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Preface

The purpose of this thesis was to develop a pilot model that combined the

intuitive nature of classical pilot models with the optimal nature of modem pilot models.

This thesis is divided into six sections. First, general background information is given.

Second, an optimal pilot model, developed by Systems Technology, Incorporated, is

analyzed in detail. Third, a flight test designed to provide insight into human pilot

behavior during ground and airborne tracking tasks is described in detail. Fourth, a

numerical solution to the linear quadratic Gaussian (LQG) problem is derived. This

technique allows the compensator form to be predetermined. Fifth, a sub-optimal pilot

model is presented. This model uses the numerical LQG approach to restrict the optimal

pilot model solution to the classical pilot model form. Finally, the conclusions and

recommendations of this thesis are summarized.

This research was accomplished under the joint Air Force Institute of Technology

-- USAF Test Pilot School program. I am grateful for the unique opportunity this

program provided. This effort would not have been possible without the assistance of

several people. I would like to thank my advisors, Dr. Brad Liebst and Lt. Col. (Dr.)

Daniel Gleason, for providing assistance and motivation during this extended program. I

also wish to thank the members of my test management project team, Capt. Benjamin

Coffey, Capt. Darcy Granley (CF), Capt. John Kruzinauskas, Jr., and Capt. Mary

McNeely, for their invaluable flight test assistance. Finally, and most importantly, I wish

to thank my wife, Karen, and daughter, Aubrey, for their support and understanding

during this three year ordeal.
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ABSTRACT

This study details the development of a sub-optimal pilot model that blended the

classical and optimal pilot model approaches in an attempt to achieve the advantages of

each. This model used a numerical solution to the linear quadratic Gaussian problem to

find the pilot gain, lead, and lag values that minimized a performance index consisting of

task error and control usage. This development was conducted in four phases.

First, an optimal pilot model developed by Systems Technology, Incorporated,

was analyzed in detail. This analysis included a step-by-step example problem to clarify

the model's logic and an in-depth sensitivity analysis of the model's parameters. This

study found that when the proper choices were made for these parameters, the model

accurately predicted Cooper-Harper ratings. The pilot describing functions predicted by

this model, however, were not consistent with the classical pilot model form.

Second, a ground and airborne evaluation of human pilot response was conducted

using the Calspan variable stability Lear II aircraft. Four different pitch and four

different roll axis dynamics cases were evaluated using three different tracking tasks.

Primary pilot response parameters were recorded and examined using statistical and

Fourier transform analysis in an attempt to provide insight into human pilot response.

Except for the presence of large amounts of pure phase lead at high frequency, the

frequency responses of the pilots were consistent with the gain, lead, and lag form of the

classical pilot model. In all cases, the pilot applied compensation so that the response of

xix



the combined pilot-aircraft system resembled and integrator near the cross-over

frequency.

Third, a numerical solution to the linear quadratic Gaussian control problem that

allowed the compensator form to be predetermined was derived. This method used the

covariance matrix to compute the performance index, element by element, and a

Nelder-Meade simplex search algorithm to find the coefficients of the compensator that

minimized the performance index. When the desired compensator form was the same as

the standard linear quadratic Gaussian solution, the two methods produced identical

results.

Finally, the sub-optimal pilot model was developed and an analysis of the model's

parameters was conducted. This model was restricted to single axis dynamics due to the

assumptions necessary to numerically compute the performance index value. By design,

the pilot describing functions predicted by the sub-optimal pilot model were consistent

with the flight test results and classical pilot modeling theory. There was an excellent

correlation between the performance indices and the actual Cooper-Harper ratings, but

the model lacked the maturity necessary for consistent Cooper-Harper ratings prediction.

xx



THE PREDICTION OF PILOT OPINION RATINGS

USING OPTIMAL AND SUB-OPTIMAL PILOT MODELS

1. INTRODUCTION

Motivation

Even before Charles Manley was twice catapulted into the Potomac River at the

controls of the Langley Aerodrome, engineers were concerned about the handling

qualities of aircraft. Early designs relied on instinct and trial and error, often with

disastrous results. Today, it is critical that we know as much about an aircraft's handling

q-alities as early in the design process as possible. This analysis must include some sort

of pilot-in-the-loop evaluation. The optimal and sub-optimal pilot models are powerful

tools for performing this analysis.

Pilot model development has not kept pace with the advances in flight control

design. Modern day performance and stealth requirements often dictate the geometry of

the aircraft, and assume that a digital flight-control system can be built to make the

aircraft exhibit good handling qualities. For this reason pilot model analysis is critical in

all phases of an aircraft's design. Unfortunately, the handling qualities of these complex

flight-control systems usually cannot be accurately predicted by currently accepted pilot

models.
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Historically, every advance in control theory has led to an attempt to understand

human pilot behavior in terms of the advance. The development of classical control

theory after World War II led to a continuing effort to model the human pilot with

transfer functions. The development of modem control theory and linear quadratic

Gaussian techniques in the early 1970s led to the on-going attempts to model the human

pilot with an optimal regulator, filter, and estimator. This thesis proposes a numerical

approach to pilot modeling that was made possible by an exponential growth in computer

speed and availability. This numerical approach blends the classical and optimal pilot

modeling theories in an effort to achieve the advantages of each.

Objectives

The overall objective of this project was to develop a pilot model that combines

the intuitive nature of classical pilot modeling theory with the optimizing nature of

modem pilot modeling theory. The specific objectives were:

1. Study existing classical pilot models.

A. Implement the MIL-STD-1797A pilot models on MATLABTMI.
B. Include important aspects of these models into the pilot model

developed for this thesis.

2. Analyze the optimal pilot model developed by Systems Technology,
Incorporated, (STI) for use with Program CC.

A. Supplement the guidance provided by STI for the use of this model.
B. Conduct a sensitivity analysis of fie parameters used by this model.

C. Use insights from this model to develop the sub-optimal pilot model.

MATLAB is a trademark of The MathWorks, Inc.

1-2



3. Record and examine pilot response parameters during ground and airborne
tracking tasks that can be used as a data base for pilot model development
and validation.
A. Gather Cooper-Harper ratings and pilot comments for a range of

aircraft dynamics.
B. Using frequency response analysis techniques, examine the

relationship between stick displacement and task error for single axis
sum-of-sines tracking tasks.

C. Use the insight into human pilot response provided by this experiment
in the development of the sub-optimal pilot model.

4. Derive a numerical solution to the linear quadratic Gaussian control
problem that allows the compensator form to be predetermined.

5. Implement the sub-optimal pilot model on MATLABTM for single axis
analysis.

A. Expand the numerical linear quadratic Gaussian solution in
Objective 4 to include the output disturbance structure necessary for
the evaluation of single axis tracking tasks.

B. Restrict the optimal pilot model solution to the classical pilot model
form.

C. Compare the predictions of this model with flight test frequency
response analysis data.

D. Compare the predictions of this model with those of the STI optimal
pilot model and the classical pilot models accepted in
MIL-STD-1797A.

Thesis Overview

The following procedures were used to accomplish the objectives presented

above. Results are summarized at the end of each chapter.

1. This thesis conducted an analysis of the crossover pilot model (Reference 17)

and the longitudinal and lateral handling qualities models described in MIL-STD-1797A

(Reference 5). The results of this analysis are reported in Chapter 2 of this thesis.

Additionally, all of the longitudinal and lateral models accepted in MIL-STD-1797A
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were implemented in a Handling Qualities Toolbox for MATLABT4. This toolbox was

used for much of the classical pilot model analysis conducted in this thesis. Copies of the

MATLABTM programs (.m files) and user's guide are available from the author.

2. The optimal pilot model developed by Systems Technology, Incorporated, was

analyzed in detail. This effort is detailed in Chapter 3. A model overview is provided

and a simple example is worked step-by-step using the program's logic. The sensitivity

of the model results to the required parameter choices is also examined and

recommended values are presented.

3. A ground and airborne evaluation of human pilot response was conducted

using the Calspan variable stability Lear II aircraft. The results of this flight test are

presented in Chapter 4. Four different pitch and four different roll axis dynamics were

evaluated using three different types of compensatory tracking tasks. Primary pilot

response parameters were recorded and examined using Fourier transform analysis in an

attempt to provide insight into human pilot response. The flight test data gathered during

this project are maintained at the Flight Dynamics Directorate (WL/FIGC),

Wright-Patterson AFB, Ohio, and are available for research purposes. A companion

report to this thesis, AFFTC-TLR-93-41 (Reference 7) serves as a detailed guide for this

flight test data base and provides an initial look a the test results.

4. A numerical solution to the linear quadratic Gaussian (LQG) control problem

that allows the compensator form to be predetermined is derived in Chapter 5. This

method uses the covariance matrix to compute the performance index value, element by

element. A Nelder-Meade simplex algorithm then finds the coefficients of compensator
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that minimize the performance index. This method is not only useful in the optimal pilot

model problem. It may be beneficial for any situation when reduced order compensation

is desired.

5. The sub-optimal pilot model is described in Chapter 6. This model uses the

numerical LQG method to restrict the optimal pilot model solution to the classical pilot

model form. The results of this new pilot model were compared with the flight test

frequency response analysis data as well as the predictions of the STI optimal pilot model

and the classical pilot models accepted in MIL-STD-1797A.

6. Finally, the conclusions and recommendations of thesis are summarized in

Chapter 7.

Limitations

This thesis had several limitations. First, only single axis, compensatory tracking

tasks were evaluated or considered. Valid multi-axis analysis is not possible without the

legitimate single-axis framework this thesis was meant to advance. Second, the effects of

feel system characteristics were not considered. A thorough analysis of this important

factor was beyond the scope of this thesis. Finally, the pilots used in the flight-test

portion of this study were not entirely linear, and they did not employ the ratings scale

with perfect consistency. While every attempt was made to reduce pilot variations, these

restrictions are impossible to avoid and should be considered when studying any handling

qualities experiment.
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2. Background

General

This chapter provides the background information essential to this thesis. It

includes five sections. The first section, Handling Qualities, discusses the Cooper-

Harper rating scale and defines some important handling qualities terms. The next three

sections, The Pilot as a Linear Element, Pilot-in-the-Loop Analysis, and Pilot Models,

provide a brief description of linear pilot modeling fundamentals. The final section, Feel

System Considerations, discusses the relationship between force and displacement

controllers, and the impact of each on handling qualities.

Handling Qualities

The goal of this thesis is to develop a pilot model that will, under certain

conditions, predict an aircraft's handling qualities. Cooper and Harper defined handling

qualities as, ".... those qualities or characteristics of an aircraft that govern the ease and

precision with which a pilot is able to perform the tasks required (2:2)." Central to this

definition are the concepts of performance, workload, and task.

Aircraft handling qualities can not be based on performance alone. A pilot can

achieve the same performmaicf for a wide range of aircraft characteristics. As the aircraft

characteristics degrade, however, this performance can be attained only at the expense of

a reduction in the pilot's capacity to perform other duties. Thus, handling qualities also

depend on workload, defined to include both mental and physical effort (2:6).
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Additionally, the same aircraft may exhibit different handling qualities for

different tasks. For example, if the task is overly simple to perform, the poor handling

qualities of an aircraft may not be apparent to the pilot. Cooper and Harper define task

as the work assigned to the pilot. Task does not include all aspects of the mission or

intended use of the aircraft (2:4).

The Cooper-Harper rating scale, shown in Figure 2-1 on the following page and

described in Reference 2, was the basis for all of the handling qualities ratings used in

this thesis'. This scale requires the pilot to answer a series of questions concerning

controllability, performance, and workload to arrive at a rating. Each rating is merely a

shorthand for a set of handling qualities characteristics. Additionally, assigning

Cooper-Harper ratings is a subjective process and variability in the pilot ratings is

unavoidable. Because of this, predicting precise Cooper-Harper ratings with

mathematical models is problematic at best2 . The pilot models examined in this thesis

were considered successful when they consistently predicted the ratings trends.

The Pilot as a Linear Element

Pilot behavior has eluded understanding since the earliest days of aviation. Not

only is the human pilot non-linear and adaptive, but his behavior varies over time. No

single existing model can imitate the complexities of human behavior. Instead,

simplifying assumptions must be made and the range of the model's application

' The term handling qualities rating and pilot opinion rating are interchangeable in this thesis. Both
refer to the Cooper-Harper rating.

SCooper and Harper warn against attempting to treat pilot rating data with mathematical operations that

are rigorously applicable only to a linear, interval scale.
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second part, the remnant, is not linearly coherent with the input. To accurately make the

linear modeling assumption, this remnant must be minimized (14:4).

McRuer found that when modeling the human pilot, the remnant is primarily due

to four sources (14:37).

1. Non-Linear Operations
2. Non-Steady Behavior
3. Operator Response to Other Inputs
4. Injection of Noise

The first two sources, non-linear operations and non-steady behavior, result primarily

from the pilot's ability to learn and adapt. To minimize their effects, both the task and the

pilot must be carefully chosen.

The task must be random appearing and within the capabilities of the pilot. This

prevents the pilot from learning the task and adapting his behavior accordingly. McRuer

found that the remnant also increased with task bandwidth, but the effect was minor for

bandwidths between 1.5 and 4.0 radians per second (15:128). When the bandwidth of

the task approached 8.0 radians per second, however, the pilot ignored the high frequency

commands and adopted a more open-loop, non-linear behavior (17:246-248).

Additionally, the task must have an appropriate length. It has to be long enough to allow

the pilot time to become actively involved, but not so long that he becomes fatigued.

McRuer found no evidence of excessive non-linear behavior for task lengths between

twenty seconds and four minutes (17:240).

Finally, the pilot must be carefully chosen. McRuer found that using highly

trained and motivated subjects reduced pilot variability and non-linear behavior (15:12).
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Smith, in Reference 24 disagrees. He suggests that highly experienced pilots use their

skill and experience to avoid closed loop control when necessary (24:20). While Smith

may be correct, it is the goal of this thesis to develop a pilot model that will predict an

aircraft's handling qualities. The traditional evaluator of an aircraft's handling qualities is

the experienced test pilot.

The final two remnant sources, operator response to other inputs and injection of

noise, are primarily affected by experimental procedures. To minimize the remnant, the

task must be clearly and carefully defined. For example, if a pure single axis roll

tracking task is desired, the lateral and directional axes should be uncoupled, or the pilot

will have to divide his attention between the two. These final two remnant sources are

often mutually exclusive. If a vision restriction device is used so that the only pilot

visual cue is task error, for example, his response to other inputs may be minimized. The

injection of noise may greatly increase, however, due to the resulting disorientation.

The only task examined in this thesis was the compensatory tracking task. For

this task, the error between a command and the actual aircraft condition was displayed to

the pilot and he acted to minimize this error. This task was considered representative of

several important flight phases, such as air-to-air and air-to-ground gunnery, aerial

refueling, and approach and landing in gusty winds. The tasks used during both the

analysis and the actual experiment in this thesis were random appearing with a bandwidth

of 2.0 radians per second. Highly trained pilots from the USAF Test Pilot School were

used as subjects in the experimental portion of this thesis. Additionally, uncoupled,
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linear vehicle dynamics were simulated, and the effects of the dutch roll and phugoid

modes of motion were minimized.

Pilot-in-the-Loop Analysis

For a large class of tracking tasks, the pilot acts to minimize the error between

some aircraft parameter and a task command. Using pitch (0) and pitch command (0j),

for example, this compensatory tracking task is illustrated in Figure 2-2.

-c e 6s or Fs 0
Yp YC

H nn
Figure 2-2. Compensatory Tracking Task Block Diagram

where
0 = Pitch Angle YP = Pilot
r= Pitch Command Y, = Aircraft

e = Task Error F. = Stick Force
8 = Stick Deflection

Through block diagram manipulation this can be re-drawn such that the pilot senses the

task error and applies compensation to minimize it as shown in Figure 2-3. This form

will be used in the remainder of this thesis for all model development. The salient

question is, "What is Y1 ?"

2-6



r = 0 $ s or Fs Y 0 • +ce

Figure 2-3. Compensatory Tracking Task Block Diagram - Feedback Compensation

In 1965 McRuer and Krendel conducted a controlled measurement of human pilot

behavior using frequency response methods. Using a pitch axis tracking task generated

on a laboratory oscilloscope, they found that for very simple dynamics, the quasi-linear'

pilot can be represented by the following describing function (15:14-17).

Y p e- e " • (TL .jo + 1). [TK .jo( + 1] 1 (2-1)
(Ti.jo+l) [.-jwo+l] (TM .joa+l)- + 2  2r,.. ]

Gain Pure Series Very Low Neuromuscular
Delay Equalization Frequency System

Lag-Ltead

where
jo = Laplace Variable for Random Input2

YP= Pilot Describing Function
P= Pilot Gain

,T Pilot Delay
TL = Pilot Lead Time Constant
T,= Pilot Lag Time Constant
T= Very Low Frequency Pilot Lead Time Constant
T'K = Very Low Frequency Pilot Lag Time Constant
TN, = Neuro-Muscular Time Constant
on = High Frequency Neuro-Muscular Natural Frequency

S= H igh Frequency N euro-M uscular D am ping Ratio

'McRuer used the term, quasi-linear, because the pilot can be modeled as a linear element only if
specific conditions are satisfied.
2 j is used instead of the general Laplace variable, s - a+jo, to emphasize that this equation is strictly
valid only in the frequency domain with continuous, random-like inputs. It should not be used for system
responses to deterministic inputs such as step commands.
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Limiting the frequency range of interest to 0.1 to 10 radians per second, the influence of

the very low frequency lag-lead is minimal. Additionally, the neuro-muscular system can

be modeled as a first order lag as shown in Equation 2-2 (16:29).

1 1 if TNv -TNI+ (2-2)

(Tm,-t +jI').[(ý') 2 + I~jo) + Ii jo TNIfto+n

where

TN = First Order Approximation of Neuro-Muscular Time Constant

and typical values are (15:171):

TNI = 0.1 0.12
(01 = 16.5 TN • 0.115

Making these assumptions leaves the classical pilot model shown in Equation 2-3.

Yp = Kp. e-J1M • (TL .io + 1) (2-3)

(TI.Jo) + 1). (TN .J0 + 1)

As shown in this equation, the pilot can be modeled by a gain, a lead, a lag, a delay, and a

first order muscular lag.

Using the classical pilot model and including measurement and muscular noise

the block diagram of Figure 2-3 can be re-drawn as in Figure 2-4 on the following page.

As shown in this figure, the pilot makes an imperfect, or noisy (t.), measurement of the

task error and applies a delayed compensation to minimize this error. The desired stick

deflection (6c) is corrupted by both the muscular lag and a random muscular noise (E).
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K.(TL, .Jro + 1).- e-SO 94(TI• j(Dy + 1) 1"

Figure 24. Classical Pilot Model Block Diagram

where
0 = Pitch Angle Fo = Observation Noise
0,, Pitch Command E, = Muscular Noise
e =Task Error 6c = Commanded Stick Deflection
KP = Pilot Gain 8. = Stick Deflection

TL = Pilot Lead Time Constant F. = Stick Force
T= Pilot Lag Time Constant Yc = Aircraft Transfer Function
"c Pilot Delay jc0 = Laplace Variable
TN = Muscular Time Constant c/r = Output/Input

While pilot lead makes practical sense, pilot lag is not intuitively obvious. Smith

proposed a more intuitive approach. In Reference 24 Smith theorized that the pilot

measures both error and error rate and applies a gain to each, resulting in lead

compensation. Thus, the larger the error or error rate, the larger the compensating stick

movement, but only to a point. As the error or error rate grow large, the pilot will no

longer proportionally increase the stick deflection by the same amount. In other words

the pilot will apply washout to the error and error rate signals. It is this washout of the

error and error rate signals that produces the lag in Equation 2-3, not some mentally

computed lag compensation (24:37-40). This can be drawn as shown in Figure 2-5.
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Figure 2-5. Multi-Loop Pilot Model Block Diagram

where
Tw= Washout Time Constant in Error Feedback Loop

T•=Washout Time Constant in Error Rate Feedback Loop
r= Error Feedback Gain

Error Rate Feedback Gain

It is interesting to note that the multi-loop model in Figure 2-5 and the classical

pilot model in Figure 2-4 are equivalent if the washout time constants in the error and

error rate feedback loops are equal (Tw= Tm). To make this illustration simpler, the

identical forward paths in each figure were replaced with the variable, G. Using block

algebra, the closed-loop transfer function for Figure 2-4 is:

c _ G.'(T.jo+1)

r Tt .riO + if I I.K TL .I 0 + ).e-'

I = (2-5)%

while th clsdloptansferountTimConstn of Figure Feebac is:p

r (T.jfO+e1-G.Kps "e-equ).(Twr.j .+ T ) mG.(T hisi+l1).jos.Kp 2 .er, (2 5
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If the washout time constants in both the error and error rate feedback loops are equal

(T.= T,, = Tj), then Equation 2-5 reduces to:

S= G. (T. .j0d + 1) (2-6)r Tw .JO + I - G.- Kpl.- e-Jm'l - G .jco .Kp2.- e-j-''

which can be rewritten as:

c=G. (T,. .Jo + 1) (2-7)
TW w . + I - G. Kpi. (L2.JO+1)- -j

This transfer function is equivalent to that in Equation 2-4 found using the classical pilot

model. Several important insights can be gained from comparing Equations 2-4 and 2-7.

The classical pilot modeling approach and the multi-loop approach are identical if:

1. The washout time constant in both the error and error rate feedback
loops of the multi-loop model are equal to the lag time constant of the
classical pilot model (T. = T~r= Tw= TI).

2. The gain on error feedback in both models are equal (KI, = KP).

3. The ratio of error rate to error feedback gain in the multi-loop model
equals the lead time constant in the classical pilot model
(Kp2 / KPl = TL ).

Pilot Models

There are currently three broad categories of pilot models. The first category,

open loop pilot models, uses the aircraft response to open loop commands to predict

handling qualities. These models are based on statistical fits to past data and make no

attempt to model human pilot behavior. The second category, classicalpilot models,

2-11



model the pilot as a gain, lead, lag, and delay as shown in Equation 2-3. The final

category, optimalpilot models, model the pilot so that some performance index is

minimized. These models generally take the form of a linear quadratic regulator and

Kalman filter.

The majority of pilot models in use are open loop models. Because these models

do not directly consider human pilot behavior, they are comparatively simple to develop.

Five of the six pitch axis and all of the roll axis models in MIL-STD-1797A are

open-loop models (5:171-256, 377-427).

Classical and optimal pilot models face three obstacles. First, a form for the pilot

must be chosen. For example, the classical pilot models use gain, lead, lag, and delay.

Second, the constants in the pilot model forms must be found. The optimal pilot model

computes these values so that a performance index is minimized. Finally, the resulting

pilot describing function must be related to the aircraft's handling qualities through some

metric.

The primary advantage of classical pilot models is that the form used by these

models is based on experimental results. The gain, lead, lag, and delay behavior of the

human pilot during compensatory tracking tasks is well documented (References 14, 15,

16, 17, and 21). Choosing values for these variables and then using them to predict a

handling qualities rating, however, can be quite difficult.

Classical pilot model parameter selection does have some experimental basis.

McRuer found that the pilot uses gain, lead, and lag so that just within and beyond the

task bandwidth the combined aircraft-pilot system has a slope of -20 dB per decade and
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adequate stability margins. Changes in aircraft gain are offset by changes in pilot gain so

that the crossover frequency is largely invariant (17:234-238). McRuer also found that

the generation of second order lead was difficult or impossible with only visual random

appearing inputs. While several of the systems he tested could have used second order

compensation to advantage, this behavior was not noted (14:218). Finally, McRuer

measured pilot delay between 0.2 and 0.3 seconds (14:217).

The crossover pilot model used this behavior-based approach to form a series of

rules for selecting pilot gain, lead, and lag (Reference 17). The problem of accurately

and consistently relating these variables to a handling qualities rating still remains. As a

result, classical models are not in wide use. The Neal-Smith model is currently the only

classical pilot model accepted in MIL-STD-1797A.

Optimal pilot models are based on the assumption that the well-trained,

well-motivated human controller will perform in a near optimal manner subject to certain

internal constraints. Optimal pilot models have two advantages over classical pilot

models. First, selection of the describing function constants is not difficult. The values

are chosen so that the linear quadratic Gaussian performance index is minimized.

Second, relating the pilot describing function to a handling qualities rating is more

straight forward than with classical pilot models. Usually, the performance index is

directly related to a handling qualities rating.

The optimal pilot model suffers from two deficiencies. First, optimal pilot

models are complicated, both in the order of the predicted pilot describing function and

in their implementation. Due to the nature of linear quadratic Gaussian theory, the
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predicted pilot describing function has an order of at least twice that of the aircraft

dynamics. This is not consistent with the gain, lead, lag, and delay behavior observed by

McRuer. Additionally, implementing the internal constraints of the human pilot, delay

and muscular lag for example, within a standard linear quadratic Gaussian structure is

complicated. The second deficiency is over parameterization. When implementing an

optimal pilot model, the engineer has to make numerous parameter choices, such as noise

intensities, performance index weightings, and forcing function form and intensity. The

predicted handling qualities rating and pilot describing function is normally sensitive to

these choices.

