A Lower Bound for the Intersection of Regular Forests

by Dennis M. Volpano

October 1993

Approved for public release; distribution is unlimited.

Prepared for:
Naval Postgraduate School
Monterey, California 93943
Best Available Copy
REAR ADmirAL T. A. MERCER
Superintendent

HARRISON SHULL
Provost

This report was prepared with research funded by the Naval Research Laboratory under the Reimbursable Funding.

Reproduction of all or part of this report is authorized.

This report was prepared by:

Dennis M. Volpano
Professor of Computer Science

Reviewed by:

Yutaka Kanayama
Associate Chairman for Technical Research

Released by:

PAUL MARTO
Dean of Research
Title: A Lower Bound for the Intersection of Regular Forests

Personal Author: Dennis M. Volpano

Type of Report and Period Covered: Final, 10/92 to 9/93

Abstract:

Regular ΣX-forests continue to play an important role in programming languages, specifically in the design of type systems. They arise naturally as terms of constructor-based, recursive data types in logic and functional languages. Deciding whether the intersection of a sequence of regular ΣX-forests is nonempty is an important problem in type inference. We show that this problem is PSPACE-hard and as a corollary that the problem of constructing a regular ΣX-grammar representing their intersection is PSPACE-hard.
A Lower Bound for the Intersection of Regular Forests

Dennis M. Volpano

Department of Computer Science
Naval Postgraduate School
Monterey, California, USA

email: volpano@cs.nps.navy.mil

October 5, 1993

Abstract
Regular ΣX-forests continue to play an important role in program-
ing languages, specifically in the design of type systems [MiR85, AM91, Vol93]. They arise naturally as terms of constructor-based, recursive data types in logic and functional languages. Deciding whether the intersection of a sequence of regular ΣX-forests is nonempty is an important problem in type inference. We show that this problem is PSPACE-hard and as a corollary that the problem of constructing a regular ΣX-grammar representing their intersection is PSPACE-hard.

1 Introduction

Regular ΣX-forests are playing an increasingly important role in language design and in particular in the design of type systems. Type inference then usually relies upon various operations over regular forests, one of which is $RF\text{-INT}$, deciding the emptiness of their intersection.

Definition 1.1 The problem $RF\text{-INT}$ is given a sequence of regular ΣX-grammars G_1, \ldots, G_m, decide whether $\bigcap_{k=1}^m T(G_k)$ is nonempty.
Regular forests have been used to characterize the types of logic and functional programs [Mis84, MiR85, HeJ90, AM91] as well as overloading introduced through classes in Haskell [Kae88, Vol93]. For example, Heintze and Jaffar propose what amounts to regular ΣX-grammars as inferred "types" or approximations of the semantics of logic programs. Corresponding to a logic program, say

\[
\begin{align*}
p(a). \\
p(f(X)) & \leftarrow p(X). \\
r(b). \\
r(f(Y)) & \leftarrow r(Y). \\
q(Z) & \leftarrow p(Z), r(Z).
\end{align*}
\]

is a set of equations

\[
\begin{align*}
X &= a \cup f(X) \\
Y &= b \cup f(Y) \\
Z &= X \cap Y
\end{align*}
\]

whose simultaneous least fixed point is an approximate meaning of the program. The inferred approximation or "type" is given by

\[
\begin{align*}
X &= a \cup f(X) \\
Y &= b \cup f(Y) \\
Z &= \emptyset
\end{align*}
\]

Solving for variable Z requires deciding whether the intersection of the two regular forests described by the first two equations is nonempty.

One can also view the logic program above as describing a set of valid overloading in Haskell for p and r as operators where p has instances at types a and f, and r at b and f:

\[
\begin{align*}
\text{class } P \alpha \text{ where } p :: \alpha \\
\text{instance } P a \text{ where } p = \ldots \\
\text{instance } P f(X) \Rightarrow P f(X) \text{ where } p = \ldots \\
\text{class } R \alpha \text{ where } r :: \alpha \\
\text{instance } R b \text{ where } r = \ldots \\
\text{instance } R f(Y) \Rightarrow R f(Y) \text{ where } r = \ldots
\end{align*}
\]

Instance declarations for an overloaded operator in Haskell describe a regular forest. So for example, deciding whether term $p = r$ is typable requires
deciding whether the regular forest arising from p’s instance declarations intersects with the forest described by instances for r.

2 Forests and Regular ΣX-grammars

Given an alphabet A, an A-valued tree t is specified by its set of nodes (the “domain” $\text{dom}(t)$) and a valuation of the nodes in A. Formally, a k-ary, A-valued tree is a map $t : \text{dom}(t) \rightarrow A$ where $\text{dom}(t) \subseteq \{0, \ldots, k - 1\}^*$ is a nonempty set, closed under prefixes. The frontier of t is the set

\{ w \in \text{dom}(t) \mid \exists i. w_i \in \text{dom}(t) \}.

