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Abstract

Training in flight simulators will be more
effective if the agents involved in the sim-
ulation behave realistically. Accomplishing
this requires that the automated agents be
under autonomous, intelligent control. We
are using the Soar cognitive architecture to
implement intelligent agents that behave as
much like humans as possible. [n order
to approrimate human behavior, the agents
must integrate planning and reaction in real
time, adapt to ncw and unerpected situ-
ations, learn with erperience, and erhibit
the cognitive limitations and strengths of
humans. This paper describes two simple
tactical flight scenarios and the knowledge
required for an agent to complete them. In
addition. the paper describes an implemented
agent model that performs in limited tacti-
cal scenarios on three different flight sim-
ulators.

The goal of this research is to construct
intelligent. automated agents for flight sim-
ulators that are used to train navy pilots
in flight tactics. When pilots train in tacti-
cal simulations, thev learn to react to (and
reason abont) the behaviors of the other

agents (friendly and enemy forces) in the
training scenario. Thus. it is important
that these agents behave as realistically as
possible. Standard automated and semi-
automated agents can provide this to a lim-
ited extent, but trainees can quickly rec-
ognize automated agents and take advan-
tages of known weaknesses in their behav-
ior. To provide a more realistic training sit-
uation. automated agents should be indis-
tinguishable from other huinan pilots tak-
ing part in the simulation.

To construct such intelligent, automated
agents, we have applied techniques from
the fields of artificial intelligence and cog-
nitive science. The agents are implemented
within the Soar system, a state-of-the-art,.
integrated cognitive architecture (Rosen-
bloom et al., 1991). These agents incor-
porate knowledge gleaned from interviews
with experts in flight tactics and analysis
of the tactical domain. Soar is a promising
candidate for developing agents that be-
have like humans. Flexible and adaptive
hehavior is one of Soar’s primary strengths.
and Soar’s learning mechanism provides it
with the capability of improving its perfor-
mance with experience. In addition. Soar
allows the smooth integration of planning
and reaction in decision making (Pearson




et al. 1993). Finallv. Soar is the foundation
for the development of a proposed unified
theory of human cognition (Newell, 1990).
and thus maps quite well onto a number of
the cognitive issues of interest. This paper
reports the results of our research in con-
structing an intelligent agent for an initial.
simple training scenario and our efforts at
supplemer ing the agent’s knowledge in or-
der to carry out more complex missions.

Complexities of tactical decision-

making

In order to complete a tactical mission,
pilots incorporate multiple types of knowl-
edge. These include. for example. knowl-
edge about the goals of the mission. air-
plane and weapon constraints. survival tac-
tics. controlling the vehicle, characteristics
of the environment. and the physical and
cognitive capabilities of all of the agents
taking part in the scenario. In addition.
pilots use their knowledge flexibly and ex-
hibit adaptive behavior. This includes a
variety of capabilities. such as reasoning
about (and surviving in) unexpected sit-
uations. adapting to new situations, learn-
ing from experience, and addressing multi-
ple goals simultanecously (e.g., protecting a
position. intercepting the enemy, and sur-
viving). Finally. pilots integrate decision-
making during a mission with split-second
reactions to new situations and potential
threats,

Robust automated forces that can carry
out general simulated missions must ad-
dress these issues. especially if the forces
are to behave as humans would in simi-
lar cirenmstances. In addition to provid-
ing the wide range of capabilities that hu-
man pilots exhibit. intelligent agents mnst

reflect the same types of weaknesses as hu-
mans.  These include mental limitations.
such as attention and cognitive load. and
physical limitations. such as reduced cog-
nitive processing under high forces (such
as during a hard turn).

To capture the complex interactions be-
tween agents in a simulation. we feel it nec-
essary for each agent to be as autonomous
and intelligent as possible. Simulation via
stochastic methods can capture general be-
haviors of groups of agents. but a more re-
alistic simulation requires each agent to be-
have individually, with is own set of goals.
constraints, and perceptions. In addition,
if the agents are to be used for training pi-
lots, they must be intelligent in order to
provide as rich a training environment as
would flying against real humans.