Feel System Consideratins

It is difficult to imagine any pilot-in-the-loop analysis without considering control

stick characteristics. Controller sensitivity, or stick force gradient, can have a huge effect

on an aircraft's handling qualities. In one experiment, a Cooper-Harper rating was

changed from a seven to a two only by changing the roll-rate sensitivity (18:19). Control

stick dynamics and control stick type -- force versus position command -- are also

important factors in an aircraft's handling qualities.

The position command feel system dynamics include the spring, mass, and

damper characteristics that translate the pilot's stick force input into stick position. There

are two different approaches to analyzing this type of feel system. It can be considered

as another flight control system filter, or it can be treated as a unique dynamic element.

If the feel system is treated as another flight control system filter, the stick dynamics are
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included in the analytical model as a linear element between stick force and aircraft

response as shown in Figure 2-6 (18:36).

Stick System ~controlDyai •
SikStick System Aieon Aircr,•

Force Position Position Response

Figure 2-6. Position Command Feel System

If the feel system is treated as a unique element, it is assumed that the pilot uses his direct

access to the input force and the output stick displacement to form an inner loop around

the feel system. Thus, the stick dynamics become internal to the pilot and do not need to

be included in the analytical model (23:582-583). MIL-STD-1797A advocates the latter

approach (5:172).

The force command feel system acts in parallel as shown in Figure 2-7 (18:36).

Fs b To Flight

Control Control System
Force

Feel 8s
System Stick

Position

Figure 2-7. Force Command Feel System

The traditional approach is to exclude the feel system dynamics for force controllers

since they act in parallel. Without the feel system dynamics, the system will exhibit less

phase lag and therefore better closed-loop performance (18:14).

Mitchell found that including the feel system as an equivalent delay, regardless of

the feel system type, improved the correlation between handling qualities ratings and feel

system dynamics. In other words, an aircraft with a "bad" feel system should receive
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poor ratings whether position or force command is used. The systems could be modeled

as an equivalent delay due to the neuromuscular reaction of the pilot to both types of feel

systems. Mitchell emphasized that the effect of the feel system was not identical to a

pure time delay. It was possible, however, to estimate the effects of the feel system on

pilot ratings by considering it as such (18:24).

This thesis only studied position command systems, and the feel system dynamics

were generally analyzed as a linear element in the command path. An in-flight analysis

of both position and force command systems was not feasible because of the numerous

additional flight test combinations it would have required.
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3. The Optimal Pilot Model

General

While the gain, lead, lag, and delay form of the classical pilot model is well

documented, choosing values for these variables and then using them to predict a

handling qualities rating remains a daunting task. The optimal pilot model was

developed in an attempt to overcome these deficiencies. The optimal pilot model is based

on linear quadratic Gaussian (LQG) stochastic control theory which appears intuitively

suited to the solution of the human pilot modeling problem. The human pilot adapts his

control strategy so that the trade-off between performance and workload results in the

optimal handling qualities rating (6:7). Likewise, the optimal pilot model finds the

control strategy that minimizei a performance index consisting of average tracking error

(performance) and control usage (workload). This performance index can be used to

estimate a handling qualities rating based on statistical fits to past data.

This chapter focuses on an optimal pilot model developed by Systems

Technology, Incorporated (STI), for use with Program CC (Reference 25). The STI

model was selected for several reasons. First, it incorporates nearly every important

aspect of other optimal pilot models, making it a good candidate for study. Second, it

can be implemented on the personal computer and is therefore widely available. Finally,

this model has had some success in predicting Cooper-Harper ratings, but lacks

parameter selection guidance.
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This chapter is divided into three sections. The first section gives a brief

overview of optimal pilot modeling theory. The second section analyzes the STI optimal

pilot model in detail. This analysis includes a description of the model, a step-by-step

example problem, and a detailed sensitivity analysis. Finally, the conclusions and

recommendations of this chapter are summarized.

Background

Kleinman, Baron and Levison made the first integrated attempt to describe the

behavior of the human pilot in the framework of optimal control theory in 1970

ýReference 10). The theory involved has not changed significantly since the Kleinman

study was completed. The basic assumption implicit in the optimal pilot model is that

the well-trained and motivated pilot behaves in an optimal manner subject to his inherent

limitations (8:464). These limitations include neuromuscular lag, internal motor noise,

perceptual threshold, and processing delay.

A block diagram of the standard optimal pilot model is shown in Figure 3-1

(6:15). The aircraft dynamics are represented by a linear state vector and vector-matrix

equations. The task forcing function is input as a disturbance and modeled as white

Gaussian noise shaped by coloring filters. Because the human pilot is able to obtain both

displacement and rate information from a single display, the feedback vector normally

consists of the error and error rates of the displayed variables. If the error or error rates

are smaller than a threshold value, the pilot will neither observe them nor take any

corrective action.
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Pilot induced, uncorrelated white noise is added to each observation. This noise

represents the nonlinear remnant of the pilot as well as his random error in observing the

displayed variables. If more than one variable and its derivative are observed, sampling

must also be considered (6:16).

The many internal time delays inherent to the human pilot are modeled by a

single perceptual delay. A Kalman filter and least-squares predictor are used to produce a

non-delayed, optimal estimate of the observation vector. The linear quadratic regulator

(LQR) gains are then determined to minimize an appropriate performance index'. For

the optimal pilot model, this performance index generally takes the form of Equation 3-1.

J= f [x T(t) Qx(t) + iJr(t) R i(t)] dt (3-I)
0

where
x(t) = State Vector ii (t) = Control Rate Vector

J = Performance Index t = Time
Q = State Deviation Weighting R = Control Rate Weighting Matrix

Matrix

The first part of this integral (xrQ x) is directly related to performance, while the second

part (41R u) represents physical and mental workload (8:475). The state weightings can

be difficult to pick a priori. Hess found success by choosing the weighting coefficients

as the squares of the reciprocals of the maximum allowable deviation of the state

variables (8:470). These weightings can also be used to make the model task dependent

(6:11).

' Background information on control rate weighting is provided in Appendix A. For more detailed
information on LQG theory consult References 13 and 20.
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The neuromuscular lag is not normally explicitly modeled. Kleinman, Baron, and

Levison showed that the neuromuscular dynamics did not need to be introduced if the

performance index, Equation 3-1, includes a penalty on control rate instead of control

(8:465). The neuromuscular noise, or motor noise, and the observation noise have

spectral densities proportional to the mean squared operator output. Thus, they must be

found in an iterative fashion.

Finally, the performance index is used to estimate a handling qualities rating

based on statistical fits to experimental data (6:24). This relationship normally accounts

for the strength of the forcing function as well as the forcing function bandwidth.

STI Optimal Pilot Model

This section presents a detailed analysis of the optimal pilot model developed by

Systems Technology, Incorporated, for use with Program CC. Reference 25 explains the

theory behind this model. This section is intended to supplement Reference 25 by

providing an extended discussion of the model as well as the user-selected model

parameters. The discussion that follows is divided into three parts. The first section

provides an overview of the model. The second section follows the model's

computational flow using an integrator example. The final section contains a detailed

sensitivity analysis of the modeling parameters and provides guidance for their selection.

Model Overview. The flow diagram for the STI optimal pilot model is shown in

Figure 3-2 on the following page (25:7). This model was only designed to handle one
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Enter Plant and
Filter Dynamics

Where

TN - Muscular Time Choose Input, Output,
Constant or General Driving Noise

g = Control Rate
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p• = Observation to the Plant
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tion Parameter Enter t Vw Pyi Pu If f< 1,

V = = Observation Noise Manually Iterate
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V. = Motor Noise EE
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a• = Standard Devia-

tion of Error or Compute y Vu 2y

Error Rate =vyi - E

o, = Standard Devia- Solve KBF
tion of Control
Rate 2

E = Error Function I coyu -06

J - Performance
Index

Y, = Predicted Pilot Compute J

Transfer Function

Figure 3-2. Computational Flow for the STI Optimal Pilot Model
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feedback channel and its derivative. If there is more than one channel, each must be

analyzed separately. This model can be divided into three parts.

First the aircraft dynamics are input in either transfer-functlon or state-space form

and appended with the necessary coloring filters'. Because this model allows the

feedback of only one variable and its derivative, single-input-single-output (SISO)

aircraft and shaping filter dynamics must be used. Once these dynamics are entered, the

aircraft states are augmented with the driving noise filter states in one of three different

manners. The noise can be injected at the aircraft output, at the aircraft input, or in the

middle of the aircraft. Finally, the state-space representation of the augmented aircraft is

configured so that error and error rate are used for feedback.

Second, the linear quadratic regulator problem is solved so that the neuromuscular

dynamics are modeled. The user enters the state deviation penalty, q. This weighting

applies only to the error channel since the penalty on error rate is always zero in this

model. Integrators are then appended to the aircraft dynamics. Finally, the weighting on

control rate, g, is iterated until the neuromuscular dynamics are modeled. Because the

STI optimal pilot model is restricted to single-input-single-output dynamics, q and g are

scalar weightings and are used in the STI documentation instead of the standard

weighting matrices, Q and R, in Equation 3-1.

' The tracking task forcing function must be modeled as a white Gaussian noise shaped by coloring
filters.
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Finally, the Kalman filter problem is solved. The user must enter several

parameters:

T Pilot Delay
V. Intensity of the Driving Noise
Pyl, Py2 Observation Noise Ratios for Error and Error Rate
P. Motor Noise Ratio
VYi, V,2i Intensity of the Observation Noise -- Starting Values
VW, Intensity of the Motor Noise -- Starting Value
Tyl, Ty2  Visual Indifference Thresholds
f Fractional Attention Parameter

The starting values for the noise intensities are used to find the Kalman filter solution.

From this solution ayi and au, the standard deviations of y, and u, are determined. The

no, t titensities are then iterated until the equations for Vy, and Vu shown in Figure 3-2

are satisfied. For multi-axis tasks this entire model must be repeated and the fractional

attention parameter manually iterated until thc combination that produces the minimum

performance index is found. Finally, the model computes the performance index value

and a pilot describing function. The performance index can be used in Equation 3-2 to

estimate a Cooper-Harper rating (19:40).

Rating = 5.5 +3.7. log1 0 (2  2 J (3-2)

where

ao = Forcing Function Root Mean Square Error Amplitude
(o,, = Forcing Function Bandwidth

Integrator Example The easiest way to understand how this model works is to

follow the computational flow using a simple example. This example will also give

insight into the parameter selection process that will be discussed in the next section.
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The simplest choice is to assume the aircraft dynamics can be modeled by an integrator

and the forcing-function can be modeled by a first order lag. The following values

parallel a sample problem presented in Reference 25.

State Space Realization

0 1Y-e = S =: [xl] = [01x, + [11 8e

y=0=[I]xi (3-3)

Yw = c -s [F.2 18= [-21X2 + [11 Ww

W .- s+2

y W 8-8 (3-4)

where

Y, = Aircraft Dynamics
Yw = Tracking Task Forcing Function
x, = Pitch State (0)
x2 = Coloring Filter State
W, = Zero Mean White Gaussian Noise
W, = Colored Noise

The filter states are now augmented to the aircraft states in one of three ways.

The advantages and disadvantages of each method will be discussed in the sensitivity

analysis section of this chapter. The first option is to inject the noise at the aircraft output

according to Figure 3-3.

Figure 3-3. Noise Injected at Aircraft Output
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Because the coloring filter and aircraft dynamics operate in parallel, their states can

simply be appended together as shown in Equation 3-5.

The output vector, y, contains the error and error rate where this error can be written as:

e = W,,+ 0 0 = xJ n W, = r,8f. X2
but O-i and +W) (3-6)

•= I•'• +O but 0 =ii =8, Wc = 8,-8(-2X2 + W.)

The output can now be written in the following state space form:

E el] [i IW v 18 ]_ [ x, ]+ 0 0 ].[ e1 (3-.7)
0]-2188 X2 J 1 A WJ

The second augmentation option is to inject the driving noise at the aircraft input

as shown in Figure 3-4.

8e e

Figure 3-4. Noise Injected at Aircraft Input

Because the two transfer functions act in series, they require some manipulation. The

state-space equation of the filter remains:

x2 = -2X2 + Ww and y = W, = 58.8x 2  (3-8)
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The aircraft input, however, is now 6 + Wc, and YC becomes:

1=86e +Wc and y=e=xl (3-9)

Combining Equations 3-8 and 3-9 gives the state-space representation shown below:

[1 [ 1[8 ]+[o -][ 5.] (3-10)
i2 =O-2 [x2 + '0 WW

To find the output vector note that

e=O=xl and ==5= 18-=4 8.X2+8e (3-11)

Using Equation 3-11, the output vector can be written in the following form:

y 0 ].[ x ] + [0 0 ].[ 6,] (2
=0 T8.8 "X2 1 0 1

The final augmentation option requires splitting the aircraft into two separate

transfer functions, one before and one after the noise as shown in Figure 3-5.

Figure 3-5. Noise Injected in the Middle of the Aircraft Dynamics

This form is not practical to implement for the integrator example, and will not be

considered further in this section.
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The linear quadratic regulator (LQR) problem must now be solved so that the

muscular system is modeled. This is accomplished by augmenting the aircraft with

integrators and iterating the control-rate weighting in the performance index'. For this

analysis, the noise will be injected at the aircraft input, and Equations 3-10 and 3-12 will

be used. The noises (including W,) can be set to zero for the LQR solution, and the

resulting state-space is:

:11+ ,, 1--
Y=[ e]. 1[ 0 ].[xi ]+[0]8 (3-13)Y=•-0 58.8 "X2 I

This state space equation can be augmented with integrators by adding a third

state, x3 = 5,,and driving the system with 8k. The resulting state-space is:

i2 =0 -2 0 x2 + 0 Se
i3 0 0 0 X3 I

Y= • 1= 0 0- 1 x ] +0 (3-14)
X3

Equation 3-14 is now used to find the LQR solution. Because output weighting is

desired, the user must select a state deviation weighting matrix, Q, where

Q= CTQYC (3-15)

Qy = diag(q,0) (3-16)

'Consult the discussion in Appendix A for further information on this method.
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q is always a scalar value. In this example q = 1 will be used. The weighting on error

rate is automatically set to zero in this model.

Now the control weighting is iterated until the gain on the last state equals the

inverse of the desired neuromuscular time constant. The optimal control law from the

LQR solution of Equation 3-14 is:

u = 8e = -KY$ (3-17)

Partitioning the gain and state matrices results in

8e Kl Kc2 ]8] (3-18)

6e = -KcX- Kc2 - 8, (3-19)

K- . , +8e e-K2.- KcI x (3-20)

Equivalently, the following relationship exists between the control input before and after

the neuromuscular system:

6e 1 (3-21)
8 / - '. S+ 1

81, is the control input before the muscular lag and 68 is the control input after the lag.

Equation 3-21 can be rewritten as:

"tn,6+8e =8't (3-22)

The terms in Equations 3-20 and 3-22 can be equated. This results in the following

relationships:

"t' = K'-c• and 8' e = _i-K2 .Kcl I X (3-23)
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In Equation 3-18, K.2 is the gain on the last state. Thus, the neuromuscular lag can be

modeled by iterating the weighting on control rate until K%2 = T. (2:10).

Continuing with the integrator example, with q = 1 and T. = 0.08, the STI model

will return a value for g of 0.00017. Further insight can be gained by solving this

problem using the MATLABTM command, lqr. Using Equation 3-14 and the weighting:

Q 0 and Q=CTQYC= 0[0 0 (3-24)

yields the gain matrix:

K= [ 76.70 31.03 12.39 ] (3-25)

The inverse of the last gain is 0.08, the desired muscular lag'. The corresponding

closed-loop transfer functions are:

r 1 (s+2)s2+12.4s+76.7)

s(s+2) (3-26)
L [ (s+2)(s2+12.4s+76.7)

The complex pole has a natural frequency of 8.76 radians per second and represents the

neuromuscular dynamics. The iterative method used by this model will always return a

pair of complex poles slightly below the desired neuromuscular break frequency.

Compare this result with the results achieved by appending the neuromuscular

dynamics directly to the aircraft dynamics. The first order muscular lag can be written as

shown in Equation 3-27.

The STI literature refers to the 77me Constant (r,) using the form: (lrs +1).
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We. S + 1 *-1- & and 6eX3 (327)

Placing Equations 3-13 and 3-27 in series and using the identity

A 2 B2C, B2D 1
P3=P2"Pl= 0 A1  B, (3-28)

C2 D 2 C1  D2D j

where

results in the following state-space representation:

oI 0v5. I x 01
1 G i2 0 0 x 2  + 0 6' 1

i:,,s +1 1 0 0][X IK
Y=[1=L 0 • 1 [F8- (3-29)

-X3

Using Equation 3-29, T. - 0.08, and q g 1, the LQR solution is:

K=[ 1 1.0563 .0770 ] (3-30)

] [ 12.5-(s+2)

(s+2)(s+I)(s+12.46) (3-31)
12.5-s(s+2)

(s+2)(s+1)(s+12.46)

While this approach places a pole very near the desired muscular lag frequency (12.5), it

allows the other pole to float well inside the pilot bandwidth. The iterative method
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produced a 40 dB per decade roll-off slightly below the desired muscular frequency.

This approach produced a 20 dB per decade roll-off at the desired muscular frequency.

The first choice best models the human pilot and is used in the STI optimal pilot model.

The Kalman filter problem must now be solved. Since this is a single axis

example, the fractional attention parameter, f is one. For simplicity, this example will

assume the indifference thresholds are zero. The noise intensity equations from Figure

3-2 take the following form:

Vyi = diag(vy i,vy 2) (3-32)

Vyi = Pyl. u7_a2. and V, = p. .7t a2 (3-33)

In these equations the noise ratios (p) are user-defined, constant values. These values are

entered in dB, but it should be noted that this model uses power spectra dB according to

the following relationship.

dB = 10. log1 o(x) (3-34)

This example uses the experimentally estimated noise ratios of 0.01 and 0.003 (6:18), or:

pyi = -20 dB and P. = -25 dB (3-35)

When the program is initiated, an initial guess for the noise intensities must be made.

The LQG problem is solved and the variances of the states are computed. The noise

intensities are then iterated until Equations 3-33 is satisfied within some tolerance.

Assuming a pilot delay of 0.15 seconds and unit-intensity driving noise (V"), the

optimal pilot model converged after seven iterations. The information in Figure 3-6 was

displayed.
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Iteration # 7
Optimal cost: q, g, output, input rate, total

1.0000E+00 1.7000E-04 1.1803E-01 4.1207E-02 1.5923E-0i
Performance: E{yjl^2}, E{y._2A2}, E{ua^2}, E{uA2}, E{(du/dt)A2}

1.1803E-01 3.0834E+00 4.8469E+00 3.8633E+00 2.4240E+02

Old noise intensities (V"y 1, V y2, Vjza): 3.7167E-03 9.6967E-02 4.8176E-02
New noise intensities (Vyl, V..y2, Vjua): 3.7079E-03 9.6869E-02 4.8152E-02
Noise ratios dB (rho.yl, rho.y2, rho_ua): -19.9897 -19.9956 -24.9978
Max. noise ratio difference - 1.028061E-02 dB, Threshold -. 1 dB
Finished with iterations

Figure 3-6. STI Optimal Pilot Model Output Display

The performance index value in the top right-hand portion of the display

(1.5923E-01) was found from the following relationship:

J=E{y2} . q + Eji 2) . g (3-36)

Note that by converting the noise ratios (p) back into decimal form (0.01, 0.01, and

0.001), the noise intensities can be verified using the following equations.

VY, = E{y2 }pI, Vy2 = E{y2 }p 27 V,, = E{U2}p,,7C (3-37)

Unfortunately, due to the way the display code was written, the above equations only

hold when the Old noise intensities line is used. The final solution and performance

index value are unaffected by this oddity, however.

This model requires a non-zero pilot delay. It finds the LQG solution in the

digital domain using a sampling period equal to the pilot delay. If the delay is zero, the

numerical algorithm called by the model will give an error message and the optimal pilot

model will display erroneous data.
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The STI optimal pilot model uses the compensator gains to form a

transfer-function representation of the pilot. This is accomplished by modeling the pilot

delay with a second order Pade approximation.

The performance index can be used to estimate an Cooper-Harper rating using

Equation 3-2. In this equation, the rating is scaled by the forcing function bandwidth,

o,, as well as the forcing function root mean square (RMS) error amplitude, ao. The

RMS value is found by noting that for linear systems driven by white noise w(t):

= A. x + E. w(t) (3-38)
y=C.x

where
E{w(t)) =0

E{w(t). wT(t + x} = Q" 6(T)
w(t) = Zero Mean Stationary White Gaussian

E{w(t)}= Gaussian Probability Density
Q = Constant Intensity Matrix for w(t)

The covariance matrix Xis defined as:

X = E(x(t). x T(t)) (3-39)

and is the solution of the following Lyapunov equation:

A.X + X. A T + E.Q. E=0 (3-40)

The output covariance matrix is then

Y= E{y(t). yT(t)) = C.X. CT (3-41)

Because the STI optimal pilot model requires single-input-single-output dynamics, Yis a

scalar and is the output variance, ai, of the forcing function filter (11:97-111). The
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Program CC command - MEAN, Yw - will compute this value as long as the task forcing

function coloring filter is driven by unit intensity white noise (V,= 1).

In this example the RMS, a,, is 1.48 and the filter bandwidth, ow, is 2.2 radians

per second. Substituting these values into Equation 3-2 result in the following equation.

Rating= 1.7 + 3.7- log10(J) (3-42)

For a performance index value of 0.159 (see Figure 3-6), the predicted Cooper-Harper

rating is -1.25. Obviously, this is not a practical handling qualities rating. The aircraft

dynamics and tracking task forcing function used for this example were overly

simplified. More importantly, the parameters used when running this model were chosen

to parallel an example in Reference 25. As shown in the next section, these parameters

must be more carefully selected.

Sensitivity Analysis. The pilot describing function and Cooper-Harper rating

predicted by the STI optimal pilot model are sensitive to the many parameters the user

must select. This section conducts a sensitivity analysis of the pilot model parameters

and offers some selection guidance in an effort to make this model more practicable.

The following pitch-attitude transfer functions were used to conduct the

sensitivity analysis.

Case 1: 0 100

8 s(s+100) (33)

Case 2: 20(s + 1.25) . 33s (3-44)8a e 2:8""=s(s2 + 8s +25)

Case 3: g _ 20(s + 1.25) e's (345)
8., -=(s 2 +8s+25)
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Cae 4: 0 = 20(s + 1.25) • e-.033, (3-46)8e s(s 2 + l.8s+25)

Cas 5: = 20(s + 1.25) e_-, (3-47)

s e5 s + 1.8s+25)

These equations of motion were chosen for two reasons. First, they represent a broad

range of aircraft dynamics and are therefore well suited for the sensitivity analysis.

Second, these dynamics were evaluated in a previous experiment using the Large

Amplitude Multi-Mode Aerospace Research Simulator (LAMARS) (Reference 19).

All of the dynamics have fighter type responses. Case I is nearly an integrator.

The other cases have the characteristics shown in Table 3-1.

Table 3-1
STI Optimal Pilot Model Evaluation Dynamics

Short Period Short Period Natural Delay, r
Damping Ratio, C Frequency, (o,

Case 2 0.8 5 0.033

Case 3 0.8 5 0.2
Case 4 0. 18 5 10.033

Case 5 0.18 5 1 _0.2

These dynamics were evaluated by McRuer using a sum-of-sines tracking task generated

on the LAMARS head-up display (HUD), and were assigned the Cooper-Harper ratings

shown in Table 3-2 (19:19).

Table 3-2
Cooper-Harper Ratings Used for Sensitivity Analysis

Case 1 Case 2 Case 3 Case 4 Case 5

7Rating 2 3 44 6
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The user must choose the following parameters before running the STI optimal

pilot model.

1. Aircraft Model Order (Y.)
2. Task Forcing Function (Y,)
3. Intensity of the Driving Noise (V,,)
4. Filter Augmentation Method (Aircraft Output or Input)
5. Neuromuscular Time Constant (Ta)
6. State Deviation Weighting (q)
7. Initial Guesses and Convergence Thresholds for Control Rate

Weighting and Noise Intensities (g, VY, and V.)
8. Pilot Delay (t)
9. Observation and Motor Noise Ratios (py,, pY2 , and p.)

10. Visual Indifference Thresholds (TY, and TY2)
11. Fractional Attention Parameter (f)

The data gathered in this thesis indicates that the values in Table 3-3 should be used.

Table 3-3
Recommended Parameters for STI Optimal Pilot Model

Parameter Symbol Recommended Value

Aircraft Model Order Y, Lowest Feasible

Task Forcing Function Y. F2,

6.25 S2 + 3.54. s + 1
Intensity of the Driving Noise V. 1

Filter Augmentation Method Output

N.-uromuscular Time Constant . 0.08

State Deviation Weighting q 1
Initial Guesses for Control Rate gi, V#, Vi = 0.1
Weighting and Noises VYj, Vm = l

Convergence Thresholds for Control g: 0.001
Rate Weighting and Noises Vv, V: 0.1

Pilot Delay __0.2 seconds

Observation and Motor Noise Ratios py,, py2, Pu -20 dB for All

Visual Indifference Thresholds Ty1 , Tv2  0

Fractional Attention Parameter f 1
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In the following discussion each of these parameters is evaluated individually with the

others held constant at the values shown in this table'.

