting experiments with the Benthic Flux
Sampling Device (BFSD). Detailed procedures for BFSD preparation, deployment, sample
collection, and sensor-data collection are described by Chadwick and Stanley, 1993.

PREPARATION

Prior to deployment, several steps must be performed to prepare the BFSD for operation and
to ensure the integrity of the samples the device will collect. The entire system, including the
flow-through sensor system, all plumbing lines, and sample bottles, must be cleaned with solu-
tions appropriate for the analyses to be performed on the collected samples. Batteries must be
charged, and the acoustic release and oxygen systems must be checked to ensure successful
deployment, experimentation, and retrieval.

DEPLOYMENT

Once all the cables have been connected, and proper systems operation is verified, the
experiment software is run to set up the actual sampling intervals and to input other information
needed for experimentation (Chadwick & Stanley, 1993). Final adjustments are completed, such
as opening the lid of the chamber and the oxygen supply tank, and the BFSD is lowered into the
water (figure 10). When the sea floor becomes visible, the video camera on board the BFSD is

CONNECT INSTRUMENT LOWER INSTRUMENT RELEASE INSTRUMENT
Yo 70 Y7 § f ‘

Nl

DEPLOYMENT CABLE

o~ -

Figure 10. BFSD deployment.
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used to survey the area for an appropriate landing site. Once a ciear site is established, the instru-
ment is raised 2 to 5 m above the sedimeat and allowed to free fall to the bottom. The weight of
the system and its downward momentum bury the knife-edge seal of the sampling chamber into
the sediment. To assure the system is functioning correctly, the initial functions, such as lid
closure and pumping, are monitored by the computer and video camera aboard the deployment
vessel. The cables are then detached, plugged, and thrown overboard for the remainder of the
experiment.

SAMPLE COLLECTION AND HANDLING

Sampling procedures have been developed for metals, polychlorinated biphenyls (PCBs), and
polynuclear aromatic hydrocarbons (PAHs). Additional samples are taken for silica as a perfor-
mance indicator, and bulk sediment samples are taken to determine the condition of the sediment
by traditional methods.

During deployment, time-series water samples are collected by the BFSD at preprogrammed
time intervals. Initial (tg) water samples are taken from outside the BFSD using the Teflon
pumping system aboard the survey vessel. Sampies for metals analysis are collected in acid-
washed, 500-ml Teflon (TFE) sampling bottles, while precleaned borosiiicate glass sampling
bottles are used for collecting PAH/PCB samples. These water sample. 5 are then refrigerated until
they are analyzed. Prior to processing, split samples for silica analysis are taken from time-series
and tp samples.

Bulk sediment grab samples are acquired at the end of the deployment using a modified Van
Veen grab. Sediment samples for metal analysis are transferred from the grab into precleaned,
500-ml wide-mouth polyethylene jars using a precleaned plastic scoop. Samples for PAH/PCB
analysis are collected using a precleaned, stainiess-steel scoop and placed into precleaned
500-ml, wide-mouth glass jars. Prior to analysis, samples are transported to the lab and stored,
frozen.

RETRIEVAL

After returning to the approximate deployment location, a hydrophone is lowered into the
water, and the acoustic release is triggered by the Deck Command Unit. After 56 seconds, cod-
ing is complete, and the buoy should appear on the water’s surface (figure 11). The BFSD is then
retrieved, and sample bottles are labeled before being transferred from their holders to a
refrigerator or cooler. Sensor data is retrieved by reconnecting the cables and again running the
experiment software. The sensors on board the BFSD are prepared for storage, and the frame is
thoroughly cleaned and dried.

SAMPLE PROCESSING AND ANALYSIS

Trace Metal Samples

In the lab, samples are immediately filtered through precleaned 0.45-u cellulose nitrate mem-
brane filter units and acidified to pH 2 with high-perity nitric acid. Constituent metals of interest
are separated from the seawater matrix and concentrated by APDC chelation/MIBK extraction.
The extracts are then analyzed by Graphite Fumace Atomic Absorption (GFAA), using the

14
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Figure 11. BFSD retrieval.

method of standard additions to develop a standard curve. Additional water samples, including
replicates and tg samples, are similarly analyzed. Bulk sediment samples are acid digested by a
standard microwave-assisted digestion technique (EPA Method 3051). Following digestion, the
digestate is analyzed by GFAA, following the procedures just described, for all elements of
interest, except arsenic (As) and mercury (Hg). Sample aliquots are digested separately and
analyzed for As and Hg by a cold-vapor technique (EPA 7471A). A detailed description of these
procedures may be found in the standard methods cited.

PAH/PCB Samples

Water samples from the BFSD are liquid-liquid extracted immediately after collection. Sedi-
ment samples from surficial sediments are extracted by sonication with acetonitrile and cleaned
using C-18 solid-phase sorbent. The concentrations of selected PAH compounds and PCB
congeners in these two matrices are then determined using high-performance gas chroma-
tography and mass spectrometry. Total PCB concentrations are then estimated from an Aroclor
1254 standard, based on PCB congener 110. A detailed description of these protocols may be
found in Young et al. (1991).