It is assumed that A is partitioned into a ranked alphabet Σ and a frontier alphabet X. A ranked alphabet, or signature, is a finite nonempty operator domain. For any Σ and X, we denote the set of all finite ΣX-trees by $F_{\Sigma}(X)$. A forest, or tree language, $T \subseteq F_{\Sigma}(X)$ is called regular if and only if for some finite set C disjoint from Σ and X, T can be obtained from finite subsets of $F_{\Sigma}(X \cup C)$ by applications of union, concatenation \cdot, and closure "*" where $c \in C$ [Tho90].

A regular forest can alternatively be defined as a tree language generated by a regular ΣX-grammar [GeS84].

Definition 2.1 A regular ΣX-grammar G consists of

- a finite nonempty set N of nonterminal symbols,
- a finite set P of productions of the form $A \rightarrow r$ where $A \in N$ and $r \in F_{\Sigma}(N \cup X)$, and
- an initial symbol $S \in N$.

Definition 2.2 If $G = (N, \Sigma, X, P, S)$ is a regular ΣX-grammar then the ΣX-forest generated by G is

$T(G) = \{ t \in F_{\Sigma}(X) \mid S \Rightarrow^*_G t \}$

Regular ΣX-grammars are a class of context-free grammars that define the same family of forests as those recognized by nondeterministic root-to-frontier (NDR) ΣX-automata. A root-to-frontier automaton can be viewed
as an attribute evaluator for a tree whose attributes are states prescribed
by an attribute grammar with inherited attributes only. Formally, a NDR
ΣX-automaton A is a tuple (A, A', α) such that

1. A is a finite NDR Σ-algebra (A, Σ),

2. $A' \subseteq A$ is a set of initial states, and

3. $\alpha : X \rightarrow \wp A$ is a final assignment.

In a NDR Σ-algebra (A, Σ), A is a nonempty set of states and every
$\sigma \in \Sigma_m$ with $m \geq 1$ is realized as a mapping $\sigma^A : A \rightarrow \wp(A^m)$. For $\sigma \in \Sigma_0$, σ^A is a subset of A.

For example, a NDR ΣX-automaton $A = (A, A', \alpha)$ recognizing set
\[
\{\sigma(x, y), \sigma(y, x)\}
\]
can be defined as follows. Let $\Sigma = \Sigma_2 = \{\sigma\}$, $X = \{x, y\}$, and the set of
initial states $A' = \{S\}$. Define $A = (\{\hat{x}, \hat{y}, S\}, \Sigma)$ such that
\[
\sigma^A(S) = \{(\hat{x}, \hat{y}), (\hat{y}, \hat{x})\}
\]
and finally define the final assignment α as
\[
\begin{align*}
\sigma x &= \{\hat{y}\} \\
\sigma y &= \{\hat{x}\}
\end{align*}
\]

It is interesting to note that there is no deterministic root-to-frontier ΣX-automaton that accepts the set above. Suppose automaton A accepts $\sigma(x, y)$
and $\sigma(y, x)$ and that $\sigma(a) = (a_1, a_2)$ for some states a, a_1, and a_2 of A. If α
is A's final assignment function, then
\[
\begin{align*}
\sigma x &= a_1, & \sigma y &= a_2, & \sigma y &= a_1, & \sigma x &= a_2
\end{align*}
\]
Since A is deterministic, $a_1 = a_2$. So we have $\sigma(a) = (a_1, a_1)$ where $\sigma x = y \alpha = a_1$. Therefore on $\sigma(x, x)$ and $\sigma(y, y)$, A enters the leaves in state a_1
such that $a_1 \in x \alpha$, and $a_1 \in y \alpha$. Thus A accepts $\sigma(x, x)$ and $\sigma(y, y)$ as well.

Given that regular ΣX-grammars define exactly the forests recognized by
NDR ΣX-automata, one could formulate $RF\text{-}INT$ in terms of the latter rep-
resentation of regular forests. But we choose regular ΣX-grammars instead
since they are better suited for manipulation.

Regular forests are effectively closed under intersection.
Theorem 2.1 If G_1 and G_2 are regular ΣX-grammars, for a given Σ and X, then $T(G_1) \cap T(G_2)$ is a forest generated by a regular ΣX-grammar.