Aircraft Model Order. The lowest model order consistent with the task

should be used. High-order dynamics should be modeled by an equivalent delay if

possible using a lower order equivalent system2 . The STI optimal pilot model computes

a predicted pilot describing function of order 2n+5 where n is the number of aircraft and

filter states. For example, the model returned a fifteenth order pilot describing function

when the short period approximation of Case 2, was analyzed.

Task Forcing Function. The task forcing function recommended by this

thesis is a second order Butterworth filter, shown in Equation 3-48, with a break

frequency of 0.4 radians per second. The numerator gain (F25) makes the filter

bandwidth, w., equal to the break frequency.

Y2 = (3-48)

Table 3-4 shows the relationship between filter bandwidth and predicted

Cooper-Harper rating. The forcing function root mean square (RMS) errors were

computed using the Program CC command -- Meanyw -- and the predicted

Cooper-Harper ratings were computed using Equation 3-2. The pure delays in Equations

3-44 through 3-47 were added to the pilot delay, T. When modeled instead by a first

order Pade approximation, the results were within one-hundredth of a rating.

'A macro containing typical Program CC commands used for this analysis is presented at the end of
Appendix B.
I The lower order equivalent system match routine described in MIL-STD- 1797 was implemented on PC
MatLab in a Handling Qualities Toolbox for this thesis. Copies of this toolbox are available from the
author.
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Table 3-4
The Effects of Forcing Function Bandwidth on Predicted Cooper-Harper Rating

-- STI Optimal Pilot Model

Bandwidth, RMS Case 1 Case 2 Case 3 Case 4 Case 5 Legend2

(o, Error, a, (2)' (3)' (4)' (4)' (6)'

0.1 0.266 3.99E-5 1.17E-4 1.86E-4 3.50E-4 4.33E-4 J

0.9 2.6 3.4 4.4 4.7 Rating

0.4 0.532 4.73E-3 9.72E-3 1.66E-2 2.33E-2 3.09E-2 J
1.9 3.0 3.9 4.4 4.9 Rating

0.5 0.595 1.00E-2 1.92E-2 3.24E-2 4.30E-2 5.7E-2 J

2.0 3.0 3.9 4.3 4.8 Rating

0.8 0.752 4.62E-2 7.45E-2 1.23E-1 1.41E-1 1.86E-1 J

2.2 3.0 3.8 4.0 4.4 Rating
0.841 9.23E-2 1.38E-1 2.21E-1 2.35E-1 3.09E-1 J

2.2 2.9 3.6 3.7 4.2 Rating
2 1.19 6.63E-1 7.73E-1 1.07 9.35E-1 1.15 J

2.1 2.3 2.8 2.6 2.9 Rating

5 1.88 4.16 3.76 3.69 3.61 3.60 J

0.6 0.4 0.4 0.4 0.4 Rating
Cooper-Harper rating assigned during simulator tracking task in Reference 24

2 Where J is the performance index and Rating is the predicted Cooper-Harper rating

The data from Table 3-4 is plotted in Figure 3-7 for clarity. Close examination of

this figure reveals that the STI optimal pilot model responded to the forcing function

characteristics in much the same way as a human pilot would. As the bandwidth of the

forcing function approached the pilot bandwidth, the difference between the predicted

ratings became negligible. Likewise, the human pilot will not attempt to follow the

commands as this frequency is approached, and is therefore not able to distinguish

between the different dynamics.
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Figure 3-7. The Effects of Forcing Function Bandwidth on Predicted Cooper-Harper
Ratings -- STI Optimal Pilot Model

The logical first choice for forcing function bandwidth is one that mirrors that of

the actual tracking task. The STI optimal pilot model does not work well when this

choice is made. McRuer's evaluation of these dynamics used a forcing-function

bandwidth of 2 radians per second which is typical for compensatory tracking tasks. As

shown in Figure 3-7 the ratings in this region are tightly grouped and are not good

predictors of the experimental ratings. Instead, the best results will be obtained if each

case is evaluated for a range of forcing function bandwidths, and the one producing the

worst Cooper-Harper rating is used. Note that in Figure 3-7 this maximum occurs over a

broad frequency making the top of each curve fairly flat. A break frequency of 0.4

radians per second worked well for all five cases examined in this chapter.

Driving Noise Intensity. The intensity of the driving noise, V,, can be

included either as a numerator gain in the task forcing function, Y,, , or directly by
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varying the noise intensity value, V,. Both methods yield identical results. In either

case the predicted rating is independent of the noise intensity.

The method for finding the forcing function root mean square (RMS) error

amplitude, ac, described in Equations 3-38 through 3-41 and the Program CC command

that implements this method -- Mean, Y. -- assume a unit intensity driving noise, V,. If

the driving noise is not unit intensity, the numerator of the task forcing function, Y,

must be multiplied by the square root of the driving noise intensity, V,,, to form an

equivalent system. It is therefore easier to always use unit intensity driving noise.

Because the Cooper-Harper rating formula, Equation 3-2, is normalized for Gc,

the predicted Cooper-Harper rating is independent of the numerator gain of the task

forcing function, Y,. Table 3-5 shows the predicted Cooper-Harper ratings for a range of

numerator values. Note that while the performance index, J, increased with the forcing

function RMS error amplitude, a;, the predicted Cooper-Harper ratings did not change.

Table 3-5
The Effects of Task Forcing Function Numerator on Predicted Cooper-Harper Rating

-- STI Optimal Pilot Model

Y,• RMS Case 1 Case 2 Case 3 Case 4 Case 5 Legend'
Numerator Error', a, (2)2 (3)2 (4)2 (4)2 (6)2

F2 0.532 4.73E-3 9.72E-3 1.66E-2 2.33E-2 3.09E-2 J

1.9 3.0 3.9 4.4 4.9 Rating

2 0.752 9.43E-3 1.94E-2 3.32E-2 4.68E-2 6.17E-2 J

1.9 3.0 3.9 4.4 4.9 Rating

4 1.50 3.78E-2 7.79E-2 1.33E-1 1.87E-1 2.47E-1 J

-1 1.9 3.0 3.9 4.4 4.9 Rating

Forcing fimction bandwidth was 0.4 radians per second for all runs in this table.
Cooper-Harper rating assigned during simulator tracking task in Reference 24
Where J is the performance index and Rating is the predicted Cooper-Harper rating
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Since the numerator gain of the task forcing function, Ye, has no effect on the predicted

Cooper-Harper rating, the square root of two was used. This value makes the bandwidth

-- defined as the zero magnitude (dB) frequency -- equal to the filter break frequency.

Filter Augmentation Method. As discussed earlier in this chapter, the

driving noise can be added at the aircraft input, output, or between to parts of the aircraft

dynamics. This study chose output augmentation for two reasons. First, it makes better

physical sense. Second, the Cooper-Harper ratings predicted using the output

augmentation method better matched the experimental results.

The STI optimal pilot model uses only error and error rate for feedback. When

the output augmentation method of Figure 3-3 (page 3-9) is chosen, this error is the

difference between the colored, forcing function driving noise and the aircraft output.

This is similar to an actual tracking task, including the LAMARS task, where the pilot

perceives a difference between his actual condition and his desired position and acts to

minimize this error. If the noise is injected at the aircraft input as shown in Figure 3-4

(page 3-10), this physical significance is lost. Injecting the noise between two parts of

the aircraft dynamics, as shown in Figure 3-5 (page 3-11), is for specialized analysis and

not considered further in this thesis.

The Cooper-Harper ratings predicted using the output augmentation method

better matched experimental results. The predicted Cooper-Harper ratings for both input

and output noise injection are shown in Table 3-6. Notice that input injection values are

overly pessimistic when compared to experimentally obtained values.
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Table 3-6
The Effects of Noise Injection Method on Predicted Cooper-Harper Rating

-- STI Optimal Pilot Model

Noise Injection Case I Case 2 Case 3 Case 4 Case 5 Legend2

Method (2)' (3)' (4)' (4)' (6)'
Input 1.20E-2 5.13E-2 8.28E-2 1.67E-1 2.11E-1 J

3.3 5.7 6.5 7.6 8.0 Rating
Output 4.73E-3 9.72E-3 1.66E-2 2.33E-2 3.09E-2 J

1 1.9 3.0 3.9 4.4 4.9 Rating
Cooper-Harper rating assigned during simulator tracking task in Reference 24

2Where J is the performance index and Rating is the predicted Cooper-Harper rating

Neuromuscular Time Constant. The neuromuscular time constant is used

to limit the pilot model bandwidth. The actual bandwidth for this model was lower than

the time constant choice should have produced. Thus, a time constant, T,, of 0.08, or a

muscular lag at 12.5 radians per second, is recommended.

The iterative method of using control rate weighting to model the neuromuscular

lag always produces a pair of complex poles at a frequency less than the desired muscular

lag frequency. As shown with the integrator example in Equation 3-26 (page 3-14), a

neuromuscular time constant, T, of 0.08 placed a pair of complex poles at 8.76 radians

per second. The actual human neuromuscular time constant has been experimentally

measured between 0.08 and 0.12, resulting in a first order lag between 8.3 and 12.5

radians per second (16:29). The high end of this range (T,,= 0.08) was chosen.

State Deviation Weighting. It makes no difference what value is used for

the state deviation weighting. The STI model results are independent of this value.

Because the STI optimal pilot model requires single-input-single-output aircraft

dynamics, the state deviation weighting matrix is formed by selecting a scalar value, q, as
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shown in Equation 3-16 (page 3-12). The model then finds the control rate weighting, g,

that establishes the desired neuromuscular lag. The ratio between the control-rate and

state deviation weighting is fixed by this process.

The gain matrix shown in Equation 3-25 (page 3-14), was computed in the

integrator example presented earlier in this chapter. In this example, the state deviation

weighting, q, was one and the state deviation weighting, g, used to model the

neuromuscular lag was 0.00017. When the same problem was repeated with a state

deviation weighting of 5, the model set the control rate penalty, g, at 0.00085 to model

the muscular dynamics and computed the same gain matrix. This weighting was five

times the previous value, just as the state deviation penalty was five times that in the

previous example.

Initial Guesses and Convergence Thresholds. Because the STI optimal

pilot model finds the control rate weighting, g, and the noise, V, and V., iteratively, the

model requires initial guesses and convergence thresholds for each. Within reason, it

does not matter what values are chosen for the initial guesses. The number of iterations

required for convergence does not increase significantly if a poor initial guess is made.

This thesis used the convergence thresholds recommended in Reference 25 (25:29).

Pilot Delay. The delay time of the human pilot has been measured

experimentally between 0.15 and 0.3 seconds (6:18). A pilot delay of 0.2 seconds was

used in this analysis.

The effects of pilot delay on predicted Cooper-Harper rating are shown in

Table 3-7.
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Table 3-7
The Effects of Pilot Delay on Predicted Cooper-Harper Rating

-- STI Optimal Pilot Model

Pilot Delay 0.10 0.15 0.20 0.25 0.30 Legend2

(seconds)

Case 1 2.53E-3 3.52E-3 4.73E-3 6.15E-3 7.80E-3 J
(2)' 0.9 1.4 1.9 2.3 2.7 Rating

Case 2 6.28E-3 7.93E-3 9.72E-3 1.16E-2 1.37E-2 J
(3)' 2.3 2.7 3.0 3.3 3.6 Rating

Case 4 1.75E-2 2.06E-2 2.33E-2 2.59E-2 2.82E-2 J
(4)' 4.0 4.2 4.4 4.6 4.7 Rating

Cooper-Harper rating assigned during simulator tracking task in Reference 24
2Where J is the performance index and Rating is the predicted Cooper-Harper rating

Cases 3 and 5 are not included in this table because their dynamics are identical to those

of Cases 2 and 4. Note that the relationship is fairly linear with every ten milliseconds of

added delay producing no more than a tenth of a rating increase. Also note that added

delay does not affect the ratings of the poor dynamics as much as good dynamics. For

the same added delay, the predicted rating for Case I dropped from 0.9 to 2.7 while the

predicted rating for Case 4 went from 4.0 to 4.7.

Noise Ratios- The noise ratios are perhaps the most difficult pilot model

parameters to select. The predicted Cooper-' ratings and estimated pilot describing

functions are especially sensitive to these values. For this reason it is desirable to stay as

close as possible to experimentally measured values. Reference 6 recommended using

the following values (6:18).

Pyi = -20 dB and P. = -25 dB (3-49)

The STI optimal pilot model results in Table 3-8 were found using these values.
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Table 3-8
The Effects of Noise Ratios on Predicted Cooper-Harper Rating

-- STI Optimal Pilot Model (p. = -25 dB)

Bandwidth, RMS Case 1 Case 2 Case 3 Case 4 Case 5 Legend2
0)", Error, q, (2)' (3)' (4)' (4)' (6)'

0.1 0.266 1.87E-5 4.99E-5 9.04E-5 1.41E-4 2.OOE-4 J
S.... 1.2 2.3 2.9 3.5 Rating

0.4 0.532 2.79E-3 5.35E-3 1.02E-2 1.13E-2 1.75E-2 J
1.0 2.1 3.1 3.3 4.0 Rating

0.5 0.595 6.11E-3 1.11E-2 2.11E-2 2.11E-2 3.38E-2 J
1.2 2.2 3.2 3.2 4.0 Rating

0.8 0.752 3.04E-2 4.88E-2 8.80E-2 7.99E-2 1.23E-1 J
1.5 2.3 3.2 3.1 3.8 Rating

1 0.841 6.31E-2 9.55E-2 1.67E-1 1.42E-1 2.16E-1 J
1.6 2.0 2.6 2.2 2.7 Rating

2 1.19 5.O0E-1 6.30E-1 9.20E-1 7.20E-1 9.80E-1 J

1.6 2.0 2.6 2.2 2.7 Rating

5 1.88 3.50 3.50 3.60 3.50 3.50 J

1 0.3 0.3 0.4 0.3 0.3 Rating

Cooper-Harper rating assigned during simulator tracking task in Reference 24
2 Where J is the performance index and Rating is the predicted Cooper-Harper rating

As in Table 3-4, the results are displayed for range of forcing function bandwidths. The

data from Table 3-8 is plotted in Figure 3-8 on the following page for clarity. In all cases

the predicted Cooper-Harper ratings were overly optimistic when compared with

experimentally obtained ratings.

Increasing the motor noise ratio, p,, from -25 dB to -20 dB improved the model's

predictions. The results in Table 3-4 and Figure 3-7 (page 3-24) were obtained with a

motor noise ratio of -20 dB, and were more in line with the experimentally obtained

ratings. The motor noise ratio, p, was used in this thesis to fine tune the STI optimal

pilot model predictions, and -20 dB seemed to do this well.
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Figure 3-8. The Effects of Noise Ratios on Predicted Cooper-Harper Ratings
-- STI Optimal Pilot Model (p, = -25 dB)

Visual Indifference Thresholds. Visual indifference thresholds in the STI

optimal pilot model tended to excessively penalize good dynamics, and this thesis

recommends using thresholds of zero unless display effects are being specifically studied.

The visual indifference thresholds of the human pilot are dependent on the task

display. Dillow and Picha used 0.05 degrees and 0.18 degrees per second as typical

values for pitch axis error and error rate, visual indifference thresholds (6:18). The STI

optimal pilot model results found using these values are presented in Table 3-9. As

shown in this table, the predictions obtained using indifference thresholds of zero better

matched experimental results.
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Table 3-9
The Effects of Visual Indifference Thresholds on Predicted Cooper-Harper Rating

-- STI Optimal Pilot Model

Visual Indifference Case I Case 2 Case 3 Case 4 Case 5 Legend2

Thresholds (2)' (3' 4) ( 6)'
Error, TY, = 0 4.73E-3 9.72E-3 1.66E-2 2.33E-2 3.09E-2 J

Error Rate, Ty2 =0 1.9 3 3.9 4.4 4.9 Rating

Error, TY, = 0.05 1.14E-2 1.60E-2 2.32E-2 2.78E-2 3.51E-2 J
Error Rate, Ty2 =0.18 3.3 3.8 4.4 4.7 5.1 Rating

ICooper-Harper rating assigned during simulator tracking task in Reference 24
2 Where J is the performance index and Rating is the predicted Cooper-Harper rating

Fractional Attention Parameter. The fractional attention parameter is used

to predict multi-axis Cooper-Harper ratings. Each axis is assigned a fraction of the pilot's

attention so that the fractions total one. Because the STI optimal pilot model requires

single axis dynamics, the fractional attention parameters must be manually iterated.

In a two axis problem, for example, the user must find the performance index in

each axis for a range of fractional attention parameters. The performance indices for

those combinations of fractional attention parameters that total one must then be

summed. The lowest total performance index is then used to find the predicted

multi-axis rating using Equation 3-2. Obviously, this procedure becomes more

complicated and lengthy as additional axes are added.

Pilot Describing Function, The STI optimal pilot model computes a pilot

describing function along with a predicted Cooper-Harper rating. This transfer function

enhances the model's abilities as a predictive tool. Unfortunately, these transfer functions

are very high order and often do not reduce to the classical lead-lag-delay pilot model

with acceptable accuracy.
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Using the values in Table 3-3, the STI optimal pilot model predicted the

following pilot describing functions for Cases 1 through 5 (YPI- YPS)I.

= 174(0X.0448)[.707, .4](1.65X5.79)(12.63)(12.91)[-.866,17.3](100)2 (3-50)
(0)[.707,.412(6.02X12.57)(12.63)[.274,18.961(45.4)(94)(100)

p2= 92.6(0)(.032)[.707,.41(1.45)[.814,4.561[.8,51(5.08)(12.5) 2 [-.866,14.91 (351)
(0)[.707,.412(1 .25)(4.96)[.8,51(12.43X12.46)[.146,14.21[.84,27.31

Yp 3 = 92.7(0)(.035)[.707, .41(1.19)(4.1)[.79 6,4.781[.8, 5][-.866, 8.661(12.5)2 (3-52)
(0)[.707, .4]2(1.25)(4.02)[.8, 51[.043,11.5](12.36)(12.46)[.81,23.5]

= 46.2(0)(.028)[.707, .4](1.18)[.06, 4.4](4.56)[.18,5](12.5)(12.6)[-.866,14.9] (353)
(0)[.707, .412(1 .25)(4.6)[. 18, 51(12.49)(12.52)[. 157,12.81[.846,23.3]

40.4(0)(.028)[.707, .41(1.04)(3.74)[.025, 4.96], [.18,5], [-.866,8.66](12.5)2 (3-54)

(0)[.707,.412(1.25)(3.77)[.182,5l[.082, I0.7](12.4X12.5)[.818, 19.121

The pilot delay was modeled with a second order Pade approximation. There are several

nea'" pole-zero cancellations in the above transfer functions. Thompson also recommends

grouping the high-frequency poles, those above 5 radians per second, into an equivalent

delay (25:38). An alternative approach is to use a lower order equivalent system match

routine similar to that used in MIL-STD-1797A for aircraft dynamics (Reference 5). The

following equivalent systems were computed by finding the best fit to the classical gain,

lead, lag, and delay pilot model between 0.1 and 10 radians per second 2

. i =3.756(s + 2.921). e-l 5 4s (3-55)
YPI= (s +1.546) (-5

'Where the brackets denote [;, caj as in s2 + 24" cp,+ o,.2 and the parentheses denote (r) as ins + r.

SThis lower order equivalent system match routine was implemented on PC MatLab in a Handling

Qualities Toolbox for this thesis and is available from the author.

3-33



YP2 = 1.29(s + 3.248). e-' 16S (3-56)
(s+0.973)

Y, 1.294(s + 2.253) -'198, (3-57)
(s+1.036) (

Yp4 = 0.347(s + 5.42) 123, (3-58)
(s+0.682) 3

YPs = 0.295(s + 5.31) -e13, (359)
(s+0.765) 3

The Bode plots of the predicted pilot describing function and their lower order

equivalent systems matches are shown in Appendix B. These matches were especially

poor for the lightly damped dynamics (Cases 4 and 5). For these cases, shown in Figures

B-4 and B-5, the STI optimal pilot model predicted a pilot describing function that

essentially notched out the aircraft short period dynamics. This behavior is not possible

using only a gain, lead, lag, and delay model, and is inconsistent with McRuer's

experimental observations (14:218)'.

Summary

The optimal pilot model was developed in an attempt to overcome deficiencies in

the classical pilot model approach. This chapter focused on an optimal pilot model

developed by Systems Technology, Incorporated (STI), for use with Program CC

(Reference 25). This model incorporates nearly every important aspect of other optimal

pilot models and can be implemented on the personal computer, but it lacks parameter

selection guidance.

'Consult the discussion on page 2-13.
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This model allows the feedback of only one variable and its derivative, therefore

single-input-single-output dynamics must be used for both the aircraft and forcing

function dynamics. The model solves the linear quadratic regulator (LQR) problem by

adjusting the control rate weighting, g, so that the neuromuscular dynamics are modeled.

The model then iteratively solves the Kalman filter problem so that the desired noise

ratios are obtained. Finally, a predicted pilot describing function is computed and the

performance index is used to predict a Cooper-Harper rating.

The user must choose several parameters before running the STI optimal pilot

model. A sensitivity analysis of these parameters was conducted using five different

pitch axis dynamics. Based on this analysis, the parameters in Table 3-3 (page 3-21)

should be used when running the STI optimal pilot model. Additionally, the following

conclusions were reached.

I. Include aircraft delays in the pilot delay or model them with a first order
Pade approximation. The results are the same for both methods (page 3-22)'.

2. Model the task forcing function, Yw, as a second order Butterworth filter.
Evaluate the dynamics for a range of forcing function bandwidths, and use
the one that predicts the worst Cooper-Harper rating. A bandwidth of 0.4
radians per second worked well for all five cases examined in this chapter
(page 3-24).

3. The predicted Cooper-Harper ratings are independent of the driving noise
intensity, V., (page 3-25).

4. Injecting the forcing function driving noise at the aircraft output makes better
physical sense and produces more accurate predictions (page 3-26).

5. Use a neuromuscular time constant, T, of 0.08, producing a lag at 12.5
radians per second. The optimal pilot model establishes the model
bandwidth slightly lower than it should, and 12.5 is at the high end of the
experimentally measured range (page 3-27).

Refers to the page in this thesis containing this conclusion.
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6. The STI optimal pilot model results are independent of the state deviation
weighting, q (page 3-28).

7. The STI optimal pilot model is insensitive to initial guess values for the
control-rate weighting and the noise intensities (page 3-28).

8. Use -20 dB for all noise intensities, pyl, Py,, and p.. The motor noise
intensity, p,, was increased from its experimentally measured value (-25 dB)
to fine tune the model's predictions (page 3-30).

9. Set the visual indifference thresholds, Ty, and Ty2 , to zero unless display
effects are being studied. Non-zero values overly penalize good dynamics
(page 3-3 1).

10. The predicted pilot describing functions are not consistent with the classical
pilot model form or the experimental observations of McRuer in
Reference 14 (page 3-34).
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4. Flight Test

General

As shown in the previous chapter, the high order pilot transfer functions predicted

by the STI optimal pilot model were not consistent with classical pilot model theory. In

an effort to resolve this and other important pilot modeling issues, a limited evaluation of

human pilot response was sponsored in support of this thesis by the Air Force Flight

Dynamics Directorate. This flight test is detailed in AFFTC-TLR-93-41 (Reference 7).

The applicable aspects of the test are presented in this chapter.

This chapter is divided into three sections. The first section, Test Procedures,

provides a description of the flight test. The second section, Test Results, emphasizes

those results applicable to optimal pilot modeling theory. This section focuses on single

axis tasks and contains statistical and frequency response analysis not published in

AFFTC-TLR-93-41. Finally, the important conclusions of this chapter are summarized.

Test Procedures

The flight test was conducted at Calspan Corporation, Buffalo, New York by a

five member team from the USAF Test Pilot School between 8 and I 1 October 1993.

Five sorties totaling 7.6 hours were flown in the Calspan variable stability Lear II

aircraft. Ground simulations in Lear 11 were also performed. Four different pitch and

four different roll axis dynamics were evaluated using three different tracking tasks. For

each set of dynamics, primary pilot response parameters were recorded and examined
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using Fourier transform analysis in an attempt to provide an insight into human pilot

behavior. Pilot comments and Cooper-Harper ratings were also recorded. The flight test

data gathered during this project are maintained at the Air Force Flight Dynamics

Directorate (WL/FIGC), Wright-Patterson AFB, OH 45433, and are available for

research purposes. AFFTC-TLR-93-41 serves as a guide for the flight test data base and

provides an initial look at the test results.

Research Vehicle Description. The pilot was the true test item for this test

program. The three test pilots used for this evaluation had a variety of operational

backgrounds. Two of the pilots had multi-engine backgrounds. One had extensive

KC-10 experience and the other had extensive C-130 experience. The third pilot was an

experienced test pilot with considerable F-15 and F-16 experience.

The Calspan Variable-Stability Lear II was used as the research vehicle for this

evaluation. It was a production Learjet 25 aircraft that was extensively modified for use

as an in-flight simulator. The basic aircraft is shown in Figure 4-1.