Silica Samples

Silica samples are split into 50-mi plastic vials from the BFSD time-series samples ard tg
samples following filtration and prior to acidification. Samples are refrigerated until analyzed.
The analysis follows the standard colorimetric method for determining reactive silicate in sea-
water (Strickland & Parsons, 1968).

15




QA/QC PROCEDURES
TRACE METAL SAMPLES

Method Blanks

Throughout the analyses, method blanks are employed to verify contamination-free prepara-
tion and reagents. Each batch of extracted and digested samples is accompanied by a blank that
is analyzed in parallel with the rest of ihe samples—and carried through the entire preparation
and analysis procedure.

Instrument Calibration

Instruments are calibrated at the start of each analytical batch. With water samples and
extracted water sampies, the method of standard additions is used to generate each calibration
curve. Successive dilution of a standard is used to generate standard curves for analyzing the
digestates. Initial calibration is verified by subsequently measuring an independently prepared
standard. The calibration is confirmed at regular intervals during an analytical batch.

Method Accuracy and Precision

Standard reference sediments are digested and analyzed periodically as a check on general
method accuracy. Additionally, spiked replicates of field samples are processed with each analyt-
ical batch to also validate this accuracy within the context of varying matrices. With water and
extracted water samples that are analyzed by the method of standard additions, r.piked samples
are not used. Analytical precisicn and method detection limits are determined by replicate stor-
age, preparation, and analysis of standard seawater. Further verification of precision is achieved
by splitting 1 in 20 fieid samples.

PAH/PCB SAMPLES
Accuracy of PAH/PCB Concentrations

For water samples, relatively clean representative matrix samples are spiked with target PAH
compounds. Typical recovery efficiencies for the compounds range around 90 percent. Internal
standards are also used as part of the GC/MS (Selected Ion Monitoring Gas Chromatography—
Mass Spectrometry) procecures that automatically correct for recovery efficiency to the first
order. For sediment analyses, standard reference sediments containing known PCB and PAH
concentrations are analyzed in duplicate, and typically agree within 15 percent.

Precision of PAH/PCB Analyses

Duplicate procedural blanks are analyzed, as well as triplicate water samples. For sediments,
replicate aliquots are taken from within one sample container. In addition, the precision of the
GC/MS injection step is measured by periodically programming a sample to be injected three
times to determine the percent relative standard deviation (%RSD) values for its target com-
pounds. Typical median %RSD values are approximately 15 percent for water and sediment.

Chadwick et al. (1993) contains a complete record of sample collection, processing, and QA/
QC procedures for an actual dspioyment.
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DATA ANALYSIS

CALCULATION OF FLUX RATES

Flux rates from BFSD time-series samples are estimated using a linear regression model.
Before running the regression, sample concentrations are corrected for dilution effects caused by
taking in outside water as sample water is removed from the chamber. The concentration of the
diluting water is based on the tg sample. The corrected concentration is calculated from the
equation,

[Cal = [sa] - (}_“_s,.. = D))

i=1

where [C] is the corrected concentration, [s] is the measured sample concentration, » is the sam-
ple number (1 through 6), v is the sample volume, and V is the chamber volume.

Some samples may be dropped from the regression, based-on performance criteria for dis-
solved silica and oxygen. A steady increase in dissolved silica during the experiment indicates a
“problem-free” deployment. Additionally, deployments are evaluated by reviewing oxygen data
from the sensors on board the BFSD. Since, during deployment, oxygen is controlled within the
chamber, anoxic conditious, or large oxygen fluctuations indicate possible problems with the
experiment.

Following the regression of the time-series concentrations, the flux is calculated from the
equation,

=mV
Flux Rate = Y

where m is the slope of regression, V is the chamber volume, and A is the chamber area.
Typicaily, flux rates are calculated using a standard spreadsheet similar to the one shown in
figure 12.

An 80-percent confidence interval (80% CT) is then assigned to the flux rate, based on a two-
sided T-test (10.0s(2),n-2), and the standard error of the regression coefficient. If the mean flux is
positive and the lower limit of the 80% Cl is greater than zero, then the flux is designated a
release rate with magnitude of mean +80% CI. Similarly, if the flux rate is negative, with an
upper limit of the 80% Cl le: than zero, then the flux is designated an uptake. The 80% Cl is
chosen to be conservative, i.e., it does not eliminate potential release rates (as an indicator of
environmental impact), unless confidence in them is quite low.
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RESULTS

The BFSD has undergone a series of test deployments to determine the effectiveness of the
system to quantify sediment-water contaminant exchange rates. A blank test was performed by
sealing the chamber bottom with a polycarbonate panel and conducting a standard experiment
over 50 hours. Additional blank results were obtained from dzployments at clean sites in San
Diego Bay and Sinclair Inlet, WA. Mean chamber concentration, %RSD, calculated blank fluxes,
and their standard errors (S.E.) are summarized in table 1 and presented graphically in figure 13.
These results set a lower limit on the flux rates that can be resolved using the BFSD system.

