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Our results fall into the three major areas described below.

L Breaking Intractability

Since I have kept AFOSR well informed of progress in this area I will not repeat myself here.

The following five papers and reports deal with progress in this area.

1. A Surprising and Important New Result. Report to AFOSR by J. F. Traub,
February 25, 1993.

2. Recent Progress in Information-Based Complexity. J. F. Traub and
H. Wozniakowski. Invited paper, Bulletin European Association for Theoretical
Computer Science, October 1993, Number 51, pages 141-154.

3. Breaking Intractability. J. F. Traub and H. Wozniakowski. Published as cover
story Scientific American January 1994.

4. Development and Testing of Software for Multivariate Integration. Report to
AFOSR by S. Paskov and J. F. Traub, January 4, 1994.

5. Tractability and Strong Tractability of Linear Multivariate Problems.
H. Wozniakowski. To be published in the March 1994 issue of the Journal of
Complexity

DTIC QUALITY INSPECTRD &
94-12428
RS TTINITID

We briefly describe the contents of the above papers and reports

94 4 22 124




e {tem #1 is a report to AFOSR introducing the concept of strong tractability.

- eltem #2 is an invited article which reviews recent progress in information-based
complexity.

e [tem #3 is an invited article for Scientific American which reports on recent progress
in breaking intractability.

e Item #4 is a report to AFOSR on the status of development and testing of software
for multivariate integration.

e Item #5 is the first publication regarding strong intractability. It will appear in the
March 1994 issue of the Journal of Complexity.

I1. Monte Carlo

The Monte Carlo Algorithm With A Pseudorandom Generator. J. F. Traub and
H. Wozniakowski. Published in Mathematics of Computation, January 1992, Vol. 58, pages
323-339.

The current method of choice for computing multivariate integrals is Monte Carlo. Of course, on
a computer there are no random numbers, only pseudo random numbers. There is a huge
literature on statistical testing of pseudo random numbers. However these tests do not answer the
question of most interest to the user. Are the good properties of the Monte Carlo algorithm using
random numbers preserved if pseudo-random numbers are used? In this paper, which we believe
to be the first on this topic, we prove that the answer is yes provided some care is taken. For
example, in d dimensions it is necessary to use d random seeds.

II1. Ill-Posed Problems

Linear IlIl-Posed Problems Are Solvable On The Average For All Gaussian Measures.
J. F. Traub and A. G. Werschulz. To appear, Math Intelligencer, 1994.

It has been proven that ill-posed problems are unsolvable in the worst -case deterministic setting.
Yet ill-posed problems, which occur in many applications, must often be solved.

An answer may be provided in this paper. We show that ill-posed problems are solveable on the
average for every Gaussian measure. This is the first paper on the average case analysis of ill-
posed problems.




A S}JRPRISING AND IMPORTANT NEW RESULT
J. F. Traub

Computer Science Department
Columbia University

February 25, 1993

The number of function evaluations sufficient to solve important problems such as
multivariate integration and multivariate approximation is completely independent of the
number of variables!

CONTEXT FOR THE NEW RESULT

The following bullets put this new result into context.

¢ High-dimensional problems occur in numerous applications in science and
engineering.

e Most of these problems cannot be solved dnalytlully They have to be numericully
solved, approximately.

e Most multivariate problems are intractuble in dimension. A typical result is that if
auur.u y € is desired and there are  variables, then the computational complexity is

(1/e).

e Thus. if a two-place answer is desired. the problem is 10X) times harder for each
additional vanable. If eight-place accuracy is desired. the problem is 100,000000
times harder for each additional variable.

e Although the physicists at Los Alamos did not know about computational
wmplexity they realized they could not solve certain problems. This led to the
invention of Monte Carlo methods. For example, the c.on'nputauon.nl Lomplexny of
multivariate integration in the randomized setting is proportional to 1/€2 and
therefore tractable.

eIt was shown in 1989 that Monte Carlo methods cannot be used to breuk ‘or hid
intractability of multivariate approximation. “‘T
* An alternative to the randomized setting is the average case setting in which we seek a
to break unsolvability and intructubility by replacing a worst case guarantee that the , =
error is less thun the threshold € with the weaker guarantee that the expected error is A
less than €. Note that this is a deterministic setting: one has to solve the problem of

optimal sample points _wisirivations o
Availabﬂ!lt‘y

ln'




e In 1991 it was shown that multivariate integration is tractable on the average. Ona
power scale, the average computational complexity of multivariate integration is
proportional to 1/6. For small € this is a major improvement over Monte Carlo,
although for a different error criterion. Optimal sample points were obtained.

