
14ý

VI

Clus ~ternech Ii(piets in Speaiker lRecogniti10ion

Flight heti(lUeant. Roval Autralianir FoI trce

AFIT/G E/EN G/94M-05.

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUT-E OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio
DTITC QUALITY INSPECTED 3

Best
Available

Copy

AFIT/GE/ENG/94M-05.

Clustering Techniques in Speaker Recognition

THESIS

Douglas Neale Prescott
Flight Lieutenant, Royal Australian Air Force

AFIT/GE/ENG/94M-05.

94-12263

Approved for public release; distribution unlimited

94 4 21 044

,Fom Approved
REPORT OCCUMENTATION PAGE M8 No. QC4--V38

ilx~ -eaorl' ,j, io~n 'or -;s -.cilecefl :t iormat~o,? % estimaviia), ,eriqe -iur oer -ýwrse. rctairg *!-e ttme *or 'eview.,nj iir'. ., -, c ni~i -,. 19 zat isourc
ga -ofirnq ina aintaln ng t'e aata ned-ce-' ic z.z ol'ering ana - e-,qe n t :,E : c•l•In at florfYtIofl e CinY,'$ reoaraing in.mto S'.rour ce .lmate ;r 4,n ;tner asoe-. 01
Iccý ection -2? "2rn,ý r- of M?. J.nfj " e "s -i r feaci '. # 0ýroen. ' "i ianiton ieamquante`% Selrces. Zýtra<_rte 0or ,trntO'Oce1!o'% &no -nc~rts. 12i5 e~,-o

0 ,s,:,4,. .re !R4 -, 4 t, .1 Z-~2-302, ind t Tr?'e o
t
,'e 'j#Ma 4' ert an*d auaqe'. PRUCmori eeCucIon PFC~eCt iO7C4- 8). .,rr;%or -1 ýX25C3

1. AGiNCY USE ONLY (Leav in) 2 REPORT DATE 3. REPORT TYPE AND DATES COVERED

;77-March 1994 Master's Thesis__ ____________

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

Clustering Techniques for Speaker Recognition

6. AUTHOR(S)

D. Neale Prescott

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
REPORT NUMBER

Air Force Institute of Technology, WPAFB OH 45433-6583
AFIT/GE/ENG/94M-05

9. SPONSORING, MONITORING).GENCY NAMES) AND AODRESS(ES) 10. SPONSORING1 MONITORING
AGENCY REPORT NUMBER

Lt Col Rodney Winter
NSA/R221
Fort Meade, MD 20755-6000

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION / AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Distribution Unlimited

13. ABSTRACT (Maximum 200 words)

This thesis presents a comparison based on identification rate, of three clustering techniques applied to cepstral
features for speaker identification. LBG vector quantization as developed by Linde, Buzo and Gray; is used to
provide benchmark performance for comparison with Fuzzy clustering (based on the un-supervised fuzzy partition-
optimal number of classes, UFP-ONC algorithm by Gath and Geva) and an Artificial Neural Network, the Multilayer
Perceptron.
Cepstral features from the TIMIT, King and AFIT93 corpus speaker databases are used to produce speaker-
identification classifiers using each of the clustering algorithms. The experiment reported evaluates the speaker iden-
tification performance using the 20-dimensional cepstral features which were extracted directly from the databases.
The speaker databases were taken from different recording environments, TIMIT is studio quality, AFIT93 was
recorded in an office environment and King is recorded telephone conversations. The performance provides an indi-
cation of merit for the clustering techniques for the range of typical recording environments. This thesis demonstrates
the application of fuzzy clustering for speaker identification. It is shown that the UFP-ONC algorithm can achieve
identification rates equal to the LBG vector quantization system. LBG vector quantization provides the best overall
performance of all three clustering techniques.

14. SUBJECT TERMS 15. NUMBER OF PAGES

Pattern Recognition, Recognition, Identification, Biometry 89

16. PRICE CODE

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT

UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED UL
NSN 7540-0:-Z80-5500 Stanoa'a corm 298 (Rev 2-89)

Pr.mcr'ed cy .ANs! std .39-"8
298-102

AFIT/GE/ENG/94M-05.

Clustering Techniques in Speaker Recognition

THESIS

Presented to the Faculty of the Graduate School of Engineering

of the Air Force Institute of Technology

Air University

In Partial Fulfillment of the

Requirements for the Degree of

Master of Science in Electrical Engineering

Douglas Neale Prescott, B.Eng

Flight Lieutenant, Royal Australian Air Force Aoaession For
TIS QGRA&I

DTIC TAB 0
Unannounced 0
Justifioatio-

March, 1994 By

Distribution/ ..'0
*Availability godeu

Avaip and/or
Dist Sp-9016.

Approved for public release; distribution unliinitd d I

Acknowledgements

There are many people to thank for their kindness, support and knowledge, without

which my work would have floundered.

To my wife, Margaret, thank you for your love, trust and courage while I raced off like

Don Quixote to a windmill half way around the world. To our families for their support,

and knowing to telephone in the darkest hours of this endeavour. Your encouragement and

caring means a lot to both of us.

To my thesis committee, Doctor Steven Rogers, Captain Dennis Ruck and Doctor

Mark Oxley thank you for your enthusiasm, patience and tutoring.

To the Pattern Wreckers Curtis Martin, Kim McCrae, Bob MacDonald, John Keller,

Martin Chin and John Colombi whose friendship and teamwork made this great experience.

Douglas Neale Prescott

ii

Table of Contents

Page

Acknowledgements ii

List of Figures vi

List of Tables vii

Abstract viii

1. Introduction 1

1.1 Background 1

1.2 Problem ... 1

1.3 Scope 2

1.4 Assumptions 2

1.5 Thesis Organization 2

II. Literature Review 3

2.1 Introduction 3

2.2 Speaker Identification 3

2.3 Cepstral Features 4

2.4 Vector Quantization 9

2.5 Fuzzy Clustering 13

2.5.1 The Fuzzy k-Means Algorithm 16

2.5.2 The Fuzzy Maximum Likelihocd Estimation Algorithm 19

2.6 Artificial Neural Networks 20

2.7 Conclusion 21

111..

Page

III. Approach and Methodology 23

3.1 Introduction 23

3.2 Data Sets 23

3.3 Data Pre-processing and Feature Extraction 24

3.4 Vector Quantization 26

3.5 Fuzzy Clustering 27

3.6 Fuzzy Classifier 29

3.7 Artificial Neural Network Multi-layer Perceptron 30

3.8 Data Separability 31

3.9 Conclusion 34

IV. Results 36

4.1 Introduction 36

4.2 Separability Results for Speaker Data 36

4.3 Vector Quantization Benchmark 38

4.4 Fuzzy Clustering Experiment 38

4.5 ANN Experiments 39

4.6 Confusion Matrices 44

4.7 Conclusion 44

V. Conclusions 48

Appendix A. TIMIT Sentences 50

Appendix B. Program Listings 51

B.1 Separability C Code 52

B.2 UFP-ONC C code 57

B.2.1 Main Program - FuzzCl.c 57

B.2.2 Header file - FuzzLIB.h 59

iv

Page

B.2.3 Fuzzy C Library -FuzzLIB.c 61

B.2.4 Fuzzy Classifier - FVQ.c 74

B.2.5 makefile 77

B.3 Simple UFPONC in MATLAB script 78

B.4 Code to Determi'ie the Number of Hidden Nodes 83

B.5 FKM configuration file 84

B.6 ANN configuration file 85

Bibliography 86

Vita 89

V

List of Figures

Figure Page

1. Vowel signal, spectrum and cepstrum 6

2. Cepstral feature vectors from King speakers One and Two. (60 seconds of

conversation from Session one) 10

3. Vector Quantization codebook design algorithm [42] 12

4. (a) Initial codeword (b) First split (c) Final Codewords 13

5. Vector quantizer based classifier 13

6. Typical Fuzzy membership function vs Distance from cluster 15

7. Memberships functions of a data set (after Ruspini [44]) 15

8. Cepstral Feature Extraction Process 25

9. Test6 data 31

10. Iris data dimensions 2,3,4 34

11. Vector Quantizer Identification Rate - Training 40

12. UFP-ONC Identification Rate 41

13. AFIT Identification Rate 42

14. ANN Identification Rate 43

vi

List of Tables

Table Page

I. Data Selection used for Training and Testing 26

2. Separability Measure J4 33

3. Separability measure J4 for Iris and Testra 34

4. Separability Measure J4 for AFIT, King and TIMIT 37

5. AFIT Day One - Confusion Matrices for LBG, UFP-ONC, MLP 45

6. AFIT Day Seven - Confusion Matrices for LBG, UFP-ONC, MLP 46

vii

AFIT/GE/ENG/94M-05.

Abstract

This thesis presents a comparison based on identification rate, of three clustering

techniques applied to cepstral features for speaker identification. LBG vector quantization

as developed by Linde, Buzo and Gray; is used to provide benchmark performance for com-

parison with Fuzzy clustering (based on the un-supervised fuzzy partition-optimal number

of classes, UFP-ONC algorithm by Gath and Geva) and an Artificial Neural Network. the

Multilayer Perceptron.

Cepstral features from the TIMIT, King and AFIT93 corpus speaker databases are

used to produce speaker-identification classifiers using each of the clustering algorithms.

The experiment reported evaluates the speaker identification performance using the 20-

dimensional cepstral features which were extracted directly from the databases. The

speaker databases were taken from different recording environments, TIMIT is studio qual-

ity, AFIT93 was recorded in an office environment and King is recorded telephone con-

versations. The performance provides an indication of merit for the clustering techniques

for the range of typical recording environments. This thesis demonstrates the application

of fuzzy clustering for speaker identification. It is shown that the UFP-ONC algorithm

can achieve identification rates equal to the LBG vector quantization system. LBG vector

quantization provides the best overall performance of all three clustering techniques.

viii

Clustering Techniques in Speaker Recognition

I. Introduction

1.1 Background

Ensuring that only the right people have access to buildings, financial re~ords and

computer systems requires an effective identification system. Traditional systems using

locks, combinations, passwords and identification cards can be compromised by copies,

decoding or theft of the access device.

Automatic identification of people based on physical features of speech patterns, fin-

gerprints, faces, blood vessels patterns in the retina irises and DNA are all being researched

to provide better security for both the individual and organizations.

Automatic speaker recognition determines the identity of a person from a known

population of speakers [38]. In this work Cepstral [37] features provide the patterns which

are matched to speaker dependent templates.

Potential applications of speaker identification/verification systems include

"* Building access systems,

"* Secure access to computer records,

"* Covert detection of criminal activity on telephone systems,

"* Verification of instructions over communications systems, for both military and com-

mercial applications.

"* Automatic message routing

1.2 Problem

This work examines the use of clustering techniques using cepstral coefficients for

speaker identification. A comparison between vector quantization, fuzzy clustering and an

artificial neural network (ANN) is made.

The speech data utilized are a combination of phonetically balanced and text-independent

sentences of various lengths. Three databases provides different background environments

from pristine [TIMIT], computer room [AFIT corpus 93] [11] and telephone [King]. The

AFIT corpus was initiated in 1992 by Colombi [il] for speaker identification, AFIT93

corpus was recorded by the author during this thesis research.

1.3 Scope

This research will implement the Unsupervised Fuzzy Partition-Optimal Number of

Classes, clustering algorithm [19], and evaluate its performance for speaker identification.

The UFP-ONC will be compared against vector quantization (VQ)[23] and the Multilayer

Perceptron using three speech databases. The three databases are the King [25], TIMIT

[361, and an AFIT corpus database collected during this research.

1.4 Assumptions

It is assumed that cepstral processing of speech provides the necessary features to

uniquely define a speaker. Throughout this work the speech recordings are assumed to

be of finite length, in English, and contain only one speaker. Any noise inherent in the

databases will be considered typical and no noise reduction techniques will be applied.

1.5 Thesis Organization

Chapter II is a review of relevant literature relating to Fuzzy clustering, vector

quantization, neural networks and speech processing. Chapter III presents the method-

ology used and the experiments conducted. Chapter IV presents the results for each of

the three techniques, vector quantization, Fuzzy k-Means and Artificial Neural Networks

applied to speech for speaker identification.

2

II. Literature Review

2.1I Introduction

Speech processing brings together the different fields of signal processing, physics,

pattern recognition, linguistics, physiology, psychology, computer science and information

theory [40, 42].

In general, speaker identification methods attempt to isolate acoustic features which

are dependent on the individuals vocal tract. Formant frequencies [22], formant ratios

[39] and pitch contours [4] are examples of features which have been used in speaker

identification. Automatic classification of speakers, requires partitioning the feature space

in a way that will separate each of the individuals.

This chapter presents a review of speaker identification, cepstral features, vector

quantization, fuzzy clustering and artificial neural network literature. For comprehensive

reviews on each of these fields refer to references (6, 8, 11, 20, 23, 26, 31, 35, 38]

2.2 Speaker Identification

The task of speaker identification (SID) is to find the absolute identity of a person

based only on their speech. The speech features from the subject are compared to each

of the people in a known population. O'Shaughnessy [38] provides a review of speaker

identification and verification. Speaker Verification is considered the easier of the two

problems [38, 40]. The subject makes a claim that he is speaker X, and the verification

system makes a binary decision, yes or no , by comparing the subject's speech features

with the templates of speaker X. Speaker identification requires comparison with all known

speakers and selects the best match. O'Shaughnessy discusses one of the inherent problems

in speaker identification, the larger the population of known speakers the more difficult the

process becomes. Assuming equal a priori of speakers, the probability PF that a subject

is known is PF, = 1/N, where N is the number of speakers in the database. Jayant [35]

discusses the computational cost of speaker identification, and notes that a simple system

must perform N decisions to decide that the subject is a known speaker. More efficient

search algorithms can reduce this by grouping speakers into categories such as male/female,

3

thus narrowing the search area. In "Statistical Techniques for Talker Identification" [9]

Bricker et al. provide insight into the difficulties presented by large databases of speakers.

When the speaker database is relatively small, perhaps less than 50, a codebook for each

speaker can be kept. However, when the number of speakers in the database becomes

large there is immense overhead in storage and search times. To overcome this the authors

demonstrate the use of a nearest neighbor classifier.

Applications of SID are numerous, such as controlling access to buildings, controlling

access to privileged information on computer files or by telephone. Several authors have

presented papers on the applications for speaker identification, for a recent cross-section

refer to [16, 35, 38, 45, 49, 50]

2.3 Cepstral Features

The cepstrum (or power cepstrum) provides a method of separating the vocal tract

spectrum from the spectrum of the vocal tract excitation. Using the cepstrum of speech

we attempt to characterize an individual by their long term vocal tract spectrum. The

definition of cepstrum is shown below. The Fourier Transform of a time function is denoted

by

Y(w) = '{y(t)}

The power spectrum is

Yp(w) = IY(w)1 2

The cepstrum being

C(r) .T{logYp(w)} (1)

The power spectrum is symmetric and real; accordingly we can expand the cepstrum as a

Fourier series

log YP(w) = ej ce-jw'' (2)

where Cn = c-n are real and referred to as cepstral coefficients.

4

Consider a speech signal, y(t), with the power spectrum, Yp(w). Assuming the vocal

tract to be a linear system, we can separate the excitation spectrum X(w), and the vocal

tract spectrum H(w) as shown below. The assumption of stationarity holds for short

periods, typically 40 milliseconds [42].

Figure 1 shows each of these steps applied to a segment of the vowel IY, as shown

in the upper left corner. The signal is 256 samples, sampled at 8000 samples per second.

The magnitude of the Fourier transform is displayed in the upper right. Note the large

amplitude components below 200Hz, the glottal pitch and first formant are very distinct

approximately 85Hz and 125Hz respectively. The higher frequency formants can be seen in

the interval between 2000Hz and 4000Hz. It is difficult to separate the excitation, glottal

pulse frequency, from the vocal tract spectrum using the Fourier transform alone. The

lower right of Figure 1 shows the logarithm of the Fourier transform, or power spectrum.

More detail of the spectrum is now evident, although the glottal frequency still dominates

the lower frequencies. The lower left plot displays the cepstrum of the speech, the glottal

pitch is now clearly evident at approximately 11.5 (quefrency). The vocal tract information

is located in the interval between zero and five. In a discussion of feature extraction for

speech recognition (where identity is a secondary concern) Rabiner and Juang discuss

liftering, or normalizing the cepstrum to remove these low cepstral coefficients which are,

"due to variations in transmission, speaker characteristics, vocal effects . . . ", [42], this

is the information speaker-identification systems seek to exploit.

Consider the power spectrum signal

Y,(w) = X(w)H(w,)

Where H(w) is the vocal tract transfer function and X(w) is the excitation function, taking

the logarithm

log [Y (w)] = log [X(w)] + log [H(w)]

followed by the Fourier Transform

J {log [Yp(w)]} = F {log[X(w)]} +Yf{log[H(w)]} (3)

5

Vowel- IY x 104 FFT of vowel

...,
05 2..

"-1o 10 20 30 40 00 1000 2000 3000 4000

ms Hz

Cepstrum of vowel -IY log[FFT]

1 120 PI

0.8 10

0.6 Glottal Pitch c

0 .4 0

0.2 40

o 20
0 10 20 30 0 1000 2000 3000 4000

quefrency [ms] Hz

Figure 1. Vowel signal, spectrum and cepstrum

6

we obtain the cepstrum, which is comprised of two components, the excitation and the

vocal tract transfer function. As shown in Figure 1, the cepstrum is very effective at

separating the pitch from the vocal tract spectra when using voiced speech. Estimation

of the vocal tract transfer function is more difficult during unvoiced speech. Unvoiced

excitation is then modelled as a pseudo random process. Parsons [40:pp.120] discusses

some models of noise processes associated with different acoustic phonetics.

Cepstral coefficients can be obtained from both the Fourier transform (FFT) and

Linear Predictive coding (LPC). Furui compared both features for speaker identification

[18] and concluded both achieved the same performance, although LPC-cepstrum is much

faster to compute.