Requirements for an intelligent au-
tomated agent

The primary research question is how in-
telligent, automated agents should be im-
plemented. A simple solution would be
to attempt to create “simulation-pilot ex-
pert systems”. This would involve con-
verting knowledge about high-level tacti-
cal decision-making into a fixed rule base.
The system would suggest the most appro-
priate action (or set of actions) based on
the current status of the environment. In
fact, a number of expert systems have been
implemented for various aspects of tactical
decision-making (e.g., Kornell, 1987; Rit-
ter & Feurzeig, 1987: Zytkow & Erickson.
1987; ).

However, while expert systems have some
of the strengths required for realistic sim-
ulation, they are usually weak in other ar-
eas. In a standard rule-based approach. it




is ditlicult 1o capture the complexity of the
multiple. dyvnamic goals that pilots must
reason about. In contrast. systems that
can reason well in such a complex domain
generally have difficulties making decisions
in real time. and they often do not have
the ability to react to changes in the en-
vironment when there is not enough time
to plan ahead. In addition. systems with
only high-level tactical knowledge prove to
be rather rigid. Unless the system can
be preprogrammed for every possible con-
tingency. its performance degrades greatly
when it finds itself in unexpected situa-
tions. Finally. expert svstems generally ig-
nore the possibility of learning with expe-
rience and other cognitive aspects of the
task. Intelligent. antonomous agents must
combine all of these strengths, having the
ability to reason about multiple goals in
a complex environment. react quickly and
appropriately when the time for complex
reasoning 1s limited, adapt to new situa-
tions gracefullv. and improve its behavior
with experience.

In order to create an agent that can rea-
son and react in real time, and is flexible
enough to adapt to new situations. it is not
enough simply to encode high-level tactics
Rather, the sys-
termn must also understand why each high-

as rules in the svstem.

level tactical decision is made. so it must
contain knowledge of the first principles
that support those decisions. For example.
part of one tactic for intercepting a bogey
involves achieving a desired lateral sepa-
ration from the bogey's flight path. One
way to generate this behavior is to include
a specific rule for the agent to move to
the desired lateral separation when it is on
the appropriate leg of the intercept. How-
ever. a more intelligent agent encodes the
knowledge that explains why this partic-

nlar tactic works (so that the fighter will
have enough space to come around for a
rear-quarter shot if the long and medium-
range missiles miss).

With the appropriate supporting knowl-
edge. the system can function in situations
that the programmer may not have an-
ticipated. Maintaining lateral separation
from the bogey's flight path is a general
principle that allows the fighter room to
negotiate a turn for a short-range missile
shot. This principle may have an impact in
a large number of tactical situations. and
therefore shouldn’t be considered as merely
an instruction to follow for one particu-
lar type of intercept. If the system rea-
sons from first principles, the programmer
does not have to hard code every possible
contingency. and good variations on tactics
should emerge in response to unanticipated
changes in the simulation environment.

Implementing the agent in this manner
also provides advantages in terms of adding
new knowledge to the system. If the tacti-
cal decisions emerge from low-level knowl-
edge. high-level decisions will change ap-
propriately as the supporting knowledge 1s
changed or supplemented. New low-level
knowledge (such as a better understand-
ing of geometric principles or radar limita-
tions) will interact with existing knowledge
to generate subtle (or possibly dramatic)
changes in behavior. Thus, the agent can
reason in a number of new situations with-
out requiring a new specific rule for each
case. The ease of adding new knowledge
to the system also makes it possible to in-
corporate existing machine-learning mech-
These can allow the system to
adapt and improve its behavior with ex-
perience. as well as provide insights into
how human pilots learn about tactics.

anisms.

A'(’l [

e
p

Speoial

Lblidey cudes
TJAvatll amd/or

,aaq‘ \

|

|




The Soar avchiteeture for problem <olving
(Newell 1990 s well suited for this type
of task. Tt divides knowledge into prob-
lem spaces and allows goals and actions
in one problem space to be implemented
via reasoning in another. Thus, when the
agent has a hngh level goal to intercept a
bogev. for example. it can switch problem
spaces and reason about the characteristics
of its weapons, radar. airplane. and mili-
tary doctrine. The knowledge from each
of these spaces combines to generate an
appropriate tactical action. In turn. the
high-level action can then be implemented
in a problem space that contains medium-
level knowledge about plane maneuvers or
low-level knowledge about moving the stick
and flipping switches.