o Are other important multivariate problems tractable on the average? In 1992 it was
shown that approximation is also tractable on the average. On a power scale the
average computational complexity of multivariate approximation is proportional to
1/e2. Optimal sample points were obtained.

e In the result stated above we ignored a multiplicative factor depending on the
dimension . For example, the average computational complexity of multivariate
integration is g(d)1/e. where g(d) is a multiplacative factor which depends only on
the number of variables. Good theoretical estimates of g/d) are not known and
obtaining them is believed to be very hard.

THE NEW RESULT

e An entirely new approach can be used. We get rid of the fuctor g(d).

e Specifically. we say that a problem is strongly tractable if the number of function
evaluations needed for the solution is completely independent of the number of
variables. It depends onlv on a power of 1/¢.

e This seems too much to ask for. but both multivariate integation and multivariate
appoximation are strongly tructable on the average!

e This result is so new that it hus not yet been written up.

e The result is given by a theorem and is non-constructive! That is. we know there
must exist evaluation points in  dimensions which muake integration and
approximation swongly tractuble, but these points are not yet known.

- FUTURE RESEARCH

An exciting new result suggest new guestions and directions. some of which we list here.
e What are the points of evaluation which make multivariate integration and
multivariate approximation strongly tractable? This is a major challenge.

e We are currently implementing and testing softwure for multivariate integration
using the known points which make this problem tractable on the average (but not

strongly tractable).
® We then plan to implement and test this software for a network of workstations.

e We also plan to implement and test software for multivariate approximation.

e It has been shown that multivariate integration and multivariate approximation are
strongly tractable. What other problems are strongly tractable?

-2 -
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IN
INFORMATION-BASED COMPLEXITY

J. F. Traub! H. Wozniakowski!2
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This is an invited article for the Structural Complexity Column, edited by Juris Hart-
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2 J. F. TRAUB H. WOZNIAKOWSKI

1. Overview of Information-Based Complexity

The goal of this article is to report some of the recent progress in information-based
complexity, which for brevity will be denoted as IBC. We have selected topics which might
be of particular interest to the EATCS audience. We take an informal approach in this
article, focusing mainly on ideas. For precise formulations and results, as well as proof
techniques, see the books TW!{80], TWW [83], Novak [88], TWW [88], Werschulz [91},
and recent surveys , PT [87], PW [87], TW [91a, 91b], Heinrich [92], and Novak [93].

We begin by presenting a greatly simplified picture of computational complexity to
indicate where IBC fits in. For our present purpose, computational complexity may be
divided into two branches, discrete and continuous. Continuous computational complexity
may again be split into two branches. The first, which we'll call continuous combinatorial
complezity, deals with problems for which the information is complete. Problems where
the information may be complete are those which are specified by a finite number of
parameters. Examples include linear algebraic systems, matrix multiplication, and systems
of polynomial equations. Blum, Shub and Smale [89] obtained the first NP-completeness
results over the reals for a problem with complete information.

The other branch of continuous computational complexity is IBC. Typically, IBC studies
infinite-dimen-sional problems. These are problems where either the input or the output
are elements of infinite-dimensional spaces. Since digital computers can handle only finite
sets of numbers, infinite-dimensional objects such as functions on the reals must be replaced
by finite sets of numbers. Thus, complete information is not available about such objects.
Only partial information is available when solving an infinite-dimensional problem on a
digital computer. Typically, information is contaminated with errors such as round-off
error, measurement error, and human error. Thus, the available information is partial
and/or contaminated.

We want to emphasize this point for it is central to IBC. Since only partial and/or
contaminated information is available, we can solve the original problem only approzi-
mately. A goal of IBC is to obtain the computational complezity of computing such an

approzimation.
In Figure 1 we schematized the structure of computational complexity described above.

1When one of us is a co-author, the citation will be made using only initials
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Computational Complexity

N

Discrete Complexity Continuous Complexity
Information Continuous
Based-Complexity Combinatorial Complexity
Figure 1

The motivation for studying IBC is two-fold:

(1) Continuous models, typically infinite-dimensional, are very common in science,
engineering, economics, and even in finance. Examples of the mathematical prob-
lems which arise from these models are partial or ordinary differential equations,
multivariate integration, and optimization.