Proof. Suppose $G_1 = (N_1, \Sigma, X, P_1, S_1)$ and $G_2 = (N_2, \Sigma, X, P_2, S_2)$ are regular ΣX-grammars. Let ΣX-grammar $G = (N_1 \times N_2, \Sigma, X, P, [S_1, S_2])$ where

\[
[A, B] \rightarrow a([Y_1, Z_1], \ldots, [Y_n, Z_n]) \in P, \quad \text{for } n \geq 0
\]

if and only if

\[
A \rightarrow a(Y_1, \ldots, Y_n) \in P_1,
B \rightarrow a(Z_1, \ldots, Z_n) \in P_2,
\]

and $a \in \Sigma$, or $[A, B] \rightarrow a \in P$ if and only if $a \in X$. Then $T(G) = T(G_1) \cap T(G_2)$. \hfill \square

The theorem implies that the family of regular forests is properly contained within the context-free languages since the latter is not closed under intersection.

We now state and prove the main result.

Theorem 2.2 RF-INT is PSPACE-hard.

Proof. The proof uses a result of [Koz77]. For every deterministic Turing machine M of polynomial space complexity, we give a log-space transducer that on input x, outputs a sequence of regular ΣX-grammars whose intersection is nonempty iff M accepts x.

Let M be a single tape DTM of polynomial space complexity $p(n) \geq n$ and assume that M always makes at least three odd number of moves, has a unique accepting state, q_{acc}, and erases its tape before accepting, positioning its tape head at the left end of the tape. Let $x = a_1 \ldots a_n$ be a string over M's input alphabet and suppose M has states Q and tape symbols Γ such that Q, Γ, and set $\{\text{nil}, \#, \###\}$ are pairwise disjoint. If

\[
\Delta = \Gamma \cup \{[qX] \mid q \in Q \& X \in \Gamma\}
\]

then ranked alphabet $\Sigma = \Sigma_0 \cup \Sigma_1 \cup \Sigma_2 \cup \Sigma_3$ where $\Sigma_0 = \{\text{nil}\}$, $\Sigma_1 = \Delta$, $\Sigma_2 = \{\###\}$ and $\Sigma_3 = \{\#\}$. Suppose ID_Δ derives regular forest

\[
Z_1 (Z_2 (\cdots Z_{p(n)} (\text{nil}) \cdots)
\]
for all $Z_k \in \Delta$, $1 \leq k \leq p(n)$, and $ID_{X_1X_2X_3}^{[X_1X_2X_3]}$ derives regular forest

$$Z_1 (\cdots Z_{i-1} (X_1 (X_2 (X_3 (Z_i (\cdots Z_{p(n)-3} (\text{nil}) \cdots)) \cdots)) \cdots)$$

for all $X_1, X_2, X_3, Z_k \in \Delta$, $1 \leq k \leq p(n) - 3$.

A computation of M consists of a sequence of instantaneous descriptions $\text{ID}_0 \vdash \text{ID}_1 \vdash \cdots \vdash \text{ID}_{2m+1}$, each containing the contents of M's tape padded with blanks (B's) to length $p(n)$. If according to a move of M, symbols $Y_1Y_2Y_3$ in positions $i, i+1, \text{and } i+2$ respectively of an ID can follow from symbols $X_1X_2X_3$ in the same positions of another ID, we write

$$\text{ID}_{X_1X_2X_3}^{[X_1X_2X_3]} \vdash_M \text{ID}_{Y_1Y_2Y_3}^{[Y_1Y_2Y_3]}$$

We give two regular ΣX-grammars F_i^{odd} and F_i^{even} such that F_i^{odd} ensures that even ID's follow from odd ones, and F_i^{even} that odd ones follow from even ones. Let F_i^{odd} be a regular ΣX-grammar with empty frontier alphabet, start symbol S and productions

$$S \rightarrow \#(\text{ID}_\Delta, \text{ID}_X^{[Z_1Z_2Z_3]}, F_i^{[Z_1Z_2Z_3]})$$

for all $Z_k \in \Delta$, $1 \leq k \leq 3$,

$$F_i^{[X_1X_2X_3]} \rightarrow \#(\text{ID}_i^{[Y_1Y_2Y_3]}, \text{ID}_i^{[Z_1Z_2Z_3]}, F_i^{[Z_1Z_2Z_3]})$$

for all $X_k, Y_k, Z_k \in \Delta$, $1 \leq k \leq 3$, such that $ID_i^{[X_1X_2X_3]} \vdash_M ID_i^{[Y_1Y_2Y_3]}$, and

$$F_i^{[X_1X_2X_3]} \rightarrow \#(\text{ID}_i^{[Y_1Y_2Y_3]}, \text{ID}_\Delta)$$

for all $X_k, Y_k \in \Delta$, $1 \leq k \leq 3$, such that $ID_i^{[X_1X_2X_3]} \vdash_M ID_i^{[Y_1Y_2Y_3]}$.