The safety pilot's (left seat) control column was connected directly to the aircraft's

control surfaces through the production, reversible push rod system and mirrored the

surface positions. The evaluation pilot's (right seat) controls were removed and replaced

with a variable, center-stick feel system that was part of the in-flight simulation system.

A digital computer system was located in the main cabin. It was designed to

model aircraft and artificial feel systems and record in-flight data. Real time monitoring

of up to 64 selected parameters at a sampling rate of 100 hertz was possible. The data
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Figure 4-1. Two Plan View of Lear 25B

4-3



were stored on 90 megabyte personal computer (PC) compatible, removable Bernoulli

drive cartridges in a MATLABTM compatible format.

A color flat panel display, located on the main instrument panel in front of the

evaluation pilot's station, displayed the tracking tasks. The display is shown in

Figure 4-2.

Roll

S................... Pitch (D Command Bar for Tmcking Taks

0.5 deg. Pitch I a Error G) Fixed Pipper Reference

5.0 deg. Roll T (D (2) Horizon Line (Extended to Width of Display)

Figure 4-2. Tracking Task Display

Pitch and roll errors were indicated to the pilot by the angular deviation between the

command bar and the extended fixed-pipper attitude reference. The lengths of the

subtends on the attitude reference corresponded to 0.5 degree of pitch error and 5 degrees

of roll error. A horizon line was also displayed to reduce the potential for pilot

disorientation. A 0.025 second delay arose from the display process. A detailed

description of the Lear II and the flat panel display is given in AFFTC-TLR-93-41

(7:33).

Tracking Tasks. Three different types of tracking tasks were used for this test, a

discrete tracking task, a sum-of-sines tracking task, and a regulator task. To lessen the

pilot's ability to memorize the tasks, two different tasks of each type were used during

testing. Each task was 53 seconds long.
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Discrete Tracking Task. The discrete tracking task consisted of a series of

steps and ramps. A representative task is shown in Figure 4-3. The initial command in

each axis was a step. The maximum commanded input was ±2.25 degrees from the

initial condition in pitch and ±35 degrees in roll.

10

I'
I-

0 hOe3 30 40 50

Figure 4-3. Discrete Pitch Axis Tracking Task

Sum-of-Sines Tracking! Task. The sum-of-sines tracking task was a

random appearing, frequency-based function computed using the following formula:

Command = K* A . sin(w, + j) (4-1)

The tasks used in this test were formed by summing 13 sine waves. The phases (0k) were

randomly chosen and the task gain (K) was set to achieve the desired task amplitude.

The frequencies (coi) were evenly spaced between 0.1 and 30 radians per second. The

amplitudes (Ai) were selected using a comer frequency of 2 radians per second and a

second-order roll off producing the power spectral density magnitudes shown in
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Figure 4-4. A typical task is shown in Figure 4-5. While this task appeared random, the

power spectral density was concentrated only at the selected frequencies (coi) as shown in

Figure 4-4:

-20

i-s*

Frequency (radians per second)

Figure 4-4. Power Spectral Density of Sum-of-Sines Tracking Task

a

-4
O 10 3 0 40 As

Time, t (seconds)

Figure 4-5. Sum-of-Sines Pitch Axis Tracking Task
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Regulator Task. The regulator task was computed in the same manner as

the sum-of-sines task. Instead of driving a command bar, however, this task was input as

an additive to the pilot's stick command. It had the effect of simulating turbulence. The

pilot's objective during this task was to maintain wings level, zero pitch flight. This

tracking task had the same frequency content as the sum-of-sines task.

Desired And Adequate Criteria. Each airborne test case was examined using all

three types of tracking tasks. Only the discrete and sum-of-sines tracking tasks were

used during ground simulation runs. Cooper-Harper ratings were assigned for each run

in accordance with the following criteria:

Desired Criteria: Pilot induced oscillations (PIO) tendencies do not
compromise tracking task. Commanded attitude maintained within 0.5
degrees in pitch and 5 degrees in bank (measured at end of command bar)
for 50 percent of the time except immediately following step command
changes. See Figure 4-6.

Adequate Criteria: Commanded attitude maintained within 1 degrees in
pitch and 10 degrees in bank (measured at end of command bar) for 50
percent of the time except immediately following step command change.

Pitch Roll

AL 4 Ends
Within r- -[ 7 Wthin Roll
0.5 deg.T 5 deg.+ T Effor

Figure 4-6. Tracking Task Desired Criteria

Dynamics. The following dynamics were selected based on past Calspan flight

test experience so that Cases 1 and A would produce a level 1 aircraft. Subsequent cases
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degraded either the damping, roll mode time constant, or system delay to produce the

desired spread in aircraft handling qualities.

Longitudinal Dynamics: Lateral Dynamics:

C 1: 20(s + 1.8)e-'4 Case A: 2.5e -. 4(4-2)
s(s2 +8.4s+36) s(s+2.5)

Case 2: 20(s + 1.8)e-4 Case B: e-0.04s43)
s(s 2 +4.8s+ 36) s(s+1)

Case 3: 20(s + 1.8)e"0.24s Case C: 2.5e--0.24s (44)
s(s 2 +8.4s+36) s(s+2.5)

Case 4: 20(s + 1.8)e-024s Case D: e-0.24s
s(s 2 +4.8s+36) s(s+ 1)

These cases have the characteristics summarized in Table 4-1.

Table 4-1
Case Definition Table

Longitudinal Lateral

Short Period Delay, ;, Roll Mode Time Delay, re
Damping, Constant, TR

RCase I 0.7 0.04

Case 2 0.4 0.04

Case 3 0.7 0.24

Case 4 0.4 0.24

Case A 0.4 0.04

Case B 1.0 0.04

Case C 0.4 0.24

Case D 1 1.0 0.24
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These dynamics were implemented as a stick position command system as described in

Appendix C.

During the simulations, sideslip angle rate (W) was driven to zero by the

simulation computers. Additionally, the roll and yaw axes were de-coupled so the pilot

could fly the simulations with feet on the floor.

Data Collection. Both ground and airborne evaluations were conducted. For the

ground evaluations, the Lear II was operated in the ground simulation mode inside the

Calspan hanger. In-flight testing was conducted under day, visual meteorological

conditions (VMC) with no more than occasional light turbulence.

All single axis ground simulation cases were flown twice. All of the airborne

single axis cases were evaluated three times. In planning the specific test points, project

engineers ensured adequate pilot variability checks by assigning some pilots the same

cases twice and by assigning some cases to more than one pilot. The dynamics cases

were also evaluated in a random order.

For each case, the test pilots flew the discrete tracking task, followed by the

sum-of-sines tracking task and the regulator task. Each task was 53 seconds long. The

regulator tasks were only evaluated during airborne simulations since these tasks were

designed to evaluate normal acceleration feedback cues.

Immediately after each task, the pilot and flight test engineer completed the test

point comment card shown in Figure C-3. The pilots then assigned a pilot induced

oscillation (PIO) rating, using the scale in Figure C-4, and a Cooper-Harper rating using

the scale in Figure 2- 1.
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Twenty-two parameters were recorded with a sampling rate of 100 hertz for each

test case. These parameters included commanded and actual pitch and roll angle as well

as longitudinal and lateral stick force and deflection (7:3-4). The percentage of time the

desired and adequate criteria were met as computed by the Lear II simulation computer

were saved in separate scoring files.

Data Reduction. In an effort to gain insight into human pilot response, a

frequency response analysis of the relationship between the pilot's input (task error) and

the pilot output (stick force and displacement) was conducted. This analysis was

accomplished using the MATLABTM fast Fourier transform software described in

AFFTC-TLR-93-41 (7:55-58). This software converted time domain data to frequency

domain data. In doing so, it yielded the power spectral densities of the input and output

parameters, a Bode plot of the transfer function, and a coherence function. This

coherence function provided a measure of how much of the output at each frequency was

caused by the input rather than by noise or other inputs. A coherence value of 1.0 meant

that the output was completely a function of the input, whereas as value of 0.0 meant that

the output was not a function of the input. This software was included in the data base

described in Reference 7 and can be distributed freely.

Validation, The frequency response analysis software was based on code

written for the Air Force Flight Test Center (AFFTC) CYBER computer system. The

CYBER code was previously validated by numerous AFFTC projects. The MATLABTM

versior of the software was validated by analyzing data from several ground simulations
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on both systems and comparing the results. For the frequency range of interest (0.1 to 10

radians per second) the results produced by the two versions agreed to within 0. 1 percent.

The data reduction software was further validated by running an example

problem. The following dynamics were simulated on MATLABTM and Simulink:

=((s + 2). e(4-6)

(s + 5). (s +.2)

A random, normal input vector was generated using the command, rand('normalq, and

the output of the simulation analyzed. The Bode and coherence plots are shown in

Figure C-5. Notice that the coherence is nearly perfect, especially at higher frequencies.

Additionally, the 95% confidence bounds, represented by the dashed lines in all three

plots, are tight. This frequency response and the bode plot of the actual system are

shown in Figure C-6. Notice that except for the lowest frequency, phase point, the two

are nearly identical.

Windowing and Overlap. A common frequency response analysis

technique is ensemble averaging. Ensemble averaging improves the reliability of the

frequency response calculations for time histories of data corrupted by measurement

noise, such as flight test data (Reference 9).

Overlap ensemble averaging was used both in this thesis and in

AFFTC-TLR-93-41. The first five seconds, or five hundred data samples, of each task

were not considered so that the pilot could become actively involved in the task. The

next 4,096 samples (40.96 seconds) were divided into seven ensembles, each with fifty

percent overlap. The data from several tasks were analyzed using different percent
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overlap and numbers of ensembles. In all cases the computed frequency response points

were the same. The confidence intervals, however, grew tighter as the overlap and

number of ensembles increased.

Test Results

There are four areas of analysis that have implications for the optimal pilot model

analysis conducted in this thesis. They are Pilot Ratings and Comments, Pilot Delay,

Statistical Analysis, and Frequency Response Analysis. The following sections present

the important results from each of these areas.

Pilot Ratings and Comments. The Cooper-Harper ratings and pilot comments

are presented in Tables C-I and C-2 for the ground and airborne evaluations, respectively.

These tables also include the pilot induced oscillation (PIO) rating and the percentage of

time the pilot met desired and adequate criteria during each task. Only the single axis

sum-of-sines data were included in this thesis.

The Cooper-Harper ratings are presented graphically in Figure C-7. The

dynamics evaluated in AFFTC-TLR-93-41 produced a wide range of pilot response, as

evidenced by the spread in Cooper-Harper ratings. These ratings ranged from 1 to 6 on

the ground and 1 to 7 for the airborne evaluations. Pilot variability was fairly low. In

most cases the Cooper-Harper Ratings were within one rating of each other. Ratings for

the airborne evaluations of Case D were the exception, ranging from 4 to 7. No

significant differences between ground and airborne ratings were noted.
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Pilot Delay. The delay between task command and pilot response was estimated

in AFFTC-TLR-93-41 using the airborne, single axis discrete tracking tasks. This

tracking task consisted of a series of steps and ramps separated by as much as five

seconds. Pilot delay was estimated by measuring the time between the command change

and the stick force or deflection (7:127-128).

The pilot delay between task command and stick force was estimated at 0.27

seconds. The delay times did not vary significantly by pilot, dynamics case, or axis.

This estimate is consistent with the 0.2 to 0.3 second delay observed by McRuer

(14:217). In all cases, stick deflection lagged stick force by 0.1 (± 0.01) seconds,

reflecting the lag inherent in the stick dynamics. Thus, the total delay between task

command and stick deflection was 0.37 seconds, well above the value normally used for

pilot model analysis (7:13-14). It is also important to note that the dynamics evaluated in

AFFTC-TLR-93-41 were implemented as a position command system.

Statistical Analysis. The -.andard optimal control problem minimizes a

performance index that weights state deviation and control usage. The optimal pilot

model minimizes a performance index that weights tracking en or and control rate usage.

Control rate usage is included in the optimal pilot model performance index to

implement the muscular dynamics as described in Chapter 3 and Appendix A of this

thesis (pages A-I, 3-5, and 3-13). This section examines the statistical validity of both

weightings in the prediction of Cooper-Harper ratings.

Root mean square (RMS) tracking error, control deflection, and control rate

values were computed from the flight test data base produced by AFFTC-TLR-93=41 and
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are presented in Tables C-3 and C-4. Only the single axis, sum-of-sines data were

included in this thesis.

The root mean square (RMS) values in Tables C-3 and C-4 were computed using

the following formula:

RMS(x) y IX12(47

= II (4-7)

In this equation, n is the number of samples in the vector, x. The RMS tracking error

(RMS Error) was determined by computing the difference between the task command

and the actual aircraft position (e. = 0, - 0) and then applying Equation 4-7 to this error

vector. The normalized RMS stick deflection (NRMS Stick) was found by subtracting the

mean stick deflection from each element in the vector before applying Equation 4-7.

Finally, the stick deflection rate was estimated by computing the difference between each

sequential element in the stick deflection vector and dividing the differences by the

sampling rate, 0.01 seconds. The RMS stick deflection rate (RMS Stick Rate) was found

by applying Equation 4-7 to this stick rate estimate.

The results of the regression analysis of these parameters is presented in Table 4-2

on the following page. In all of the runs the first independent variable was RMS tracking

error and the dependent variable was the Cooper-Harper rating. The second independent

variable was either normalized RMS stick deflection or RMS stick deflection rate. The

last column, variance, was used to evaluate the quality of the least squares fits.

Weighting either normalized stick deflection or stick rate produced similar

correlations in all but two cases. For the airborne pitch axis cases, normalized stick
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Table 4-2
Regression Analysis of Optimal Pilot Model Weightings

Axis Independent Independent Coefficient, Coefficient, Constant, Variance,
Variable', X Variable', X2  CL C C R_ 2

RMS Error NRMS Stick 7.1936 32.4729 -12.7970 0.8206

Flight RMS Error RMS Stick 4.4283 3.9928 -2.6624 0.6193
Rate

RMS Error NRMS Stick 1.7082 2.2877 -3.9951 0.7201
Roll _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

RMS Error RMS Stick 1.7371 0.6798 -4.4372 0.7233
Rate

RMS Error NRMS Stick 4.4451 13.0161 -3.8750 0.5491
Pitch

RMS Error RMS Stick 1.5746 3.4441 0.0993 0.9583

Ground Rate

RMS Error NRMS Stick 0.8013 7.1414 -3.4535 0.8246
Roll

RMS Error RMS Stick 0.7280 1.8389 -2.7809 0.7658
Rate

RMS Error NRMS Stick 6.0179 21.1914 -8.0429 0.7311
Pitch

Both RMS Error RMS Stick 4.7125 3.1204 -2.0751 0.7320
Air and Rate
Ground RMS Error NRMS Stick 0.9224 7.4571 -3.8638 0.6877

Roll I I I

RMS Error RMS Stick 1.1075 1.4758 -3.8931 0.6946
Rate

The dependent variable was the Cooper-Harper Rating such that: C-HRating = C,,X,+ C,,X 2+ C.

deflection weighting was significantly better than stick rate weighting. The reverse was

true for the pitch axis ground evaluations. It appears that both weighting schemes were

statistically valid. Normalized stick deflection weighting may be more appropriate,

however, for two reasons. First, the airborne sample size was nearly twice that of the

ground evaluations (12 versus 7). Second, the pilots may have exhibited singular
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behavior during the ground simulations due to the lack of motion cues. For example,

they may have been more apt to move the stick rapidly when evaluating poor dynamics

on the ground where there were no uncomfortable acceleration forces to discourage such

behavior.

The normalized stick deflection regression coefficients from the airborne

evaluations were used to draw the regression analysis lines in Figures C-8 and C-9. Each

airborne test point was plotted as a function of RMS error and normalized RMS stick

deflection. The number above each data point is the Cooper-Harper rating assigned

during the task. As shown in these figures, there was a strong relationship between these

two variables and the Cooper-Harper rating, but this relationship was by no means

perfect.

Frequency Response Analysis

From a linear systems perspective, the primary input to the pilot was assumed to

be task error. The pilot's primary outputs were assumed to be stick force and deflection.

A frequency response analysis of these input and output variables was performed for all

of the single axis, sum-of-sines tracking tasks. This section presents the applicable

results of this analysis.

Stick Force Versus Stick Deflection, As described previously in this

chapter, the evaluated dynamics were implemented as a position command system. Stick

force and displacement were related by a high frequency stick dynamics term and a force

gradient as shown in Figure C-1. The only difference between the frequency responses
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of stick force and stick deflection was the frequency response of these stick dynamics. In

other words, when the frequency responses of stick force to task error were summed with

the Bode plot of the stick dynamics, the result was identical to the stick deflection

frequency responses in Appendix D. As a result, the same insights could have been

gained by studying either variable. The analysis in AFFTC-TLR-93-41 and this thesis

focused on stick deflection (7:14-15).

Ground Simulation. As discussed in AFFTC-TLR-93-41, there were no

significant differences between the pilot's airborne and ground frequency response. The

phase lead at higher frequencies, however, was slightly greater on the ground than in the

air. There were no consistent trends for the magnitude (7:18).

Stick Deflection to Task Error. A frequency response analysis of stick

deflection to tracking task error for all single axis sum-of-sines tracking tasks was

completed for AFFTC-TLR-93-41. A representative cross-section of this data is

presented in Appendix D.

The power spectral densities (PSD) of the pilot input and the pilot output for two

of the worst dynamics cases, Cases 4 and D, are presented in Figures D-1 and D-2. Even

for these two highly oscillatory cases there were no notches in the PSD magnitude.

Likewise, the Bode plots of the pilot response did not reveal any higher order

compensation, or notching behavior. One representative frequency response plot for each

dynamics case is presented in Figures D-3 through D-10. As shown in these figures, the

magnitudes were consistent with the classical gain, lead, and lag pilot model form

described previously in this thesis and in Reference 15. The phase, however, was not
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consistent with this form of pilot compensation due to the large amount of phase lead

present at higher frequencies. As shown in Figure D-10, this high frequency phase lead

is especially noticeable for cases with delay. Despite this phase lead, no higher order

compensation was noted in any of the evaluations.

The pilot response appears to be strongly related to the aircraft dynamics. To

see this relationship, the frequency responses of the combined pilot-aircraft systems are

presented in Figures D- I1 through D-1IS. These plots were formed by adding the

frequency response of the pilot (stick deflection to task error) with that of the aircraft

(pitch or roll angle to stick deflection). As shown in these figures, the combined system

responses resembled integrators near the cross-over frequency in all cases. This is

consistent with McRuer's crossover pilot model theory (Reference 17). Note also that the

cross-over frequency of the combined system dropped from 1.9 radians per second for

the best pitch case (Figure D- 11) to 1.6 radians per second for the worst pitch case

(Figure D-14) and from 1.6 radians per second for the best roll case (Figure D-15) to

1.0 radians per second for the worst roll case (Figure D-18).

Gain Effects, The effect of command path gain was briefly evaluated

during the ground simulation phase. The frequency response analysis of stick deflection

to task error for the ground evaluation of Case I is shown in Figure D- 19. The command

path gain for Case I was increased from 8 to 16 and re-evaluated by the same pilot. The

resulting frequency response is shown in Figure D-20. As shown in this figure, the pilot

decreased his gain by about 6 dB to compensate. This behavior is even more apparent

when examining the combined pilot-aircraft systems in Figures D-21 and D-22. Even
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though the aircraft command path gain for Figure D-22 was twice that in Figure D-2 1,

the frequency responses of the combined systems were nearly the same.

Conventional Pilot Model Predictions

The dynamics cases described in Appendix C were evaluated using the STI

optimal pilot model and all of the applicable pitch and roll axis pilot models in

MIL-STD-1797 (Reference 5).

The results of the pitch axis pilot model analysis are presented in Table C-6. As

shown in this table, the MIL-STD-1797A pitch models were unsatisfactory for predicting

the handling qualities ratings of the pitch dynamics used for this evaluation. Three of the

five models predicted Level II handling qualities for Case I which actually had Level I

handling qualities. All of the models predicted Level III handling qualities for Cases 3

and 4, and both of these cases had Level II handling qualities.

The optimal pilot model was moderately successful in predicting the

Cooper-Harper ratings, but the predicted pilot describing functions were not consistent

with the observed behavior. Bode plots of the predicted pilot describing functions and

the resulting pilot-aircraft systems are shown in Figures C-10 through C-13 for Cases I

and 4. Due to the higher order pilot compensation, or notching, present in these figures,

they do not resemble the corresponding flight test responses in Figures D-3, D-6, D-11,

and D-14.

The roll axis pilot model predictions are presented in Table C-7. These models

adequately predicted the Cooper-Harper ratings and handling qualities levels of the roll
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axis dynamics. Due to the simplicity of the MIL-STD-1797A roll axis models, however,

these models had to be used together in a checklist fashion to gain adequate insight into

the aircraft's predicted handling qualities. The optimal pilot model predictions were

slightly pessimistic, while the bandwidth criterion predictions were slightly optimistic.

Both were accurate enough to be useful. As with the pitch axis, the pilot describing

functions predicted by the STI optimal pilot model were not consistent with observed

behavior.

Summary

In an effort to provide insight into human pilot behavior, a limited evaluation of

human pilot response was conducted. This evaluation consisted of ground and airborne

simulations in the variable stability Lear II aircraft. Four different pitch and four

different roll axis dynamics were evaluated using three different tracking tasks. For each

set of dynamics, primary pilot response parameters were recorded and examined using

Fourier transform analysis.

The dynamics evaluated produced a wide range of pilot response as evidenced by

the spread in Cooper-Harper ratings. Pilot variability was fairly low. In all but one case

the Cooper-Harper ratings were within one rating of each other. No significant

difference between ground and airborne ratings were noted (page 4-12)'.

Using the discrete tracking task time histories, the pilot delay between task

command and stick force was estimated at 0.27 seconds. In all cases, stick displacement

lagged stick force by 0.1 seconds due to the lag inherent in the stick dynamics. Thus, the

Refers to the page in this thesis containing this conclusion.
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total delay between command and stick displacement was 0.37 seconds, well above the

value normally used for pilot model analysis (page 4-13).

The statistical validity of using root mean square (RMS) tracking error and stick

deflection or deflection rate to predict Cooper-Harper ratings was examined. A

regression analysis revealed that task error and normalized stick deflection weighting

produced the best correlation with airborne pilot ratings (page 4-15).

A frequency response analysis of stick force and displacement to task error was

conducted for all single axis, sum-of-sines tracking tasks. The following conclusions

were made.

1. The only difference between the frequency responses of stick force and stick
deflection was the frequency response of the stick dynamics. Thus, the same
insights could have been gained by examining either variable. Because the
evaluated dynamics were implemented as a position command system, stick
deflection was chosen (page 4-16).

2. There were no significant differences between the pilot's airborne and ground
frequency response (page 4-17).

3. No notches were observed in any of the stick displacement power spectral
densities (page 4-17).

4. No higher order pilot compensation, or notching behavior, was noted in any
of the single axis frequency responses. The magnitude plots in both axes
were consistent with the classical gain, lead, and lag pilot model form. The
phases were not consistent with this form due to large amounts of pure phase
lead present at higher frequencies (page 4-17).

5. In all cases, the pilot applied compensation so that the combined pilot-aircraft
system resembled an integrator near the cross-over frequency (page 4-18).

6. When the aircraft command path gain was doubled, the pilot reduced his gain
so that the response of the combined pilot-aircraft system remained
unchanged (page 4-18).
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All of the dynamics were evaluated by the pilot models in MIL-STD-1797A and

by the STI optimal pilot model. The MIL-STD-1797A roll axis pilot models adequately

predicted the Cooper-Harper ratings and handling qualities levels of the dynamic used for

this project. The MIL-STD-1797A pitch axis models, however, were unsatisfactory for

predicting the handling qualities lI eels or ratings. The STI optimal pilot model

successfully predicted the Cooper-Harper ratings in both axes. The pilot describing

functions predicted by this model were not consistent with observed behavior because

they contained higher order compensation (page 4-19).
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5. A Numerical Solution to the Linear Quadratic Gaussian Problem

General

The standard solution to the linear quadratic Gaussian (LQG) problem is a

compensator of the same order as the controlled element. Because the optimal pilot

model is based on LQG theory, the high order pilot describing functions it predicts are

generally not consistent with classical pilot modeling theory or observed behavior. The

method detailed in this chapter was developed to provide a way around this problem.

The numerical LQG solution described in this chapter allows the user to select a

compensator form. It then uses a Nelder-Meade simplex algorithm to find the

coefficients of the compensator that minimize the standard LQG performance index.

This method is not only useful in the optimal pilot model problem. It may apply to all

situations when reduced order compensation is desired.

This chapter is divided into four section. The first section of this chapter gives

general background information. The second section describes the numerical LQG

solution method. This method is then demonstrated by solving two example problems.

Finally, the results of this chapter are summarized.