(2) The subject matter covered by IBC is rich from a complexity point of view with
many results and numerous open questions, as we hope to illustrate in this article.

Although IBC typically studies infinite-dimensional problems there are important ex-
ceptions. These include probabilistic complexity of processor synchronization with sto-
chastic delays, Wasilkowski [88a)], and complexity of solving large linear systems, TW [84],
Nemirovsky [91, 92].

IBC is formulated as an abstract theory; see the Appendix. The applications often
involve multivariate functions over the reals. For example, in multivariate integration,
the integrand is a multivariate function. In optimization, one seeks an extremum of a
multivariate function subject to multivariate constraints. In an initial-value problem, such
as the wave equation, the initial condition is again specified by a multivariate function.

The observation that a function over the reals cannot be entered into a digital computer
lies at the heart of IBC. (In the general case, an element of an abstract space cannot be
entered.) We call a multivariate function a mathematical input, denoted by Ipan. Let S
be a linear or nonlinear operator which specifies the problem we want to solve, S: F = G
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for some sets F' and G. The operator S carries Ipan from F into a mathematical output

Omatwh in G; see Figure 2(a)

Im;th S Omath
- >
Figure 2(a)

Of course, this is too general to characterize an IBC problem. For example, Inawm could
be the locations of a set of cities and Opacn could be an optimal tour; which is a typical
discrete problem. This is an IBC problem when In,n cannot be entered into a digital
computer, and it must be replaced by a computer input denoted by Lomp.

The computer input, I.omp, consists of a finite set of numbers. For example, if Imath
is a function then L,mp might consist of its values at certain points. Lomp is obtained
from Imacn by information operations. Different disciplines have different names for these
information operations. Computer scientists called them oracle calls, mathematicians call
them functionals, and engineers call them black-box calls. The replacement of Inain by
Icomp may be viewed as a discretization.

Denote the set of information operations by N(Ima:n); we call N the tnformation opera-
tor. Since many (typically, an infinite number of) mathematical inputs map into the same
computer input, the mapping N is many-to-one. That is, discretization is irreversible. The

situation is diagrammed in Figure 2(b).

Imtth S Omnh

[N
[4

N

I4:omp
Figure 2(b)

Although there has been mention of neither computer output nor algorithm, we can
already draw certain conclusions. Since N is a many-to-one map, the computer does not
know the mathematical input. Therefore, it is impossible to solve this problem exactly;
the best we can hope for is an approximation.

We assign the same cost to each information operation. Given an error threshold ¢, we
can define the information complexity, COMP®#(¢), as the minimal cost of the information

operations needed to obtain an ¢-approximation. (In computational learning theory this
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is called sample complexity.) Information complexity can be defined in different settings
such as the worst case, average case or probahilistic setting.

Using the concept of radius of information, r(N), see TW [80, pp. 9-15], TWW (88,
pp. 43-45, 197-200, 327-328], we can often obtain sharp lower and upper bounds on the
information needed to get an ¢-approximation. The information N is powerful enough to

obtain an ¢-approximation iff
r(N) <e.

Since the information complexity is a lower bound on the computational complexity, de-
fined below, this has led to proven (not conjectured) intractability and unsolvability results
which we’ll describe in Section 2.

Because of the basic role played by information-level results we decided to name this
area information-based complexity. This level typically does not exist for discrete problems.
However, combinatorial issues will play an increasingly important role in IBC: see Section
4.

Let the computer output be denoted by Ocomp and the operator that maps Icomp into
Ocomp by ¢. We call ¢ a combinatory algorithm (algorithm for brevity). Since ¢ maps
the computer input into the computer output it plays the same role as algorithm does

elsewhere in computer science. Figure 2(c) completes the picture.

Imzth S Omlth
—>
N
¢ Ocomp
Icomp
Figure 2(c)

Observe that Ocomp # Omath because NV is many-to-one. In other words, S does not
commute with ¢ composed with N.

We now discuss the model of computation used in IBC. For simplicity, we restrict
ourselves to the case that G = R. We assume that the real number model is chosen as our
model of computation. (See Section 5 for a discussion of why the real number model is
often used in IBC and also of research on finite models.) That is, we assume that arithmetic
operations and comparisons on real numbers are carried out exactly and at unit cost.