Let F_i^{even} be a regular ΣX-grammar with empty frontier alphabet, start symbol S and productions

$$S \rightarrow \#(\text{ID}_i^{[X_1X_2X_3]}, \text{ID}_i^{[Y_1Y_2Y_3]}, S)$$

$$S \rightarrow \#(\text{ID}_i^{[X_1X_2X_3]}, \text{ID}_i^{[Y_1Y_2Y_3]})$$

for all $X_k, Y_k \in \Delta$, $1 \leq k \leq 3$, such that $ID_i^{[X_1X_2X_3]} \vdash_M ID_i^{[Y_1Y_2Y_3]}$.

Finally, suppose initID derives the unary tree

$$(\text{qa}_1)(a_2(\cdots a_n(\text{B}_n+1(\cdots \text{B}_{p(n)}(\text{nil}) \cdots))))$$
where B_k is a blank and q_0 is the start state of M, and finalID derives

$$[q_{acc}B](B_2(\cdots B_{p(n)}(nil)\cdots)$$

Then let F_{end} be a regular grammar with start symbol S and productions

$$S \rightarrow \#(\text{initID}, ID\Delta, F_{acc})$$
$$F_{acc} \rightarrow \#(ID\Delta, ID\Delta, F_{acc})$$
$$F_{acc} \rightarrow \#\#(ID\Delta, \text{finalID})$$

Then we have

$$\bigcap_{i=1}^{p(n)-2} T(F_i^{\text{odd}})$$

iff $u = \#(ID_0, ID_1, \#(\cdots \#(ID_{2m-2}, ID_{2m-1}, \#(ID_{2m}, ID_{2m+1})\cdots)$ and from

ID_{2k-1} follows ID_{2k} according to the transition rules of M for $1 \leq k \leq m$. Likewise,

$$\bigcap_{i=1}^{p(n)-2} T(F_i^{\text{even}})$$

iff $u = \#(ID_0, ID_1, \#(\cdots \#(ID_{2m-2}, ID_{2m-1}, \#(ID_{2m}, ID_{2m+1})\cdots)$ and from

ID_{2k} follows ID_{2k+1} according to the rules of M for $0 \leq k \leq m$. Then

$$T(F_{end}) \cap \bigcap_{i=1}^{p(n)-2} T(F_i^{\text{odd}}) \cap T(F_i^{\text{even}})$$

is nonempty iff M accepts x. □

As is the case for emptiness of intersection of a sequence of DFA's, the

source for the hardness of $RF-\text{INT}$ lies not in deciding emptiness but rather

in computing the intersection of regular forests.

Corollary 2.3 Given regular ΣX-grammars G_1, \ldots, G_m, constructing a regular ΣX-grammar G such that $T(G) = \bigcap_{i=1}^{m} T(G_i)$ is PSPACE-hard.

Proof. The emptiness of $T(G)$ for a regular ΣX-grammar G is decidable in time $O(|G|^2)$ in the usual way. From the proof of Theorem 2.2 then every problem in PSPACE is P-time Turing reducible to the problem of constructing the intersection of a sequence of regular ΣX-grammars. □
A simple algorithm for constructing G is based on the usual construction of forming the cartesian product of reachable states as is suggested in the proof of Theorem 2.1 [AiM91]. It has worst-case time complexity exponential in m. Unfortunately this naive construction is likely the best we can do. It should be pointed out that for a fixed m, constructing G from G_1, \ldots, G_m can be done in polynomial time.

Deciding whether some number of DFA's accept a common string can be done in nondeterministic linear space, but this does not appear to be true for RF-INT, which can be decided in deterministic exponential time. This suggests that a tighter lower bound exists for RF-INT.

References

Distribution List

Defense Technical Information Center
Cameron Station
Alexandria, VA 22314

Library, Code 52
Naval Postgraduate School
Monterey, CA 93943

Director of Research Administration
Code 08
Naval Postgraduate School
Monterey, CA 93943

Dr. Neil C. Rowe, Code CSRp
Naval Postgraduate School
Computer Science Department
Monterey, CA 93943-5118

Prof. Robert B. McGhee, Code CSMz
Naval Postgraduate School
Computer Science Department
Monterey, CA 93943-5118

Dr. Ralph Wachter
Software Program
Office of Naval Research
800 N. Quincy St.
Arlington VA 22217-5000

Dr. Dennis Volpano, Code CSVo
Naval Postgraduate School
Computer Science Dept.
Monterey, CA 93943-5118