Background

Reduced Order Controllers. There are three principal approaches to reduced

order LQG controller design as shown in Figure 5-1 (1:253). One method is to reduce

the order of the controlled element. For the optimal pilot model problem this alone is not
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Figure 5-1. Reduced Order Controller Design

a practical solution. The second approach requires the application of a controller

reduction algorithm to the standard LQG solution. As shown in Chapter 3 and Appendix

B, however, accurate first order approximations of optimal pilot model results are not

always attainable. The more direct approach is to use a constrained optimal control

methodology similar to the one described in this chapter. For a detailed discussion of

constrained optimization theory consult Bernstein and Hyland (Reference 1).

The Standard Linear Quadratic Gaussian Problem. A general form of the

standard LQG problem is shown in Figure 5-2.

4 s (t)

Figure 5-2. General Linear Quadratic Gaussian Problem
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where

Ac, Bc, Cc Controlled Element State Space Matrices
xc Controlled Element State Vector
AK, BH, Ci, DK Compensator State Space Matrices
xK Compensator State Vector
u Control Vector
y Controlled Element Output Vector
71(t) Measurement Noise
W(t) Disturbance Noise
F(s) Disturbance Noise Coloring Filter (Laplace)

The methods developed in this thesis assumed the controlled element was time-invariant

and strictly proper (no Dc term)'. These assumptions were not considered limiting.

The standard LQG solution is the compensator that minimizes the following

performance index:

J=f [xrQx + uTRu]dt (5-1)
0

Where R is the control weighting and Q is the state deviation weighting. If the system is

driven only by random noises as shown in Figure 5-2, this performance index can be

rewritten as an expected value rather than an integral as shown.

J= E(xT Qx + uTR u) (5-2)

From Figure 5-2, the control vector, u, is:

u = -[CK xK + DK Ccxc + DKr] (5-3)

Notice that the last part of this expression, DKrn, contains a linear combination of the

sensor noises. If this expression is substituted into Equation 5-2, the performance index

'This assumption was made to simplify the numerical solution derivation.
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will contain the following term:

Ef ITL4DTRDKnl (5-4)

Unless this value is zero, the performance index will be infinite. For illustration

purposes, assume there is only one feedback channel. The matrices, DK and R, become

scalars, and Equation 5-4 can be written as:

D2.R.E in2 ) (5-5)

The sensor noises in the LQG problem are defined as:

E{fl(t) .•T(t- C)) = Ro. 6(T) V t ' (5-6)

where R. is the intensity of the measurement noise. Combining terms, Equation 5-5 can

be written as:

DK. R.R. 8(t) (5-7)

Because of the delta function, the magnitude of Equation 5-7 is infinite. Thus, the

magnitude of the performance index, which contains this term, is also infinite.

The most obvious solution to this problem is to require the compensator feed-through

term, DK, to be zero. In other words, the compensator must be strictly proper.

Assuming a proper compensator, the LQG problem can be represented by the

block diagram in Figure 5-3. Also, the frequency content of the disturbance noise, F(s),

is now written in state space form.
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Figure 5-3. Linear Quadratic Gaussian Problem

-- Proper Compensator

Assuming the controlled element disturbance noise filter is also strictly proper', the

equations of state for this system are:

xc =Acxc+Bcu+Crxr y= Ccxc (5-8)

xr =Arxr +Brt (5-9)

iK =AK XK +BK(71 +y) U = -CK XK (5-10)

Substituting and combining terms yields the following state-space representation driven

only by white noises:

XC Ac r-cK X

_ r 0=_ _ 0 Xr + 0B1 ] 1 (5-11)
JC- -BKC Cc AK xK BK "

'This assumption was made to simplify the numerical solution derivation.
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This system is in the form of:

ic=Ax+ Ew (5-12)

where the noise intensities are:

E{1(t). t r(t- T)) =Q0" *(T) (5-13)

El~n(t) • fiT(t - T)} Ro. -8(-t) (5-14)

and the constant intensity noise matrix, Q., is defined as:

Q [QoO ] (5-15)

One important point should be made. When there is no driving noise coloring

filter, the filter states should be removed. If At, Br, and Cr are simply set to zero, the

matrices in Equation 5-11 will not form a minimum realization. The state space

representation of the system without coloring filters is given in Equation 5-16.

[ic=.t AtccA -BcCtK ].[ Xc ] +[]F 0 ]-['• ]A: x 0B r (5-16)

Where F is now a gain matrix that distributes the driving noise into the controlled

element states.

The Numerical Solution

As mentioned earlier, for systems driven by random noises, the standard LQG

performance index can be written as the sum of two expected values.

J= E{xTQx) + E(uTRu) (5-17)
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The expected value of the state vector can be found from the covariance matrix, X, such

that:

X= EVx. x1) (5-18)

where the covariance matrix is the solution to the following Lyapunov equation

(11:106-111).

AX+XAT +EQ.ET= O (5-19)

The matrices, E and A, correspond to those in Equation 5-12, and Q. is the noise matrix

defined in Equation 5-15.

The covariance matrix can be used to find the value of the performance index,

Equation 5-17, by defining the following matrices.

XG = [I., I O.,,g]x =[- c] (5-20)

XK = [Om,xn I I. 1x_ (5-21)

u = -CKXK (5-22)

where

xG = Forward Loop State Vector (Controlled Element and Filter)
n = Number of Controlled Element and Filter States
m = Number of Compensator States
I = Identity Matrix

Combining Equations 5-20 to 5-22 and Equation 5-17 yields:

J=E{xQx} + E{x CKTRCKXK} (5-23)
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Assuming Q is a diagonal matrix, the first term of Equation 5-23 can be expanded as

follows.

E {X QXG} = E{XGI Q IXGI +xG" Q22 xG + ...XGi QIXGi) (5-24)

Grouping terms, Equation 5-23 can be written as:

E{x•QXG} = Z Q,,.E{, ,}
iI I

=XQ,,.Xi, (5-25)

where

n = Number of Controlled Element and Filter States
Q = State Deviation Weighting Matrix from Equation 5-17
X = Covariance Matrix from Equation 5-18

The second term of Equation 5-23 is a little more convoluted. If, for example,

there are two compensator states and two feedback channels, this term expands to:

[ 1.K [ CKI I CK21 1FR11  0 1.FCKII CK12 X1
XK2 1- CK12 CK22 . 0 RJ22 1. CK2l CK22 I xL 2

= RII[XK2ICK1 1 +XK 2 CK 12 +2XKIXn2CKIICKI2] +

R22 41 C• 2, +xk2Ck22 + 2XKIXK2CK2, CK22] (5-26)

Grouping terms, the general form of this expression is:

E{XrCKRCKXK} = 1 Y, Rhh CK() - K(hj E{xK(i' XK()}
h=1 i=lj=l

0 M MN

Y, F 2: RIhCK(h 'CK(hJ)'X(.+.n+j) (5-27)
h=l i=lj=l
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where

o = Length of Control Vector, u (number of rows in Cx)
m = Number of Compensator States
n = Number of Controlled Element and Filter States
R = Control Weighting from Equation 5-17 (Diagonal)
CK= Compensator State Space Matrix
X = Covariance Matrix from Equation 5-18

Equations 5-25 and 5-27 are the central equations in the numerical solution of the

LQG problem. Using these equations the performance index can be computed for any

controlled element and compensator. A numerical minimization routine can then search

all of the compensator parameters for the combination that returns the minimum

performance index. Additionally, the performance index can be modified to include side

constraints, such as gain or phase margin.

Equations 5-25 and 5-27 are implemented in the MATLAB TM routines, or ".M"

files listed in Appendix E. PIFIND.M computes the performance index value for

problems with driving noise coloring filters. PIFINDNFM computes the performance

index value for problems without coloring filters.

Example Problems

This numerical solution is illustrated in the following examples. The first

example consists of a low order plant augmented with a disturbance noise coloring filter.

The second example uses a high order plant with no disturbance noise coloring filter.

These examples are not necessarily meant to mimic aircraft dynamics. This numerical

method can apply to any type of LQG problem.
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Low Order Plant with Coloring Filter. Assume the controlled element is an

integrator and the driving noise is filtered as follows:

State Space Representation

yc =1 :> Li = [0]xc + [Jlu

y = [llXc (5-28)

Yr = W, 8 => [Jcr] =[- 2 ]xr+[1]M
S s+2

W,=, F8.8 ] x, (5-29)

where t is the random disturbance noise and W, is this noise after the coloring filter.

Assume the state deviation weighting is one and the control usage weighting is two. The

state deviation weighting matrix, Q, must be diagonal due to the assumptions made in the

development of the numerical solution. Because the controlled element states must be

augmented with the filter states, the state deviation weighting matrix, Q, must have the

same number of rows as the total number of filter and controlled element states. There is

normally no penalty on filter state deviations, making their weightings zero. The control

usage weighting matrix, R, must be diagonal with the same number of rows as in the

control vector, u. In this example, there are two total controlled element and filter states

and only one control channel. The weighting matrices are shown in Equation 5-30.

Q= 00 R=[2 (5-30)
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The noises, k and TI, will have unit intensity for this example such that the noise intensity

matrix, Q., is as shown in Equation 5-31.

.[ 1 0 (5-31)

In this example, assume the optimal second order compensator of the form in

Equation 5-32 is desired.

K(s) = c(l)- s + c(2) (5-32)
s + c(3). s + c(4)

The Nelder-Meade simplex algorithm,finins, on MATLABTm will now be used to search

for the combination of compensator variables, c(i), that produces the minimum

performance index. An additional function (.mfile) containing the compensator form

must be written. The routine for solving this problem is:

function[J]=comp(c,Ac,Bc,Cc,Ag,Bg,Cg,Q,R,Noise)

[Ak,Bk,Ck,Dk]=tf2ss([c(1),c(2)],abs([1,c(3),c(4)]));
J-=PIFIND(Ak,Bk,Ck,Ac,Bc,Cc,Ag,Bg,Cg,Q,R,Noise);

The first line lists the input and output arguments. The second line converts the desired

compensator form into state space, and the final line finds the performance index, J,

using the file, PIFIND, listed in Appendix E. This function, comp, is minimized by

typing the following MATLABT' command.

cmin-fni(comp',cO,f,f,Ac,Bc,Cc,Ag,Bg,Cg,Q,RNoise)

In this command, cO is the initial guess and the rest of the matrices are as shown in

Equations 5-28 through 5-31. Noise refers to the matrix, Q., shown in Equation 5-3 1.
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Due to the nature of the Nelder-Meade simplex search routine, the initial guess requires

some consideration. If any evaluated compensator has poles in the right half plane or on

the imaginary axis, the simplex search may not be successful. Thus, restricting the

denominator values in the search vector, c, to positive values greatly improves the

robustness of the numerical search. Likewise, the Lyapunov solution must be unique.

The necessary and sufficient condition for this is:

X,(A) + j(A) 0 for V,j = I... n (5-33)

where A is from Equation 5-12 and X is the eigenvector of A. A sufficient condition for a

unique Lyapunov solution is that the real part of all eigenvectors be negative (3:30).

Thus, the search may not converge for compensators, controlled elements, or filter

dynamics with entire state space matrices of zeros. As the number of parameters to

search increases, the importance of the initial guess increases. Additionally, the

Nelder-Meade routine is best for finding the minimum of functions with five or fewer

unknown parameters (4:116-122). For complex compensator forms a different numerical

search routine may be appropriate. For this example, any initial condition vector, cO,

with values between approximately 0.1 and 100 will return the proper solution.

In this example, the initial guess was

YKi = 2S+1 or r (-4
s+l or c0=l 1 1 1 ] (5-34)

and the following compensator was computed:

C =[ 0.9876 2.0977 3.8588 4.2075 ] (5-35)
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Y- = 0.9876s + 2.0977 (5-36)
s2 + 3.8588s + 4.2075

with a resulting performance index, J, of 3.9252.

As a check, the same problem was worked using the conventional LQG solution

methods described in Appendix A. First, the system had to be put into the following

form.

i = Ax + Bu + F,

y = Cx +TD" (5-37)

This was accomplished using the following formulas.

[.*c ]=[Ac Cr ]_[xc ]+[Sc ]_u+[. 0 . (5-38)

Y= Icc 0].[XC ] + [0] -u +'n (5-39)

For this example these equations were:

[c ][Cn][ +~ ]u[ . (5-40)jir =0 -2 "Xr +0.+1" 50

Y=[101]. XC] +[O]'u+rj (5-41)

In the previous method, the system was only driven by random noises and was in the

form of Equation 5-12. Now the system is driven both by noise and the control input, u.

Because of this, the disturbance noise matrix is now:

Qf= r. Qo . I-T (5-42)
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where Q. is the noise intensity from Equation 5-13, and F is the disturbance distribution

gain matrix in Equation 5-37. The state deviation matrix, Q, control weighting matrix, R,

and measurement noise matrix, R., are the same as in the numerical solution.

For the lqg command in MATLABTM4, the control weightings and noises must be

grouped as shown in Equations 5-43 and 5-44.

W 0 R f 0 l0 (5-43)

V= 0 o = 1 (5-44)
00 R0 0 1

The following command returned the same solution as that found in Equation 5-36 using

the numerical method.

[Ak,Bk,Ck,Dk]=lqg(A,B,C,D,W,V)

where A, B, C, and D are from Equations 5-40 and 5-41 and Wand Vare from Equations

5-43 and 5-44.

High Order Plant with No Coloring Filter. This example is presented to

illustrate the application of this method to reduced order compensator design. In this

example the following controlled element state space was used:

-4-10 -12 -
Y 1 0 0 0 X+0 U+0(5 )

= 0 1 0 0 0 xc+ 0 u+ " (545)

0 0 1 0 0 50
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Y=[ 0 1 6 8 ].Xc+[0J]. (5-46)

This is a single-input-single-output system (SISO) as shown. Unit intensity weightings

were applied to the control usage and state deviations such that:

[10001
1 010 0I

R=[ I and Q= 0 1 0 0 (5-47)
0010 (
0001]

The control and state deviation weighting matrices, R and Q, must be diagonal for the

numerical solution to be valid. The noises, ý and iq, were assumed to be unit intensity,

random white noises such that:

Q'=[ =Q° 0 [1 0 (5-48)

and the standard LQG noise intensity matrix was:

[10001

Qf=FQ=FT 0 0 0 0(
0 0 0 0 (549)
[0000]

Using the MATLABTm command, lqg, described in the previous example, the resulting

standard LQG solution was:

-0.0163s 3 -0.1413s 2 -0.1929s- .0680 (4-50)
YkL°(s) = s4 +4.7837 s 3 + 12.9420 s2 + 17.8484 s + 9.7295
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The numerical LQG solutions were found using the same method as in the

previous example. The routine PIFINDNF, listed in Appendix E, computed the

compensators listed in Table 5-1.

Table 5-1
Sub-Optimal Compensator Example

Order Compensator PI, Time2'

-0.0163S 3 - 0.1415 s2 - 0.1949 s - .0689
s4 +4.7981 s 3 + 13.0013 S2 + 17.9841 s+ 9.8708

3 -0.0162s 2 - 0.1284s - 0.0620
3 3+ 3.8922 s2 + 9.0063 s + 8.9584 0.23694 1:57

-0.0237s - 0.0398s2 + 1.3466s + 4.3805

-0.0335
s+2.6522 0.23713 0:10

Performance Index
2Processing time (minutes: seconds) on IBM compatible 486DX (50 MHz)
3 Computing time for the standard LQG solution method was five seconds on the same computer.

Two conclusions can be drawn from these examples. First, the performance index

computation routines are valid. When the desired compensator order was equal to the

LQG compensator order, the numerical method and the standard LQG solution method

produced the same results, within the tolerance of the numerical search. Second,

reducing the compensator order did not significantly affect the resulting performance

index value. For less than one tenth of a percent increase in the performance index, a

first order compensator could have been used in this example instead of the fourth order,

standard LQG solution.
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For higher order compensators (more than six unknown variables), this simplex

search algorithm was not satisfactory and an alternative numerical minimization routine

may be necessary. As the number of unknown variables increased above six, the solution

became sensitive to the initial guess for some problems. For the second example

problem, the third order solution was found using the following initial condition:

C0=[--0.1 -0.1 -0.1 4 4 4 ] (5-51)

The fourth order solution was found using a small perturbation of the standard LQG

solution. If a higher order compensator is desired, the MATLABTM Lyapunov routine

should be rewritten so that it does not return an error message and interrupt the program

when the Lyapunov solution is not unique. A large, arbitrary performance index should

be assigned instead. The Nelder-Meade simplex algorithm was satisfactory for the lower

order compensators. The first and second order compensators were not sensitive to the

initial guesses. Any initial condition with values between I and 100 allowed

convergence to the same optimal solution. Additionally, the computing time for the first

and second order compensators was not significant.

Bode plots of the four compensators are shown in Figures E-1 through E-10. As

shown in Figures E-9 and E-10, the second, third, and fourth order compensators are

roughly equivalent. From a low order equivalent system standpoint, the first order

compensator was not a good approximation of the others. However, this compensator

only increased the LQG performance index 0.08 percent over the fourth order solution as

shown in Table 5-1.
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Summary

A numerical solution to the LQG problem was developed. This method allowed

the user to select a compensator form. It then used a Nelder-Meade simplex algorithm to

find the coefficients of the compensator that minimized the standard LQG performance

index. This method is valid for situations when reduced order LQG compensation is

desired.

Several assumptions were made in the development of the numerical LQG

solution.

1. The controlled element is time invariant (page 5-3)'.
2. The controlled element is proper (page 5-3).
3. The compensator is proper (page 5-4).
4. The system is driven only by random noises (page 5-3).
5. The frequency content of the driving noise is proper (page 5-5).
6. The state deviation weighting matrix, Q, is diagonal (page 5-8).
7. The control usage weighting matrix, R, is diagonal (page 5-9).

Given these assumptions, Equations 5-25 and 5-27 were derived. These equations

compute the LQG performance index value for any controlled element and compensator.

Two routines that implement these equations were provided in Appendix E.

Two example problems were worked using the Nelder-Meade simplex search

routine to find the minimum performance index. When the desired compensator order

was equal to the LQG compensator order, the numerical method and the standard LQG

solution method produced the same results. Reducing the compensator from fourth order

to first order in the second example only increased the performance index by 0.08 percent

(page 5-17).

Refers to the page in this thesis containing this conclusion.
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The solution was overly sensitive to the initial guess for higher order

compensators (more than six unknown variables). Additionally, the MATLABTM

Lyapunov routine should be rewritten so that it does not return an error message and

interrupt the program when the Lyapunov solution is not unique. A large, arbitrary

performance index should be assigned instead.

The numerical solution technique developed in this chapter was satisfactory for

lower order compensators. The solution was not sensitive to the initial guess and the

computing time was not significant (page 5-17).
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6. The Sub-Optimal Pilot Model

General

The primary advantage of classical pilot models is that their gain, lead, lag, and

delay form is based on experimental observations of human pilot behavior. Choosing

values for these variables and then using them to predict a Cooper-Harper rating,

however, is difficult. The primary advantage of optimal pilot models is that they, like the

pilot, find the control strategy that minimizes a combination of average tracking error

(performance) and control usage (workload). This weighted combination, or

performance index, can be directly related to a predicted Cooper-Harper rating based on

statistical fits to historical data. Because they are based on linear quadratic Gaussian

(LQG) theory, however, the pilot describing functions predicted by optimal pilot models

tend to be high order and therefore inconsistent with experimentally observed behavior.

Additionally, when the constraints of the human pilot are implemented within the LQG

structure, the intuitive nature of the model is lost.

The sub-optimal pilot model developed in this chapter uses the numerical LQG

solution method described in Chapter 5 to restrict the optimal pilot model solution to the

classical pilot model form. While this solution may be sub-optimal in comparison to the

standard LQG solution, it more accurately models observed human pilot behavior. The

sub-optimal pilot model is not presented as a solution to the pilot modeling problem. To

do so would require the examination of a broad handling qualities data base, requiring
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years of experience and model development. Rather, it is a unique and promising

approach, offered as a prototype for future study.

This chapter is divided into four sections. The first section, Model Development,

describes the sub-optimal pilot model. The next section, Parameter Analysis, examines

the model's input parameters. In the third section, Results, the Cooper-Harper ratings and

pilot describing functions predicted by the sub-optimal pilot model are compared with

flight test results as well as the predictions of other pilot models. Finally, the conclusions

of this chapter are summarized.

Model Development

Model Structure. The sub-optimal pilot model is based on the classical pilot

model structure. This can be represented for the pitch axis as shown in Figure 6-1V.

t(t)

Yr~

Oc
6 s or Fs 0 + ee

Tim(t) __'no(t)

TN. s+ I " (Tl " s+ 1-)

Figure 6-1. Classical Pilot Model Structure

'The standard Laplace variable, s, is used in this chapter for convenience. However, all Laplace
transform representations of the human pilot used in this thesis are strictly valid only in the frequency
domain with continuous, random-like inputs. They should not be used for system responses to
deterministic inputs.
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where
= Task Driving Noise 0 = Pitch Angle

Muscular Noise 0, = Pitch Command
1ie = Observation Noise e = Task Error
KP = Pilot Gain F, = Stick Force
TL = Pilot Lead Time Constant 8. = Stick Deflection
T, = Pilot Lag Time Constant Yc = Aircraft Dynamics
T = Pilot Delay Yr = Task Dynamics
TN = Muscular Time Constant

This classical pilot model structure is equivalent to that shown in Figure 2-5

(page 2-10), where the pilot applies gain and washout to the error and error rate signals.

This structure is not identical, however, to that used for the development of the numerical

solution to the general LQG problem. The numerical method developed in Chapter 5

must therefore be adapted slightly.

For the sub-optimal pilot model, the aircraft and task forcing function dynamics

will be assumed to be single-input-single-output systems. As a result, Figure 6-1 can be

redrawn for the pitch axis as shown in Figure 6-2. Notice that the motor noise was

removed from the model. Also, unlike the general LQG problem presented in Chapter 5,

the disturbance noise is now injected at the controlled element output so that the error

vector (0. -0) can be formed.

Motor noise was not included in the sub-optimal pilot model for two reasons.

First, it was assumed that the observation noise would adequately account for its effects.

Second, if motor noise is added to the control vector, the problem cannot be solved

6-3



Br

Xr

Figure 6-2. Sub-Optimal Pilot Model Structure

directly. The sub-optimal pilot model weights control and tracking error in the

following performance index.

J- f er Qe + ur Rujdt (6-1)

0

The numerical solution assumes that the system is driven by random noises such that:

J=E{eTQe + uTRu} (6-2)

If noise is added to the control vector, u, it can be written as:

u = [ICK xK +Thb,] (6-3)
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Substituting Equation 6-3 into the second term in Equation 6-2 results in Equation 6-4.

E{uTRu) = R. E{UTU) = R. E{(Ckxk + Tu,)2  (6-4)

Because of the single-input-single-output nature of the sub-optimal pilot model, u is a

scalar, and several simplifying assumptions were made as shown. Equation 6-4 expands

to:

E((Ckxk +11.) 2 ) = E{(CkXk) 2 } +E{(Tlm) 2 } + E{2CkXK - m} (6-5)

The first term can be computed as shown in the previous chapter. The third term contains

cross-correlations that can only be solved for the single-input-single-output case. FinalLy,

the second term drives: ýhe performance index to infinity. The reasons for this are the

same as for requiring a proper compensator (page 5-4). By definition, the expected value

of the motor noise is as shown in Equation 6-6.

E{rj3 1 lT) -R .8() (6-6)

Because of the delta function, the magnitude of Equation 6-6 and the performance index

that contains this term is infinite.

The equations of state for the sub-optimal pilot model system in Figure 6-2 are:

jCc Acxc + Bc u 0 = Ccxc (6-7)

u = CKXk (6-8)

icr =ArXr +Br Oc = CrXr (6-9)

cXK=AKxK+BK(TIo+e) e=O-O (6-10)

6-5



Substituting and combining terms yields the following state-space representation driven

only by white noises.

LC .4 c Bc CK *xc+ r 10 [06-lir = 0 Ar 0 •Xr + Br 0 • (6-11)

xK -BK Cc BKCr AK XK 0 BK

where

xc

e- -cc C 0 xr (6-12)
XK

The filter state space matrix, At, must have all eigenvalues in the open left half plane

since xr is not controllable from u. This system is in the form:

i = Ax +Ew (6-13)

The autocorrelation matrix, X, can be found by solving the following Lyapunov equation.

AX+XAT +EQEr T=O (6-14)

where Q, contains the noise intensities, I and Ti, on the diagonals. The autocorrelation

matrix, X, is related to the expected values of the states, x, by the following identity.

X= E{xrx) (6-15)

Performance Index. The performance index used in the sub-optimal pilot model

weights error and control such that:

J= E(eTQe) +E(uTRu) (6-16)
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Because this model is restricted to single-input-single-output systems, this equation can

be rewritten as:

J= Q.E{eTe) + R. E(uru) (6-17)

where Q and R are the scalar weightings. Using Equations 6-7 through 6-10, and

assuming the single-input-single-output case, this becomes:

J Q E{(Crxr - CCXC) 2 ) + R. E{4CKCKXK (6-18)

The second term is identical to that in Chapter 5 and can be written for the

single-input-single-output case as:

R. n CK,. ' CKI *X(,+O.(,+, (6-19)
i=1j=1

where m is the number of compensator states, n is the number of aircraft and filter states,

andXis the autocorrelation matrix from Equation 6-15. The first term in Equation 6-18

is much more complicated, and can only be solved for the single-input-single-output case

where Crxr and Ccxc are scalars. This term can be expanded as in Equation 6-20.