We define the combinatorial complexity, COMP°™?(¢), as the minimal cost of the com-
binatory operations needed to compute an e-approximation if all information operations

were free.
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Finally, we define the computational complexity, COMP(¢), as the minimal cost of com-
puting the computer output witl: :rror at most £ under the assumption that information
and combinatory operations are charged.

As before, combinatorial and computational complexity may be defined in the worst

case, average case and probabilistic settings. Note that,
COMP(¢) 2 ma.x{COMPi"h(E),COMP°°“"’(£)}.

We conclude this overview by characterizing IBC and stating its major goals. IBC

studies problems which have the properties listed below.

(1) Icomp # Imnh-

(2) There is a charge for obtaining Icomp.
We discuss the first of these. These are two major reasons why Lomp # Imacn. The first is
that the mathematical input cannot be represented by a finite set of numbers. We say the
information about Iach is partial. An important example in applications is when I n is a
multivariate function. A second reason is that the information about I;n..p is contaminated.
Information may be contaminated because of round-off or measurement errors.

We list some of the major goals of IBC.

(1) Obtain good lower and upper bounds on the computational complexity, informa-
tion complexity, and combinatorial complexity.

(2) Find information N and an algorithm ¢ for which the computational complexity
is attained or nearly attained. Such N and ¢ are called optimal, or nearly optimal.

We summarize the reminder of this article. We will present a selection of recent results
from a number of IBC areas. We then conclude this article with a discussion of similarities
and differences with discrete complexity and a brief history. An abstract formulation of

IBC may be found in the Appendix.

2. Breaking Intractability

It has been established that in the worst case deterministic setting many problems
studied in IBC are unsolvable or intractable. More precisely, let the mathematical input
f be a multivariate function of d variables. Let the smoothness of the set of inputs be
denoted by r. For example, we might require that all partial derivatives of f up to order r
exist and are uniformly bounded by 1. Assume we want to guarantee an error at most ¢.
Then, for many continuous problems the worst case computational complexity, COMP(¢),




RECENT PROGRESS IN INFORMATION-BASED COMPLEXITY 7

COMP(¢) = © ((é)u) . (1)

For example, multivariate integration, function approximation, partial differential equa-
tions, integral equations, and nonlinear optimization all have this computationai complex-
ity, see Bakhvalov [59], Heinrich (93], Nemirovsky and Yudin [83], Novak [88], Pereverzev
(89), TWW (88|, and Werschulz [91].

Furthermore, many problems in science, engineering, economics and even finance use
mathematical models with large d. For example, computational chemistry, computational
design of pharmaceuticals, and computational metallurgy involve computation with large
number of particles. Since the specification of each particle requires three variables for
static problems and six variables for dynamic problems, this leads to problems with very
large d. For path integrals, important in the foundation of physics, d = +00; they invite
approximation by multivariate integration with huge d. Problems with large d are also
important in mathematical disciplines such as statistics and geometry.

Observe that we can conclude that if the smoothness r is fixed and positive then the
computational complexity is an exponential function in d. Thus, problems whose complex-
ity is governed by (1) are intractable in d. If » = 0, that is, if the class of inputs is only
continuous, then COMP(¢) = +oo for small ¢; that is, the problem is unsolvable.

The only way to break unsolvability or intractability is to weaken the assurance of an
e-approximation by shifting to another setting. Three settings have heen used for trying to
break intractability: randomized, average case, and probabilistic settings. Here we confine
ourselves to recent advances on breaking intractability in the average case setting. See
TW [91a] for a survey of how to break intractability in the randomized setting.

We describe recent advances in breaking intractability for multivariate integration and
multivariate function approximation. Multivariate integration is especially common since
computing the expectation of any stochastic process leads to this problem.

In the average case setting the average computational complexity, COMP*"8(¢), is de-
fined as the minimal expected cost such that the average error is less than <. One has to
put a measure on the space of inputs. Although for discrete problems one can assume that
all inputs are equiprobable, no such assumption can be made for typical sets of functions.
The most commonly used measures on function spaces are Gaussian measures, and, in
particular, Wiener measures which are a special kind of Gaussian measure.