As the cepstral coefficients used in this thesis are derived from the LPC-cepstrum, a

brief explanation of Linear predictive coding, the use of an all-pole model and the LPC-

cepstrum follows. It is generally accepted that an all-pole model of the vocal tract is used

in linear predictive coding [40], because of its simplicity, and the ability to model zeroes

introduced by the nasal tract. Parsons [40] discusses the conditions for approximating a

zero by a number of poles. Increasing the order of the all-pole model provides an effective

and tractable model of the human vocal tract. The derivation of the LPC-cepstrum is

based on this all-pole model. The aim of linear prediction is to estimate the output of a

linear time-invariant system based on past values of input and output.

q p

O[n] = _b[JUx[n-jI - -a[i]y[n-i] (4)
j--O i=1

current and previous inputs previous outputs

Where y [n] is the predicted output, a [i] and b U] are the predictor coefficients. When y

converges we have
P q

E a [i] y [n - i] = b [j] x [n - j]
i=O j=O

Taking the z-transform

P q

Y(z) Eja[iz-' - X(z) E-bU] z-j
i=O j=O

7

Taking the ratio of outpu t to input

Y(z) b=0

X(z) z
Ea []z-'

i=O

This is the vocal tract spectrum, H(z)

q1 2b lZ-j
H(z) =0

Sa [iz-'
i=O

By using an all pole model the numerator reduces to a gain term

H (z) = o"

E a [i] z-'
i=0

The output is now a function of previous outputs only, and setting a [0] = 1

H(Z) = - (5)
1 -" a [i] z-'

s=1

Where we redefine a [i] to be -a [i] for convenience. This is usually represented as

A(z)

Where A(z) E a [i] z-' To compute the cepstral coefficients from the LPC model the
i=0

logarithm of the transfer function is taken

log [a/A(z)] = logo" + E cnZ-
n1=

8

differentiating with respect to z- 1 , and making a Taylor series expansion

n-I

--al- Ekckan-k forn >0 (6)
k=1

where a0 = 1, and ak = 0 for k > p.

The log power spectrum 5ecomes

log [o2/IA(ejw)12] = Z cne-nw (7)
n=--oo

where , Cn = c-n, are the LPC-cepstral coefficients.

The cepstral features of a vowel IY are shown in Figure 1, the arrows indicate the

glottal pitch and the first three formants. Formants are the resonant frequencies of the

vocal tract due to the glottal pulses [40]. The cepstral features can be used to track the

pitch and to characterize the vocal tract transfer function of a speaker [38, 401.

Figure 2 shows the cepstral features of two speakers from King . The figure shows

the feature vectors of voiced speech during a 60 second conversation. While the text of the

speech is not identical, there axe still visible differences between the speakers. The purpose

of applying clustering algorithms to these features is to characterize each speaker by the

uniqueness of the patterns evident in Figure 2

2.4 Vector Quantization

Vector quantization is procedure for representing a signal by a number of symbols or

codewords. Vector quantization is widely used in communication systems, where an analog

input is transmitted as a sequence of binary codes. Reconstruction of the signal is achieved

using the codebook in reverse, mapping the codewords into an analog signal. The objective

of vector quantization is to determine the optimal codebook that ensures reconstruction

with minimal distortion. Gersho and Cuperman [20] discuss the applications of VQ to

speech transmission including different codebook design methods. There are a number of

ways to design VQ codebooks, in this research the technique developed by Linde, Buzo

and Gray [30] is used. For an excellent review on vector quantization and codebook design

9

..

100

15w

400

feature

King speaker 2

2-.

0- 600

-2
0

5 0

feaurs

Figure 2. Cepstral feature vectors from King speakers One and Two. (60 seconds of
conversation from Session one)

10

the reader should refer to the 1984 paper by Gray [23]. The Linde, Buzo and Gray (LBG)

technique forms a codebook by progressive splitting of codewords. The LBG algorithm is

implemented as follows :

1. Find the mean of the data set, use this as the initial k-dimensional codeword, Yo,

2. Double the size of the codebook by splitting each existing codeword

Y, = Y.(1 + E),

•Y* = y(1 -

* where, n, ranges from 1 to the current size of the codebook,

* (0.01 < E< 0.05) is a scalar multiplier.

3. Iteratively recalculate the centroids, using k-means, to obtain the optimal centroid

locations.

4. Repeat steps two and three until the codebook is the desired size.

11

SFIND

CENTROID

SCLASSIFY
VECTORS

FIND

CENT OIDS

D [D (DISTORTION)J

Figure 3. Vector Quantization codebook design algorithm [42]

A flow chart of the algorithm is shown in Figure 3. The Classify Vectors is the

nearest-neighbor algorithm [17] (k-nn) and the Find Centroids is the k-means algorithm

[47].

A simple example of codebook splitting using a 2-dimensional data set is illustrated in

Figure 4. Figure 4(a) shows an initial codeword, the mean. The codebook is split two, the

LBG algorithm computed and the two new codewords are shown in 3(b). A final splitting

produces four codewords which represent the four classes. In order to terminate with these

four codewords the user must know that only four centers are present. Otherwise the

algorithm will continue increasing the codebook size, which may not be beneficial.

Vector Quantizer codebooks provide two outputs for each input vector. These out-

puts are the location number of the closest codeword, and the distortion between the input

vector and the codeword. The distortion figure is used for speaker identification. The un-

known speaker's identity is decided as the identity of the speaker whose codebook returns

the lowest distortion. Figure 5 shows an overview of a vector quantizer based classifier.

For a k-dimensional input vector, x, and the nearest codeword, i, the Euclidean distortion

12

,I li t 11011

4 4

4 4 04?
4444 334 444 3 3 4494 33

4 4 33 3 4 4 33 3 4 4 330 3

33 3 3 3 3
(a) (b) (c)

Figure 4. (a) Initial codeword (b) First split (c) Final Codewords

Figure 5. Vector quantizer based classifier

is

d(x, i) = I1z - 1112 (8)
k-1

i=0

In order to identify a speaker the distortion of the utterance is calculated using each of the

known speakers codebooks. The identity is chosen using the lowest distortion.

2.5 Fuzzy Clustering

Fuzzy clustering techniques provide an intuitive and useful tool in pattern recogni-

tion. Bezdek (6] provides a very comprehensive discussion of fuzzy algorithms and their

application to pattern recognition. Fuzzy mathematics assigns memberships to each data

point, one membership for each of the cluster centers in the data space. A sample which is

close to a cluster center, or centroid, has a high membership, close to one, in that cluster

and much lower memberships in the other clusters. The degree of membership provides an

13

indication of how typical the sample is in a given cluster. Consider a sainple due to a noise

process, which is an outlier in a data set. Conventional, or hard, clustering algorithms

will assign the point to a cluster even if it is detrimental to do so. In comparison, fuzzy

clustering will assign the data point very low memberships in all clusters, indicating that

it is not typical of the data set. The membership value uj, of a sample j, in cluster i is

defined in the interval

0 < ULj < 1

The membership value is generally based on the inverse of the distance from the cluster

center to the sample point. The membership is defined as follows:

SK/lld(X,, V1)
Z_ 1ld(Xj, Vk)
k=1

ujj :is the membership of sample Xj in cluster V,

Where : K : is the total number of clusters.

d(Xj, Vk) : is the distance from sample Xj to centroid cluster Vi

Figure 6 illustrates the membership function of a point as a function of normalized

distance from a. cluster center. The figure shows a typical membership function, however

these vary between authors and applications [6, 10, 19, 29].

Fuzzy logic came into prominence with the 1965 paper "Fuzzy Sets" by Lotfi Zadeh

[51]. Since then fuzzy theory has been applied to many areas including pattern recognition.

Ruspini provided one of the first applications of fuzzy logic in clustering, he extended the

conventional k-means algorithm into the Fuzzy k-Means (FKM)[44]. Figure 7 is an example

Ruspini used to illustrate the memberships of data points using fuzzy clustering. The top

of the figure shows two triangular shaped clusters, commonly known as Ruspini's butterfly.

The lower section of the figure shows the memberships in each of the two classes.

x-direction The work by Ruspini was extended by Dunn [13] with the proof of con-

vergence for the Fuzzy c-Means published in 1980 and 1987 [5, 71.

14

............

0 1 2 3 4 5 a
1arndWWM k~m fran md

Figure 6. Typical Fuzzy membership function vs Distance from cluster

+ [ý]+
Y++++ ++

10.

The Fuzzy k-means clustering algorithm is described in pseudo-code below

1. Select the number of clusters required and initialize their positions randomly,

2. Compute the membership of each data point for all the clusters,

3. Compute new cluster centers using the new membership values,

4. Compute the membership of each data point for all clusters,

5. Is the max [1uj - uqf1 less than the stopping criteria?
Si

* IF yes, THEN stop.

e ELSE repeat steps 3 to 5.

6. Save final cluster positions for use in classification.

Where max [(u^j - ui 1] is the objective function and fi is the new membership matrix.
i)

2.5.1 The Fuzzy k-Means Algorithm. The fuzzy k-means algorithms is shown

below. The FKM is listed in C code and MATLAB script in the Appendix.

1. Initialize the centroids, Vi, using any suitable method,

2. Compute the distance from each centroid to each data sample using

d(Xj, V.) = (X, - V,)TA-X(X, - V,) (10)

where A is a positive definite matrix. If A is the identity matrix then the distance measure is the
Euclidean distance.

3. Compute the next iteration of centroids 11, for some q > 0. The parameter, q, is known as the
fuzziness and in this work q = 2.

N

N

j=1

4. Save the previous memberships, uij

5. Update the data memberships, u1i using Equation 10

[1/d(Xj, v,)19
K

E [i/d(X.,, Vk)](9'-)
k=1

6. Calculate the objective function
max [lu,, - ,il]

7. If the (objective function < c), then STOP otherwise GOTO step 3 and continue iterating.Where
c E [0,1].

16

The fuzzy k-means and the hard k-means both form spherical clusters around the

centroids, this does not always reflect the true shape of clusters. To better exploit clus-

ter shapes Gustafson and Kessel [24] introduced the Fuzzy covariance matrix into the

FKM algorithm. This work was extended by Gath and Geva in their Unsupervised Fuzzy

Partition-Optimal Number of Clusters (UFP-ONC) algorithm [19]. In their paper Gath

and Geva introduce a method for determining the optimal number of cluster present in a

data set. Optimality is determined using cluster validity criteria. The cluster validity mea-

sures are the fuzzy hyper-volume, partition density and average partition density. Simply

put, each cluster is specified by a centroid, a fuzzy-covariance matrix and the a priori prob-

ability of the cluster. The fuzzy covariance specifies the local geometry of each cluster, this

technique is widely used in image processing for the detection of lines for applications such

as computer vision and satellite image processing. Cluster validity measures assess each

cluster by measuring its volume (in n-dimensions) based on the fuzzy covariance matrix.

This can be thought of as building a shell around the cluster, with the shell wall being

one standard deviation from the center in each of the dimensions. The smaller this volume

the more compact the cluster, which is a, desirable outcome. However, in the extreme case

where hyper-volume is maximized each data point could be considered a cluster. The ben-

efit of the clustering would be lost, so a second criteria, the cluster density, is introduced

to ensure that the clusters are both compact and densely populated.

To determine the optimal number classes the Unsupervised Fuzzy Partition-Optimal

Number of Classes (UFP-ONC) algorithm computes the cluster validity criteria starting

with two centroids. The number of centroids is then increased to three, again the cluster

validity measures, fuzzy hyper-volume, partition density and average partition density are

calculated. The number of centroids is progressively increased until the maximum (set

by the user) is reached. By examining the cluster validity measures against the number

of clusters an optimum may be found. This optimum should provide small fuzzy hyper-

volume, high partition density and high average partition density. The FMLE section

of the UFP-ONC must be applied carefully, if the UFP-ONC is initialized poorly, the

algorithm will not converge to the true cluster centers. This is due to the fact that the

distance measure, Equation 11, and the fuzzy covariance matrix, confine the centroids to

17

a small area, effectively restricting the search of the feature space. To overcome this the

UFP-ONC uses the fuzzy k-means algorithm to initialize the centroids and then refines the

centroid locations using the fuzzy maximum likelihood estimation algorithm.

The UFP-ONC algorithm in pseudo-code can be summarized as

1. Set the number of clusters at two

2. Repeat until maximum number of clusters computed

"* Compute the centroid locations using the fuzzy k-means

"* Compute the Fuzzy Maximum Likelihood Estimation algorithm

"* Compute the cluster validity measures,

3. Analyze the validity measures to determine the optimal number of classes

18

2.5.2 The Fuzzy Maximum Likelihood Estimation Algorithm. The fuzzy maxi-

mum likelihood estimation (FMLE) [19] algorithm is shown below. The C code is included

in the Appendix.

1. Initialize the centroids using the fuzzy k-means

2. Set the initial data posterior (memberships in the FKM) to

h(ilX,) = " where K is the number of clusters

3. Set the initial fuzzy covariance to the identity matrix

4. Compute the a priori probability of each cluster

N1PA = •-'K E (•ix,)
j=1

5. Compute the exponential or fuzzy Mahalanobis distance from each centroid to each data sample
using

d•(Xi,,V,) = [det(F,)]½ (1

d V (exp [(X, - Vi)TFy'(X, -- V)/2]

where Fi the fuzzy covariance matrix is defined by Equation 12.

6. Compute the next iteration of centroids fl,

N

N

E h(ilX,)
j=1

7. Save the previous a posterior probabilities (memberships),

h(ilX,)

8. Update the data memberships, h(ilXj) using

holx') 1/d2(X,, Vi)
KE 1/d2.(Xj, Vrk)

k= I

9. Calculate the objective function
max [lh(ilXj) - la(iIXj)I]

10. If the (objective function < c), then STOP otherwise continue iterating using Equation 12 below.

11. Compute the fuzzy covariance matrix, Fi for each centroid

N

Zh(iJX,)(Xi - V.)(X 3 - V)T

F i= N (12)

E h(ilXj)

19

Fuzzy techniques have been applied in conjunction with vector quantization for use

in a speech recognition system. Tseng, Sabin and Lee [48] used a fuzzy vector quantizer

(FVQ) to reduce the amount of training data required for a Hidden Markov Model (HMM).

In that application an LBG based vector quantizer was modified to output a membership

function vector. This combination of LBG and fuzzy memberships provided a technique

for reducing the distortion in the output of the vector quantizer. The memberships were

used to assist the Hidden Markov model to determine the state transition probabilities.

Fuzzy techniques and vector quantization fusion has also been reported by Asakawa et al

[2, 3]. This work used the LBG/Fuzzy combinations for improving the fidelity of speech

transmitted using low bit rates of 2400bps. These applications of fuzzy techniques illustrate

that some benefit is offered by introducing fuzzy methods into speech processing problems.

2.6 Artificial Neural Networks

Artificial Neural Networks comprise a wide variety of different algorithms and archi-

tectures. They all share common attributes of highly interconnected nodes and a learning

equation. The success of the human neurological system is the basis for artificial neural

networks. From the pattern recognition standpoint ANNs are non-linear classifiers. The

multilayer perceptron can learn arbitrarily complex decision boundaries, provided enough

nodes are used [12]. Rogers and Kabrisky [43] discuss the different types of non-linearities

that can be used. Lippmann [31] in his excellent tutorial, provides a extensive discussion

of the multilayer perceptron (MLP) and the back-propagation algorithm which trains the

network.

The back-propagation algorithm is a gradient descent algorithm designed to minimize

the mean square error bet,.Veen the actual output of the network and the desired output.

The training process is su!e. vised training, this means that the data set is labelled to

indicate which class each of the feature vectors represents. Each feature vector is presented

to the MLP, each feature is weighted and fed forward to a hidden layer of nodes. Each

node sums its input and then applies the non-linear (typically sigmoid) function. The first

hidden layer outputs are then weighted and fed to the following layer, this continues until

the final output layer is reached. The output vector is compared to a desired output set

20

by the user. The error is then back-propagated through each layer of nodes. At each layer

the weights are adjusted using the back-propagation algorithm. Recent research at AFIT

by McCrae, Keller and Martin, using neural networks has been successful. McCrae [34]

used an MLP for color image segmentation, as a pre-processor for a target identification

system. Keller [27] successfully used neural networks for personnel identification by fusing

face data and speech data and Martin [32] applied neural networks to radar identification

of non-cooperative targets.

2.7 Conclusion

This chapter provid••s a review of literature relating to speaker identification, cepstral

features, minimum dist--tion classification and clustering techniques. The review of the

cepstral features included both the Fourier Transform method, and the Linear Predictive

Coding method of finding the cepstral coefficients. The cepstral features provide informa-

tion about the vocal tract transfer function of a speaker. By using clustering algorithms

we attempt to find a unique set of parameters which uniquely identify that person.

Clustering techniques attempt to partition the feature space into regions defined by

a centroid and its neighborhood. Having partitioned a feature space we can construct

a classifier which provides the heart of the speaker identification system. The clustering

algorithms reviewed are vector quantization, specifically the algorithm by Linde, Buzo and

Gray, fuzzy clustering, with emphasis on work by Gath and Geva and artificial neural

networks. Vector quantization methods are now well developed and widely used in com-

munication system, in this work they provide a baseline for evaluating fuzzy clustering and

ANN performance. Fuzzy clustering offers a technique for dealing with data points which

are near the boundary of two partitions. These points often present difficulties for cluster-

ing algorithms as they may be from either cluster. Fuzzy clustering attempts to alleviate

this problem by assigning memberships, the higher the membership the more likely that

the point is in a given cluster. Artificial neural networks provide a dramatically differ-

ent approach to clustering, the network is able to construct arbitrarily complex decision

boundaries to partition the feature space. ANN's use relatively simple functions such as

sigmoids inside a highly interconnected network. All three methods attempt to partition

21

the feature space through a learning process. These techniques are extremely useful when

the process is too complex to be deterministically modelled.

Chapter III discusses the structure of the data sets, including the use of separability

measures, and finally the implementation of the clustering algorithms.

22

III. Approach and Methodology

3.1 Introduction

Three different clustering methods were used in this speaker identification experi-

ment, vector quantization, fuzzy clustering and a multi-layer perceptron. The following

sections describe the each of the data sets, the speech capture and preprocessing, and the

implementation of each of the clustering algorithms.

3.2 Data Sets

Three data sets were used in this work, the TIMIT and King speech databases and a

local AFIT corpus which was recorded during this research. The AFIT93 corpus comprises

twelve speakers, eleven male and one female. Ten of the speakers were recorded in ten

sessions over a three week period. The remaining two were recorded for seven sessions

over the same three week period. Each session comprises the person's full name, uttered

three times, followed by three sentences based on the phonetically balanced sentences of

the TIMIT database.

A portion of the DARPA TIMIT Acoustic Phonetic Continuous Speech Database [36]

was used to provide a corpus of ten speakers, seven male and three female, each speaking

ten sentences. The TIMIT database provides good quality recordings, with a signal to

noise ratio of 36.72dB. The TIMIT sentences used were the

$SA

.Sx

* SI

Examples of the phonetically balanced TIMIT phrases are included in the Appendix.

The King database was collected by ITT Aerospace and comprises two recording

methods,wide and narrow band. The narrowband recordings of the first twelve speakers

were used in this work. Each speaker is recorded in ten sessions, with each session 60

seconds in length. The King database was collected in two stages using different equipment,

the first five sessions are of much higher quality than the second five. Colombi [11] provides

23

details of the signal to noise ratios with and without silence frames, the maximum is

14.75dB, significantly lower than TIMIT.