Because knowledge is separated into prob-
lem spaces. it can be easily updated. For
example. if the agent’s plane is equipped
with a new radar with a longer range. only
the knowledge in the “radar™ space need
be updated. New decisions made in the
radar space will interact with the results
of reasoning in other problem spaces. even-
tually impacting high-level decisions such
as which specitic actions should be taken
to intercept a bogev. Likewise. if the au-
tomated agent 1s moved to a new simula-
tion environment with a new interface. we
can appropriately update the knowledge in
the “control”™ problem space, leaving the
remaining knowledge intact.

Simple tactical situations

Our initial effort to construct an intelli-
gent agent focnses on two tactical scenar-
10s used in training pilots: the “non-jinking
bogev™ and “l-v-1 aggressive bogey™ sce-
narios. In the non-jinking bogev scenario.
the target is an airplane (such as a cargo

or fuel plane) that holds a steady conrse
and altitude. and does not carry any of-
fensive threats. The kev to this scenario is
that the bogev does not attempt to evade
(jink) the fighter's attack in any way. Al-
though this situation is not likely to occur
often in real combat situations. it is a valu-
able training situation for pilots. It teaches
them how to line up the delivery of various
tvpes of missiles when the bogeyv's behavior
1s very predictable. When a non-offensive
bogev's behavior becomes less predictable.
the tactics required to intercept it actually
become simpler (but less effective).

There are three main phases involved in
attacking a non-jinking bogey (see Figure
1). These involve delivering long. medium.
and short-range missiles. During each of
the phases. the fighter must assume that
the current missile will miss. and simul-
taneously maneuver into the most advan-
tageous position for the next phase. For
example. while moving closer to the bogeyv
to fire a long-range missile. the fighter also
attempts to achieve the best lateral sep-
aration and target aspect for a shot with
the medium-range missile (see Figure 2).
After delivering a medium-range missile.
the fighter must perform displacement and
counter turns in order to end up bhehind
the bogey. This allows the fighter to fire
a rear-quarter short-range missile. Due to
these constraints. the fighter cannot simply
head on a collision course with the bogey.
but must get to the bogey as quickly as
possible while ensuring that it can eventu-
ally achieve a rear-quarter missile shet.

The tactics for executing this scenario are
relatively simple. The fighter must achieve
the appropriate lateral separation and tar-
get aspect while firing its weapons at the
right times. Then it must execute the dis-




FIGHTER
. LONG-RANGE MISSILE

2. MEDIUM-RANGE MISSILE

3. COUNTERTURN &
SHORT-RANGE MISSILE

BOGEY

Figure 1. Three stages for intercepting a non—jinking bogey.

FIGHTER

LATERAL
SEPARATION

TARGET
ASPECT

- . BOGEY

Figure 2. Definition of lateral separation and target aspect.




placement and counter turns and deliver
the short-range missile. \s mentioned pre-
viously, we could code these tacties directly
into rules for the agent. but they would
then only work under very specific circum-
stances where evervthing goes right. Thus.,
we have implemented the knowledge that
supports these tactics. This knowledge jus-
tifies why each tactical decision should be
made when it is made. This allows the sys-
tem. for example. to get back on course for
a short-range missile shot if 1t misses its
opportunity for the medium-range missile
shot for some reason. In addition. any par-
ticular action that the agent generates will
be based on the supporting knowledge. and
the agent has the potential to explain its
decision (a facility we plan to add in the
future).

The 1-v-1 aggressive bogev scenario in-
volves two airplanes with similar capabil-
ities. One is protecting a high-value unit
and the other i1s attempting to destroy it.
When the two fighters come in contact they
both attempt to intercept and destroy each
other. with the overall goal of surviving.
This scenario highlights an interaction be-
tween different low-level constraints that
results in tactical decisions. For example.
if one fighter i1s equipped with a slightly
better radar. nussiles with longer range.
or a more mobile airplane. it dramatically
affects the actions that should be taken
in completing the mission and surviving.
Our agent so far only partially implements
this 1-v-1 scenario. and it involves a num-
ber of issues that make it more complex
than the non-jinking bogey scenario. Af-
ter discussing the current state of the agent
model. we will describe these issues in de-
tail.