Q. E{(Crxr - CcXc) 2 } = Q. E((Crxr)2) + Q. E{ (Ccxc)2 )

-2. Q. E{(Ccxc) -(Crxr)) (6-20)

The first two expected values are similar to that in Equation 6-19. They can therefore be

solved numerically using the following summations.

E((Crxr)2 ) = i Cr,., * Cr,, , X(p+')p+j) (6-21)
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E{(CcXc) 2 ) = *Cc, Ccj * XQ (6-22)

wheref is the number of filter states, p is the number of aircraft states, and X is the

autocorrelation matrix from Equation 6-15. The final expected value in Equation 6-20 is

not as simple to solve. However, by expanding the problem symbolically and grouping

terms, the following summation can be found.

E{(Crxr)(Ccxc)) = i i Cr,., Cc1,j .X(P+,j (6-23)
tfi=1j=Il

In this equation,f is the number of filter states, p is the number of aircraft states and X is

the autocorrelation matrix from Equation 6-15. Equations 6-19 and 6-21 through 6-23

were used to compute the performance index in the sub-optimal pilot model. This

numerical algorithm is validated in Appendix F.

Pilot Model Form. Due to the unique nature of the numerical approach, the LQG

solution can be restricted to a desired compensator form. Thus, the muscular lag and

pilot delay can be modeled directly and intuitively.

The desired compensator for this model is:

c(1) -(s + c(2)) 2-ts (6-24)

(s+c(3)).(TNs+1) 2+ts

The vector, c, contains the three parameters the numerical routine will search to

minimize the performance index. The first element in the vector is pilot gain, the second

is lead, and the is third lag. TN is the muscular time constant and - is the pilot delay. In
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the sub-optimal pilot model, the muscular lag time constant, TN, can be selected by the

model user, but it is not varied in the numerical search algorithm.

The pilot delay is modeled by a first order Pade approximation. Like the

muscular lag time constant, the delay is selected by the model user, but it is not varied in

the numerical search algorithm. A second order Pade approximation did not affect the

results significantly. For the integrator example described in Chapter 3 (page 3-8), the

performance index increased from 4.6309 to 4.6326 when a second order Pade

approximation was used instead of a first. This 0.037 percent increase was both typical

and insignificant.

As a final note, the numerical search algorithm did not consistently converge

when the pilot model was written exactly as in Equation 6-24. Instead, the denominator

had to be expanded as shown in Equation 6-25.

c(1)s + c(2) 2 - "T s (6-25)

s C2+ 3)+ s+c(3) , 2+Ts

Performance Index Weighting& The standard optimal pilot model includes

control rate instead of control in the performance index. It then iterates the control rate

weighting until the desired muscular time constant is obtained. This establishes the ratio

between the weightings as shown in Chapter 3, and makes the model's results

independent of these weightings (see page 3-27 of this thesis). The sub-optimal pilot

model directly includes the muscular system in the compensator form, leaving the

weightings, Q and R, free to be chosen by the user.
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Noise Intensites. Intensities must be selected for both the forcing function and

measurement noises. Unit intensity driving noise should be used for the task forcing

function, V,. The observation noise intensity, V,, is iteratively determined so that the

noise ratio, p, input by the user is obtained.

The Cooper-Harper rating formula is normalized for unit intensity forcing

function noise. The observation noise intensity, Vn, is determined by solving the

numerical LQG problem repeatedly until the desired noise ratio is achieved. This is

accomplished using the following relationship.

V', = p7tay (6-26)

In this equation, V, is the observation noise intensity, p is the desired noise ratio, and a,2

is the root mean square magnitude of the task error (25:11-14). In the sub-optimal pilot

model structure, cy. is the first term in Equation 6-18 and is found using Equations 6-21

through 6-23. A simple binary search, limited to five iterations, is used.

Cooper-Harper Rating Prediction. It would be advantageous to use the same

ratings prediction formula used in the STI optimal pilot model, Equation 3-2 (page 3-8).

This formula was based on the analysis of a wide range of aircraft dynamics and

normalizes the predicted rating for task intensity. This equation can not be applied to the

sub-optimal pilot model for two reasons. First, Equation 3-2 was formulated for an

performance index that weights control rate and error. The sub-optimal pilot model

weights control usage. Second, the nature of the two models is quite different. The

sub-optimal pilot model solution is restricted to a compensator form with only three
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variables available for optimization. This produces a much tighter spread in the

performance index values than will occur in the STI optimal pilot model. Based on the

limited evaluation of the sub-optimal pilot model conducted for this thesis the following

equations tend to produce the best ratings correlation. Note that these equations are not

normalized for task intensity or bandwidth. They are based on a regression analysis of

the dynamics analyzed for this thesis, and are proposed as a course measure to enhance

the parameter analysis conducted later in this chapter.

Pitch Rating = -30 + 241 • log o(j) (6-27)
Roll Rating = -13 + 117- log, 0(J)

Flow Diagram. The equations and computational flow of the sub-optimal pilot

model are summarized in the flow diagram of Figure 6-3 on the next page. The user

inputs the aircraft and task forcing functions along with the error weighting, Q, the

control weighting, R, the observation noise ratio, p, the muscular time constant, T., and

the pilot delay, 'tD. The sub-optimal pilot model sets the task driving noise intensity at

one, the initial observation noise intensity at 0.5, and all initial compensator coefficients

to one. The minimum performance index is then found using the methods described

previously in this chapter. The relationship between the observation noise intensity and

the desired noise ratio is examined using Equation 6-26, and the process repeated (up to

five times) until adequate convergence is obtained. Next, the predicted Cooper-Harper

rating is computed using Equation 6-27. Finally, the resulting pilot describing function,

performance index, and predicted Cooper-Harper rating are displayed. The three

routines, or .mrfiles, that implement this model are presented in Appendix G. The first
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Whre: Input:
AcBc,Cc - Aircraft Dynamics Ac, Bc, Cc, Ag, Bg, Cg
Ag,Bg,Cg - Task Dynamics Q,R.P,TNTD
Q - Error Weighting
R - Control Weighting
p - Observation Noise Ratio
T, - Muscular Time Constant 1
D- PilOt Delay 0 0.5

K - Pilot Describing Function
J - Performance Index
V,= Observation Noise Intensity 1
o2. - RMS Error Magnitude c,-- IlI1I

K= c(1) -s + c(2) 2 -CDz

(s +c(3)).-(TN -s + 1) 2 +,rD

FConver K to State Space],1,
Build A, E, and C: Nelder-

i=Ax+Ew Meade
y=a CSimplex

I Search

Ci Cin IComp ute ATc-c 'M in N

Binary Search

,~J output

I - Cmin, J, Rating

Figure 6-3. Sub-Optimal Pilot Model Flow Diagram
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file, SOPM.M, is the master routine. It conducts the iterations and calls the other two

files as necessary. The second file, PISOPM.M, finds the performance index value for

the given compensator, aircraft, and pilot dynamics. The final file, RMS_SOPM, is

identical to P1_SOPM except that in addition to the performance index, it also passes

back the root mean square (RMS) value of the error for noise ratio computations. This

file is used only after the optimal compensator is determined.

Parameter Analysis

The user must choose several parameters when using the sub-optimal pilot model.

1. Aircraft Model Order
2. Task Forcing Function (Ag, Bg, Cg)
3. Error Weighting (Q)
4. Control Weighting (R)
5. Observation Noise Ratio (p)
6. Muscular Time Constant (TN)
7. Pilot Delay (TD)

The data gathered in the following analysis indicates that the values in Table 6-1 produce

the best results.

Table 6-1
Recommended Parameters for the Sub-Optimal Pilot Model

Parameter Symbol Recommended Value

Aircraft Model Order ----- Any

Task Forcing Function Ag, Bg, Cg F2

0.25s 2 + -L-s + 1

Error Weighting Q I
Control Weighting R 4.5 (pitch); I (roll)

Observation Noise Ratio p 0.01 (-20 dB)

Muscular Time Constant TN 0.115

Pilot Delay _ _D 0.37
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The reasons for each of these choices are given in the following discussion. Except

where noted, each of these parameters was evaluated individually with the others held at

the values shown in this table. This parameter analysis is not meant to fine tune the

model for use. The data base evaluated was much to small for this, and the model is only

a prototype for future study. Rather, this analysis is offered for the insights it provides.

The following dynamics and Cooper-Harper ratings, shown in Table 6-2, were

used for this parameter analysis. These values are from the in-flight sum-of-sines

tracking task described in Chapter 4.

Longitudinal Dynamics: Lateral Dynamics:

Case 1: 20(s + 1.8)e-°'°4s Case A: 2.5e-.o4s (6-28)
s(s2 + 8.4s + 23) s(s + 2.5)

Case 2: 20(s + 1.8)e-0"04s Casee-0.04s (6-29)
S(S 2 +4.8s+ 36) s(s + 1)

Case 3: 20(s + 1.8)e-0.24s Case C: 2.5e-0.24s (6-30)
s(s2 +8.4s+36) s(s +2.5)

Case 4: 20(s + 1.8)e"-- 24s Case D: e--24(6-31)
s(s2 +4.8s+ 36) s(s+ 1)

Table 6-2
Cooper-Harper Ratings Used for

Sub-Optimal Pilot Model Parameter Analysis

SCaselI Case 2 Case 3 Case 4 Case A Case B ,Case C Case D

Rating 2 2 5 5 1 2 4 6
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Aircraft Model Order. Any aircraft model order can be used. Unlike the STI

optimal pilot model discussed in Chapter 3, the order of the pilot describing function

predicted by the sub-optimal pilot model does not depend on the aircraft model order.

Additionally, increasing the aircraft model order only increases the size of the Lyapunov

matrices, and does not significantly increase the computing time.

Some higher order dynamics are problematic, however. Full order dynamics, by

their nature, have poorly scaled state space representations. For, example the numerator

for Case 1 has a numerator gain of over 200,000 (refer to Equation C-3), but the first

term in the denominator has unity gain. The numerical search routine did not converge

for the full order dynamics evaluated in the flight test described in Chapter 4. However,

the short period approximations of Equation 6-28 through 6-31 did not present any

special problems.

Task Forcing Function. When comparing model predictions with flight test

results, a task forcing function consistent with the actual task should be used. Otherwise,

the following second order Butterworth filter with a break frequency, (ob, of two radians

per second is recommended.

Yr(s)=2 (6-32)
.2 4 jb -•-s + 1

This break frequency is consistent with that normally used in airborne compensatory

tracking tasks. The square root of two in the numerator makes the filter bandwidth (zero

dB crossover) equal to the filter break frequency.
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As the break frequency was moved from two, the correlation between the

performance indices and the actual aircraft handling qualities degraded rapidly. For

example the effects of decreasing the break frequency to 0.4 radians per second is shown

in Table 6-3.

Table 6-3
The Effects of Task Break Frequency on Sub-Optimal Pilot Model Results

Break Performance Minimum Compensator
Frequency Index Values'

Case 1 2 1.3637 0.879, 0, 1.826

Case 2 2 1.3473 1.218, 0, 1.506

Case 3 2 1.3885 0.9441, 0, 2.600
Case 4 ---_2 -.2 -_2

Case 1 0.4 0.1620 3.820, 0, 0.297

Case 2 0.4 0.1544 2.209, 85.212, 23.546

Case 3 0.4 0.1374 3.807, 0 0.281

Case 4 0.4 0.1333 3.809, 0, 0.263
Where the pilot is in the form: (cl*s + c2) exp (-tau*s) / (s + c3)*(s +1/Tn)

2 A "matrix poorly conditioned" warning was given while evaluating this case.

The performance indices correlate well with the Cooper-Harper ratings gathered during

flight test for a break frequency of two. Notice that the trend is reversed when the lower

break frequency is used. Such behavior makes this model sensitive to the task and is

undesirable.

Weightings. It was concluded from the flight test described in Chapter 4, that

weighting stick deflection and task error produced the best correlation with in-flight

Cooper-Harper ratings. Values for the correlation coefficients were computed and are

presented in Table 6-4. As shown in this table, the control weighting, R, should be about

6-16



4.5 times the error weighting, Q, for pitch tasks. The weightings should be roughly equal

for roll tasks'.

Table 6-4
Sub-Optimal Pilot Model Weighting Coefficients

___ ___ ___ Pitch Axis Roll Axis

TTracking Error Weighting, Q 7.2 1.7

Stick Deflection Weighting, R 32.5 2.2

These values also produced the best results in the sub-optimal pilot model. Each

of the pitch cases were evaluated using a stick deflection weighting, R, of 4.5 and again

with a weighting of one. The results of this analysis are presented in Table 6-5.

Table 6-5
The Effects of Control Weighting on Sub-Optimal Pilot Model Results

Control Performance Minimum Compensator
Weighting Index Values'

Case 1 4.5 1.3637 0.879, 0, 1.826

Case 2 4.5 1.3473 1.218,0, 1.506

Case 3 4.5 1.3885 0.9441, 0, 2.600

C ase 4 -2 ... 2 ___2

Case 1 1 1.2530 4.064, 0, 2.2035

Case 2 1 1.2154 3.869,0,1.712

Case 3 1 1.2375 0.950, 0 1.306

Case 4 1 1.3038 3.860, 0, 2.7536
Where the pilot is in the form: (cl*s + c2) exp (-tau*s) / (s + c3)*(s +1/Tn).

2 A "matrix poorly conditioned" warning was given while evaluating this case.

Note that the performance index did not correlate as well with the handling

qualities when the lower weighting was used. When a weighting of one was used, Case 3

SThe ratio between the weightings, Q and R, is the salient issue. Any constant multiplier of the two
weightings can be factored to the front of the performance index.
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had better predicted handling qualities (a lower performance index) than Case 1. In the

actual tracking task, Case 3 was given a Cooper-Harper rating of 5 and Case I was given

a2.

Observation Noise Ratio. The observation noise ratio was experimentally

measured at 0.01, or -20 dB (25:12). Note that power spectra dB (10 loglo) is normally

used when referring to this value. The sub-optimal pilot model results were evaluated for

noise ratios of 0.316 (-15 dB) and 0.0032 (-25 dB). The correlation between the

performance indices and the actual aircraft handling qualities was not affected by the

different values of noise ratios. However, as the observation noise ratio increased, the

magnitude of the performance indices increased. The results of some representative runs

are presented for the roll axis in Table 6-6.

Table 6-6
The Effects of Observation Noise Ratio on Sub-Optimal Pilot Model Results

Noise Performance Minimum Compensator

Ratio Index Values'

Case A -20 dB 1.3890 2.179, 0, 3.539

Case B -20 dB 1.4070 1.261, 0, 3.905

Case C -20 dB 1.4046 1.564, 0, 4.677

Case D -20 dB 1.4120 0.826, 0, 5.387

CaseA -15 dB 1.3987 1.096, 0, 2.283

Case B -15 dB 1.4101 0.609, 0, 2.592

Case C -15 dB 1.4089 0.728, 0, 3.168

Case D -15 dB 1.4131 0.366, 0, 3.839

CaseA -25 dB 1.3795 4.036, 0, 5.715

Case B -25 dB 1.4038 2.411, 0, 6.189

Case C -25 dB 1.3998 3.097,0, 7.345

Case D -25 dB 1.4107 1.695, 0, 8.182
Where the pilot is in the form: (cl*s + c2) exp (-tau*s) / (s + c3)*(s +1/Tn).
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Muscular Thue Constant The muscular time constant was experimentally

measured by McRuer at values between about 0.08 and 0.12 (15:171). The sub-optimal

pilot model results were evaluated using the extremes of these values. The data used for

this evaluation are presented in Table 6-7.

Table 6-7
The Effects of Muscular Time Constant on Sub-Optimal Pilot Model Results

Time Performance Minimum Compensator
Constant Index Values'

Case 1 0.115 1.3637 0.879, 0, 1.826

Case 2 0.115 1.3473 1.218, 0,1.506

Case 3 0.115 1.3885 0.9441, 0,2.600

Case 4 2 2

Case 1 0.083 1.3641 0.332, 0, 1.353

Case 2 0.083 1.3472 1.478, 0, 1.188

Case 3 0.083 1.3889 1.086, 0, 2.039

Case 4 0.083 1.3790 1.222, 0, 1.839
Where the pilot is in the form: (cl*s + c2) exp (-tau*s) / (s + c3)*(s +1/Tn).

2 A "matrix poorly conditioned" warning was given while evaluating this case.

As shown in this table, changing the muscular time constant had almost no effect

on the performance index value or the predicted pilot describing function. A value of

0.115 was used for consistency with past research (consult the discussion in Chapter 2 of

this thesis (page 2-8).

PilotDelay. A pilot delay of 0.35 should be used for stick displacement

command systems, and 0.25 seconds should be used for force command systems. These

values are based on the flight test results presented in Chapter 4 (page 4-13).
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The sub-optimal pilot model adds the aircraft delay to the pilot delay before

minimizing the performance index. Thus, the effects of altering pilot delay values can be

seen by comparing Cases 1 and 3 or 2 and 4. In all cases evaluated for this thesis,

increasing the delay increased the performance index.

Results

The sub-optimal pilot model results produced using the recommended values in

Table 6-1 are presented in Table 6-8.

Table 6-8
Sub-Optimal Pilot Model Results

Performance Predicted Actual Minimum Compensator
Index Rating Rating Values'

Case 1 1.3637 2.5 2 0.879, 0, 1.826

Case 2 1.3473 1.2 2 1.218, 0, 1.506

Case 3 1.3885 4.4 5 0.9441, 0, 2.600

Case 4 1.45022 8.9 5 5.438, 0, 2.94 12

CaseA 1.3890 0.8 1 2.179, 0, 3.539

Case B 1.4070 3.7 2 1.261, 0, 3.905

Case C 1.4046 3.4 4 1.564, 0, 4.677

Case D 1.4120 4.3 6 0.826, 0, 5.387
Where the pilot is in the form: (cl*s + c2) exp (-tau*s) / (s + c3)*(s +1/Tn).

2A "matrix poorly conditioned" warning was given while evaluating this case.

As shown in this table, the trend between performance index values and the actual

handling qualities ratings was reasonably consistent. The predicted Cooper-Harper

ratings should not be given too much emphasis. These values were found using a

regression formula optimized for these dynamics cases. For this reason they were
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omitted from the analysis in the previous sections. They are provided here to confirm the

correlation between the performance index and the actual Cooper-Harper rating.

Bode plots of the predicted pilot describing functions are presented in Figures

G-1 through G-4. Notice that in all cases, the optimal pilot describing function was one

with pure lead in the numerator. This equates to pure error rate feedback with washout.

In other words the error gain, KP,, in Figure 2-5 (page 2-10) is zero. Such compensation

delays the magnitude and phase roll-offs to the maximum extent possible.

The pilot describing functions predicted by the sub-optimal pilot model are by

design more consistent with flight test results than the pilot describing functions

)redicted by the STI optimal pilot model. The STI optimal pilot model is much more

accurate predictor of Cooper-Harper ratings, however. There is a strong correlation

between the sub-optimal pilot model performance index and the actual Cooper-Harper

ratings, but this model lacks the maturity necessary for consistent predictions.

Conclusions

The sub-optimal pilot model developed in this chapter uses the numerical LQG

solution method described in Chapter 5 to restrict the optimal pilot model solution to the

classical pilot model form. This model minimizes a performance index consisting of

error and control usage and is restricted to single axis use due to the assumptions

necessary to numerically compute the performance index value (page 6-5)'. The

numerical algorithm was validated in Appendix F. Additionally, motor noise was not

modeled because it would drive the value of the performance index to infinity (page 6-3).

'Refers to the page in this thesis containing this conclusion.
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The sub-optimal pilot model solution was restricted to a gain, lead, lag, delay, and

neuromuscular lag. The user inputs the desired muscular time constant and delay value

(modeled by a first order Pade approximation). The model then searches all values of

gain, lead, and lag to minimize the performance index. The model is solved iteratively

until the desired observation noise ratio is achieved. Finally, the predicted pilot

describing function, Cooper-Harper rating, and minimum performance index are

displayed.

A brief parameter analysis was performed in an effort to gain insight into the

sub-optimal pilot model. Through this analysis, the recommended input parameters

presented in Table 6-1 (6-13) were derived. More importantly this analysis lead to

several conclusions concerning the model.

1. Any aircraft model order can be used as long as the state space representation
is not poorly scaled. Neither the predicted pilot describing function nor the
required computing time are affected by the model order (page 6-15).

2. The task forcing function should be modeled by a second order Butterworth
filter with a break frequency of two. As the break frequency was moved
from this value, the correlation between the performance index and the
predicted Cooper-Harper rating was diminished (6-16).

3. The performance index weightings estimated from the flight test data
produced the best results (6-17).

4. The correlation between the performance indices and the actual aircraft
handling qualities was not affected by changes in the noise ratios. However,
as the observation noise ratio increased, the magnitude of the performance
indices increased (6-18).

5. The value of the muscular time constant had no significant effect on the
sub-optimal pilot model results (6-19).

Finally, the results of the sub-optimal pilot model were compared to those of STI

optimal pilot model. By design, the describing functions predicted by the sub-optimal
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pilot model were more consistent with flight test than those of the STI optimal pilot

model. The STI optimal pilot model was a much more accurate predictor of

Cooper-Harper ratings, however. The sub-optimal pilot model is a unique and promising

approach to pilot modeling and warrants further study.
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7. Conclusions and Recommendations

The most significant assumption made throughout this thesis was that the pilot

can be modeled as a linear element. As discussed in Chapter 2, this assumption is only

valid when the task is random appearing and within the capabilities of the pilot. Under

these conditions, past experiments found that the human pilot can be modeled as a gain,

lead, lag, delay, and a first order muscular lag (Reference 15).

There are currently three broad categories of pilot models. The first category,

open loop models, use the aircraft response to open loop commands to predict handling

qualities. Because these models make no attempt to directly model the human pilot, they

are relatively simple to develop and are the most commonly used. The second category,

classical pilot models, model the pilot as a gain, lead, lag, and delay. This form is based

on experimental observations, but using these models to predict Cooper-Harper ratings

remains a difficult task. The final type of model, optimalpilot models, model the pilot as

an optimal regulator and estimator. Relating the predicted pilot describing function to a

predicted Cooper-Harper rating is more straight forward with these model. Their

implementation is difficult, however, and the pilot describing functions they predict are

generally high order, and therefore not consistent with observed human behavior.

An optimal pilot model developed by Systems Technology, Incorporated, (STI)

was analyzed in detail. This model was chosen for three reasons. First, it incorporates

nearly every important aspect of other optimal pilot models, making it a good candidate

for study. Second it can be implemented on the personal computer and is therefore
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widely available. Finally, this model has had some success in predicting Cooper-Harper

ratings, but lacks parameter selection guidance.

The analysis of this model included a model overview, an integrator example, and

a detailed parameter analysis. The integrator example was worked, step-by-step, to

clarify the model's logic. This example paralleled an example presented in the STI

documentation (Reference 25). The handling qualities rating predicted for this example

was not realistic (negative), illustrating the need for proper selection of the model's

parameters.

The user must select nearly twenty parameters when running the STI optimal

pilot model. Most of the selections are straight forward, and some have no significant

effect on the model results. Several important recommendations were made, however.

First, the lowest feasible aircraft model order should be used. The STI model predicts a

pilot describing function of order 2n+5 where n is the number of aircraft and filter states.

Second, the task bandwidth should be selected by running the model for a range of

bandwidths and selecting the one that produces the worst Cooper-Harper rating. If the

generally accepted flight test bandwidth of 2 radians per second is used, the model does

not produce satisfactory results. Third, the filter should be augmented to the plant

output. Finally, the experimentally estimated observation noise ratios of -20 decibels

should be used. For the best results, however, the motor noise ratio should be increased

from its experimentally based value of -25 decibels to -20 decibels.

When the proper model parameters were used, the STI optimal pilot model was

moderately successful at predicting Cooper-Harper ratings, both for the LAMARS cases
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analyzed in Chapter 3 and the flight dynamics cases described in Chapter 4.

Unfortunately, the STI model predicted a fifteenth order pilot when short period

dynamics were analyzed. Bode plots of these pilot describing functions had deep

notches, indicative of this high order compensation. Due to their high order, the pilot

describing functions predicted by the STI model were not consistent with the classical

pilot model form or observed human pilot behavior.

A limited evaluation of human pilot response was sponsored in support of this

thesis by the Air Force Flight Dynamics Directorate. Five sorties were flown in the

Calspan variable stability Lear II aircraft. Ground simulations in Lear II were also

performed. Four different pitch and four different roll axis dynamics were evaluated

using three different tracking tasks. Primary pilot response parameters were recorded

and examined using statistical and Fourier transform analysis in an attempt to provide

insight into human pilot behavior.

The dynamics evaluated during the flight test represented a broad range of

handling qualities as evidenced by the assigned Cooper-Harper ratings. Additionally, the

variability in these ratings was acceptably low.