The AFIT93 recordings were made in a computer room, using an Ariel Proport and

SUN Sparc 2 station. The speech was recorded at 16KHz and later down sampled to 8KHz

in keeping with the sampling rate of King and TIMIT.

3.3 Data Pre-processing and Feature Extraction

Each of the data sets was processed using the Entropic Signal Processing System

[141 which is a commercial software package comprising a library of programs for speech

processing. The data was pre-emphasized with a 1 - 0.97z- 1 filter, followed by a Ham-

ming window using 256 samples (32ms) per frame, with consecutive frames overlapping by

85 samples. The next stage of processing involves two processes, LPC-cepstral coefficient

extraction and calculation of formants. The formant information is used to calculate the

probability of voicing of the frame of speech. The probability of voicing is then appended

to each cepstral feature vector and used to select only feature vectors which have greater

than 10% probability of voicing. These feature vectors are then used in the clustering

experiments. Figure 8 provides an overview of the pre-processing system. The follow-

ing code is C script file [21] containing the ESPS commands which implement the data

preprocessing.

8! /bir/csh

This script uses ESPS to extract cepstral features from the TIMIT corpus
database collected by Texas Instruments
I

foreach FILE (*.sd)
filter -f filter -P preemp-params transit.sd transit.flt.sd
refcof -P .. /Prefcof transit.flt.sd transit.ref.cof
spectrans -auCEP" transit.ref.cof transit.cep
formant -p. 9 7 -w.032 -Wi -i.0106 -F transit.sd
pplain -e2 transit.fO > pv
addfea -f prob-voice -c"Adding prob-voice" pv transit.cep
set TEMP - $FILE:r
select -q "prob-voice > . 1" -o $TNP.cep transit.cep

end

The final pre-processing step was to partition the databases into equal halves for

training and testing of the classifiers.

24

I ANALOGUE to DIAL Ariel PmuI CONVERSION

. L4.* II

FILTERING 1-0.97/4
* I, 4,

S* HADOWING 85 "M*Srp

SI I 4 -

(NVOICING 01V) FEATUyRE

• S

R V

4

• wih PV>0.1 FEATURE VEC"TORS

Figure 8. Cepstral Feature Extraction Process

25

Table 1. Data Selection used for Training and Testing

Test No. Sessions used in Training Sessions used in testing
1 1 1,2,3,4,5(6,7)'
2 1,2 1, 2, 3, 4, 5 (6, 7)'
3 1,2,3 1, 2, 3, 4, 5 (6, 7)"
4 1,2,3,4 1, 2, 3, 4, 5 (6, 7)*
5 1,2,3,4,5 1, 2, 3, 4, 5 (6, 7)"
6* 1,2,3,4,5,6 1, 2, 3, 4, 5, 6, 7
7" 1,2,3,4,5,6,7 1, 2, 3, 4, 5, 6, 7

* AFIT93 only

The first seven days of the AFIT93 database was split into training and testing sets.

This provided seven sessions of data with each session comprising a training and testing

set.

All ten of the King sessions, for speakers one to speaker twelve, was divided into

equal training and testing sets.

TIMIT speakers fcmmO, fcrhO, fedwO, mcmjO, mefgO, mhpgO, mjlsO, mmwhO, mprkO,

mrtkO, were used in the experiment. The utterances from each speaker were divided into

training and testing sets in the same manner as for King and AFIT93.

The identification rate was recorded for classifiers trained using an increasing number

of sessions. Based on the assumption that codebooks designed with data from a number of

sessions would better represent the long term statistics of the speakers cepstral features, it

is expected that the identification rate should increase with the number of training sessions

present. Table 1 shows which training/testing data was used for each of the experiments.

3.4 Vector Quantization

The vector quantization speaker identification system was developed using the ESPS

libraries in an identical method to that used in previous work at AFIT by John Colombi

[11]. The training data for each database was used to generate a vector quantizer codebook

for each speaker using the vqdes (LBG) algorithm available in ESPS. These codebooks

were then combined into a global codebook which was used as the classifier.

26

The identification process presents the feature vectors of an utterance to the global

codebook, the utterance is then compared against each of the speaker codebooks. For each

codebook the distortion is computed using the Euclidean distance of the feature vectors

to each of the codewords. The classifier then chooses the speaker codebook which has the

lowest distortion.

Define D(w,), the utterance distortion

K

D(w1) = ZMinlJuk - c,,il (13)
k=1

we choose class w, if

D(wi) = min D(wi,)

uk : feature vector to be classified

cj :codeword j from speaker i

where: K : is the number of feature vectors in the utterance.

j: is the number of codewords in each codebook, and

i: is the number of known speakers.

In this experiment, the codebooks have 64 codewords for each speaker, so for example

the AFIT93 VQ classifier decision is given by

K

D(wi) = min min Iluk-cij1
i=1 ... 12E •=l I=... 64

k=1

3.5 Fuzzy Clustering

The identical training data as used in the VQ classifier was clustered to produce a

set of centroids for each session, for each speaker. The Fuzzy clustering algorithm was

written by the author using ANSI C [28] and includes routines from "Numerical Recipes

in C" [41]. The fuzzy clustering algorithm is performed in two distinct steps. The initial

clustering is performed using the Fuzzy k-means (FKM). After the FKM has converged the

second phase introduces the Fuzzy Maximum Likelihood Estimation (FMLE) algorithm

published by Gath and Geva. The FMLE algorithm computes a covariance matrix for each

27

of the centroids. This is then used in the calculation of the distances of data points from

the centroid. The distances are subsequently used for membership calculations. The

LFP-ONC algorithm is discussed in detail in chapter II.

A number of issues were encountered during the application of the UFP-ONC to

speaker identification. The calculation of the inverse of fuzzy covariance matrices posed

significant difficulties that were not anticipated. The fuzzy covariance matrix was of-

ten singular or near singular, which prevents finding the inverse. Initially the inverse

was calculated using LU decomposition, however this was replaced with Singular Value

Decomposition (SVD). SVD provides a means of detecting singularity and was used to

compute the pseudo-inverse of the covariance matrix when the complete inverse could not

be computed. There appear to be a number)f reasons for the covariance matrix becoming

singular. The most obvious case is where points are collinear or coplanar. The most likely

source of problems is the exponential (Equation 11) distance measure. The distances can

become extremely large and cause the memberships become very small, often zero. This,

in turn, is reflected in the calculation of the fuzzy covariance matrix, which may lead to it

becoming singular even though the members of the cluster are not coplanar.

Another issue which was encountered is the problem of repeated centroids. This

occurs when two, or more, centroids are located at exactly the same point. The repeated

centroid problem is mainly attributed to the fuzzy k-means algorithm which is used to

make the initial estimate of the centroids. This problem is not confined to fuzzy algorithms.

Bezdek [6] discusses these types of problems and a number of techniques to prevent this.

A solution to this problem was not found, although it is an important addition that th•

UFP-ONC requires to ensure its correct operation.

These issues, which the author considers to be the fragility of the UFP-ONC, require

additional research.

The programs were run using SUN Sparc 2, Sparc 10, IBM RS6000 and Silicon

Graphics Iris 4D computers. A full listing of the code is included in the appendix. The

C program reads a configuration file which details the parameters to be used for a given

clustering run. An example of the configuration file is also included in the appendix.

28

3.6 Fuzzy Classifier

The final component of the speaker identification is the classifier. Gath and Geva

achieved classification by examining the membership values after the clustering process had

converged. A few comments about the fuzzy maximum likelihood estimation algorithm are

required as it has considerable impact on the design of the classifier.

The FMLE uses fuzzy covariance matrices to define local neighborhoods around each

centroid, this combined with the distance measure produces memberships. In this author's

experience, these memberships are very close to one, or very close to zero. When the entire

data set is clustered at one time these memberships provide an excellent classification as

Gath and Geva [19] demonstrated with Anderson's [1] Iris data.

The speaker identification experiments conducted in this work treated each speaker

separately. The membership values indicate which cluster of speaker X a feature vector

should be assigned to. Howver to identify a speaker requires a method of determining

which speaker is the closest using some form of distance metric. To achieve this type of

distortion based classification, a rudimentary classifier was designed based on the Maximum

Likelihood classifiers discussed in Tou and Gonzalez [47:Sect 4.4]. It is effectively the

same process as the LBG classifier shown in Equation 13. The fuzzy maximum likelihood

classification algorithm proceeds as follows

1. Present an unknown utterance

2. For each known speaker

"* Load centroids and Fuzzy covariance matrices

"* Compute the Fuzzy Mahala-obis distances using Equation 11 for all feature

vectors

"* Determine the distance from the centroid with the highest membership

"* Total the log of these closest distances

3. Find the minimum total distance, classify the utterance to be from that speaker

29

The classifier was written in ANSI C and is included in the appendix. This classifier

is a "quick and dirty" approach which needs closer examination and some refinement.

However, the classification system performed quite well.

3.7 Artificial Neural Network Multi-layer Perceptron

AFIT has conducted considerable research using artificial neural networks. The

Multi-layer perceptron code used in this research was written by Curtis Martin for his

masters thesis [321. The neural network code is written in ANSI C and was executed

on the same computers noted in the Section 3.5 on fuzzy clustering. The code has been

modified by this author to include the ability to save and load weights and to remove the

multiple testing mode.

There are no hard and fast methods to determine how many hidden nodes, should

be used in a neural network. The basic rules are too few and the error rate will be high,

too many and the network will memorize the training data and not generalize. Hush and

Horn3 [261 discuss this issue at some length. The method used in this research is based on

Widrow's heuristic :

10 * [(m + 1) * H,, + (H,, + 1) Col < K (14)

m is the dimension of the feature vectors

Where H,, is the number of hidden nodes

C. is the number of output nodes (classes)

K: is the total number of data training samples

For example consider designing an MLP for the following classification parameters,

"* m = 20 dimensional speech features

"* C0 = 12 speakers

"* K = 20,000 sample feature vectors

10*[(20+ 1) *H,, +(H, + 1)*12] < 20,000

30

=•33*H, +12 < 2000

*H. < (2000- 12)/33

SH. < 60.24

3.8 Data Separability

Pattern recognition is the process of identifying all the different classes in a popula-

tion, based on the features used to represent the population.

Consider the data points in Figure 9 below, there are three classes of artificially

generated gaussian distributed data. The (x, y) coordinate pairs provide a feature set

which can be used to separate the data into the three classes. Using this feature set we

quickly determine that two classes overlap, while the third class is clearly separated from

the other two.

Teotm data 3 goaulans ckunes

-0 , ,* '*" , ! :

.......~ . 4
.. ++

.

+ + .+

".2 •...........••....• V .,

-1.5,. ++.+i

•2 4- 4

"2 b. ,............ ,+++• ++..

: . + + .

+++

-3•(+ +
.+ + 1-__ _ + ~~ ~: : - l . . '_ --

"-45 -4 -3.5 3 -2.5 2 -1.5 1 -0.5 0

Figure 9. Test6 data

When the dimension of the feature vectors is increased beyond three we humans

can no longer provide a simple graphical representation, and the intuitive feel for class

separability is lost. The feature vectors used in this work are 20-dimensional cepstral

coefficients, with the number of classes equal to the number of speakers, twelve for AFIT93

31

and King, and ten for TIMIT. Estimating the degree of separability of the classes indicates

how difficult the class identification task is. Additionally, separability measures provide a

guide to which pattern recognition algorithms are likely to be successful. This aspect of

data pre-processing is relevant to any pattern recognition task, such as image segmentation

of synthetic aperture radar data, automatic target identification systems and automated

hand written character recognition. This remainder of this section describes a separability

measure developed by Fukunaga [17], then applies the separability measure to two simple

data sets, Test6 and Anderson's Iris data [1]. The J4 separability measures for the speech

databases is presented in Chapter IV.

The Test6 set is three classes of 2-dimensional gaussian distributed data, each class

containing 100 samples. Anderson's [1] Iris data is 4-dimensional and represents the sepal

length, sepal width, petal length and petal width of three families of Iris. There are 50

feature vectors from each of the Iris families, Iris Sestosa, Iris Versicolor and Iris Virginica.

This data was used by Fisher in his development of linear discriminant analysis [15].

Fukunaga develops a number of separability measures of his book, "Introduction to

Statistical Pattern Recognition",[171. The measures labelled J1, J2, J3 and J4 [17:Sect

9.2], provide different indicators of between-class scatter as compared to within-class scat-

ter. Parsons [40:pp 176-180] provides an introductory discussion on separability measures

including Fisher Ratios and Fukunaga's J1 ... J4 indicators.

The measure J4 by Fukunaga [17] is defined by

J4 = trS1
trS2

where, trS1 and trS2, are the trace of inter-class scatter matrix, and the intra-class scatter

matrix, respectively. The trace of a matrix is defined [46] as

k k

trA = aii = Z ,\
i=1 i=1

where A•s are the eigenvalues of the matrix A, which is kxk. The eigenvalues represent the

major and minor axes of an k-dimensional hyper-ellipsoid, (where Ai > 0) in this case the

32

Table 2. Separability Measure J4

Iris Test6
19.849830 13.225790

cluster of feature vectors representing a class. The scatter matrices, S1 and S2 are defined

by

M

S1 =(M, - Mo)(M, - Mo)T (15)

M

S2 = • P(w 1)E { (X - X - M,)T /w} (16)
i=1

Where M is the number of classes in the data population. Equation 16 is often represented

as
M

S= EP(w)Ci (17)
1=1

Cj = (X,-_ Mj)(X, _ M)T18
N_) (18)

P(wi): is the a priori probability of class i

Mi: is the mean of class i

where: M.: is the global mean of the whole data set

Cj: is the covariance matrix of a class i.

N : is the number of feature vectors in the class

The larger the J4 separability measure the more separable a data set is. The break

even point is when J.4 = 1, which means that the inter-class scatter is identical to the

intra-class scatter. This would still present a non-trivial pattern classification task.

The separability measures results for the two data sets are shown in Table 2. At first

inspection both the Test6 and Iris data appear to be easily separated into three classes.

Separability measures must be considered carefully, as indicators can be misleading.

The Iris data is plotted in Figure 10 using three of the four dimensions. Note that two of

the classes overlap. This is also the case for the Test6 data in Figure 9. Computing the

J4 measure for the Iris data set when considering two classes at a time reveals the true

33

Iris data

...

7 1.• : ". ..o ¢
.

.. '- ! ° "• ..

-.- ' .~ "• : o• '...!........ 000

5-....

4".".......".

4 a

Figure 10. Iris data dimensions 2,3,4

Table 3. Separability measure .14 for Iris and Test6
3r Test6 .14

1 5.601 9.608 w1 1 1.842 0.598 w1
1 0.885 w2 1 50.105 w2

structure of the data set. This is shown in table 3, the first row shows that class one (Iris

Sestosa) is clearly separable from the other two classes (Iris Versicolor and Iris Virginica).

The second row reveals the overlap we saw (Figure 10) between the other two classes. The

overall J14 measure provides a general indicator of the data set, however it is important to

consider the classes in pairs to obtain an accurate indication.

3.9 Conclusion

Three speech databases are used in this speaker identification research. The AFIT93,

TIMIT and King data were all pre-processed identically using the ESPS speech processing

library. The cepstral feature vectors from segments of speech which had greater than ten

percent probability of voicing were retained as the feature set. The data was partitioned

34

into a training and a test set for each day. The identification experiments for each method,

vector quantization, fuzzy clustering and neural network, were trained using the data from

day one up to the final day. The testing was conducted using the test data from all days.

For example the day three experiment was trained using data from day one, 1 %o and

three. It was then tested using data from all days, five for TIMIT and King and seven

for AFIT93. The performance is based on identification rate since the three clustering

methods do not have a common distance or distortion metric. Chapter four presents the

results of the experiments conducted, including an analysis of the separability, using a

separability measure developed by Fukunaga [17].

335

IV. Results

4.1 Introduction

This chapter presents the results of the speaker-identification experiments. An initial

discussion on the separability measures of the databases is followed by the results for each

of the clustering techniques.

4.2 Separability Results for Speaker Data

Separability measures were discussed in Chapter III and are used to indicate how

difficult the classes axe to separate. Table 4 lists the J4 separability measure for each of

the speech databases. The table shows the separability measure for each speaker when

compared to each of the others speakers in turn. Since the matrix is symmetric only the

upper half is shown. Recall that the J4 measure is the ratio of the inter-class scatter

to the intra-class scatter, and for linear separability J4 must be greater than one. All

three databases present a considerable challenge, King in particular has a large number of

classes that appear to be inseparable, at least to three decimal places. Keeping in mind

that one is the break even point for the J4 measure, displaying three decimal places is

only done to ensure that the tables were not filled with zero! It is tempting to conclude

that the task of identifying the speakers in these databases is impossible and to stop

there. Actually this data provides a justification for using clustering algorithms to design

a speaker identification system. Clustering algorithms attempt to detect structure in data

sets which is difficult to discern. This is basically sub-partitioning the feature space into

smaller regions which (hopefully) provide the separability between classes that we require.

The J4 values still provide useful information despite the low values. The relative

values indicate which classes are likely to be the most difficult to isolate. The confusion

matrices in Section 4.6 confirm the J4 values for the AFIT93 speakers. The first speaker,

cm, is incorrectly identified as being the speaker for the majority of the other AFIT speak-

ers. In the confusion matrix this is indicated by the values in the first column. The J4

measures in Table 4 confirm this, since the relative values for cm are some of the lowest.