Details of the intelligent agent

In order to construct an agent that suc-
cessfully intercepts a non-jinking bogey. we
analyzed tactics for the scenario and inter-
viewed former pilots and radar intercept
officers. This allowed us to determine the
underlying knowledge and first principles
that support the tactics. Then. we en-
coded this knowledge into an executable
Soar svstem.

The Soar agent’s knowledge is organized
into problem spaces. each containing oper-
ators that allow the agent to reason about
particular types of goals. When the agent
cannot immediately carry out an action at
one level. it uses Soar's universal subgoal-
ing mechanism to move into an alternate
problem space and consider methods for
carrying out that action. Therefore, high-
level tactical decisions are eventually im-
plemented as medium-level maneuver ac-
tions or low-level control actions, and the
agent always has multiple goals in memory
that it uses to reason about and react to
its ever-changing situation.

Depending on the particular simulation
platform. the current Soar agent requires
between 13 and 17 problem spaces to rea-
son with; 1.e.. 13-17 different types of goals
that it reasons about. Most of these are
shown in Figure 3. The mission. protect-
hvu, barcap, and intercept problem spaces
encode tactical knowledge for carrying out
missions and performing intercepts. The
problem spaces for weapons and missiles
include knowledge about specific weapons
and the actions that must be performed
to deliver them to a target. The maneu-
ver and absolutes problem spaces deter-
mine the actual plane maneuvers that must
be carried out to implement higher-level
actions. The remaining problem spaces im-




TOP-PS

Mission
Protect
HVU
Intercept Barcap
Weapons
Missiles Fire=irm Fire-mrm Fire-stm
Maneuvers Get-lrm Get~mrm Get-srm
lar lar lar

Absolutes

Other problem-spaces for low-level controls

Figure 3. Soar’s problem spaces for intercepting a non—jinking bogey.




plement airplane maneuvers at varions lev-

els of spectfication. down 1o the level of

stick and button commands that are issued
to the theht simmlator.

At any particular instant, between 5 and
12 problem spaces (or hierarchical goals)
are usually active. Thus. when chanees oc-
cur in the agent’s sitnation. there are mul-
tiple levels at which the agent mav react
{Pearson et al.. 1993). For example. at a
low level, a sudden down draflt can canse
a change in climb-rate or altitude. lead-
ing the agent directly to pull back on the
stick. At a higher level, a maneuver by a
bogey on the radar can cause a change in
tactics.  Any reasoning involved in imple-
menting the new tactical decision also per-
colates down to a new maneuver or stick
action. In this manner, Soar maintains its
variety of goals in parallel. and violations
of the goals at anyv level lead to immediate
action at the appropriate level.

We have implemented an initial model for
the non-jinking hogey scenario in whole or
in part on three separate flight simulators.
The simplest simulator moves planes in a
two-dimensional erid-world.  In addition.
the planes do not move with realistic flight
dynamics. We nised this simulator to pro-
totvpe the system and debug the high-level
tactics embedded tn the svstem. The see-
ond flight simulator was adapted from the
flight simulator provided with SGI graph-
ics workstations. It works in real time and
requires the agent to issue very low level
commands at the level of moving the stick
(by issuing mouse pixel movements) and
other low-level commands (by simulating
kevboard presses). The non-jinking bogev
scenario has not vet been completely im-
plemented on this simmlator. becanse Soar
must handle the low level intricacies of sim-

plv flving the airplane as well as worrving
about tactical decisions and maneuvering,.
Finally, we have implemented the scenario
on BBN's ModSAF simulator. which has
the most realistic flight dvnamics of the
three simulators. This simulator works in
real time (with a scheduler dividing time
between the simulation and agents) and it
takes commands at the level of maneuver
actions (such as desired heading and alti-
tudey without making the agent concern
itsell with how the maneuvers are actually
immplemented with airplane controls.

A~ of now. we have not completely de-
veloped the knowledge base that would al-
low onr agent to successfully fly the 1-v-
I aggressive bogev scenario. This scenario
differs from the non-jinking bogey scenario
along two major dimensions. First, the bo-
gev maneuvers, so its behavior is not en-
tirely predictable. Second. the bogev is ag-
gressive and has offensive capabilities. so
any action that is taken must also address
the overall goal of surviving: the agent can-
not simply close in on the bogey and shoot
it.