Table 1. Blank chamber results.

Compound n Mean Conc. %RSD Flux + S.E.

(ng/D) (ug/m?%/day)
1Cadmium 7 0.52 14 617
1Copper 7 34 14 -71+62
3Iron — — — -
Lead 7 0.39 16 —4+8
SManganese - — - —
2Nickel 6 1.5 27 65+69
?Zinc 6 2.1 25 ~227 £ 65
From blank chamber.

2Froin clean reference sites.
3No blank data available.

Two experimeits were conducted at Shelter Island yacht basin in San Diego Bay (figure 14)
from 6/19-6/21/92 and 6/25-6/28/92. Previous studies have shown clevated water, sediment, and
mussel-tissue levels of a number of trace metals at this site (Salazar and Chadwick, 1991). Table
2 summarizes bulk sediment characteristics at this site from samples collected during the deploy-
ments. These data suggest elevated concentrations of cadmium, copper, lead, nickel, and zinc at
2- to 25-times background levels at reference sites.

Table 2. Bulk sediment characteristics at the Shelter Island test site.

Metal Concentrations 10ther Characteristics
Cadium 0.26 ug/g Sand 5%
Copper 161 pg/g Silt 65%
Iron 4.02 ug/g Clay 30%
Lead 42.8 ug/g TOC 2.4%
Manganese 414 ppfg

Nickel 16.2 ug/g

Zinc 199 ug/g

1From Kram et al. (1989).
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Figure 13. Time-series results from bisak tests of the BFSD.
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Pacific Ocean

Figure 14. Shelter Island yacht basin.

Typical time-series traces from the on-board oxygen, pH, temperature, and salinity sensors
are shown in figure 15 for the 6/19 deployment. The traces show that oxygen was maintained
between 130~200 uM during the experiment with an initial decrease due to the response time of
the feedback control system. The pH decreased from an initial value of about 8.1 to 7.5 at the
end of the experiment, presumably due to sediment respiration and consequent production of
CO; (figure 16). The shallow depth of the site (4 m) is reflected in the diel variation of the tem-
perature signal that also followed a longer-term decreasing trend of about 1°C over the 75-hour
deployment. Salinity showed a slight, monotonic decrease during the deployment.
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Figure 15. Continuous time-series traces for chamber conditions during
the 6/19/92 deployment.

Flux data time-series plots for the two deployments are shown in figure 16 for a number of
trace metals and nutrients, as well as for alkalinity and CO,. The consistent flux of silica is used
as a performance check on the seal and sampling integrity of the deployment. Based on this
criteria, both deployments appear to have been successful. While previous deployments during
which the seal was violated or the samples were compromised showed crratic silica concentra-
tions, the tims series from these deployments were linear and con<istent between deployments.
Trace metal flux rates were analyzed for cadmium, copper, nickel, iron, manganese, zinc, silver,
and lead. Of these, lead and silver were not present at detectable levels (<0.26 ug/l and <0.001
ug/l respectively), sc no results are reported. Manganese and zinc showed strong increasing
trends during both experiments, while nickel, cadmium, and iron showed no significant flux; and
copper generally indicated a slight sediment uptake. Phosphate increased during the 6/19 experi-
ment, but was inconsistent during the 6/25 experiment {figure 17), with an initial large increase
followed by a more gradual decrease. Alkalinity and total CO, both increased steadily through-
out the experiments. Flux rates calculated from these time series are summarized in table 3 and
~~mpared to results from other deployments of the BFSD and measurements by other rescarch-
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CONCLUSIONS

An autonomous system has been developed to monitor the exchange rates of contaminants
and other biogeochemical compounds across the sediment water interface. Results from a series
of test deployments indicate that the system can quantify these exchange rates at realistic levels
for coastal and inshore sediments using a 2-4 day sampling period. The resulting flux rates will
be usefui in evaluating the risks posed by in-place sediment contamination, from several aspects,
including

* Source quantification for comparison to other sources and input to models.

* As an indicator of bioavailability, since many studies indicate that resolubilized
contaminants are more readily available for uptake.

* To determine the cleansing rate of a contaminated sediment site due to natural
biogeochemical cycling of the in-place contaminants.

* To provide a nonintrusive monitoring ol for sites that have been capped or
sealed to minimize biological exposure.

* As a scientific tool, to provide realistic testing and validation of hypotheses and
models for predicting the response of marine sediments to various contaminants.

Future efforts include adapting the BFSD system to allow feedback control of pH, an
increased number of sampies, in-place filtration and preservation of samples, increased depth
rating, and standardization for constructing multiple units. Methodologies are also being
developed to allow continuous flux measurements of contaminants using integrated, in-situ
sensor technology.
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