36

Table 4. Separability Measure J4 for AFIT, King and TIMIT

cm dp ei gs jc jk jm jt km mc rm wg
1 0.009 0.006 0.004 0.007 0.007 0.008 0.014 0.010 0.008 0.005 0.018 cm

1 0.012 0.011 0.013 0.011 0.004 0.032 0.006 0.005 0.016 0.021 dp
1 0.002 0.009 0.005 0.010 0.015 0.010 0.016 0.003 0.010 ei

1 0.005 0.008 0.009 0.011 0.008 0.011 0.004 0.017 gs
1 0.015 0.013 0.009 0.009 0.017 0.010 0.028 jc

1 0.006 0.025 0.011 0.014 0.005 0.005 jk
1 0.031 0.007 0.005 0.011 0.017 jm

1 0.024 0.035 0.017 0.035 jt
1 0.012 0.013 0.018 km

1 0.019 0.030 mc
1 0.010 rm

1 wg

spl sp2 sp3 sp4 sp5 sp6 sp7 sp8 sp9 splO spll spl2
1 0.016 0.039 0.006 0.116 0.045 0.006 0.023 0.001 0.018 0.000 0.000 spl

1 0.009 0.021 0.045 0.011 0.007 0.007 0.015 0.003 0.000 0.000 sp2
1 0.050 0.022 0.002 0.021 0.003 0.038 0.005 0.000 0.000 sp3

1 0.124 0.060 0.008 0.037 0.003 0.030 0.000 0.000 sp4
1 0.020 0.079 0.043 0.111 0.042 0.000 0.000 sp5

1 0.027 0.005 0.045 0.006 0.000 0.000 sp6
1 0.012 0.005 0.010 0.000 0.000 sp7

1 0.024 0.002 0.000 0.000 sp8
1 0.018 0.000 0.000 sp9

1 0.000 0.000 splO
1 0.000 spll

1 spl2

fcmmO fcrhO fedwO mcmjO mefgO mhpgO mjlsO mmwhO mprko mrtkO
1 0.077 0.164 0.016 0.007 0.008 0.024 0.147 0.063 0.046 fcmmO

1 0.016 0.043 0.111 0.104 0.131 0.022 0.008 0.181 fcrhO
1 0.107 0.223 0.213 0.257 0.010 0.031 0.335 fedwO

1 0.023 0.020 0.038 0.106 0.031 0.064 mcmjO
1 0.001 0.013 0.208 0.092 0.021 mefgO

1 0.007 0.202 0.088 0.020 mhpgO
1 0.251 0.119 0.022 mjlsO

1 0.028 0.323 mmwhO
1 0.151 mprkO

S1mrtkO

37

4.3 Vector Quantization Benchmark

The vector quantization system provides the benchmark performance for compari-

son with the other techniques. Figure 11 displays the identification rates for the three

databases. For all databases the identification rates progressively climb with the number

of sessions used in the codebooks. The lower identification rates for the King database

are due several factors including dramatic changes in the recording after session five, and

the speech is conversational, unlike the phonetically balanced sentences used in TIMIT

and AFIT93. The codebooks have 64 codewords and use the Euclidean distortion mea-

sure. The performance of the classifier is lower when the test data is used, this drop in

performance provides an indication of how well the classifier can generalize.

4.4 Fuzzy Clustering Experiment

The UFP-ONC based speaker-identification system reported in these results used

eight centroids. Figure 12 shows the overall identification rate for the test data sets. The

UFP-ONC rates for AFIT93 and TIMIT are 72% and 67% respectively. The result for

King is very low, this is most likely due to the UFP-ONC algorithm not converging for

speakers sp4 and sp12 on session five. This implementation of the UFP-ONC required

convergence in 500 iterations, if convergence is not achieved then the centroids are saved

and used as the best set available. This is not an an adequate long term solution, however

it is considered to be a reasonable approach.

Figure 13 shows the performance of UFP-ONC, LBG and the MLP for the AFIT93

corpus. The graphs display the mean identification rate with the line. The error bars

are plus and minus one standard deviation frora the mean. Note that LBG achieves a

mean rate of 94.2% while the UFP-ONC achieves 92%, this indicates that the UFP-ONC

can achieve performance as high as vector quantization. The vector quantization system

is more consistent as seen by the smaller standard deviation. Like the LBG algorithm,

the UFP-ONC exhibits better performance as the number of sessions of training data is

increased. This appears to confirm that the long term statistics of the speech feature

vectors axe important to identification accuracy.

38

- • • | - i I I U

4.5 ANN Experiments

Figure 14 displays the identification rate for the multi-layer perceptron. The iden-

tification rates are significantly lower than those achieved by vector quantization. Each

network was presented with feature vectors from all speakers and trained with one out-

put for each speaker. Had the cepstral features been grouped by families of vowels or

phonemes such as the work reported by Rabiner and Juang [421 the identification rates

would be higher.

All networks were trained with 20 nodes in the hidden layer, for 3000 epochs. None

of the ANNs achieved the desired mean squared error of 0.01, generally the MSE was 0.81

after 3000 epochs. The TIMIT networks were trained for 30,000 epochs but still did not

reduce the mean squared error below 0.7. To provide an even comparison between the

clustering algorithms the data was presented in exactly the same way each time. This

presentation of cepstral data is obviously not suited for classification by MLP. Another

factor that must be considered is the training time required for neural networks. The

King and AFIT93 databases required four days of processing for 3000 epochs on both the

IBM RS6000 and the Silicon Graphics Iris 4D. This made it extremely difficult to conduct

multiple tests which may have provided better results.

39

VO Warettiwon Rdat - AFtO corpus

........t....... A FIT 93

704....... 4.......

Session used in oadtaaok

VO Speemme Idsni~tcifabn Ratsein

tow

12 3 43
Seassons used in codobook

VO kldrnificstion Rate TIMIT

100....
training

90t...........
..

so................ I I

2 3 4 5oeoo

Figure 11. Vector Quantizer Identification Rate - Training

40

UFPONC lbrMlc~to RODe - AFIT3

10 0

9 0

- AFIT93

ewi

.

1 0

1 2 3 4 5 6 7
Sessions Wf trsirnf dontue d In codebodk

UFPONC kIdHWiA96On Rats- KINO

go

60, K in g

20 -.......

10

I 1.5 2 25 3 3.548 5
Sessions of tratinig data used In codeaboo

UFPONC kdnllcamailon Rate - TIMIT
00--- . - -.-.. . -..... -..

00 TIMIT

40-.....

20

20 ~...i.

t

n1 1.5 2 2.5 3 3.5 4 4.5 5
Sessions of Vail"n d~ae Load In -, Ie1 -1

Figure 12. UFP-ONC Identification Rate

41

VO kiendsstlion Pig - API"W Tat

LBG

... S*

1 0 0

Sessionsus~ed In ad~o

Fiurey 13m AF~iT RddeAFTifiTatinRt

004 2.. .

ANN Idut~icon Rat. - AFITB3 corpsa

U AFIT93

40ft

1 2 3 4 5 6 7
Seasons of tranvng dta used in codahook

ANN Idevtiflcafion Rat. - I(I kO

U S King

1 2 3 4 5
Seasion of trurtrq data Lned in oodebook

VO Ideflhfdicon Rat. - TIMIT

U50 TIMIT
ft

12 3 4 5
Sceacria of trmin, data used in codetook

Figure 14. ANN Identification Rate

43

4.6 Confusion Matrices

Confusion matrices for the AFIT93 corpus were generated from the results of the

day one and the day seven codebook tests. The confusion matrices are shown in Tables 5

and 6. The vertical axis of the matrix represents the true identity of the speaker, while

the horizontal axis represents the decision made by the classifier. For example, looking at

Table 5, the second row of the LBG matrix shows that speaker 2 was identified six times

as speaker 1, twenty-three times as speaker 2 (correct), and once each as speaker 3 and

speaker 5. In addition to showing that the correct identification rate for speaker 2 was

74.2% (1) the confusion matrix indicates which person was selected when an incorrect

decision was made.

The multilayer perceptron appears to have split the speakers into two classes. It

appears that attempting to train a multilayer perceptron using all feature vectors from all

speakers is not a suitable method. By choosing a subset of speech features, such as the

formants, ANNs has been shown to perform extremely well [42]

The UFP-ONC achieves comparable performance to vector quantization. Note that

both methods show strong diagonals in the matrix, the results for day seven are especially

pronounced. The confusion matrices provide an easy method of determining whether the

LBG and UFP-ONC could be used to complement each other, however the confusion

matrices also indicate that the vector quantization and the fuzzy technique make similar

errors.

4.7 Conclusion

This chapter introduced separability measures and provided an analysis of the sepa-

rability measure for each of the speech databases using Fukunaga's J4 measure. The sep-

arability wneasures indicate that all three databases pose a significant problem for speaker

identification using any of the statistical based classifiers. Clustering techniques are con-

sidered to the most suitable choice to form the basis of a speaker identification system.

The identification rates for each of the three techniques was reported, with both the LBG

vector quantization and the fuzzy UFP-ONC achieving rates of more than 90% on indi-

44

Table 5. AFIT Day One - Confusion Matrices for LBG, UFP-ONC, MLP

LBG
30

6 23 1 1

2 13 1 3 1 . . .

4 12 11 1 1 1
1 . . . 27 1 1
1 27 . . . 2 1

1 4 . . . 18 1 6
1 1 3 24 .I

1 2 . . . 1 24 1
1 28

15 1 3 1 . 2 7
3 1 17

UFP-ONC
29 1

4 24 3 .

1 2 10 1 . 4 2
1 28 1

9 5 6 55
2 20 . . . 8 1

1 1 25 3
2 1 7 . . . 11 9
12 4 2 6 5

1 28
5 3 3 8 11
4 1 . 3 7 15

ANN
12 3 15

3 14 14
10 3 7

1 4 9 16

1 . 215 312
1 2 13 17

2 15 13
1 2 7 20

1 17 11
2 1 26

2 3 13 12
1 1 6 6 7

45

Tabh' 6. AFIT Day Seven - Confusion Matrices for LBG, UFP-ONC, MLP

LBG
28 1 . . . 1
1 281

17 2 1
1 28 . . . 1

2 28 . . .
. . . . 31
* 1 22 1 5 1

1 . . 29 . .
1 28 .
S . . 1 . . . 28

4 3 2 3 2 1 15
1 20

tUFP-ONC
29 . . . 1

27 1 3
20
3 25 1 1
2 27 . . . 1 .

1 . . . 29 1
5 6 1 1 13 2 2

1 29 . .
.* 29 .
1 1 1 1 25

8 5 1 1 10 5
S 21

ANN
7 1 4 18

7 1 3 18 2
I 2 15 2

1 8 21
2 1 1 17 7 2
. . . 21 7 3
. . 1 14 12 3
. 13 11 6

26 3
29

1 16 111
11 7 3

46

viduals. LBG is more consistent than the UFP-ONC at this time, however the UFP-ONC

has achieved very good performance with only eight cluster centers in the speaker code-

books as compared with 64 codewords in the vector quantizer codebooks. However this

implementation of the UFP-ONC is not yet robust, a number of problems affect its per-

formance. This preliminary investigation in speaker identification using fuzzy techniques

indicates that further research into fuzzy based methods is warranted.

47

V. Conclusions

In this research the Unsupervised Fuzzy Partition-Optimal Number of Classes al-

gorithm was implemented and applied to speaker-identification. The performance of the

UFP-ONC is compared to LBG vector quantization and the multilayer perceptron.

This research demonstrated that fuzzy clustering methods can achieve the same

or higher rates of identification on individuals in a database. The UFP-ONC clustering

algorithm provides a very effective means of developing fuzzy speaker codebooks. The

fuzzy codebooks achieve very good identification rates with fewer centroids than used in

vector quantization. This comes at the expense of increased computation during training

and additional storage for the fuzzy covariance matrices.

The present implementation of the UFP-ONC requires more research to achieve the

robust operation of the LBG based vector quantizer. Issues that need to be addressed

include :

"* How to prevent repeated centroids in the Fuzzy k-means algorithm. The current

implementation of the UFP-ONC does not test for coincident centroids. Coincident

centroids prevent correct operation of the classifier by assigning equal memberships

to each of the clusters.

"* How to adapt the validity criteria to provide meaningful indicators for speech data.

The cluster validity measures were not reliably generated when using speech data.

When applied to simpler data sets such as the Iris data, Test6 or even RGB vectors

from images, the measures were generated consistently.

"• An evaluation of centroid initialization techniques. The accuracy of the FMLE al-

gorithm depends on the accuracy of the centroids found by the FKM. The FKM

also benefits from "good" initialization. This research used two techniques, the first

calculated the initial centroids by adding random vectors to the mean of the data

set. The second generated the initial centroids by randomly selecting ten samples

from the data set and calculating the mean. Both performed these performed well,

however there may be a more appropriate method which can be incorporated.

48

* The development of alternate fuzzy classifiers may provide more improve the identi-

fication rates to the levels attained by vector quantization.

The objective of this research was to provide and evaluation of clustering techniques

to speaker identification. This objective has been met, and the results indicate that further

application of fuzzy based algorithms is warranted.

49

Appendix A. TIMIT Sentences

The table below shows some of the phonetically balanced sentences used in the TIMIT

data base.

sal She had your dark suit in greasy wash water all year

sa2 Don't ask me to carry an oily rag like that

sx22 When all else fails, use force

sx40 Stimulating discussions keep students' attention

si806 You need answers to four important questions

si912 You may amaze yourself and acquire a real knack for it

50

.............

Appendix B. Program Listings

The following programs are written using ANSI C structure. The programs use no

specialized interface or graphics and have executed successfully on the following platforms,

SUN Sparc 2, SUN Sparc 10, IBM RS6000, Silicon Graphics Iris 4D and IBM PC (386).

The code makes extensive use of structures and functions for ease of modification

and versatility. The library FuzzLIB.c provides the fuzzy k-means, the fuzzy maximum

likelihood estimation and the UFP-ONC. All arrays and matrices are coded using the

Numerical Recipes in C [41] format.

Also included is a MATLAB [33] script file which provides a simple implementation

of the FKM and UFP-ONC code. This code was used in verification and is extremely slow

for all but small data sets.

51

B.) Separability C Code

An ... I..

Program Name : fuku.c

Description : Calculates Separability Measure J4, see FUKUNAGA 19T2

Author : D. Neale Prescott, (dprescotQafit.af.mil)

University : USAF Institute of Technology

Date : FEB 94

Other Code : &. Numerical Recipes in C (2nd Ed)

Note : If you don's have NRC then just replace the DSQR commands with a
MACRO for squaring two double precision numbers.

Input Piles : The data file in the following format. The leading comments
are not included.

Line 1: Number of dimensions per feature vector
Line 2: Number of classes
Line 3: Number of feature vectors in class 1
Line 4: Number of feature vectors in class 2
Line 5:
Line x:
Line x:
Line N: Number of feature vectors in last class
Line N+l: data for class 1 one feature vector per row
Line x:
Line x: -..
Line : data for class 2 one feature vector per row

S....

NOTE : The sizes of the covariance arrays is set up for

maximum sizes of 20 dimensional feature vectors and
a maximum of 12 classes. The "zero th" element of
all arrays is not used.

...

#include <stdio.h>
*include <stdIib.h>
#tinclude <string.h>

#include <math.h>
#include <errno.h>

#include "nrutil.h"

void checkinput.arguments(int cmdline, int req-args);

typedef struct statistic-params{
double mean[21];
double var[211;
Jut samples;
) STAT.PARAMS;

typedef struct covar.params{
double covariance[21](21];

} COV-PARAMS;

/e =.= .=. ==s ==ec =z == == variables ========= ===== = =

int dim, num.epkrs, i, j, k, p, tot;

STAT.PARAMS sp.stat[20];
STAT.PARAMS global-stat;

COV-.PARAMS sp.cov[201];

52

COV-PARAMS SI~cov, S2.cov;.

double XsmbV(21J, J4, J4mixjl4][141, trSI, trS2, tnmp;

char fname(401;

FILE edatain;

/0==... = s aasaw - tMain ae= =.= ==

mnain(int arcC, char *argyO)

/e Read in the header numbers :dimension, number of speakers,
and features per speaker.

check.input..arguments(argc, 2);

sprintf(fname, ' %s", argv(lj);

data.in-fopen(fname," r");
if(data.in)

prinsf("Cant open the file Ws"n". ainae);
exit(1);

fscanf(dataJn, "%d%d", &dim, &num..spkrs);
for(i =1; i < numsapkns; i++)

fscanf(data~in, "%d", ksp..statlil. samples)
for~i 1; i : dim; j++)

spsAtat~ij.meaisDj = 0.0;
sp-stat(il.varol . 0.0;
globa,"tat.nseanol . 0.0;
global~tat.varo] = 0.0;

/e Read in the data and calculate the means and variances
for each of the sepakers

tot z: 0.0;.......*......
for(i = 1; i < num-spktrs; i++)

for(; = 1; i :5 sp-stattiJ.samples; j++)

for(k es 1; k < dim; k++)

facanf(data-in, "flU", &tmp);
sp..statfi].mean[k) +s: tmp;
sp..statri].var[ln] +z: DSQR(tmp);
global .stat. mean[kJ += tinp;
global~stat.varjk] += DSQR(tmp);

/* Complete the final calculation of mean and var for each class

for(i = 1; i < num-apkrs; i++)

foT(k - 1; It < dim; k++)

ep.statliJ.inean~k] = sp-stat~ij -mean (k] /mps.tatfil.samples;
sp.stat(ij.varikJ - (sp..stat~iJ.varlkj/a'.statli].samplee) - DS QR(sp..statli]. mean [k]);

for~j = 1; j f-dim; j++)

global stat.ineanojJ . global -stat -meanbl / fot;
global -stat.varfj] z: (global stat. var]f /lot) -DSQR(global -stat. meanUjJ);

53

/s calculate the covariance matrix of the class means, S1.
It is assumed equal a priori for speakers.

for(i . 1; i :5 dim; i++)
for(j - 1; j :5 dim; j++)

S1-cov.covariancetiJljj . 0.0;

for(i - 1; i :5 sum~apkrs; i++)

for(j - 1; j :5 dim; i++)
XsubV0W = sp..statli1.meanujI - global-stat.meanljl;

for(j - 1; j <5dim; j++)
for(k . 1; k < dim; k++)
Sl..cov.covarianceUl(kI +. XsuhVbjlsXoubV(kj;

/* Read in the data again and calculate the INTRA-CLASS covartances
and S2.
.. ,

rewind(data.in);
fsc~af(data-in, "%d%d", &i, &j);
for(i as 1; i < numspkrs; i++)

fscanf(data-in, '1%d", Jtj);

/s Read in the data and calculate the covariance matrix

-...* * *.... -..*.."*"* *... *... 0/
for(l w: 1; i < dim; i++)

for(j - 1; j :5 dim; i++)
S2..cov.covarianceliljb as 0.0;

ior(l = 1; i < numa.pkrt; i++)

for(j = 1; j :5 dim; j++)
for(k = 1; k < dim; k++)

sp-covri].covarianceWj~k] z: 0.0;

for(j as 2; j :5 sp..stat~ij.Samples; j++)

for(k = 1; k < dim; k++)

f
fscanf(data-in, "%fli", &XsubV~kJ);
XsuhV~kI = XsubV~kI - zp-&tat~i].mean(kj;

foI ;p: i;p+
for(p = 1; p < dim; k++)

sp.,cov(ii.covariance[p][k] += XsubV~p] XsXubV~k];

for(j = 1; <dim; j ++)
for(k =1; k < dim; k++)

sp..covli].covariancoo(jJkI . sp.cov[i].covarianceb](kJ/spjtatli].samples;
S2.cov.covariancebj][k] +. sp.cov~i].covarianceojllki/nmsjpkrs;

fclose(dataan);

/s Calculate the trace of Si and of S2, then calculate 34.
7o all classes.
............. 5........

trSi a 0.0;
trS2 er 0.0;
J4 . 0.0;

for(i = 1;'i < dim; i++)

{rI+ Icvcoainei[)
trSi +. Si..cov.covariance[i][i];

J4 - trSI/trS2;
printf("Separabiiity Measure for [%as] is %lf"n" ,fname .34);

54

printf(5
tr6l - %4.3@"ttrfi2 = S4.3o"n", trSi, SrS2);

/* Calculate the trace of S1 and of S2, then calculate J4.
For al clauses. Note. that only the calculations which
affect the diagonal have been computed this time.

for(i a 1; i < num-epkrs; i++)
for(j as 1; i 5 num-spktra; j++)

34mitxlifjo es 0.0;

for(i a 1; 1 < num-spkra; i++)

for(j es (i+l), j :5 num-spkrsi i++)

ir8i st 0.0;
SrS2 = 0.0;
for(k as 1; It < dim; k++)

XsubV~kI = (sp..statlij. mean [k) + &p..stat~jI.mean~kj)/2.0;
IrSl +- DSQR(sp_&.ssaaij.meanjlcJ - XsubV(kl) + DSQR(sp~ta&GjJ.meanjkj -XsubVfkl);

trS2 +. (op..cov~i].covariance~lcl[kI + sp..covljl.covariance~k][ki);

J4mtxli]fj] - trSiJtrS2;

/* Print it out ready for a Latex table
Just copy the entire output into a Latex
document and the table is ready to go

printf("I'lbegin-table -n");
printf(Q'""'begin-center" "n");
printf(""'lbegin-tabular----");
for(i = 1; i < num..pkrs; i++) printf("c");
printf("-- ""hMine "I'hlje 'In");
for(i a1; i < num~spkrs; i++)

if(i V1 num-spkrs)
printf("S''"omega'-%d-$ & ",)

else
ptintf("$I-omega-%d-$ ",)

printf(' """" ""Milne In");

for(i a1; i < numapkrs; i++)

for(j . 1; j :5nuz..spkrs; j++)

if(J4mtx~i]UI sce 0.0)
printt("S""cdotSIIV);

else
printf("%4.3ft't",J4mtxji~jU]);

if(j .. numaspkrs)
printf("""'""'In");

else
printf("&)

printfQ""'line ""bline 'In");
print(('" -end-tabular -n");
printf("""end-center""n");
printf(" ""label-Fuktungaga, J4 measure for file %e-n", foame);
printf("''end-tahle"'n");

/ functions

void checkjnput..arguments(int cmd-jine, int req-args)

/s This function ensures the correct number of
command line arguments are present.
Neale Prescott OCT 93

if(cmdJine 91 req-arge)

j55

prinsf('"nIRROR Command line arguments incomplete"n");

56

B.2 UFP-ONC C code
B.2.1 Main Program - FuzzCO~c.