In order to snccessfully complete a mis-
sion against an aggressive bogeyv. the agent
must include not only extra knowledge in
its tactical problem spaces. but it must also
have two new capabilities to address the
above issues. First, the agent must be able
to interpret and assess its current situation
at all (or at least most) times. This primar-
ilv involves interpreting the bogev's cur-
rent actions and predicting its future ac-
tions. As with most of the agent’s reason-
ing. the interpretation process also takes
place at multiple levels. At a low level.
the fighter must recognize when the bogey
has imtiated a turn and when it has com-
pleted one. At a higher level, the fighter




must determine whether the turn indicates
some kind of threat. and what that threat
may be. For example.if the bogey initially
comes to a colliston course with the tighter.
this probably indicates that the bogev is
aggressive and is going to try to shoot the
fighter. If the bogey points towards the
fighter and then makes a hard turn. this
indicates that the bogeyv has probably just
fired a missile. The agent must interpret
the limited information it gets from its sen-
sors. Then it must use this interpretation
to predict the goals that the bogey is try-
ing to achieve and the actions at different
levels that the bogey is carrying out.

The second necessary capability for the
agent is to use multiple high-level goals to
constrain the actions that the agent gener-
ates. These types of goals are a bit differ-
ent from the parallel goals that the Soar
agent already handles, because they are
not hierarchical in nature. Rather. they
are distinet goals that interact with each
other. For example one goal. destroy bo-
gey. implies that the fighter should close in
on the bhogev as quickly as possible. How-
ever. another goal. sureive, pressures the
fighter to avoid the bogev in order to stay
out of the bogey’s weapon range. These
contlicting goals both must be used to se-
lect from multiple possible actions. This
tvpe of reasoning leads directly to com-
posite tactical actions. For example. the
fighter may get close enough to fire a mis-
stle and then make a sudden hard turn.
The turn must be hard enough to keep the
bogev and fighter from getting close too
quicklv, but not so hard that the fighter
loses its radar lock on the bogev (which
wonld put the fighter at a large disadvan-
tage).  In this manner. the agent deter-
mines the best action that supports two
simultancous, conflicting goals.

The issues of interpretation and simulta-
neous goals are not trivial, and theyv plav
central roles in agent reasoning for any tac-
tical situations except the simplest ones.
Much of tactical decision making involves
creating a model of the world from lim-
ited information and addressing multiple
goals and constraints. such as the current
misston. survival, and the characteristics
and status of the weapons and airplane.
We have not completed the incorporation
of this knowledge intn the agent vet. but
we are taking advantage of the strengths
of the Soar architecture in order to im-
plement these two important capabilities
(Covrigaru, 1992).

Discussion

We have implemented an intelligent. au-
tonomous agent that completes missions in
a simple tactical scenario. The agent is
designed with flexibility in mind. It rea-
sons from first principles about high-level
tactical decisions. and is thus able to rea-
son in unexpected situations and recover
gracefully from mistakes. In addition. the
agent’s knowledge base is flexible enough
to be easily transferred between simulation
platforms and to encode new tactics in a
modular fashion. We are currently imple-
menting the knowledge necessary for the
agent to complete the 1-v-1 aggressive bo-
gev scenario. This includes addressing the
two important issues of situation interpre-
tation and achieving multiple simultaneous
and interacting goals.

Our future research will involve incremen-
tally expanding the agent’s knowledge base
s0 1t can reason robustly in a wide range
of 1-v-1 scenarios. We will also soon fo-
cus on modeling more complex scenarios.
including those involving more than two




planes. This will also allow ns to expand
the agent’s coverage of the cognitive be-
haviors involved in tactical flight. For ex-
ample. we will incorporate more intelligent
methods for situation assessment. model-
ing other agents (i.c.. robustly predicting
actions and goals of other participants in
the scenario. both friends and foes). iden-
tifving potential threats. and reacting to
them. Bevond that. we will focus on more
complex cognitive tasks. such as more com-
plete integration of planning. reaction. and
execution. more sophisticated interpreta-
tion of the environment and other agents,
and learning from instruction.
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