It was known that multivariate integration is tractable on the average but the proof is
non-constructive. That is, the optimal points at which the integrand should be evaluated

is given by

and the average computational complexity were unknown.
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Then W [91] established a relation between discrepancy and the average complexity of
multivariate integration. Discrepancy has been extensively studied in number theory and
sharp bounds on discrepancy in d dimensions were established by Roth [54,80]. The use
of the results from discrepancy theory solved the multivariate integration problem.

We describe the results more precisely. Let r = 0. Recall that in the worst case
deterministic setting the problem is unsolvable. Assume the measure on the integrands is
the Wiener sheet measure. Then

(1 1\ (d-1/2
COMP*'8(¢) = O | - (log -) ) .
€ €
Thus a problem which is worst-case unsolvable becomes tractable on the average.? Either
Hammersley points or hyperbolic-cross points are nearly optimal as the evaluation points
in d dimensions. These results were generalized to the case of smooth inputs by Paskov
[93].

We turn to the average complexity of function approximation. This is particularly
important since unlike for multivariate integration, it is known that randomization does
not help for function approximation, see Wasilkowski [88b], Novak [92]. Again, let r =0

and assume a Wiener sheet measure. Then
1 1 2(d~1)
COI\IIP 8(6) = 6 5—2 (log E)

and again hyperbolic cross-points can be used; see W [92b].

Roth’s discrepancy results and the average computational results quoted above are big
theta results in €. That is, the dependence on ¢ is known, but there is a multiplicative
factor, g(d), which is not known. If we’re serious about solving problems with large d we
must be able to bound ¢(d). It is believed that obtaining good theoretical estimates of
g(d) is very hard.

The problem may be solved by getting rid of the factor g(d) in the following way, W [93].
A problem is said to be strongly tractable if the number of information operations, m(e, d),
needed to compute an e-approximation is independent of d and depends polynomially on
1/e, that is,?

m(e,d) < K (%)P’ Vd, Ve <1,

2By tractable (in 1/¢c) we mean that the complexity is bounded by K(d)(1/¢)? for all d and £ < 1 for
a number p which is independent of d and e.

3More precisely, it is required that the computational complexity can be bounded by K c(d) (1/¢)? for
certain numbers K and p, independent of d and ¢, where c(d) is the cost of one information evaluation of

a function of d variables.




RECENT PROGRESS IN INFORMATION-BASED COMPLEXITY 9

for certain numbers K and p.

That might seem to much to expect but multivariate integration and multivariate ap-
proximation are both strongly tractable on the average! and it is sufficient to take the
information operations as function evaluations, W [93]. Usually in computational com-
plexity, an upper bound is given by an algorithm and a lower bound by a theorem. But
in this case, the upper bound has been determined by a theorem and is non-constructive.
That is, we know that there must exist sample points at which we should evaluate the
function and a combinatory algorithm which make multivariate integration and approxi-
mation strongly tractable. The construction of such sample points and algorithm is being
studied; WW [94].

Due to the relation between discrepancy and average case multivariate integration,
strong tractability for multivariate integration implies that the discrepancy of n points
in d dimensions can be bounded, independently of d, by Kn~? with the same K and
p for both problems. This estimate is of interest in its own right since discrepancy is
of considerable interest in number theory, see Beck and Chen [87], and Niederreiter [92).
Furthermore there are numerous applications of discrepancy; for example, for applications
in computer graphics, see Dobkin and Mitchell [93].

3. Verification

Most of IBC has been devoted to the computational complexity of computing an &-
approximation. Recently, the computational complexity of verification has been studied,
that is checking whether an answer is correct, see W [92a). In addition to being given a
problem, we are also given an “answer” g and asked whether it is true that g is within ¢
of the mathematical output; see the Appendix for a precise definition.

The reader’s reaction may be that, of course, verification is no harder than computation.
Indeed, if the mathematical output can be computed exactly at finite cost, as is the case for
discrete problems, then with one extra comparison one can solve the verification problem.

However, for typical IBC problems the mathematical output cannot be computed with
finite cost, and the relation between verification and computation is not obvious. As we
shall see, in the worst case setting verification may be unsolvable while the corresponding
computational problem is easy.

We illustrate this with a simple example. The computational problem is to compute
an e-approximation to fol f(z) dz where the mathematical input f is an arbitrary function

4We stress that this holds for the Wiener sheet measure. For an isotropic Wiener measure, function
approximation is still intractable even on the average, see Wasilkowski [93].
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over [0, 1] satisfying a Lipschitz condition with constant at mecst one. The computational
input is given by values of f at some points. The computational complexity in the worst
case setting is known to be of order 1/¢; thus the computationa! problem is “easy”.