Is I............

Program Name : FuxxCl.c

Description :This program provides & number of Fuzzy Clustering
algorithms, the Fussy K-metans (FKM) and the Fuzzy Maximumn
Likelihood Estimation (FMLE). These two are combined to form
the Unsupervised Fuzzy Partition.-Optimal Number of Classes
(UFP.ONC) proposed by I.Gath and B.Geva IEEE Transactions
on Pattern Analysis and Machine Intelligence, Vol 11, No.?.
IJuly 1969.

The UFP-ONC will be used to determine the number and location
of clusters in the data set. This data will then be passed to
the Poosibilistic C-Means (PCM) proposed by Krishnapporava
and Keller, IEEE Transactions on Fuissy Systems, Vol 1, No.2,
May 1993, algorithm for final determination of the cluster
centres.

The intended purpose of this rather complicated process
is to cluster speech data for a number of speaker* involved
in machine based speaker identification experiment for
thesis work by Neale Prescott.

The fuzzy clustering approach is to be compared to
a Vector Qoantization based Speaker ID system.

If the number of clusters is known then a faster method
is to use the basic Fussy K-means and then the PCM. In this
case the aim is to remove the heuristic way in which the
number of clusters (or codewords) is often chosen.

Author : D. Neale Prescott, (dprescot~afit.af.mnil)

University : USAF Institute of Technology

Date : OCT 93, 20 JAN 94

Other Code : a. Numerical Recipes in C (2nd Eid)
b. FuzzLIB.h
C. FuzzLIB.c

Input Files : data-file, setup-file

Output Files : cluster-iles, performancefile

References : See Fuzzlib.c for the list.
...................................... 5l

*include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <math.h>

#include "nrutillb"

#include "nr~h"
#include "FuzzLIB.h"

#ifdef DIAG
#define PRINT-DIAG 1

#else
#define PRINT.DIAG 0
fendif

je ai- ------------------------ variables a - =

int status, i;

C-PARAMS config-params;
FJ'ARAMS feat-params;
M-PARAMS mtx..params;
S..PARAMS slats-paramns;

57

P-PARAMS perform-params;

FILE oclusteria, edluster.Dut, operfout;

0.IsIs . . .a Is . ==. t. =. ..n Main = = = -- - - - -

main(int argc, char oargvn)

read configurationflle(&conf g~params, &ieat..params, argc, argv);

make -matrices(&configparam&, &mtx..params, &stats.params, &perform..params);

load -eatures(&config-params, &mtx..parains);

got -ata~st ats(&config..params, ksntx-param6, &*%at...params);

switch(config.paxams.FKIM-or..UFP)

case 'U' perforznl.JFP..ONC(&config..paramnsI &mtx..paralns, &feat..params, &sae.pra. Aperform params);

break;

case I'F initialiseelusters(&config-par~ms, &mtx..params, &,tats.params);
calc-iuzzy-k..means(&config..para~ms, &mnx-params, &feat.params);

setjfuzzy..covjidentity(&mtx-params, &feat..params);
for(i . ;ij < config-params.final-clusters; i++)

print Suzzy -covariance(& rt x -params, &ieat-params);
save -centroids(&mt x .pacazne, &feat-params);
break;

if(PRINT..DIAG) print -memberships(&mtx..params, &feat..params);
delete..matrices(&config..pararne, &mtx..parazns, &stats..params, &perform-params);

return(O);

58

B. 2.2 Header file - FuzzLIB. h.

FuxzLID-h
Code :ANSI C header fille
Author D. Neale.PFresco is
Purpose Fuzzy Clustering functions for FKM, UFP-ONC and FVQ
Date 20 Jan 94
Place AFIT, Ohio, USA

............ * -- .. -.....**4/
/*. s a == .. == structures vess-reas =..=..=..e..=a==-=_==

typedef struct configuration .parmms{
char commsnt[B0]; /o A single line of comment is retained a/
char data..name(301; /o input - data file name o/
char initialclustter[30]; /e input,- initial cluster data OPTIONAL 4I
chat cluster..name[30]; /s output - cluster centres data4
char perform -nameC30]; /a record of performance #/
char PlCM.or-.UFP; /* select. FKM or UP'P-ONC v/

mnt number-.vectors; /s number of input data points 4/
mnt features-.per -vector; /a dimension of each input vector 0/
mnt initialclusters; /e number of initial clusters DEFAULT 2 *1
inl final-.clusters; /s Maxtmimumn numbsa of clusters to be used4
double fuzziness;
double stop-.criteria; /* stopping point for MAX.ij(old.ij - newlij)4
tnt ma~xiterations; /5 If FKM does not reach stop-~criteria4

I C..PARAMS;

lypedef struct vector..params{
mnt num..vcts;
mnt num-itrs;
inl num.centroids; /* Number of centroids in use at a given lime4

I F.PARAMS;

lypedef struct matrix..params{

double **feat..mtx; /* data samples *
double eedist..mtx; /s distance from each sample to each centroid4
double esmships..mix; /* membership of each sample to each class4
double *sold inember..mt; /e previous iteration's membership 4/
double escentroidintx; /* locations of each centroid4
double esF~covar..mtx;
double aPRIORI;
double F~det;

}M..PARAMS;

typedef struct statistics-parmams
double *mean..vct; /* mean vector of entire data set4
doubts ovar..vct; /svariance vectorof entire data set4

}S-PARAMS;

typedef struct performance~mrarams{
double *Fuzz-iV; /s Fuzzy hypervolume.- small is good 4/
double *Av..Density; /5 Average clutter density - big is good *I
double *Partition -Density; /a Partial cluster density - big is good a/
double 51;
double S2;

IPPARAMS;

void checkimnput-arguments(int cmd~line, mnt req..args);
FILE eopen.fie-read(char nameO);

void int-checkzrange(int subject, inl low, tnt high, char *where);
void float~check-jange(float subject, float low, Bloat high, char *where);
void zeroimatrix(float oenmtx, mnt rows, inl cola);
void zero-.vector(float ezvct, inl cola);
void zero -dmatrix(double oozmtx, tnt rows, mnt cola);
void zerod vector(double ezvct, inl cols),

void read -onfigu ration -hle(C -PARA MS econfig-p, F..PARAMS *feat~p, inl cmdline, char ocmd-namea);
void make..matrices(C..PARAMS sconflg-p, M-PARAMS ematrix-p, S..PARAMS estats..p, PYPARAMS operform-p);
void deletemiatrices(C -ARA MS econflg-p, M..PARAMS ematrix..p, S..PARAMS estats..p, PYPARAMS *perform..p);
void load -eatu res(C -PARA MS econflg..p, M..PARAMS *matrix-.p);
void load -cent roids(C -PARAM S sconflg-p, M-PARAMS ematrix-p, double escov..p, double edet-p, double saprior..p);

59

void get.d&js4a&t*t(C -PARA MS scotifig-p, M..PARAMS .niatrix..p, S-PARAMS estateap);
void perforiJJFP-ONC(C-PARAMS econfigp, M-YARAMS smatrix~p, F-PARAMS efeatp, S-PARAILS *sat &p, P..FARAMS *perform-P);
void initia~lseclusters(C -PARA MS *config-p, M.PARAMS .inatrix-p, S.PARAMS ostat-p);

void calc Juzzy A -means(C -PA RAMS sconfig.-p, M.PARAMS *matrix-p, F.PARAMS Ifeat~p);
void copy..roesber..lo.OLD(M -PARAMS smatrix-p, F..PARAMS *feat-p);
void calc ulate-dist..FX M(C -PA RAMS oconfig-p M..PARAMS omatrix~p, F..PARAMS cleat p);
void cornpute-member.FKM(C -PARA MS sconfig-p, M-PARAMS ematrix-p, F..PARAMS *feat-p);
void comput.e-et roids..FKM(C -PA RAMS oconfig..p, M.PARAMS ematrix..p, F..PARAMS sfeat-p);
double coumputeabjective.FKM(U..PARAMS .matrix..p. F..PARAMS sieatp);
double compute -AVG -obj ective.F K M(M -PARA MS omatrx-i.p, F..PARAMS *feat..p);

void calcJussy-mle(C-PARAMS oconfig-p, M..PARAMS .Ioatrix-p, F-PARAMS ofeatp, P-PARAMS *perform-params);
void initiallsejiiLE-memba(C..PARAMS econfig.p, M.J'ARAMS *matrix-p, P..PARAMS atealaP);
void set -uzzy.cov identity(M..PARAMS *rmatrix..p, F..PARAMS *feat..p);
void caic..eentro~d..Prob(M..PARAMS ematrix..p, F-PARAMS *feat..p, ins cluster);
void caicJFcovar(M..PARAMS ensatrixep, F-PARAMS *elatip, hit cluster);
void caic-dist..FMLE(M-PARAMS esnatrix-p, P..PAR.AMS .feat-p, int cluster, P..PARAMS *perform-p);

void print-Puzzycovadaonce(M-PARAMS ematrix..p, F..PARAMS efeatsp);

void print -menbershi ps(M -PARAMS .snatrix..p, F..PARAMS *teat..p);
void save..centroida(M..PARAMS eutatriep, F.PARAMS ofeat-p);
void save-distances(C-PARAMS *config..p, M-PARAMS *matrix..p);

void caic-clust-Perform(M-PARAMS omatrixzp, P-YARAMS .perform-P, FYPARAMS ofeatp);
void store..performance.data(C-YARAMS *config..p, P-PARAMS *perform-p);

60

e

B.2.3 Fuzzy C Library -FuzzLIB.c.
[e ...

Program Name : FuzuLIB.c

Description : This program provides a number of Fuzzy Clustering
algorithms, the Fuzzy K-means (FKM) and the Fuzzy Maximum
Likelihood Estimation (FMLE). These two are combined to form
the Unsupervised Fussy Partition-Optimal Number of Classes
(UFP-ONC) proposed by lOath and B.Geva IEEE Transactions
on Pattern Analysis and Machine Intelligence, Vol 11, No.7,
July 1989.

The intended purpose of this rather complicated process
is to cluster speech data for a number of speakers involved
in machine based speaker identification experiment for
thesis work by Neale Prescott.

The fussy clustering approach is to be compared to
a Vector Quantization based Speaker ID system.

Author : D. Neale Prescott (dprescotGafit.af.mil)

University : USAF Institute of Technology

Date : 1993-1994

Other Code : a. Numerical Recipes in C (2nd Ed)
b. FuzzLIB.h

References : 1. Unsupervised optimal Fuzzy Clustering by
I.Gath and B.Geva, IEEE Transactions on Pattern
Analysis and Machine Intelligence, Vol 11, No.7,
July 1989.

2. Pattern Recognition with Fuzzy Objective Function
Algorithms by James Beadek, Plenum, 1987 (2nd print)

3. Fuzzy Clustering with a Fuzzy Covariance Matrix
by D.E.Gustafson and W.C.Kessel
IEEE CDC, San Diego, pp 761-766, Jan 1979

4. Fuzzy Models For Pattern Recognition,
Methods that Search for Structures in data.
Editors J.C.Bezdek and S.K.P&d
IEEE Press 1992 (Selected reprints)

#include . stdio.h.
#include <stdlib.h>
#include <strig.h>
#include <math.h>

#include <errno.h>

#include "nrutil.h"
#include "nr.h"
#include "FuzzLIB.b"

#ifdef DIAG
#define PRINT.DIAG 1
#else

#define PRINT-DIAG 0
#endif

/e -------- ---------- ------------------ functions ---------------------------------- ------ 5/

void check input arguments(int cmdline, Jmt req.args)
{
/e This function ensures the correct number of

command line arguments are present.
Neale Prescott OCT 93

61

puiatf("InERROR Command line arguments incomplete "n"
azit(l);

FILE *open -hlejread(char namea)

/s This function opens an ASCII file for reading.
Neale Prescott OCT 93

FILE ofp;

fp~fopen(name,"r');

if('fp)

printf("ERROR Cant open the file Vs&`n", name);
exit(i);

return(fp);

............................ sass-easz-as-as

void intz.heckzrange(int subject, int low, int high, char ewbere)

/a This function checks the range of an integer. The USER
specifies the LOW and HIGH values. The use of WHERE provides
a way to write out a specific message to aid debugging.
Neal. Prescott OCT 93

if
if(subject < low) printf("Number too LOW :[%dl %d :%s"n", low, subject, where);
if(subject > high) printf("Number too HIGH :[%dj %d :%s'lu",igh, subject, where);

void double~check-range(double subject, double low, double high, char *where)

/Ie This function checks the range of a double number. The USER
specifies the LOW and HIGH values. The use, of WHERE provides
a way to write out a specific message to aid debugging.
Neal. Prescott OCT 93

if(subject < low) printf("Number too LOW : %If] %If: %s"n", low, subject, where);
if(subject > high) printf("Number too HIGH :C%If] %If: %sn",'high, subject, where);

void read -configuration -file(C .PARAMS sconfig-p, F..PARAMS sfeal..p, inl cmdiine, char scmd~narneO)

/s This function is specific to this Fuzzy Clustering Program. It reads in all
the parameters required from a configuration file. This means the program can
be run in multiple formats and reconfigured easily.
Neale Prescott OCT 93

PILE oconfigin;

checkianput.arguments(cmd-line, 2); /s make sure the config file was on the command-line i
config-in = open~file..read(cmd..name[l]); /a open the configuration file if
fgets(config-p -comment, 80, config.in); /s read comment out of config file i
fscanf(configain,"%s", config..p-data..natne); /s read data in file name if
fscanf(config.in, "%a", config..p-initial..cluster); /* read cluster in file name s/
fscanf(config~in, "%s", config-p -cluster -name); /e read cluster out file name 0/
fscanif(config-in, "%s", config-p-oerform..narme); ,I. read perform out file name i
fscanf(config.in, ,,%Is,, &confIg..p-FlM~orUFP);
fscanf(config~in, "%d96d9d%d~lf~lf%d", *rconfig..p-number..vectors,

&config..p-features..per..vector,
kconfig..p-initial-clusters,
&con fig-p-.final -clusters,
&configp -fuzziness,
&config-p-stop..criteria,
£rconfig-p-max..iterations)

if((config~p-FKM..orUFP 10 'F') && (config~p-FKM~or..UP yE 'U'))

62

prnntf("CONFIG ERROR: Mlesase specify Pussy k-meanes (P] or UFP-ONC [U]'n");
prinsf(*Fussy k-means is now assumed"n');
conflg-p-FKM~or..UFP as 'F';

int.ckak~rap~oufg.-umbr..ectrs, 2, 80000, "R.&adCOI4FIG[11");
W-t.heck..range(config~p-.feat uresper..vector, 1, 200, "Read. CON FIG (21")

int..eheck..range(coufig..p-initial~clusters, 2, 64, "Read-CONFIG[3J");
ins -heck -ange(config~p-final -clusters, 3, 64, "Rea4.CONFIGC4J");
iut..check~zange(config.p-max-iterations, 500, 3000, "Resd-CONFIGISI");

double..check-range(config.p-fuaminess, 1.0, 3.0, " Read- CON FIG[61");
doublejcheckjage(config~p-siop..criteria, lE-fi, 1, "Read. CONFIG (71");

featp -num..vcts as conflg..p-numbor..vectors;
fea9.p-rnstnsrs exconfig-p -feat ures..per.vccior;
feaet-p-.untcentroids as configp-initialiclusters;

void sero..matrix(float sessmax, int rows, jut cola)
14p This function fills a matrix of floats with zeros..e
jut i, j;
for(i at1; i < rows; i++)

for(j = 1; j :5 cols; i++)
stmtxIitilj = 0.0;

void zero..vector(float ozvct, int cola)
{ * This function Aills a vector of Bloats with zero*.

int j;
fo~ s1; j : cols; p4++) avctbl 0.0;

= = ===== . asa=s.=

void aero.dsnatrix(double Oezintx, mnt rows, mnt cola)
/s This function fills a matrix of doubles with zeros. i
imt I, j;
for(i -1; i < rows; i++)

for(j as 1; j :5 cols; j++)
zmtxlifli] = 0.0;

void sero.4vactor(double oxvct, mnt cola)
I* This function fill- a vector of doubles with zeros. i
intj;
for(j 1; j :5 cols; j++) zyctbl = 0.0;

void make-mattices(0.PARAMS *config-p, M-PARAMS ematrix..p, S-YARAMS sstats-p, P..PARAMS sperformp)