An analysis of the discrete tracking task time histories revealed that the pilot

delay between task command and stick force (0.27 seconds) was consistent with previous

experimental estimations. The stick deflection lagged stick force by 0.1 seconds in all

cases, however, due to the lag effects of the stick dynamics. This produced a total delay

between task command and stick deflection of 0.37 seconds, well above that normally

used in pilot model analysis.
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A regression analysis of the flight test data was conducted in an attempt to

evaluate the validity of two optimal pilot model weighting schemes. First, a regression

analysis of root mean square (RMS) tracking error and normalized RMS stick deflection

to Cooper-Harper rating was performed. Second a regression analysis of RMS tracking

error and RMS stick deflection rate to Cooper-Harper rating was performed. The task

error and normalized stick deflection weighting scheme produced a much higher rating

correlation for the airborne data.

A frequency responsi analysis of task error to stick deflection was conducted in

an attempt to provide insight into human pilot response. This analysis revealed that the

pilots "I not exhibit higher order behavior. The frequency responses were consistent

with the classical gain, lead, and lag form except for the presence of large amounts of

pure phase lead at higher frequencies. In all cases the pilot acted so that the combined

pilot-aircraft system resembled and integrator in the crossover region. When the aircraft

command path gain was doubled, the pilot reduced his gain so that the response of the

combined pilot-aircraft system was not significantly changed.

A numerical solution to the linear quadratic Gaussian (LQG) problem was

derived in Chapter 5. This solution allows the compensator form to be predetermined.

This method may be applicable for any situation when reduced order compensation is

desired.

The numerical method assumes the aircraft, filter, and compensator dynamics are

proper. Further, the LQG weighting matrices must be diagonal and the system must only

be driven by random noises. The value of the standard LQG performance index is
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determined numerically, using the covariance matrix and a series of summations for any

compensator, controlled element, and filter. A Nelder-Meade simplex search is then used

to find the compensator coefficients that minimize the performance index.

Two examples were worked using this numerical approach. The first

demonstrated that when the predetermined compensator order was the same as that of the

standard LQG solution, the two methods produced identical results. The second example

demonstrated the potential of this method for use in finding reduced-order, sub-optimal

compensators.

These examples also revealed a deficiency in the numerical search routine. The

Nelder-Meade search routine was found to be unsatisfactory for complex compensator

forms. When numerous parameters had to be searched the success of the routine

depended greatly on the initial guess. The method was found to be satisfactory for

compensators with six or less parameters to search. Further, it was recommended that the

MATLABTM Lyapunov solver be rewritten so that it returns an arbitrary and large

performance index when the Lyapunov solution is not unique, rather than an error

message.

Finally, the numerical LQG solution was used in a sub-optimal pilot model

developed in Chapter 6. This model restricted the optimal pilot model solution to the

classical pilot model form. It was sub-optimal in terms of the standard LQG

performance index due to its low order form, but it was by nature more consistent with

human pilot behavior. This model minimized a performance index consisting of task

error and control usage.
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Additional numerical summations were developed to implement the output

disturbance form and error weighting of a compensatory tracking task. The model was

restricted to single axis use due to the assumptions necessary to numerically compute the

performance index value. These new summations were verified by example in

Appendix F.

The sub-optimal pilot model solution was restricted to a gain, lead, lag, delay, and

muscular lag. The user input the desired muscular time constant and delay value. The

model then searched all values of gain, lead, and lag to minimize the performance index.

The model was solved iteratively until the desired observation noise ratio was achieved.

Finally, the predicted pilot describing function, Cooper-Harper rating, and minimum

performance index were displayed.

A brief parameter analysis was performed in an effort to gain insight into the

sub-optimal pilot model. Through this analysis, recommended input parameters were

derived. More importantly, this analysis lead to several conclusions concerning the

model. First, any aircraft model order could be used so long as the state space

representations were properly scaled. Second, a task forcing function consistent with that

used in flight test could be used. Third, the performance index weightings obtained from

the flight test regression analysis produced good results. Finally, in all cases the

predicted pilot describing function had a free s in the numerator, generating as much lead

at as low frequency as possible.

By design, the describing functions predicted by the sub-optimal pilot model were

more consistent with flight test than those of the STI optimal pilot model. The STI
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optimal pilot model was a much more accurate predictor of Cooper-Harper ratings,

however. The sub-optimal pilot model is a unique and promising approach to pilot model

and warrants further analysis.
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Appendix A. Nonstandard Performance Indices

The optimal pilot model discussed in Chapter 3 uses the following nonstandard

performance index.

J= J [xT(t) Qx (t) + uT(t)Ru(t)] dt (A-i)

0

Notice the weighting penalty is on control rate instead of control usage. Minimizing this

performance index is equivalent to augmenting all channels of the plant with integrators

and minimizing the standard performance index in Equation A-2.

J= [xr(t) Qx (t) + u(t) Ru(t)l dt (A-2)
0

Consider the standard LQG diagram in Figure A- I below with r, the commanded

input, equal to zero and the weighting matrices, Q and R, as shown.

r =0 _u 4 x

Figure A-1. Standard Control Weighting

Minimizing the standard quadratic performance index, Equation A-2, is equivalent to

minimizing the two-norm of the output of the two vectors, Ru(t) and Qx(t), over an

infinite time horizon. If it is desired to minimize Ri(t) instead of Ru(t), the diagram can
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be modified as shown in Figure A-2.

...... .• ... ....

Figure A-2. Control Rate Weighting

The new plant, G*, is equivalent to the original plant augmented with

integrators. The control rate weighting matrix, R, can now be used to establish

compensator lags on the different control channels.
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Appendix B. Predicted Describing Functions

General

This appendix contains Bode plots of the pilot describing functions predicted by

the STI optimal pilot model during the sensitivity analysis in Chapter 3. Each figure also

presents the lower order equivalent system match to the classical pilot model form.

The dynamics analyzed were:

0 1 100 (B-1)
Case 1. - -s(s+ 0 (BO))

Case 2: 0 20(s + 1.25) e=.O33 (B-2)Ce S(S2 +8s+25)

Case 3: 0_ 20(s + 1.25) e-11 (B-3)
a e3 s(s 2 +8s+25)

Case 4: 20(s + 1.25) •e- 0 33s (B4)Ce s(s2 + 1.8s + 25)

Case 5: 0 20(s+ 1.25) e (B-5)
e s(s2 + 1.8s + 25)

These dynamics have the following characteristics:

Table B-I
STI Optimal Pilot Model Evaluation Dynamics

Short Period Short Period Natural Delay, c
Damping Ratio, C Frequency, o.

Case I 1 100 0

Case 2 0.8 5 0.033

Case 3 0.8 5 0.2

Case 4 0.18 5 0.033

Case 5 0.18 5 0.2
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The STI optimal pilot model predicted the following pilot describing functions':

= 174(0)(.0448)[.707, .4](1.65)(5.79)(12.63)(12.91)[-.866, 17.3](100)2 (B-6)

(0)[.707, .412(6.02)(12.57)(12.63)[.274, 18.96](45.4)(94)(100)

Yp2 = 92.6(0)(.032)[.707, .4](1.45)[.814,4.56][.8, 51(5.08)(12.5) 2 [-.866, 14.9] (B-7)
(0)[.707, .412(1 .25X4.96)[.8,5](12.43)(12.46)[.146, 14.2][.84,27.3]

= 92.7(0).035).707, .4(1. 19)(4.=1)[.79 6,4.78][.8, 5][-.866, 8.66](12.5)2
(0)[.707,.412(1.25)(4.02)[.8,5][.043, 11.5](12.36)(12.46)[.81,23. -(B8

y4 =46.2(0)(.028)[.707,.4](1.18)[.06,4.4](4.56)[.18,5](12.5)(12.6)[-.866, 14.9] (B-9)
¥p4= (0)[.707,.412(1 .25)(4.6)[.18,51(12.49)(12.52)[.157, 12.8][.846,23.3]

Yp = 40.4(0)(.028)[.707, .4](1.04)(3.74)[.025, 4.96],[.18,5], [-.866,8.66](12.5)2 (B-10)

(0)[.707,.412(1 .25)(3.77)[.182,5][.082, 10.7](12.4)(12.5)[.818,19.12]

The following lower order equivalent system matches to the classical pilot model form

were found:

Y, 3.756(s+2.921) -. 154 (B-II)
(s+1.546) S

= 1.29(s + 3.248) e16, (B-12)

(s+ 0.973)

Yp 1.294(s + 2.253) - 198s (B-13)

(s+1.036)

YP4 = 0.347(s + 5.42) e0123, (B-14)
(s+0.682)

Y =0.295(s + 5.31). - 13, (B-15)
(s+0.765)

'Where the brackets denote [(, .] as in se+24.+w, and the parentheses denote (r) as in s+'.
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Predicted Pilot Describing Function
Low Order Equivalent System Match
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Figure B-i. Bode Magnitude Plot of Case I
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Figure B-2. Bode Phase Plot of Case I
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Low Order Equivalent System Match
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Figure B-3. Bode Magnitude Plot of Case 2
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Figure B-4. Bode Phase Plot of Case 2
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Figure B-5. Bode Magnitude Plot of Case 3
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Figure B-6. Bode Phase Plot of Case 3
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Figure B-7. Bode Magnitude Plot of Case 4
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Figure B-9. Bode Magnitude Plot of Case 5
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Program CC Macro

The following macro implements the STI optimal pilot model on Program CC as

described in Chapter 3. These commands use the baseline parameters listed in Table 3-3

(page 3-21), where ycl is the aircraft transfer function andyw is the task forcing

function.

File Name: *.MAC in OCM subdirectory

@ocmycl,ycl,yw,p40
@ocmlqrp4O, 1,. 1,.08,.001
@ocmsetup, I,.2,-20,-20,-20, 1, 1, 1,0,0,1
@ocmkbf,. 1
@ocmpilot,.2,2
state
gep,p24,yp
cc
yp=-yp
yp
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Appendix C. Flight Test Information

General

This appendix presents supplemental information for Chapter 4, Flight Test.

Dynamics Implementation

The dynamics described on page 4-8 of this thesis were implemented as a position

command system as shown in Figure C-I and C-2.

Stick Stick Commanded
Force Stick H Stick Force IDeflection Time IStick Deflection>

Dynamics Gradient Delay>

Figure C-1. Feel System

Commanded Aircraft

Figure C-2. Flight Control System

The elevator and aileron actuator dynamics were:

702 (C-i)
s + 2(.7)(70) + 702

The longitudinal and lateral stick dynamics were:

162

s2 + 2(.7)(16) + 162 (C-2)
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The feel system characteristics were:

Elevator: Aileron:

Stick Force Gradient 6 lb/in 4 lb/in

Stick Breakout Force 0.75 lb 0.75 lb

Stick Force per g 7 lb/g

Control Gearing 8 deg/in 12 deg/in

The following equations represent the linear implementation of these dynamics'

(31:49-50).

0 16 2 .1 8. 702 5.5(1.8) eD(C-3)
F. [.7,16] 6 [.7,701 (0)[Cp, 6]

0 8. 702 5.5(1.8) . eTD-s (C4)Be, [.7, 70] (0)[Cp, 6]

162 1 . 12. 702 3.3 ( C-5s
f[.7,16] 4 [.7,70] (0)(TR) (C-5)

S=12. 702 3.3 -- '6
[.7,70] (0)(TR)-- (C-6)

Test Point Evaluation Cards

The test point evaluation card, presented in Figure C-3, and the pilot induced

oscillation (PIO) rating scale, presented in Figure C4, were used during the flight test

described in AFFTC-TLR-93-41. They are presented here for the reader's convenience.

Where [. 7,16] denotes [ý, (o.] as in s2+2got+on2 and (1.8) denotes (e) as in (s+,c).
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HAVE PILOT TEST CARD

CASE Itera- Sortie Longitudinal Lateral Pilot Date Filename
# tion# #T. .

PRE-BRIEF

All test points start at 15,000 feet MSL, 250 KIAS

The pilot will perform each task using any pilot compensation necessary to minimize the
average tracking task error.

DESIRED: PlO tendencies do not compromise tracking task. Commanded attitude
maintained within 0.5 degrees in pitch and 5 degrees in bank (measured at end of
command bar) for 50% of the task except immediately following step command changes.

ADEQUATE: Commanded attitude maintained within 1 degree in pitch and 10 degrees in
bank (measured at end of command bar) for 50% of the task except immediately following step
command change.

POST-BRIEF C-H PIO
Rating Rating

1. Assign PIO rating

2. Assign Cooper-Harper rating

3. Aircraft response to input (pitch/roll)
Initial - Quick, Slow, Sluggish, etc
Final - Predictable, Crisp, etc

4. Does the level of aggressiveness affect task performance (precision, accuracy, etc)?

5. Any special piloting techniques/compensation required?

6. Any undesirable aircraft motions (turbulence, disorienting)?

7. Provide actual percentage performance to pilot Turb % in % in C-H
Rating Desired Adequate Re-Rating

8. Review Cooper-Harper rating

Figure C-3. Test Point Comment Card
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NNo No 21

yes I n

Yes
3

tNo jNo 3

4

YYese

Pilot Initiates
Abrupt Maneuvers

or Tight Control

To Enter Control

Figure C-4. Calspan Pilot Induced Oscillation Rating Scale

Software Validation Test Case

Figure C-5 presents the magnitude (top plot), phase (middle plot), and coherence

(bottom plot) computed by the frequency response analysis software as described in

Chapter 4 of this thesis (page 4-10). Each of these is plotted as a function of frequency.

Individual data points are represented by asterisks. The dotted lines represent 95 percent

confidence interval bounds (7:55).

Figure C-6 presents the Bode plot found using the frequency response analysis

software along with the actual Bode plot of the linear system. Except for the lowest

frequency phase point, the two plots are nearly identical.
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Random Noise Simulation of: (s + 2)e-2s
(s+5) -(s+.2)
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Figure C-5. Frequency Response Analysis -- Validation Case
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Figure C-6. Bode Comparison Plot -- Validation Case

Cooper-Harper Ratings and Pilot Comments

The Cooper-Harper ratings and pilot comments for the ground and airborne

evaluations are summarized in Tables C-I and C-2. Only the single axis, sum-of-sines

evaluations from AFFTC-TLR-93-41 were analyzed in this thesis (7:73-107).
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Table C-I
Cooper-Harper Ratings and Pilot Comments -- Ground Simulation

Case Iteration PIO C-H Percent Percent Comments'
(sortie) Rating Rating Desired Adequate

1 1(1) 1 2 49 90 Good response in the pich axis. I didnt
have to be overly aggressive.

1 2(3) 1 3 52 91 A little slow in pitch. The more
aggresive I got the better I could track.

2 1(2) 2 4 54 86 Satisfactory. Initial respone was quick.
Tendecny to overshoot.

2 2(3) 2 3 39 76 Easy to acquire. Couple of overshoots.
_ _ _Slightly sensitive. Maybe too quick.

3 1(1) 3 5 43 82 Large inputs required. Slight PIO. A
little sensitive. Lead required.

3 2(6) 2 4 39 81 Slow initial response. Sluggish.
Moderate compensation required.

4 1(1) 4 6 44 72 Large inputs required. PIO Tendency.
Have to come out of the loop.

4 2(5) 2 4(5) 35 68 Undesireable motions. Slow. Tend to
overshoot. Unpredictable. Required lead.

A 1(2) 1 1 80 99 Quick. Predictable. Fairly aggressive.
Pilot compensation not a factor.

A 2(3) 2 2 88 99 Slow response. Easy to reacquire. No
undesirable motions. Comp. nota factor.

B 1(4) 1 2 82 100 Initial input was good. No tendency to
overshoot. Work load not too high.

B 2(5) 1 2 75 98 Quick. Predictable. Could be fairly
aggressive. Stayed in the loop.

C 1(5) 2 4 63 91 Need to back out a little. Not slow, but

I_ not predictable. Slight ocillatory motion.

C 2(6) 2 3 77 99 Overshoots. A little compensation
required. Tend to back out of loop. Slow.

D 1(2) 3 5 61 87 Sluggish. Tendency to overshoot. Large
I _lead input required. Backed out of loop.

D 2(4) 2 3 77 96 Tendency to overshoot. Work load
tolerable. Little oscillation, but not obj.

'These comments were summarized from AFFTC-TLR-93-41 (7:83-90).
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Table C-2
Cooper-Harper Ratings and Pilot Comments -- Airborne Evaluation

Case Iteration PIO C-H Percent Percent Comments'
(sortie) Rating Rating Desired Adequate

1 1(1) 1 2 67 98 Predictable. No PlO tendency. Good
initial response. No real comp. used.

1 2(2) 2 3 68 97 Backed out of the loop to prevent
oscillation tendencies.

1 3(5) 1 2 69 96 Good initial response. Slight bobble but
negligible deficiencies.

2 1(1) 1 1 53 93 Didn't push as hard as I did on the
ground.

2 2(2) 1 2 63 98 No PlO tendency. Compensation not a
factor. Backed out a little bit.

2 3(5) 1 2 70 97 Good initial response. A little bobble.
Don't have to be aggressive at all.

3 1(1) 4 5 45 86 Oscillatory tendency. Need to come out
I I_ of the loop. PlO tendency. Unpredictable.

3 2(2) 4 5 48 97 Can track fairly aggressively. Moderately
objectionable. Slow initial response.

3 3(5) 2 3 62 98 No tendency to oscillate. Lagging with
my inputs. Initial response a bit slow.

4 1(1) 4 4 47 89 PlO tendency. Can't be too aggressive.
Light on the controls. High worload.

4 2(2) 2 4 48 80 Oscillatory especilally when aggressive.
Less than predictable. Tend to overshoot.

4 3(5) 3 5 41 76 Tend to overshoot. Tend to back out a
little bit. Osillations. Not predictable.

'These comments were summarized from AFFTC-TLR-93-41 (7:83-90).
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Table C-2 (Continued)
Cooper-Harper Ratings and Pilot Comments -- Airborne Evaluation

Case Iteration PIO C-H Percent Percent Comments'
(sortie) Rating Rating Desired Adequate

A 1(1) 1 1 91 100 No tendency to overshoot. Predictable
response. Like the way it handled.

A 2(2) 1 3 86 99 Fine tracking is simple. No oscillation at
all. Response predictable.

A 3(5) 1 1 95 99 Can make prety quick inputs. Quick.
Predictable. No compensation. required.

B 1(1) 1 2 86 99 Initial response OK. Put in big input then
take it out. Anticipation required.

B 2(2) 2 4 82 99 Fine tracking not a problem. Slight
oscillatory tendency. Lacks predictability.

B 3(5) 1 2 90 99 Response initially good. Easy to track
target. Nice handling aircraft.

C 1(1) 2 3 74 100 If too aggressive, get more oscillations.
Response is sluggish and unpredictable.

C 2(2) 2 4 79 99 Can't be real aggressive in fine tracking.
Slight delay.

C 3(5) 2 4 79 99 Fine tracking not too bad. Tendency to
over-control with large inputs.

D 1(1) 4 6 62 93 Had to back out of the loop. Required
lots of lead.

D 2(2) 4 7 71 98 Practically flying this open loop. Initial
response was slow. Overshoot tendency.

D 3(5) 3 4 77 98 Large lead input required. Oscillations.
I Came out of the loop. High work load.

'These comments were summarized from AFFTC-TLR-93-41 (7:83-90).
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Statistical Analysis

The statistics in Tables C-3 and C-4 were computed using the flight test data base

produced by AFFTC-TLR-93-41 and are summarized in Table 4-2. Only the single axis

sum-of-sines data were analyzed for this thesis.

Table C-3
Optimal Pilot Model Statistical Analysis Parameters

-- Ground Simulation Single Axis Sum-of-Sines Data

Case Sortie # C-H Rating RMS Error NRMS Stick RMS Stick Rate
1 3 3 0.5894 0.3306 0.6290

2 2 4 0.6738 0.3654 0.6853
2 3 3 0.7911 0.3374 0.5088

3 1 5 0.7506 0.3478 1.1005

3 6 4 0.7242 0.3902 0.8480
4 1 6 0.8765 0.3910 1.2988

4 5 5 0.9031 0.4135 1.0112
A 2 1 3.9868 0.3490 1.1969
A 3 2 3.1897 0.3752 1.1342

A 7 2 3.4809 0.3727 1.1294

B 4 2 3.5883 0.2947 1.0995

B 5 2 4.2318 0.3069 1.0815

C 5 4 5.4722 0.4556 1.7275

C 6 3 3.7028 0.4496 1.3451
D 2 5 6.2632 0.4538 1.4944

D 4 3 4.7876 0.3127 1.1310

where:

RMS(x) '- (C-7)

and n is the number of samples in the vector, x.
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Table C4
Optimal Pilot Model Statistical Analysis Parameters

-- Airborne Single Axis Sum-of-Sines Data

Case Sortie # C-H Rating RMS Error NRMS Stick RMS Stick Rate

1 1 2 0.4649 0.3590 0.6647

1 2 3 0.4633 0.3931 0.6542

1 5 2 0.4694 0.3693 0.7803

2 1 1 0.6112 0.3097 0.7035

2 2 2 0.4996 0.3364 0.7024

2 5 2 0.4462 0.3546 0.6393

3 1 5 0.6715 0.3770 1.0363

3 2 5 0.6702 0.3739 0.7804

3 5 3 0.5123 0.3535 0.8920

4 1 4 0.6421 0.3626 0.8406

4 2 4 0.7262 0.3887 1.0014

4 5 5 0.8272 0.3697 1.0555

A 1 1 3.0050 0.4416 1.6112

A 2 3 3.5325 0.5116 2.1329

A 5 1 2.8450 0.4035 1.8860

B 1 2 3.2138 0.4057 2.0166

B 2 4 3.4165 0.3929 1.8709

B 5 2 2.9061 0.3533 1.8516

C 1 4 3.8592 0.7353 3.0660

C 2 4 3.8756 0.6058 2.3255

C 5 4 3.6456 0.5488 2.5740

D 1 6 5.7705 0.6105 2.4467

D 2 7 4.4030 0.5779 2.2287

D 5 4 4.0556 0.4792 2.3097
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Pilot Model Analysis

The dynamics simulated for the flight test were evaluated using the applicable

MIL-STD-1797A models and the STI optimal pilot model. The parameters given in

Table C-5 were used when running the optimal pilot model.

Table C-5
Optimal Pilot Model Parameters -- Flight Test Analysis

Forcing Function, YW F2 Motor Noise -20 dB
(at Aircraft Output) 6.25s 2 + 3.54s + I Ratio, p.