/s This function uses Numerical Recipes in C to make
a number of matrices for this experiment. This is
for ease in reading the code. All matrices are initialised
to zero. It is not a general routine.
Neale Prescott OCT 93

matrix..p-feat..mtx dmatrix(l, contig-p-number-vectors, 1, config-p-features-per..vector);
matrix..p-mships..mtx = dmatrix(l, config-p-numiber..vectors, 1, config-p-.finael..lusters);
matrix.p -old .member..mtx = dmatrix(1, config..p-number..vectors, 1, config-p-final -clusters);
matrix..p-centroid..mix = dmatriz(l, config-p-fin&a-lunsters, 1, config-p-feat ures -per.-vector);
matrix..p-dist..mtx =dmatrix(l, config..p-number..vectors, 1, config-p-finalclusters);
matrix..p-.F.covarantx . dmatrix(l, config~p-features~per..vector, 1, config-p-features-per..vector);

zsero.dmatrix(matrix..p-feat..ztx, config-p-.numnber -vectors, config-p-teatures-per.,iector);
xero.dmatrix(matrix-p-mships.mntx, con fig.p -number-vectors, config.p -final -clusters);
zero-dmatrix(mat ri x.p-old -mernber-zntx, config.p -number-vec tore, config.p -fin al-clusters);
zeroudmatrix(matrix..p-centroid..mix, configp -fin al -clusters, conflg..p-features-per..vector);
aero~dmatriz(matrix..p-dist..mtx, config..p-number-vectors, config.p -final -clusters);
sero~dmatrix(matrix..p-F-covar..mtx, config-p-features..per..vector, config-p-featuresper..vector);

stats..p-mean..vct - dvector(l, conflg..p-features-per..vector);
stats..p-var-vct = dvector(l, config.p -features -per-v~ector);

zero-dvector(stats.p -mean .vc t, config-p-features..per..vector);
zero~dvector(stats..p-var..vct, config..p-features-per..vector);

perform..p-FuazzMV = dvector(i, configp -final-clusters);
perform..p-Av..Density = dvector(l, config..p-final-clusters);

63

ptrform.p -Partition.-Density a dvector(1, configp-linai-clusterv);

*ero~dvector(perform.p -F~unssiV, configp -final-liusters);
sero~dvector(perform.p-Av-Density, con fig _p -&Imaldusters);
xero.Avector(perform~p-Partition -Density, conlig~p-.fin alcl usters);

void delete-wastnces(C -PARA MS sconflgp, M..PARAMS srnatrix4p, S..PARAMS *Stats..p, P-PARAMS .performp)

/* This function uses Numerical Recipes in C to free
a number of matrices. This is for ease in reading the code.
Is is not a general routine. i.e Specific to this code.
Neale Prescott OCT 93

free.Amatrix(matrix-p-feat..mtx, 1, config.p-.number..vectors, 1, config.p-features.per..vector)i
free~aldnrix(matrix..p-mships..mtx, 1, config..p-number.-vectors, 1, config..p-linal-clusters);
frooeAmatrix(mat ri x._p-old znember.mt x, 1, config-p-numbet-vectors, 1, config-p-final~clusters);
free.dmatriz(matrix..p-centroid..mtz, 1, config-p-finalclusters, 1, config..p-features..per..vector);
free~xmatrix(matrix..p-dist..trit, 1, config..p-number-vectors, 1, config..p-.finalclusters);
free~dmatrix(matrix~p-F.covar..mtx, 1, config-p-.features..per-vector, 1, config.p -feat uresper..vec tor);

free.Avector(sta~ts.p -mean...vct, 1, configp-feasures.-per..vector);
freeidvector(statse.p-var..vct, 1, config-p -feat ures..per..vector);

free..dvector(perform.p-Funn-HV, 1, configp -final-clusters);
free-dvector(perform.p-Av..Density, 1, config4-final-clusters);
free~dvector(perform-p-Partition-Densisy, 1, config..p-finalcrlusters);

void get..data..stats(C-PARAMS econfig..p, MPFARAMS *matrix-p, S..PARAMS *stats._p)

/* This function calcuates the mean and variance of the data set.
Which is in fact the initial centroid.
The function uses Numerical Recipes in C.
The input is a matrix of doubles (columns being features, row are feature.-vectors).
The outputs are two vectors - mean and variance.
N.Prescott OCT 93

mnt col, row, num-zero;
float average, av..dev, std-dev, var, skew, knrt, otmp-vct;

tmp..vct = vector(l, config..p-.number..vectors);

for(col = 1; col :5 config..p-features..per..vector; col++)

num-aero = 0;
for(row z: 1; row :5 conflg..p-.number..vectors; row++)

tmp..vct[rowl z: (float) matrix _p -feat .mtxfrow][coll;
if(tmp-sctlrowj == 0.0)

num-nero++;

if(num-mero == conflg..p-nu mber -vectors)

average = 0.0; /* This avoids an NRC error when the vect,
var = 0.0;

I
else

moment(tmp-vct, conflg.p -uumber..vec tots, &average, &av-dev, &std-iiev, &var, &skew, &kurt);
stats-p-mean..vct(col) = (double) average;
stats..p-.var.vct [colj = (double) var;

free..vector(tmp..vct,l, conflg.p -number -vectors);

void load -eatures(C.-PARA MS sconfig-p, M..PARAMS smatrix..p)

/* This function reads in data from an ASCII file and places it into
"feature-riatrix'. The number of feature-vectors and feat ures..pe r-vector
must be specified as the data file must not have a header.
Neale Prescott OCT 93

If
int row, col;
FILE ordata-in;

64

datal 77pnhssdcnf 6 udt.nm)

for(row w 1; row < config.p-aumber..vectors; row++)
for(col = 1; col S confis~p~foatures.pervxector; col++)

fscassf(data-jn, "%If", &matrix._p -feat jntx[rowj(colj)

fcloas(data in);

void Ioad.centroids(C -PARA US sconfig..p, M..PARAMS omatrix-p, double oscov~p, double ode-p, double saprior..p)

/s This function reads in data from an ASCII file and places it into
"centroidzna~trix". The number of ceatroids and features~percentroid
must be specified as the data file must not have a header.
Neale Prescott 08NOV 93

int i, row, col, cnt2;
FILE odata~ju;
char tmp.string[SO];

datain - opsn~le-read(configp-cluster.name);
cnt2 - 1;
for(i . 1; i < config-p-final.clusters; i++)

fgets(tmap..string, go, datain);
fecanf(data~in, "%If", &aprior.p;i);
fscanf(datajn, "%lf", &det..p~iJ);
for(row =s 1; row :S config..p-features..per-xector; row++, cnt2++)

for(cal = 1; col < config.p-feastures.per..vector; col++)
fscanf(da~tain, ' ilf", &cov..p~cnt2l~col])

fgets(tmnp-string, 80, dataia);

fgets(tmp.string, 80, data-in);
for(row - 1; row :5config.p -final -clusters; row++)

for(col = 1; col < config..p-.features..per-.vector; col++)
fecanf(datain, "ilf", kmatrix..p-centroid..mtxirow](col])

fclose(data.in);

I

/s Perform the unsupervised Fussy Partition. Optimal number of classes
routine. See Reference 1, listed in the header comments.
The "fuzziness" and "stop-.epsilon" are adjustable parameters
NOTE "fuzziness > 1" and "stop-.epsilon to,'),,
Neal. Prescott OCT 93

int cluster;

initialise..clusters(contfig..p, matrix-p, stat .p);

for(cluster = config..p-initial~clusters; cluster < config~p-final-clusters; cluster++)

if(PRINT-DIAG) printf(""n"nCentroide = %dnu"n", cluster);

feat..p-num..centrosds = cluster;

Wcalcuzzy-k..means(conflg..p, matrix..p, feat-p);

if(PRINT..DIAG) save-centroids(matrix-p, feat..p);

calcJuzzy..mle(conflg..p, matrix-p, feat..p, perform..p);

save-centroids(matrix-p, feat..p);

if(PRINT-flIAG) store..performance.4ata(config..p, perform~pJ;

void initialite-clusters(C..PARAMS sconflg-p, M-PARAMSS smatrix..p, SYPARAMS sstats..p)

/s Refer to pp775, Section 2.B of the UFP-ONC paper for why
the 2nd centroid is chosen this way.
Initial cluster centre is at the data mean.

65

Consecutive centres are (+/.) Ramdom amounts of Standard Deviation from mean
Neale Prescott 20JAN94.

gt$ cluster, feature, pseudo, i;
double mullt;

stand(1);
for(cluster . 1; cluster < config-p-flnal-clusters; cluster++)

if(cluster .= 1)
for(feagure . 1; feature < conflg-p-fea~tured.per.vec got, feature++)

matrix..p-centroid..mtx(cluster](featurej w stats..p-meata-vct~featurej;
else
for(r=1; i 2 0; i++)

pseudo =(rand() % config.p -number -vectors) + 1;
for(feature . 1; feature < config.p -features .per..vec tot; feature++)

matrix _p -centroid .mtxlcluster] (feature] +. gongri xp -feat -mtxipseudo]ffeat urej/ 10. 0;

I

js Refer to pp 774, Section 2.A of the UFPPONC paper eqns 1,2,3,4,5
See Reference 2
Neale Prescott OCT 93.

int iterations st 0;
double objectivein;

calculate~dist.F'KM(conflg.p, matrix..p, feat..p);
compute-member-Fl(M(config-p, matrix..p, feat .p);
do

compute.centroid#sFKM(config..p, matrixp, feat..p);
copy..member-lo.OLO(matrix..p, feat-p);
calculate-dist..PKM(config..p, matrix..p, feat..p);
compute..member..FKM(config-p, matrix..p, feat..p);
objectivein . computeobjectivej'KM(matrix-p, feat..p);
iterations++;
if(PRINT..DIAG) pringf("FKM Iterations :%4d :Obj = %lf'n", iterations, objectivejn);
if(iterations == config-p-.max:iterations)

printf("PKM.- maximum iterations [%d] reached. Stopping."n", iterations)

while((objective-fn > config..p-stop-.criteria) && (iterations < config-p-max.iterations) I

void copy -nember-to.OLD(M -ARAMS smagrix-p, F-PARAMS sfeat-p)

/s 20 OCT 93 :The tricky use of pointers has replaced the element by
element copying.

NOTE :That the memberships matrix will contain old data,
care must he taken not to use these.

Neale Prescott OCT 93

double sstmp..ptr;

tmp..ptr = matrix _p-old -membermt x;
matrix..p-.old..member-imtx = matrix..p-mships..rtx;
matrix..p-mships.zntx = tmp-.ptr;

void calculate~dist .PKM(C _A RAMS *config-p, M..PARAMS smatrixp, F-PARAMS *feat-pl

/s This function computes the distance from every sample to eacil of the
centroids. The values are stored in the matrix "dietantx".
SQR(a) is defined in nrutil, Numerical Recipes
Neale Prescott OCT 93

double stmpdst, dist;
mot row, cl, ft;

66

tmpiAst se dvoctor(1, configp -foaturas~pet.-vector);
for(row se 1; row S feat~p-aum.vcts; row++)

for(cl se 2; ci :5 feat .P -num .centroids; cl++)

for(ft = 1, ft 5 feat _p -num-itrs; ft++)
tmp.dst[ft] - matrix _p -feat mg x[row](ft] - mat rix _p -cent void -intzx(clj [it];

dist se 0.0;
for(ft - 1; ft < feat.p-numitrs; ft++)

diet +so DSQR(1mp..d&tjftl);

matrix _p -diet -mixz(owlicl] se diet;

frooedvector~tmp~dst, 1, feat..p-num-itrs);

void compute -member.PKM(C-PARA MS oconltgp. M-PARAMS *matrix-p, F-PARAMS *feat-p)

/* This function computes the membership of every data sample to each
of the clusters (classes). See Eqn.2 of Reference 1.

Neale Prescott OCT 93, FEB 94

int row, ci, FLAG;
double sum.Ast;

for(row se 1; row :5feat -p-num..vcts; row++)

sumjlst se 0.0;
FLAG . -1;
for(cl se 1; ci :5 feat..p-num..centroids; cl++)

if(matrix.p-.distantx(rowj[eli gi 0.0)
sum-dot += (1.0/matrix..p-dist...txfrow][cli);
else

FLAG se cl;

for(cl = 1; ci :5 feat._p -nu m.centrvoids; cl++)

if(FLAG= -)
matrix _p -mshi ps-antx[row] [clJ = (1.0/tmtrix..p-dist..mtx~rowl~clJ)/asm..dst;

else
if(cl -= FLAG)

matrix..p~mships..mtx~row][cl] = 1.0; /e This point is at the centroid. Membership must be 1 q/I
else

matrix4p-mships..mtxfrow]Ccll = 0.0; /I. Must have zero membership in all other clusters .

void computecontroidsj'KM(C _PA RAMS *config-p, M-PAfAMS smatrix..p, FYPARAMS *feat-p)

f
/. Computes the new centroids of the Fuzzy K Means as per eqn.3 of

Reference. I
DANGER : If the denominator is zero this will explode. But it should

be "impossible" for this to occur!
Note : "eta" is a cluster validity check from a paper by Krisnapuram and Keller

IEEE Trans on Fuzzy Systems Vo~l., No.2, May 1993.

Neale Prescott OCT 93

int row, cI, ft;
double enumerator;
double tmp-memb, denominator, eta;

numerator so dvector(l, feat p -numJtrs);
for(cl = 1; cI < feat._p -num..centrvoids; cl++)

zero~.dvoctor(numerator, featp-num..ftrs);
denominator . 0.0;
eta or 0.0;
for(row = 1; row 5 feat _p -nu mvcts; row++)

67

tmp-mnemb a DSQR(nmckix.-mshipsonstx[rowJ(cl]);
at& += (Srmp-memb * matrix _p -dist .mt x~rowj(cl])i

for(ft - 1; ft < feat p -num.ft ra; ft++)

dnumeratorftit +- tmup-memb * matrit..p-feat~ntx~rowI[ft];
deominastor += tmp-memb;

I
for(ft is 1; ft < feat..p-num-ftrs; ft++)
matrix _p -centroid -mtxlclIlftl - numeratar[ftl/denominator;
eta as eta / denominator;

free Avector(numerator, 1, feat..p-num-ftre);

double computea.bjective.FKM(M..PARAMS *matrix..p, P..PARAMS efeat-p)

/* See eqn.4 of Reference 1.
DMAX(a~b) is in nrutil, Numerical Recipes)
Neale Prescott OCT 93

double maximum = 0.0, difference;
int row, ci;

for(row =1; row :5feat _p -num-vcts; row++)
for(cI 1; ci < feat _p num-centroids; cl++)

difference - fabs(tnatrix..p-mships-intx~row][cl] mat ri ".-.old..inember..mt x~row][cil);
maximum - DMAX(maximum, difference);

return(maximuin);

I4

void print -memberships(M-PARAMS smatrix..p, F.PARAMS *feat..p)

/e This function prints out the memberships for each data point
and is primarily for dc-bugging. However it could be quickly
modified for use in Gnuplot.
Neale Prescott OCT 93

mnt i, j;

printf("# Memberships for [%dj centroids 'In", feat..p-num-centroids);
for(i =1; i < feat _p -num..vcts; i++)

for(1; = I;; feat~p-num..centroids; js++)
printf('%lf ", matrix _p -mships .mt xfil)

fI

/* The final cluster coordinates must be saved. This is because the UFP.ONC
algorithm starts with two centroids then increases up to the MAX-CLUST.
Once the optimum number of classes is found we would like to locate
the cluster coordinates without re-calculating them.

NOTE :Modify this to send it to the file specified in the configuration file
Neale Prescott OCT 93

mnt cI, ft;

printf("# Cluster locations for [%d] centroids of J%d] dinmensions 'In", feat..p-num..centrnids, feat..p-numitre);
for(cl = 1; ci < feat._p -num-centroids; cl++)

for(ft - 1; ft < feat..p-.num~tre; ft++)
printfQ'We ", matrix _p -centroid antxfcljfftj)

printf(" "n');

void save -distances(C .PARAMS *config..p, M-PARAMS 'Smatria-p)

68

/* For debugging purposes
Neale Prescott OCT 93

ins row, ci,

pringf(" Distances from centoids"n");
for(row =1; row < config~p-.number..vectors; row++)

for(cl =1; ci < config~p~final..dusters; cl++)

printfQ'%lf ", matrix..p-.diet.mtxjrowjlcl]);
printf(""n');

void calc juszy nle(C_'A RAMS oconfig..p, M-PARAMS *matrix-p, F-PARAMS *feat-p, P..PARAMS *perfOrmn-)

I* This function perform& the Fuzzy Maximum Likelihood Estimate
as per Reference 1.
Note :Due to the size and number of Fuzzy Covariance matrices
this function works on one cluster (centroid) at a time to
limit the amount of memory required.
Neale Prescott OCT 93

double objectivein;
mnt iterations = 0,
cluster,i~j;

initialise..FMLE..membs(config-p, matrix..p, feat..p);
set Jussycovi.dentity(matrix _p, feat..p);
for(cluster = 1; cluster < feat..p-num..rentroids; cluster++)

calc-centroid..Prob(matrix-p, feat..p, cluster);
calc-dist..FMLE(matrix..p, feat-p, cluster, perform..p);

compute-.zember..FKM(config-p, matrix..p, feat-p);

do

compute-centroids..FKM(config..p, matrix-p, feat..p);
for(cluster =1; cluster < feat._p -num.-cent roids; cluster++)

I
calc.F..covar(matrix..p, feat-p, cluster);

caic.centroid..Prob,(matrix..p, feat..p, cluster);
caic-dist..FMLE(matrix..p, feat..p, cluster, perform-p);

copy -member-jo.O LD(matri x..p, feat-p);
compute-nember..FIM(conlig-p, matrix..p, feat-p);
objectiveifn = computeoDbjective..FKM(matrix-p, feat..p);

iterations++;
if(iterations == configp -max -iterations)

printf("FMLE - maximum iterations [%d] reached. Stopping.'n", iterations)
if(PRINT..DIAG) printf("FMLE : %4d] Obj: Vslf"n", iterations, objectiveln);

while((objectiveln > config..p-stop-criteria) && (iterations < config.p -max-iterations))

caIc~rlustPerform(matrixzp, perform-p, featkp);

void initialise2FMLE-memba(C..PARAMS *configp, M-PARAMS *matrix-p, FYPARAMS *feat-p)

/* This function initialises the memberships to (1/num Of cluster) for
the first iteration of the FMLE. See Gustafson- Kessel, or
"Fitting an Unknown Number of Lines and Planes to Image Data through
Compatible Cluster Merging" by R. Krishnapuram and C-H F'reg, Pattern Recognition,
Vol.25, pp. 385.400, 1992.

Neale Prescott Feb 94

int i, j;
double MEMB;

MEMB = l.0/((double)feat..p-nuin..centroids);
for(i - 1; i < configp-number-vectors; i++)

69

for(i - 1; j :5 feat p -num..cenkroids; i++)
matrix-p~-mships-mtx(iIjbj - MEMB;

...... asn =a -

void set -usay~cov ideanmi y(M.-PARA MS *matrix-p, F..PARAMS ofeat..p)

/e This fuinction initialises the Fuzzy Covariance Matrix to the Ideality matrix for
the first iteration of the FMLE. See Gustafson-Kessel, or
"Fitting an Unknown Number of Lines and Planes to Image Data. through
Compatible Cluster Merging' by R. Krishnapuram and C-li Preg, Pattern Recognition,
Vol.25, pp. 385-400, 1992.

Neale Prescott Feb 94

jut i, j;

for(i = 1; i < feat.p-num-ltrs; i++)
for(j - 1, 1 :5 feat..p-num-isrs; j++)

if(i 41 D
mistrix..p-p-covar-umtx[iul~j = 0.0;

else
matrix..p-pF.covar..mstzi](j] = 1.0;

matrix..p-F..det = 1.0;

void cale-cent roid-Prob(M -ARA MS sinatrix-p, F..PARAMS *feat..p. it cluster)

/I. This 'unction calculates the a priori probability of selecting the "iOth clsuter
Refer tp eqn(8), pp?74, of Reference I.
Neale Prescott OCT 93

mnt i;
double Pi . 0.0;

for(i . 1; i < feat.-p -num..vc:ts; i++)
P.1 += inatrix..p-mshipsintxfi][clusterl;

matrix..p-aPRIORI = P.i / ((double)feat..p-num..vcts);

void calc-Fcovar(M..PARAMS smatrix-p, F..PARAMS sfeaý-p, int cluster)

/* This function calculates the Fuzzy Covariance Matrix fot the specified cluster.
This is shown at pp.775, eqn(9) of Reference 1.
The membership matrix is now used to hold the posteriori probabiltities, h(iIXj) (see pp774)
Numerical Recipes in C are used to find the inverse and determinant F'(.1) and IFI
Neale Prescott OCT 93

double eXsubV, *stmnpS, denom, ow, **v, wmax, wmin, tmp..det, d;
mnt row, ft, i, j, k;

XsubV =dvector(l, feat -p -numft rs); fs vector from sample to current centroid4
tmp..F =dmatrix(l, feat-p -numft re, 1, feat..p-numltrs);
w me dvector(1, feat -p -nu m-tre); /s SVD requirement4
v = dmatrix(l, feat -p -num..ftrs, 1, feat.p-.numltrs); /* SVD requirement s/

zero-d vec tor(XsubV, feat p-num-ftra);
zero-dmastrix(tmp..F, fest-p-numlftrs, feat -p-num.,ftrs);

/e calc the Fuzzy covariance matrix for current cluster 4j
................................ I........o
denom =0.0;
for(row =1; row 5 feat -p -nuin.vcts; row++)

sero..dvector(XsubV, feat -p -numn~trs);
for(ft - 1; ft < feat-p -num-itrs; ft+-f)
XsubV(ftl = matrix -p-featantx[row][ft] - mnat rix-p -entroid ant x[cl uster](ft];
for(i =1; i < feat.,p-num~ftrs; i++)

for(j =1;) j feat..p-num-ftrs; j++)
tmp..Ffi][j] +. (XsubV[i]s'XsubVjj] * matri x.p -msti ps ot x [row) [cluster));

denom += matrix -p -mships -insx(row][cl uster];

70

fOf(i U 1; i < feat.p-numjtrs; i++)

1 I;5 foat.p-.num-ftrs; j++)
.spBib i mp.FliJWI/derom;

/e Determinant and Inverse Calculation using Singular Value Decompositi an 4
/0I. *1

/e Decompose Pumay covariance matrix into (2) orthonormal and a diagonal matrix W/
dsvdcmp(tznp.F, feat-p-numltrs, feat .p-.nuzmtrs, w. v

j. Transpose the U matrix which was returned in tmpS '
for(i = 1; i :5 feat p-numitrs; i++)

for(j - i; j 5 feat~p-num-jtrs; j++)
if(I i

d =tmpSjifj~j;

Smp.$(i]U] at tmp.FU][iI;
tmp.Fb[jIi] = d

/s Multiply the inverse diagonal (1/w) by transpose U4
for(i = 1; i < feat.-p -num-jtrs; i++)

for(j = 1;7j < feat..p-numJtra; i++)
Imp..F~i]U] - tmp..F~i][j] / w~i];

I* Perform final matrix calculation to find Inverse of Fuzzy Covariance 4j
zero dmatrix(matrix..p-F..covar..mtx, lt atp-num-ltri, feat-p~num-ftrs);
for(i = 1; i < feat..p-num-ftrs; i+.

for(j = 1; 1 - fet.p-num-ftrs; i+
for(k . 1; k < feat..p-num-ftrs; k++)

mat~ix..p-F-covar..mtx[ijUJ += (v[i][k] s mp..F~klOI);

/* Determine the CONDITION number of the SVD s/
=mx 0.0;

for(j-1; j :5 feat..p-num-ftrs; j++)
if(wDI > wmax)

wmax . wul;

wmin =I-
0

020;
for(j 2 ;) j feat..p-num-ftrs; j++)

if(wU] < wmin) wmin = w]

/* Refer to Numerical Recipes in C. Basically indicates near singular matrix s/
/* foc(j = 1; j :5 feat -p- >numitrs; i++)

if(wol < (wmax s 1.0e.fi)) wo] = 0.0;

if(PRINT-.DIAG) printf(" Condition No. :%lt"n", wmax/wmiin)

/s Calculate determinant of Fuzzy Covariance matrix4
/e Note :detA = det(invA)
/* The diagonal matrix contains the eigenvalues 0/
/s The product of the eigenvalues, is the determinant4
/s See Linear Algebra by Strang 1988 and NRC 2nd Ed.4
/s Logs have been used to reduce risk due to over/underfiow 4

matrix..p-P-det = 0.0;
for(j = 1;, j feat-p-num-ftrs; j++)

matrix..p-F.,t~et += logio(w~jJ)
matrix..p-P-det = pow(10.0, matrix..p-F-det);

/* Delete all temporary matrices and vectors 4/
free.dmatrix(tmp..F, 1, feat..p-numitrs, 1, feat-p-num-itrs)
free-dvector(w, 1, feat -p -numJtrs);
free-dmatrix(v, 1, feat..p-.numJtrs, 1, feat..p-.num..trs)
free.dvector(XsubV, 1, feat -p -numitrs);

I

/s Two puposes : 1. Save Fuzzy COvariance Matrix wr use int the Classifier
2. Debugging

Neale Prescott OCT 93

71

int i, j;
printfQ"# Inverted Fuzzy Covariance Matrix [%d X %d]jn", feat _p -numft r#, feat .p-nu in-frs);

printf("te"n", mastrix-p-aPRIORI);
printf("%e"n", matrix _p -F-et);
for(i se t;i < feat .p-.numJtra; i++)

for(j.lIjj:feat..p-numitr*;j ++)

printf("" n');

void calc~ist .FMLE(M -PARA MS *matrix..p, FYPARAMS *ieat-p, int cluster, PYPARAMS sperform-p)

I{
/* This function calculates the distance for each sample to the current cluster

See Reference 1, pp774. eqn(7').
It also passes partial results to the perfoirnance calc, refer eqns(12)(14) on pp775.
Neale Prescott OCT 93

double *XsubV, otmpR, multi
double diet;
int row, i, j;

XsubV = dvector(l, feat _p -numitrs); /* vector from sample to current centroid s

tmpR = dvector(l, feat _p -nu mJtre);
zero~dvector(XsubV, feat..p-.numitro);
zero..dvector(tmpR, feat..p-numitrs);

for(row = 1; row < feat..p-num-vcts; row++)

for(i = 1; i < feat..p-numJtrs; i++)
XsubV[i] = matrixp -feat -nitx(row][(i] - mat rix _p -cent roid jntx~cl uster][i];

for(i = 1; i < feat..p-num-itrs; i++)

tmpR[ij = 0.0;
for(j = 1; j !5 feat..p-numitra; j++)

tmpR[ij += (matrix..p-F-covar,.mtt[ij]fjXseubVbj]);

I
diet =0.0;
for(i = ; i < feat..p-.numJtrai i++)

diet = dist + (XsubV~i].tmpR[i]);
if(dist < 0.0)

printf(" OVERFLOW :NE~GATIVE FMLE DIST fllf~nn",dist);
diet = 0.0;

if(dist < 1.0)

perform..p-S1 += matrix-~p-mnbipsjntx~row][clusterj;
if(PRINT-flIAG) print f("'Distance is inside ellipsoid %e~n" dist);

I

molt = (loglO(matrix..p-F~det))/20; /- Take "sqrt" hopefully without underflow s

molt = (pow(10.0, mult))/ matrx-p -&PRIORI;

diet = molt a exp(dist/2.0);

matrix.p-dist..mtx~row][cluster] = dist;

free..dvector(XsubV, 1, feat-p-.num..tra);
free..dvector(tinpR, 1, feat-p-.numitre);

void calcx~lust-Perform(M-YARAMS *matrix-p, P..PARAMS *perform-p, F..PARAMS *feat-p

/* See Krisbnapuram and Freg, Pattern Recognition, vo125 1992 or
Bezdek, or Bain. And Gath and Geva in Reference 1.

Neale Prescott Feb 94

et

72

perform+ -Fuz"V [featp -nu m..ent raids] -0.0;
perform 4pS2 . 0.0;
perforrzs.p-Av-Density~ffat.p-nurrtcentroids) = 0.0;

for(Cl.cut . 1; Cl~cnt < feat _p -num centroids; Clcnt++)

calcJX-covar(matrix..p, feat-.p Clint);
print..Puzzycovariance(mat ri x _p, feat..p);
perform-p-FuzHV [featp -nu sc ent raids) +- sqrt(matrix..p-.det);

perform-p-SI as 0.0;
calc-cent raid _Prob(mat ri x.p, feat-p. Clcnut);
calc~disLFMLE(snatrix..p, feat-p, Clicnt, perfornip);
perform..p-S2 += perform~p-SI;
perform-p-Av.Density[feat.p-num-centroids] += (perform _p S I/Aqrt(matri x _p-FF.cet));

perform..p-Av -Density [featp -num -cent raids] = perform-p-Av-Density~featp-numcentroids]/feat~p-num-centroids;
perform.p -Parti tion -Density [feat~p -num-centroids) = (perform p-S2/perform-p-Fuzz.i V~feat..p-num-centroids]);
if(PRINT..DIAG) printfQ'Hypervolume = %e S2 = Vee"n", perform~-p-uzz-HV[feat..p-.tum-centroids]I perform-p-S2

void store-performajscedata(C -PARA MS econfig..p, P.PARAMS *performnp)

/s This function output the Performarce results for all the
numbers of clusters evaluated
Neale Prescott OCT 93

int cdust;

printf('"In* Cluster"tFuzzy Hypervol~tAv Density 't Partition flensity~n");
printf(""t t......It..............'I")
for(clust z: conflg.p -i nitial.-clusters; dlust < confi g.p -final clustera; clust++)
printf(" %d 't 't %e 't%e"t %e n"n, dlust, perform.p -Fuzz _H V~clustj, p erform.p -Av -De nity [clu at), perform _p -Partition.-D ensi ty [cl ust)

73

B.2.4 Fuzzy Classifier - FVQ.c.

..

Program Name : FVQ.c

Description : This is a modification of FuzzCl.c to perform
as a Fuzzy Vector Quantiser. 08 NOV 93.

Author ; Neale Prescott

University : USAF Institute of Technology

Date : 08 NOV 93

Other Code Numerical Recipes in C (2nd Ed)
FuzzLIB.c
FuzzLIB.h

Input Files data-file, setup.file

References 1. Unsupervised optimal Fuzzy Clustering by
I.Gath and B.Geva, IEEE Transactions on Pattern
Analysis and Machine Intelligence, Vol 11, No.?,

July 1989.

2. A Possibilistic Approach to Clustering by

Krishnappuram and Keller, IEEE Transactions on Fuzzy
Systems, Vol 1, No.2, May 1993.

3. Speech Coding Method Using Fuzzy Vector Quantization
by ASAKAWA, ICHIKAWA, YAJIMA and YAMASAKI

IEEE ICASSP 1989, pp755 -pp?58

4. A 2.4 KBPS Speech Coding Method Based on Fuzzy Vector
Quantization by ASAKAWA, YAMASAKI and ICHIKAWA
IEEE ICASSP 1990, pp673-676

#include <stdio.h>

#include <stdlib.h>
#include <string.h>
#include <math.h>
#include <errno.h>
#include "FuzzLIB.h"
#include "nrutil.h"

#ifdef DIAG

#define PRINTDIAG 1
#else
#define PRINT.DIAG 0
#endif

void FMLE.vector-quantise(C.PARAMS *config-p, MPARAMS *satrix..p, F.PARAMS *feat-p,
P.PARAMS operform-p, double **cov.p, double odeotp, double *aprior-lp);

variables- --- ----- ----------------------

int status;

C.PARAMS config.params;
F.PARAMS feat-params;
M.PARAMS mtx-params;
S..PARAMS stats-params;
P.PARAMS perform.params;

double **COV.mtx, *DET-mtx, *PRIORI-mtx;

FILE *cluster.in;

/0 --== - - - --=============== main

main(int argc, char *argvJ)

7

74

read-configuration-fle(&eonfig-params, kicea.-.params, &rgc, argv);

make -mat rices(&conftg-parsms, &mtx..params, ks&tsas.params, &perform..pararns);

COV..mtx . dmatrix(l, (confg~params. feat ures..per -vector sconfi gparame. fi nal-C Ius te r6)
1, config..parauss. features -per.-vector);

PRIORI..mtx . dvector(1, config-parazns.final -custers)

DhET..mx . dvector(l, configparams. fin & -lusters)

loadJeatures(&config~params, £emtx-params);

load-centroids(&config-params, &mtx-params, COV..mtx, DET..mtx, PRIORmIjnx);

FMLE-vector..quantise(&config-params, &mtx..parama, &feat..params, &perforM.Varan16,
COV~jntx, DETXrmtx, PRIORI..mtx);

delete -mat rices(&configparams, &mtx..params, &stats..params, &perform-params);

free.Amatrix(COV..mtx, 1, (config params. feat ures-per -vectorsconflg-params. final -lusdte rs)
1, config.parajns.features..per..vector);

free.Avector(PRIORI-mstx, 1, config..params.finalclusters)

iree.dvector(DET..mtx, 1, config-params.finalclusters)

return(0);

void FMLE-vector-quantise(C -PARA MS *config-p, M..PARAMS *matrix..p, P..PARAMS *featp,
P..PARAMS *perform-p, double oscov..p, double *det-p, double saprior-p)

int cluster, i, j, k, best;
double tmp..dist, dist, mean..dist, var-dist, tot..nemb, max-.menab, muean..memb;

k = 1;
for(cluster =1; cluster :5 feat -p-num..centroids; cluster++)

for(i - 1; i < config.p -feat ures..per..vector; i++, k++)
for(j - 1; j :5 config.p -feat ures..per..-vector; j++)

matrix _p -F..covar-antx [ib][= cov..plk]b];

matix..p-F-det = det..p~cluster];
matrix _p -&PRIORI = aprior..p[clusteil;

calc~dist.PMLE(matrix..p, feat..p, cluster, perform..p);

compute -member..FKM(conflg-p, matrix-p, feat-p);

dist = 0.0;
var.Aist = 0.0;
tot..memb . 0.0;
for(j = 1; i < config..p-.number-vectors; i++)

max..memb = 0.0;
for(j . 1; j :5 config..p-fina~dcusters; j++)

if(max.-memb < matrix..p-mships..mtx[i]U])

inaz.memb = matrix..p-mahips-.nax~i])j];
beat = j

tot..memb += max-memb;
trup.dist = (log(matrix..p-.diss..mtx[i](best]));
var..dist += DSQR(tmp-dist);
diet +- tmpdist;

mean..memb = tot..memb / config-p-nuniber-vectors
inean-dist - dist I config-p-number..vectors;
var..dist z: (var..dist/conflg-p-number-vectors) - DSQR(mean -diet);
var..dist =sqrt(var..dist);

75

printfQ'Distortion (Wal for (%sl "t: %esetesenconfig-p-data-nanie,
Config.-P ClUS tersa.RD.

me~an.dist,
(mean-dist + 3.var.AisI),
meau-memb);

76

B.2.5 makefile.

0 FLTLT D.N.Prescott
* Thesis Fuzzy Clustering
* 08 OCT 93
0 FILE: makef ile for Fuzzy Code for THESIS
8 PURPOSE: This file will allow automating building of the
* executable programs defined.

0 The best reference for MAKE is "Managing Projects with make" by Gram end Talbot
* O)Roilly & Associates, Inc.

DEBUG-FLAG - -g S allows debugging to work
RATE-.LID a -In 0 location of C math libraries
GCC a gcc 8 location of ANSI-C compiler on Hawkeye
DNP. FLAG a -DDIAG 8 -DDIAG Private debugging flag for verbose mode
0
* ...

F2 :F2.c nr.h FuzzLIB.o nruti-l-o moment.o dpythag-o dsvdcmp.o
${GCC} -o F2 F2 .c FuzzLIB.o urut il .o moment .* dpythag.o dsvdcmp .0 ${DEBUG-YLAO} ${RATH-LIB} ${DNP-FLAG}

FVQ :FVQ-c FuzzLIB.o nrutil.o moment.o dpythag.o dsvdcmp.o
gcc -o FVQ FVQ.c FuzzLIB.o urutil.o moment.o dpythag.o davdcmp~o -lm $(cflags) -DSUN -DDIAG

fuku : fuku.c FuzzLIB.o nrutil.o
${GCC) -o fuku fuku.c urutil .o *{EATE.LIB} ${DNP-FLAG} ${DEBUG-YLkG}

0 maximally optimised version of F2 for SUN
* Note whole compilation is without debug. ie Fuzzlib.c is optimised too.
0 --
F2opt :F2.c nr.h FuzzLIB.c nrutil.o moment.o dpythag.o davdcmp.o
*{GCC} -o F2opt F2.c FuzzLIB.c nrutil.o moment.o dpythag.o davdcmp.o *{NATH-LIBI -02

FYQopt :FVQ.c FuzzLIB.o nrutil.o moment.o dpythag.o dsvdcmp.o
gcc -02 -o FVQopt FVQ.c FuzzLIB.c nrutil.o moment.o dpythag.o dsvdcnp.o -1m, -DSUN

*Library routines

FuzzLIB.o :FuzzLIB.c FuzzLIB.h nzutil.h ur.h
*{GCCI -c FutzzLIB .c ${DEBUG-.FLAO) ${DIP..FLAO1

nrutil-o : rutil.c
$G*-c nrutil .c ${DEBUG-.FLAG}

moment.0 moment.c nrutil.h
${G~CC -c moment. c ${DEBUG..FLAG}

dpythag.o : dpythag.c mratil.h
${GCC} -c dpythag. c ${DEBUG..FLAG}

dsvdcmp.o : dsvdcmp.c nratil.h
S{GC}) -c dsvdcmp. c ${DEBUG..FLAG)

77

9.