Neuro-Muscular 0.08 Visual Indifference 0
Time Constant, T _ Thresholds, Tv, T 2

Pilot Delay, cp 0.25 seconds Fractional Attention I
Parameter, f

Observation Noise -20 dL Driving Noise I
Ratios, pyI Py2  Intensity, Vw

The results of this analysis are presented in Tables C-6 and C-7. Bode plots of the

pilot describing functions predicted by the STI optimal pilot model for Cases I and 4 are

shown in Figures C-10 and C-12. Bode plots of the resulting pilot-aircraft systems are

shown in Figures C-I1 and C-13.
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Table C-6
Pitch Axis Pilot Model Predictions -- Flight Test Dynamics

Case • D C-H3  CAP 4 SP5 TRP6  BW 7  Neal-Smith Gibson's Criteria OPM'

Rating Criterion Criteria

1 .7 .04 2-3 I II I II II Abrupt Bobbling 3.4
1 _Tendency

2 .4 .04 1-2 I I I I-I II Abrupt Bobbling 3.8
_ _Tendency

3 .7 .24 3-5 III III III III III Satisfactory 4.3
I Response

4 .4 .24 4-5 III III III III II Satisfactory 4.5
__ _Response

'Short Period Damping Ratio 'Short Period Criterion
2 System Delay 'Transient Response Parameter
3Cooper-Harper Ratings from Flight Test Data 7Bandwidth Criterion
4Control Anticipation Parameter Criterion "Optimal Pilot Model Rating Prediction

Table C-7
Roll Axis Pilot Model Predictions -- Flight Test Dynamics

Case TRI 'CD' C-H Bandwidth Roll Spiral Delay Step OPM5

Rating3 Criterion4 Constant Constant Response

A .4 .04 1-3 2 1 1 1 I 3.8
B 1 .04 2-4 3 I-II I I I 5.3

C .4 .24 4-5 4 I I III I 5.2

D 1 .24 5-7 5 I-II I III I 10

'Roll Mode Time Constant
2System Delay
3Cooper-Harper Ratings Range from Flight Test Data
4Bandwidth Rating is from the Regression Formula in Reference 24
5Optimal Pilot Model Rating Prediction
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Appendix D. Frequency Response Data

This appendix contains the frequency response analysis plots referred to in

Chapter 4. The first two figures display sample power spectral densities. Figures D-3

through D- 10 present representative frequency responses of stick displacement to task

error for each airborne sum-of-sines cases. In these figures, the top two plots represent

the Bode plot of the pilot and the bottom plot presents the coherence as described in

Chapter 4. For each of these figures, the data points computed by the frequency response

analysis software are represented by asterisks. The dotted lines on the figures represent

95 percent confidence boundaries. Figures D-11 through D-18 present the

corresponding Bode plots of the combined pilot-aircraft systems. Finally, Figures D-19

and D-22 are frequency response plots from Case 1 for the command path gain analysis

described in Chapter 4.
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Calspan Variable Stability Aircraft
Learjet LJ-25, Tail Number N102VS

Date: 9 - 11 Oct 93; Pilot: G; Sortie#1
Sum-of-Sines Tracking Task; Case 4; Airborne Data
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Caispan Variable Stability Aircraft
Learjet LJ-25, Tail Number NIO02VS

Date: 9 - I11 Oct 93; Pilot: E; Sortie #1
Sum-of-Sines Tracking Task; Case D; Airborne Data
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Figure D-2. Power Spectral Density -

Longitudinal Stick Deflection to Task Error (Case D)
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Calspan Variable Stability Aircraft
Leafiet LJ-25, Tail Number N I02VS

Date: 9- II Oct 93; Pilot: G; Sortie #1
Sum-of-Sines Tracking Task; Case 1; Airborne Data
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Figure D-3. Frequency Response Analysis -

Longitudinal Stick Deflection to Task Error (Case 1)
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Caispan Variable Stability Aircraft
LearJet LJ-25, Tail Number N I 02VS

Date: 9 - I I Oct 93; Pilot: S; Sortie #2
Sum-of-Sines Tracking Task; Case 2; Airborne Data
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Figure D-4. Frequency Response Analysis -

Longitudinal Stick Deflection to Task Error (Case 2)
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Caispan Variable Stability Aircraft
Learjet LU-25, Tail Number N102VS

Date: 9 - I I Oct 93; Pilot: S; Sortie #2
Sum-of-Sines Tracking Task; Case 3; Airborne Data
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Figure D-5. Frequency Response Analysis -
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Caispan Variable Stability Aircraft
Learjet U-25, Tail Number NIO02VS

Date: 9 - 11 Oct 93; Pilot: G; Sortie #1
Sumn-of-Sines Tracking Task; Case 4; Airborne Da,.a
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Figure D-6. Frequency Response Analysis -

Longitudinal Stick Deflection to Task Error (Case 4)
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Calspan Variable Stability Aircraft
Learjet LJ-25, Tail Number N 102VS

Date: 9 - 11 Oct 93; Pilot: E; Sortie #2
Sum-of-Sines Tracking Task; Case A; Airborne Data
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Figure D-7. Frequency Response Analysis -

Longitudinal Stick Deflection to Task Error (Case A)
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Calspan Variable Stability Aircraft
Learjet LJ-25, Tail Number N102VS

Date: 9 - 11 Oct 93; Pilot: G; Sortie #5
Sum-of-Sines Tracking Task; Case B; Airborne Data
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Figure D-8. Frequency Response Analysis -
Longitudinal Stick Deflection to Task Error (Case B)
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Caispan Variable Stability Aircraft
Learjet LU-25, Tail Number N 102VS

Date: 9 - I11 Oct 93; Pilot: E; Sortie #2
Sum-of-Sines Tracking Task; Case C; Airborne Data
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Figure D-9. Frequency Response Analysis -

Longitudinal Stick Deflection to Task Error (Case C)
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Calspan Variable Stability Aircraft
Learjet LJ-25, Tail Number N102VS

Date: 9 - II Oct 93; Pilot: E; Sortie #1
Sum-of-Sines Tracking Task; Case D; Airborne Data
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Calspan Variable Stability Aircraft
Learjet LJ-25, Tail Number N102VS

Date: 9 - II Oct 93; Pilot: G; Sortie#1
Sum-of-Sines Tracking Task; Case 1; Airborne Data
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Figure D-1 1. Combined Pilot-Aircraft System (Case i)
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Calspan Variable Stability Aircraft
Learjet LJ-25, Tail Number N I02VS

Date: 9 - 11 Oct 93; Pilot: S; Sortie #2
Sum-of-Sines Tracking Task; Case 2; Airborne Data
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Figure D-12. Combined Pilot-Aircraft System (Case 2)
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Calspan Variable Stability Aircraft
Learjet LJ-25, Tail Number N I02VS

Date: 9 - II Oct 93; Pilot: S; Sortie #2
Sum-of-Sines Tracking Task; Case 3; Airborne Data
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Figure D-13. Combined Pilot-Aircraft System (Case 3)
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Calspan Variable Stability Aircraft
Leariet LJ-25, Tail Number NI02VS

Date: 9 - I I Oct 93; Pilot: G; Sortie #1
Sum-of-Sines Tracking Task; Case 4; Airborne Data
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Figure D-14. Combined Pilot-Aircraft System (Case 4)
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Calspan Variable Stability Aircraft
Learjet LJ-25, Tail Number N I02VS

Date: 9 - 11 Oct 93; Pilot: E; Sortie #2
Sum-of-Sines Tracking Task; Case A; Airborne Data
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Figure D-l 5. Combined Pilot-Aircraft System (Case A)
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Calspan Variable Stability Aircraft
Learjet LJ-25, Tail Number N I02VS

Date: 9 - 11 Oct 93; Pilot: G; Sortie #5
Sum-of-Sines Tracking Task; Case B; Airborne Data
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Figure D-1 6. Combined Pilot-Aircraft System (Case B)
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Calspan Variable Stability Aircraft
Learjet UJ-25, Tail Number N 102VS

Date: 9 - 11I Oct 93; Pilot: E; Sortie #2
Sum-of-Sines Tracking Task; Case C; Airborne Data
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Figure D-1 7. Combined Pilot-Aircraft System (Case C)
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Calspan Variable Stability Aircraft
Learjet LJ-25, Tail Number N I02VS

Date: 9- 11 Oct 93; Pilot: E; Sortie #1
Sum-of-Sines Tracking Task; Case D; Airborne Data
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Figure D-18. Combined Pilot-Aircraft System (Case D)
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Calspan Variable Stability Aircraft
LearJet LJ-25, Tail Number N I02VS
Date: 9 Oct 93; Pilot: S; Sortie #8

Sum-of-Sines Tracking Task; Case 1; Ground Simulation
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Figure D- 19. Gain Investigation Baseline -
Longitudinal Stick Deflection to Task Error (Case 1)
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Calspan Variable Stability Aircraft
Leardet U-25, Tail Number N I 02VS
Date: 9 Oct 93; Pilot: S; Sortie #8

Sum-of-Sines Trucking Task; Case 1; Ground Simulation
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Figure D-20. Gain Investigation - Longitudinal Stick

Deflection to Task Error (Case I with Double Gain)
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Calspan Variable Stability Aircraft
Leardet LJ-25, Tail Number N I02VS
Date: 9 Oct 93; Pilot: S; Sortie #8

Sum-of-Sines Tracking Task; Case 1; Ground Simulation
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Figure D-21. Combined Pilot-Aircraft System
-- Gain Investigation Baseline (Case I)
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Calspan Variable Stability Aircraft
Learjet LJ-25, Tail Number N I02VS
Date: 9 Oct 93; Pilot: S; Sortie #8

Sum-of-Sines Tracking Task; Case 1; Ground Simulation
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Figure D-22. Combined Pilot-Aircraft System
-- Gain Investigation (Case I with Double Gain)
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Appendix E. Numerical Solution Routines and Results

PIF1ND.M

function [J]-PIFIND(Ak,Bk,Ck,Ac,Bc,Cc,Ag,Bg,Cg,Q,RNoise)

% This File Finds the Performance Index 'Value for Problems
% With Filter States

% where
% Ak,Bk,Ck - Compensator States
% Ac,BcCc - Aircraft States
% Ag,Bg,Cg; - Disturbanc Noise Filter States
% Q - State Deviation Weighting

% (Diagonal with #Rows-#Plant+#Filter States)
% R = Control Usage Weighting

% (Diagonal with #Rows=#Rows of Ck)
% Noise = Noise Matrix

% l~Qo 0l Qo =Process Noise Intensity
% 10 Rol Ro = Measurement Noise Intensity
% (Square with #Cols=#Cols of Bg+Bk)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
sizeak-size(Ac);
sizeag-size(Ag);

sizebg-size(]Bg);
sizebk-size(Bk);
sizeck-size(Ck);
A-[Ac,Cg,-Bc*Ck;zeros(sizeag(l),sizeac(l)),Ag,zeros(sizeag(l),sizeak(l));Bk*Cc,zeros(sizeak(l),
sizeag(l)),Ak];

sizebg(2)),Bk];
L=E*Noise*E';
X-lyapA,L);
m-sizeak(l);
n-sizeac(l)+sizeag(l);
o-sizeck(l);
terml=0;
term2-0;
for i-l1:n
terml--terml+Q(i,i)*X(i,i);

end
for h- 1: o

for i-l:m
for j-l :m
term2-term2+Roho)*Ck(h,i)*Ck(hj)*X((n+i),(n+j));

end~end;end
J-terml+term2;
return
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PIFINDNF.M

function [J]-PIFINDNF(Ak,Bk,Ck,Ac,Bc,Cc,GammaQ,RNoise)

% This File Finds the Performance Index Value For Problems with
% No Filter States
% where

% Ak,BkCk - Compensator States
% AcBc,Cc - Aircraft States
% Gamma = Constant Disturbance Noise Matrix
% (Distributes Disturbance Noise into States)
% Q - State Deviation Weighting
% (Diagonal with #Rows-#Plant+#Filter States)
% R = Control Usage Weighting
% (Diagonal with #Rows-#Rows of Ck)
% Noise - Noise Matrix
% lQo 01 Qo = Process Noise Intensity
% 10 Rol Ro = Measurement Noise Intensity
% (Square with #Colsf#Col of Gamma+Bk)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

sizeak-size(Ak);
sizeac-size(Ac);
sizebk-size(Bk);
sizeg-size(Gamma);
sizeckffsize(Ck);
A=(Ac,-Bc*Ck;Bk*Cc,Ak];
E-[Gamma,zeros(sizeac(1),sizebk(2));zeros(sizeak(1),sizeg(2)),Bk];
LfE*Noise*E';
Xflyap(A,L);
m-sizeak(l);
n=sizeac(l);
o=sizeck(l);
term1-=0;
term2-0;
for ifl:n

term --term 1+Q(i,i)*X(i,i);
end
for h=1:o

for i 1: :m
for j=1:m

tem2--term2+R(hQ )*Ck(h,i)*Ck(hj)*X((n+i),(n+j));
end;end;end
Jfterml+term2;
return
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Appendix F. Sub-Optimal Pilot Model Algorithm Verification

General

The numerical solution technique used in the sub-optimal pilot model is verified

in this appendix. A simple example problem was solved using both the standard linear

quadratic Gaussian (LQG) approach and the numerical method (Equations 6-19, 6-2 1,

6-22, and 6-23). As shown, the results were the same using either method.

Standard Linear Quadratic Gaussian Solution

Assume the controlled element, Yc, and forcing function filter, Yw, can be

modeled by the following transfer functions.

s+3 and Y. - (F-l)
Yc s +2s+4 s+2

These transfer functions have the following state space representations.

[ci [ --2. ][x c ]+[ I].

IxC=[-1J3 XCI I+ [ 0l-u(F2

Y. ,r2-] - [x.] + [0] -u (F-3)

Assume this example is in the form shown in Figure 6-2, where the disturbance occurs at

the controlled element output so that the error is the difference between the filter output
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and the controlled element output (e = Y, - Yj. For this example, the desired weighting

on error, Q, will be I and the desired weighting on control, R, will be 2 in accordance

with the following performance index.

J = f[eTQe + urRujdt (F-4)
0

This example will assume unit intensity forcing function driving noise, k(t), and

observation noise, Tl(t), such that:

E{k(t) -kr(t- T)} = Q. 8(T) = 8(c) (F-5)

E(,l(t) • ,1 (t- -,)} Ro-. 8() = 8() (F-6)

To solve the standard LQG problem, the filter states must be appended to the

controlled element states so that the system is in the following form.

k=Ax+Bu+ F amd y=UC+ D (F-7)

For this problem, this can be accomplished using the following formula:

where the optimal LQG control law is u = -Kx. Substituting Equations F-2 and F-3 into

Equation F-8 yields the following state space representation.
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ic -2I -4 0 cl l' 101
ic2 1 0 0 xc2 + 0 .u+ 0 -

0 0 0- x, 0

Y=[-1 -3 F2 xa +[ll-n (F-9)

Xw

Error can be weighted using the following formula:

Q1=CT.Q.C (F-10)

where Q is one for this example, and the new state weighting, Q', is:

1 3 - F2"

Q1= 3 9 -3 F"2 (F- 11)
F2/ -3,F2 2

The noise weighting matrix, Q1, is found using the following formula.

0001

Qt=r.Qo.rT= [ 0 0 (F-12)
001 1

Using the following MATLABTm command will return the optimal LQG compensator:

[Ak,Bk,Ck,Dk]=lqg(A,B,C,D,W,V)

where A, B, C, and D are the state space matrices from Equation F-9, W contains the

weighting matrices in diagonal form (diag(Q&, R)), and V contains the noise matrices in

diagonal form (diag(Qf, Ro }). The optimal LQG compensator for this problem is:

F-3



-2.3570 -4.5277 0.2670 0
= 1 0 0 -x+ 0 u

0.4313 1.1212 -2.5344 0.3178

Y= [ 0.3570 0.5277 -0.2670 ].x (F-13)

or in transfer function form, the optimal LQG compensator, Kt•(s), is:

K(s) -0.0849s 2 - 0.1697s - 0.3395 (F-14)

LQ = s3 +4.8913s 2 + 10.3860s+ 11.1754

The Numerical Solution

To accomplish the numerical solution the file, PI_.SOPM.M, has to be adapted

slightly. The desired compensator form is now a second over a third order transfer

function as shown in the new file, PIFINDER.M, presented at the end of this appendix.

Except for this change, PIFINDER.M is identical to the routine used in the sub-optimal

pilot model.

For this example, the controlled element state space matrices remain as in

Equations F-2 and F-3. The weightings, Q and R, are the scalar values, I and 2. Finally,

the Noise matrix is a diagonal matrix containing the noise intensities, Q. and Ro. In this

example that is a 2 by 2 identity matrix. Using an initial compensator coefficient vector,

cO, of all ones, the following command will return the optimal solution.

cmin=fimins('pifinder',cO,[],[],Ac,Bc,Cc,Aw,Bw,Cw,Q,R,Noise)

The following value for cmin was computed.

cmin=[0.0849 0.1058 0.3218 4.0764 7.7238 10.4016]
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Using this vector as the new initial compensator coefficient vector, cO, and runningfinins

again yielded:

cmin=[0.0849 0.1697 0.3395 4.8065 10.2163 10.8360]

This equates to the following compensator.

0.0849s 2 + 0.1697s + 0.3395 (F-15)
s 3 +4.8065s 2 + 10.2163s + 10.8360

Notice that the coefficients are identical, within the tolerance of the numerical

search, to those found using standard LQG methods. Also note that all of the numerator

coefficients are positive while those in Equation F-14 are negative. This is because the

standard LQG optimum control law is always u = -Kx, while the numerical method used

in the sub-optimal pilot model has the control law, u = Kx (see Figure 6-2, page 6-4).

Thus, the numerical method used to minimize the performance index in the sub-optimal

pilot model is valid.

MATLAB mFile for Disturbance at Plant Output

function [J]=PIFINDER(c,AcBc,Cc,Ag,Bg,Cg,Q,RNoise)

"% This File Finds the Minimum Performance Index Value
"% For Problems that Weight Error through Disturbance
"% Noise Injected at the Aircraft Output

% where
% c = Compensator Coefficients
% AcBc,Cc = Aircraft States
% Ag,Bg,Cg = Disturbance Noise Filter States
% Q = Error Weighting (scalar)
% R - Control Usage Weighting (scalar)
% Noise - Noise Matrix
% [Qo 1O Qo - Process Noise Intensity
% 10 Rol Ro - Measurement Noise Intensity
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% ~Compensator Form%

nwn-[c(l) c(2) c(3)];
den=[ I c(4) c(5) c(6)];
den-abs(den);
[Ak,Bk,Ck,Dk]-tf2ss(num,den);

% ~Compute J%

sizeak-size(Ak);
sizeac-size(Ac);
sizeag-size(Ag);

,Bk*Cg,AkI;
E=[zeros(sizeac(1),2);Bg,zeros(sizeag(l), 1);zeros(sizeak(l), 1),Bk];
L=E*Noise*E';
X=lyap(A,L);
m-sizeak(I);
p=sizeac(1);
f--sizeag(1);
n-p+f;
terml-O;
term2a=O;
term.2b=O;
term2c=-O;
for i=1:ni

for j=1:m
terml-terml+Ck(1 ,i)*Ck(1 j)*X((n+i),(n+j));

end;end
for i=1:f

for j=l:f
term2a--term2a+Cg(1 ,i)*Cg(1 j)*X((p+i),(p+j));

end;end
for i=1:p

for j=1:p
term2b-term2b+Cc(1 ,i)*Cc(1 j)*X(ij);

end;end
for i= IS
for j-ILp

term2c--term2c+Cg(I ,i)*Cc(1 j)*XQ(p+i)j);
end~end
J-R*terml+Q~term2a+Q*term2b-2*Q*term2c;
return
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Appendix G. Sub-Optimal Pilot Model Data

SOPM.M

function [J,Cmin,Rating]=sopm(Numc,Denc,DelayNumg,Deng)

% Sub-Optimal Pilot Model

% Where:
% Numc = Numerator of Aircraft Dynamics
"% Denc = Denominator of Aircraft Dynamics
"% Delay = Delay of Aicraft Dynamics
% Numg - Numerator of Task Forcing Function
% Deng - Denominator of Task Forcing Function
% Recommend 2nd Order Butterworth:
% Numg-sqrt(2)
% Deng=[I/bw sqrt(2)/bw 1]
% Where 'bw' is Butterworth Filter Bandwidth

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Input Other Variables %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

if(nargin-=5),error('Incorrect Number of Input Arguments),end
Q=inputfInput Error Weighting (Usually 1) = );
RiinputCTnput Control Weighting (Usually 4.5 Pitch, I Roll) f
rhod=input(Input Observation Noise Ratio (Usually 0.01) =

Tnh=inputCMuscular Time Constant (Usually 0.115) ;
PilotDelay=input(Input Pilot Delay (sec) (Usually .35) f

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Model Parameters are Set %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

Varf[Tn,PilotDelay+Delay];
c0=[l 1 1];
V-f.5;

rhodif-l;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Performance Index is Minimized %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

[AcBc,CcDc]-tf2ss(Numc,Denc);
[AgBg,Cg,Dg]-tf2ss(Numg,Deng);
for i-1:5
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if rhodif>0.0002 %0. 1 db at rho - -20 dB (10O*og10g)
disp(rltcration ',int2str(i)])
Noise-[ 1,0;0,V]
Cmin-finins~pi-sopm',c0,II,D,Ac,Bc,Cc,Ag,Bg,Cg,Q,R,Noise,Var)
[J,RMS]-RMS...sopm(Cmin,Ac,Bc,Cc,Ag,Bg,Cg,Q,RNoise,Var)
rho-V/pi/RMS
rhodif-abs(rho-rhod);
c0-Cmin;
V-V*rhod/rho;
end

end

% ~ Cooper-Harper Rating is Computed%

x-menuCSelect Axis','Pitch','RolI');
if X-1

Rating=-30+241*1og10(J);
else

Rating- 13+1 17*logl O(J);
end

% Bode Plot and Transfer Function of Pilot are Displayed%
%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%

Cmin--abs(Cmin);
K-Cmim(1);
A-Cmin(2)/Cmin(1);
B=Cmim(3);
C-i/Tn;
(USKC)
dis(Pi~ot Parameters are: '
di*p[% - 'nmsrK]
disp(('A - ',num2str(A)])
disp(rB - ',num2str(B)])
disp(rC - ',numbstr(C)]
disp(rD - ',num2str(PilotDelay)I)
disp(")
dispC here the Pilot is K(s+A)*exp(-Ds)/(S+B)*(S+C)I)

w-logspace(-I,1,100);
num-[Cmin(1) Cmin(2)];
den-[1 Cmin(3)+1/Tn Cmin(3)*1'Tn];
[mag,phase,w]=bode(num,den,w);
mag=20*logbO(mag);
phase-phase-wI*Pilot-Delay* 1 8Opi;
hold oftF,
axisenormal');
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subplot(21 1)
semilogx(wmg,[.I 10],[0,0]);
subplot(212)
semilogx(w,phase,[.l 10],f-180-180])
subplot(1I l)
title(Bode Magnitude and Phase of Pilot')
xlabel(Frequency (Rad./Sec.))
ylabelCPhase (deg.) Mag-. (dB)')

PISOPM.M

function [J]-PISOPM(c,Ac,Bc,Cc,Ag,Bg,Cg,Q,RNoise,Var)

"% This File is Called by SOPM.M to Find the Classical Pilot Model
"% Form that Produces the Minimum Performance Index Value

% where
% c - Compensator Coefficients
% Ac,Bc,Cc - Aircraft States
% Ag,BgCg = Disturbance Noise Filter States
% Q = Error Weighting (scalar)
% R = Control Usage Weighting (scalar)
% Noise - Noise Matrix
% IQo 0 1 Qo - Process Noise Intensity
% 10 Rol Ro = Measurement Noise Intensity
% VAR - Variables - [Muscular Time Constant, Delay]

%%/0/%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Pilot Model Form %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

[nur-delay,den~delay]=pade(Var(2),i);
num-conv([c(l) c(2)],num-delay);
den•conv([l c(3)+l/Var(l) c(3)*lNar(l)],denadelay);
den=abs(den);
[Ak,Bk,Ck,Dk]-tt2ss(num,den);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Compute J %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%
sizeak=size(Ak);
sizeagsize(Ac);
sizeag---size(Ag);
A-[Ac~zeros(sizeac(l),sizeag(l)),Bc*Ck;zeros(sizeag(l),sizeac(l)),Ag~zeros(sizeag(l),sizeak(l));-Bk*Cc

,Bk*Cg,Ak];
Efrzeros(sizeac(l),2);Bg,zeros(sizeag(1),l);zeros(sizeak(l),l),Bk];
L-E*Noise*E';
Xlyap(A,L);
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m-sizeak(l);p-sizeac(I);
f-,sizeag(l);
n-p+f;
terml-0;
term2a-0;
term2b-0;
term2c=O;
for i-1:m

forj=l:m
terml-terml+Ck(l,i)*Ck( j)*X((n+i),(n+j));

end;end
for i-I:f

for j=l:f
term2a-term2a+Cg(l,i)*Cg(! j)*X((p+i),(p+j));

end;end
for i-1:p

for j-L:p
term2b=term2b+Cc(l ,i)*Cc(I j)*X(ij);

end;end
for i-I:f
fbrj-I:p
term2c-term2c+Cg(l,i)*Cc(l j)*X((p+i)j);

end;end
J-R*term I +Q*term2a+Q*tenn2b-2*Q*term2c;
return

RMAS_SOPM.M

function [J,RMS]=RMSSOPM(c,Ac,Bc,Cc,Ag,Bg,Cg,Q,RINoise,Var)

"% This File is Called by SOPM.M to Find the RMS Error
"% and Performance Index Values

% where
% c = Compensator Coefficients
% AcBc,Cc = Aircraft States
% AgBgCg =- Disturbance Noise Filter States
% Q - Error Weighting (scalar)
% R - Control Usage Weighting (scalar)
% Noise - Noise Matrix
% JQo 0 1 Qo - Process Noise Intensity
% 10 Rol Ro - Measurement Noise Intensity
% VAR = Variables - [Muscular Time Constant, Delay]

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Pilot Model Form %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

[num-delay,den-delay]=pade(Var(2), I);
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num-c-onv([c(1) c(2)],num...delay);
den-conv([1 c(3)+lI~ar(1) c(3) lI~ar(1)],den,.delay);
den-abs(den);
[Ak,Bk,Ck,Dk]=tf2ss(num,den);

% ~Compute J%

sizeak--size(Ak);
sizeac-size(Ac);
sizeag-size(Ag);
A=[Ac,zeros(sizeac( 1),sizeag(I)),Bc*Ck;zeros(sizeag( 1),sizeac( I)),Ag,zeros(sizeag(1),sizeak( 1));-Bk*Cc
,Bk*Cg,Ak];
E=[zeros(sizeac(1),2);Bg,zeros(sizeag(1), 1);zeros(sizeak(1), 1),Bk];
L=E*Noise*E';
X-lyap(A,L);
m=sizeak( 1);
p-sizeac(I);
f-sizeag(I);
n-p+f;
term 1=0;
term2a=0;
tenm2b-0;
term2c=0;
for i=I:m

for j=l:m
term I -term I1+Ck(I ,i)*Ck(1 ,j)*X((n+i),(n+j));

end;end
for i= 1: f
for j=1:f

termn2a--termn2a+Cg(I ,i)*Cg(1 j)*X((p+i),(p+j));
end~end
for i=1:p
for j=1 p
term2b=term2b+Cc(1 ,i)*Cc(1 j)*X(ij);

end;end
for i-I 1:f
forj=l:p

term2c=term2c+Cg(1 ,i)*Cc(1 j)*X((p+i~j);
end;end
J=R*tennl+Q*term2a+Q*term2b-2*Q*term2c;
RMS-term2a+term2b-2*term2c;
return
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