B.3 Simple UFPONC in MATLAB script

% A quick sanity check of FIN and UFPOAC
% Neale Preacot

% Global constants

%------------
maxcentroids a 4;
epsilon - 0.001;
max-itor a 500;

load test6.dat
data noset6;
clear test6
[R,n] -size(data);
Iformat short e

% Rake the necessary matrices

% ------------------------
centroids - zero*(maix.centroids, a);
distances = zeros(m, max.centroids);
membahips - zeros(n, max-centroids);
oldshipa - zeros(s, max-centroids);

% Initialise the centroida

% ---------------------
first-con = mean(data);
controids(l, :)-irst-con;

centroids(2,:) - first-con + (first-con * (-1)1 * 0.005);
centroids(3,:) - first.cen + (first.cen * (-1)-2 * 0.005);
clear first-cen

%centroids(i,:) = data(S,:);
%centroids(2,:) = data(17.:);

% Initialise some variables
% ----------------------
objective w 10;
CLUST - 3;
track a [0;
iterations = 0;

% Calculate the distances

% --------------------
for i=I:m
for j-i:CLUST

XsubV = data(i,:) - centroida(j.:);
tup a IsubV e IsubV';
distances(ij) = tap;

end
end

% Calculate the memberships

% -----------------------
for i-I:.

sum-all 0 0.0;
FLAG a -1;
for jwl:CLUST

if(dietances(i,j) -a 0.0)

78

sum-all 0 OWLsal + l.Oldistances(i,j),
else

FLAG a J

end

for J-1: MUST
if (FLAG - -1)

membships(i~j) = (1.0/diutancesft~j))/sm...ehl;
else

if(j - FLAG)
xembships(i~j) - 1.0;

else
membships(i~j) = 0.0;

end
end

end

and

% Rain operations loop - Fuzzy K-leans

while ((objective > epsilon) &(iterat ions < max-iter))

for ini:CLUST

numerator - zeros(1,n);
denominator w 0.0;
for j=l:m

numerator - numerator + membshipsQji)2 * data(j,:);
denominator a denominator + membshipsQj~i)2;

end
centroids(i,:) - numerator ./ denominator;

end

oldahips a membahips;

% Calculate the distances
% -----------------------

for i-l:m
for jmi:CLUST

IsubV - data(i,:) - centroids(j,:);
tap a IsubV * IsubV';
distances(i,j) = tap;

end
end

% Calculate the memberships
% --------------------------
for i=l:m

sum-all - 0. 0;
FLAG a -1;
for J=1:CLUST

if(distances(i~j) -- 0.0)
sum...ahl - sum-all + 1.0/distances(i,j);

else
FLAG -=j

end
end

for j=I:CLUST
if (FLAG - -1)

membships(i~j) a (1.0/distances(i~j))/sum-..ll.;
else

if(j - FLAG)

79

aembakipe(i,j) = 1.0;
else

membahips(ij) a 0.0;
end

end
and

end

Z Calculate the objective function

objective - aax(max(abu(oldships - meabships)));
track = [track; objective];
iterations a iterations + I

end

plot (track)
title('FIN - Objective function')

xlabel('Iterations')

grid

% Initialise the Fuzzy covariance matrix

fuzz-cov -eye(n);
% Calculate the distances (exponential)

% ---------------------------------
for iml:n

for jul:CLUST
P-0.0;
for iul:n

P - P + membships(i,j)/m;
end
IsubV = data(i,:) - centroids(j.:);
distances(i,j) = (1.0/P)eexp((XsubV C IsubV')/2);

end
end

% Calculate the memberships

% ------------------------
for inl:m

sun,"ll I 0.0;
FLAG a -1;

for j=l:CLLUST
if(distances(i,j) -- 0.0)

sumnall - sa.wall + 1.0/distances(i,j);
else

FLAG = J;
end

end

for jal:CLUST

if(FIAG as -1)
meubships(i,j) - (1.O/distances(i,j))/sm&_all;

else
if(j m- FLAG)

membships(ij) = 1.0;

else
membships(i,j) a 0.0;

end
end

end
end

80

5.

iterations - 0;
objective = 10;
track2inO;

% Nain operations loop - Fuzzy Naximni Likelihood Estimation

while ((objective > epsilon)A(iterations < max-iter))

% Calculate the centroida

% --- - - - - - - - - - - -
for i-l:CLUST

numerator - z=ro.•,.);
denominator = 0.0;
for j=i:m

numerator a numerator + membships(j.i)-2 * data(j,:);
denominator = denominator + membships(j, i) 2;

end

centroids(i,:) = numerator ./ denominator;
end

% Calculate the Fuzzy covariance matrix for the centroids
% --
for Ji1:CLUST

P.O .0;
for iWi:m

P = P + membships(i,j)/m;

end
denon = 0.0;
for i=1:m

IsubV = data(i,:) - centroida(j,:);
fuzz.cov a fuzz.cov + membships(i,j) .* (IsubV' * IsubV);
denom - denom + membships(ij);

end
fuzz-cow a fuzzcov ./ denom;
sqrtF-det = aqrt(det (fuzz.cov));
for i=1:m

XsubV = data(i,:)-centroids(j,:);
distances(ij) = (sqrtF-det/P)*exp((XsubV * inv(fuzz.cov) * XsubV')/2);

end
end

oldships a membahips;

% Calculate the memberships

% -----------------------
for iW1:m

suu.all = 0.0;
FLAG a -1;
for j-l:CLUST

if(distances(i,j) -= 0.0)
suum.all a sum..all + 1.0/distances(ij);

else
FLAG = J;

end
end

for J=l :CLUST
if(FLAG - -1)

membships(i~j) a (1.0/distances(ij))/sum-all;
else

if(j - FLAG)

membships(i,j) - 1.0;
else

81

membahipa(ij) - 0.0;
end

end

end

% Calculate the objective function

objective = uax(az=(abs(oldships - membahips)));
track2- [track2; objective];
iterations a iterations + 1

end

figure
plot (track2)

title('FEI - Objective function')

zlabel('Iterations')
grid

82

S.

B.4 Code to Determine the Number of Hidden Nodes

% Katlab Script file - D.N.Prescott

% Calculation of Hidden Nodes for a Neural let

% Bernie's Formula (Vidro.)

% 10 *([Num-ftru +lielodes + (Nodes+l)eEBun.outputsa]) < Iumdata- samples

% o6.

% 20 dimensional speech features
% 12 speakers
% 20,000 sample feature vectors
I

% 10([20+1]*N + (N+1)*12) < 20,000

% => 33*1 + 12 < 2000

% I < (2000-12)/33

% => N < 60.24

dims a 20;
nRusamples = 1000;
num_classes = 12;

loops = 20;
ANNutz a zeros(loope+1,2);
Iffmtx(1,2) =0;

for i-1 :loops
Nodes = ((nut-samples/i0)-num.classes)/(dims+l+numiclasses);
ALNmtx(i+1,1) - numsamples;
ANIhtx(i+1,2) a Nodes;
num.samples = num.samples + 1000;

end
stairs(ANlmtx(: ,2))
title('Naximum number of hidden nodes for data samples, 12 classes, 20dims')
xzlabel('Samples X 1000')
ylabel(Ilidden nodes')
grid

83

B. 5 FKM configuration file

Listed below is a typical configuration file for the UFP-ONC program. The leading

numbers are not included they are for explanation only. This configuration file is for the

Anderson iris data set.

1. % Test configuration file FKM, UFP-ONC, Neale Prescott 15OCT 93
2. iris.dat
3. %
4. iris.clust
5. iris.perfm
6. U
7. 150
8. 4
9. 2
10. 6
11. 2
12. 0.001
13. 1000

1. Comment line

2. Feature vector (data file) name

3. The cluster file name

4. The performance file name KNOT USED but REQUIRED FOR STARTUP)

5. The mode of operation

"* U for UFP-ONC, ie both FKM and FMLE

"* F for FKM only

6. Number of feature vectors

7. Dimension of feature vectors

8. Number of initial clusters

9. Final number of clusters

10. Fuzziness, generally use 2

11. Epsilon, the stopping criteria, must be [0, 1]

12. Maximum number of iterations before stopping. ie If not converged in 1000 iterations
then stop.

84

B.6 ANN configuration file

datafile: timitdayO2.aac
hiddenlo: 20
hiddenhi: 20
hiddenint: 20
eta: 0.30
maxerr: 0.01
maxepochs: 10000

85

Bibliography

1. Anderson, E. "The irises of the Gaspe Peninsula," Bull. American Iris Society, 59:2-5
(1935).

2. Asakawa, Yoshiaki, et al. "Speech Coding using Fuzzy Vector Quantization." Inter-
national Conference on Acoustics Speech and Signal Processing. 755-758. New York:
IEEE Press, 1989.

3. Asakawa, Yoshiaki, et al. "A 2.4 KBPS Speech Coding Method Based on Fuzzy Vector
Quantization." International Conference on Acoustics Speech and Signal Processing.
755-758. New York: IEEE Press, 1989.

4. Atal, B. S. "Automatic speaker recognition based on pitch contours," Journal of the
Acoustic Society of America, 52(6):1687-1697 (December 1972).

5. Bezdek, James C. "A Convergence Theorem for the Fuzzy ISODATA Clustering Al-
gorithms," IEEE Transactions on Pattern Analysis and Machine Intelligence, PAMI-
2(1):1-8 (January 1980).

6. Bezdek, James C. Pattern Recognition with Fuzzy Objective Function Algorithms.
New York, N.Y. 10013: Plenum Press, 1981. 2nd Printing.

7. Bezdek, James C., et al. "Convergence Theorems and Fuzzy c-means : Counterex-
amples and Repairs," IEEE Transactions on Systems, Man and Cybernetics, SMC-
17(5):873-877 (September 1987).

8. Bezdek, James C. and Sankar K. Pal, editors. Fuzzy Models For Pattern Recognition
(Selected Reprints), chapter 1, 1-25. New York: IEEE Press, 1992.

9. Bricker, P. D., et al. "Statistical Techniques for Talker Identification," The Bell
System Technical Journal, 50(4):1427-1454 (April 1971).

10. Chan, K. P. and Y. S. Cheung. "Clustering of Clusters," Pattern Recognition,
25(2):211-217 (1992).

11. Colombi, Capt John. Cepstral and Auditory Model Features for Speaker Recognition.
MS thesis, AFIT/GE/ENG/92D-11, Graduate School of Engineering, Air Force In-
stitute of Technology (AETC), Wright-Patterson AFB OH, December 1992.

12. Cybenko, G. "Approximations by Superpositions of Sigmoidal Functions," Mathe-
matical Controls, Signals, and Systems (1989).

13. Dunn, J. C. "A Fuzzy Relative to the ISODATA Process and Its Use in Detecting
Compact Well-Separated Clusters," Journal of Cybernetics, 3(3):32-57 (73).

14. ESPS, Washington, DC. Entropic Signal Processing System, 1992.

15. Fisher, R. A. "The Use of Multiple Measurements in Taxonomic Problems," Ann
Eugenics, 7:179-188 (1936).

16. Foil, Jerry T. and Don H. Johnson. "Text Independent Speaker Recognition," IEEE
Communications Magazine, 22-25 (December 1983).

17. Fukunaga, Keinosuke. Introduction to Statistical Pattern Recognition. New York,
New York: Academic Press Inc, 1972.

86

18. Furui, Sadaoki. "Cepstral Analysis Technique for Automatic Speaker Verification,"
IEEE Transactions on Acoustics Speech and Signal Processing, ASSP-29:254-272
(April 1981).

19. Gath, I. and A. B. Geva. "Unsupervised Optimal Fuzzy Clustering," Pattern Analysis
and Machine Intelligence, 11(7):773-781 (July 1989).

20. Gersho, Allen and Vladimir Cuperman. "Vector Quantization : A Pattern-Matching
Technique for Speech Coding," IEEE Communications Magazine, 15-21 (December
1983).

21. Glass, Graham. Unix for Programmers and Users A Complete Guide. New Jersey:
Prentice Hall, 1993.

22. Goldstein, Ursula G. "Speaker-Identifying features based on formant tracks," Journal
of the Acoustic Society of America, 59(1):176-182 (January 1976).

23. Gray, Robert M. "Vector Quantization," IEEE ASSP Magazine, 4-29 (April 1984).

24. Gustafson, E. E. and W. C. Kessel. "Fuzzy clustering with a fuzzy covariance matrix,"
IEEE CDC, 761-766 (1979).

25. Higgin, A. and others. Speaker Identification and Recognition. Final Report 88-
F744200-000, ITT Aerospace/Communications Div, Nov 1991.

26. Hush, Don R. and Bill G. Home. "Progress in Supervised Neural Networks What's
New Since Lippmann?," IEEE ASSP Magazine, 8-39 (January 1993).

27. Keller, Capt John. Identity Verification Through The Fusion of Face and Speaker

Recognition. MS thesis, AFIT/GE/ENG/93D-11, Graduate School of Engineering,
Air Force Institute of Technology (AETC), Wright-Patterson AFB OH, December
1993.

28. Kernighan, Brian W. and Dennis M. Ritchie. The C [ANSI C] PROGRAMMING

LANGUAGE (2nd Edition). Englewood Cliffs, New Jersey: Prentice Hall, 1989.

29. Krishnapuram, Raghu and James M. Keller. "A Possibilistic Approach to Clustering,"
IEEE Transactions on Fuzzy Systems, I(2):98-110 (May 1993).

30. Linde, Y., et al. "An algorithm for vector quantizer design," IEEE Transactions on

Communications, COM-28:84-95 (January 1980).

31. Lippmann, Richard P. "An introduction to computing with Neural Nets," IEEE

ASSP Magazine, 4-22 (April 1987).

32. Martin, Lt Curtis Eli. Non-Parametric Bayes Error Estimation for UHRR RADAR
Target Identification. MS thesis, AFIT/GE/ENG/93D-26, Graduate School of En-
gineering, Air Force Institute of Technology (AETC), Wright-Patterson AFB OH,
December 1993.

33. The MathWorks, Inc., Natick MA. MATLAB Reference Guide, 1992.

34. McCrae, Captain Kimberley A. Color Image Segmentation. MS thesis,
AFIT/GE/ENG/93D-02, Graduate School of Engineering, Air Force Institute of Tech-
nology (AETC), Wright-Patterson AFB OH, December 1993.

87

35. Naik, Jayant M. "Speaker Verification A Tutorial," IEEE Communications Maga-
zine, 42-48 (January 1990).

36. NIST. The DARPA TIMIT Acoustic-Phonetic Continuous Speech Corpus (TIMII):
Training and Test Data and Speech Header Software, oct 1990.

37. Oppenheim, Alan V. and Ronald W. Schafer. DISCRETE- TIME SIGNAL PRO-
CESSING. Prentice Hall, 1989.

38. O'Shaunghnessy, Douglas. "Speaker Recognition," IEEE ASSP Magazine, 4-17 (Oc-
tober 1986).

39. Pal, Sankar K. and Dwijesh Dutta Majumder. "Fuzzy Sets and Decision making
Approaches in Vowel and Speaker Recognition," IEEE Transactions on Systems, Man
and Cybernetics, 625-629 (August 1977).

40. Parsons, Thomas. VOICE AND SPEECH PROCESSING. New Jersey: McGraw-
Hill, 1987.

41. Press, William H., et al. Numeric Recipes in C - The Art of Scientific Computing
(2nd Edition). Cambridge UK: Press Syndicate of the University of Cambridge, 1992.

42. Rabiner, L. R. and Biing-Hwang Juang. Fundamentals of Speech Recognition. Engle-
wood Cliffs, New Jersey: PTR Prentice Hall, 1993.

43. Rogers, Steven K. and Matthew Kabrisky. An Introduction to Biological and Artificial
Neural Networks. Bellingham Washington: SPIE Press, 1991.

44. Ruspini, Enrique 11. "A New Approach to Clustering," Information Control,
15(1):22-32 (July 1969).

45. Spanias, Andreas S. and Frank H. Wu. "Speech Coding and Speech Recognition
Technologies: A Review." IEEE Conference on Circuits and Systems. 572-577. New
York: IEEE Press, 1991.

46. Strang, Gibert. Linear Algebra and Its Applications (3rd Edition). Harcourt Brace
Jovanovich College Publishers, 1988.

47. Tou, J. T. and R. C. Gonzalez. Pattern Recognition Principles. Reading, MA:
Addison-Wesley Publishing, 1974.

48. Tseng, Ho-Ping, et al. "Fuzzy Vector Quantization Applied to Hidden Markov Mod-
eling." International Conference on Acoustics Speech and Signal Processing. 641-644.
New York: IEEE Press, 1987.

49. Weinstein, Clifford J. "Opportunities for Advanced Speech Processing in Military
Computer-Bases Systems." Proceedings of the IEEE 79. 1627-1639. nov 1991.

50. Woodward, J. P. and E. J. Cupples. "Selected Military Applications of Automatic
Speech Recognition Technology," IEEE Communications Magazine, 35-41 (December
1983).

51. Zadeh, L. A. "Fuzzy Sets," Information Control, 8:338-353 (1965).

88

Vita

Neale Prescott was born in Meningie, South Australia in 1961. He completed high

school at Westminster School in Adelaide, South Australia, in 1978. Neale joined the Royal

Australian Air Force in 1979 as an aircraft electrical fitter, serving with No. 9 Squadron,

the Australian Contingent to the Multinational Forces and Observers in the Sinai, and No.

482 Squadron.

In 1985 he was sronsored by the RAAF to complete a Bachelor of Electronic En-

gineering at the Royal Melbourne Institute of Technology. On graduation in 1987, Neale

received his commission as an officer in the Royal Australian Air Force.

In 1988, he was posted to No.3 Aircraft Depot as OIC Electrical Workshop and Base

Calibration Centre.

From 1989 until coming to AFIT in 1992, Neale managed Flll maintenance for the

RAAF Strike Reconnaissance Group and Iroquois helicopter maintenance for the Army

Aviation Regiment at No.501 Wing, Queensland, Australia.

Permanent address: 14 illawong Way
Karana Downs, Queensland
AUSTRALIA 4306

89