Suppose now that we're given the purported answer g and asked to check whether this
is within ¢ of the integral of f. We show that the verification problem is unsolvable.

Suppose that we compute f at a finite number of points z; and that for every such
point f(z;) = g + &. If we answer NO the adversary will choose f(z) = g + €. This
function is certainly Lipschitz (with constant zero), and compatible with the computed
function values. Since fol f(z)dz = g + ¢ is within £ of the answer g, we made a mistake
by answering NO.

If we answer YES the adversary will choose a hat function f going through the points
(i, g +¢) and with Lipschitz constant one. Clearly, j;,l f(z)dz > g +¢€ which is not within
€ of the answer g. We made a mistake by answering YES. Hence, as long as we have finitely
many function values, there is no way to solve the verification problem in the worst case
setting.

It can be shown that verification for IBC problems is often unsolvable in the worst
case setting. Verification is therefore studied in the probabilistic setting. Here we want to
verify that g is an £-approximation with confidence §; see the Appendix. In this setting
the probabilistic complexity of verification depends on how ¢ and § are related. Any
relation between the probabilistic complexities of verification and computation is possible.
In particular, verification can be exponentially (in §) harder than computation.

NW [92] studied relazed verification in the worst case setting. That is the answers can
be YES, NO, or DON'T CARE. The size of the DON'T CARE region is specified by a
parameter a; see the Appendii. For a positive a, the worst case complexity of relaxed
verification is finite. It is related to the worst case complexity of the computational problem
with ¢ replaced by roughly £ a? with ¢ € [0, 1] depending on the problem. Hence, if a is not
too small, the complexity of relaxed verification is roughly comparable to the complexity
of the computational problem. If, however, a is small then the complexity of relaxed
verification is usually much larger than the complexity of the computational problem.

4. Combinatorial Complexity

To date, IBC problems have usually been proven unsolvable or intractable by showing
that their information complezity was infinite or exponential. Recent results establish
unsolvability or intractability by showing that the combinatorial complezity is infinite or,
if P#NP, not polynomial. We report these results and also pose an open question.
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Papadimitriou and Tsitsiklis [86] is a pioneering paper which proves that a nonlinear
problem in decentralized control theory is intractable if P#NP. More precisely, the infor-
mation complexity is a polynomial in 1/¢ but the combinatorial complexity in a Turing
machine model of computation is not polynomial in 1/¢, if P#£NP.

WW [93] show that there exists a linear problem whose information complexity is a
polynomial in 1/¢ but whose combinatorial complexity is infinite®, making the problem
unsolvable. An “artificial” problem is constructed to show that even a linear problem can
be very hard combinatorially. Chu [94] shows that the combinatorial complexity can be
any increasing function of the information complexity.

We pose an open question. So far, tight bounds on the computational complexity of
IBC problems are achieved when the minimal amount of information is used. Is there
a problem for which more information operations should be used to achieve the compu-
tational complexity? That is, does there exist a problem for which the minimal amount
of information is very hard to combine but if more information operations are computed
then it is easier to combine them and the total cost of computing an e-approximation is
minimized in the latter case.

We believe that in the future, progress in IBC will increasingly require results in both

information complexity and combinatorial complexity.

5. Similarities and Differences with Discrete Complexity

We begin with similarities. As in the rest of computational complexity, IBC studies
lower and upper bounds on the computational difficulty of solving mathematically posed
problems. Optimal and near-optimal algorithms are sought. To attempt to break the
intractability results and conjectures of the worst case deterministic setting, both IBC
and discrete complexity turned to other settings such as the randomized and average case
settings.

There are also significant contrasts, three of which we will discuss in the remainder of
the section. IBC has the following characteristics:

Problems cannot be exactly solved

Intractability has been proven for many problems

Real number model usually used

We discuss each of these.

5This result holds if we allow arithmetic operations, comparisons of real numbers, and precomputation.
It is open if there exists a linear problem with finite information complexity and infinite combinatorial
complexity in the extended real number model in which logarithms, exponentials and ceilings are allowed.
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Problems Cannot Be Ezactly Solved
As discussed in Section 1, it is impossible to solve IBC problems exactly because Lcomp #
Imath. It is possible, in principle, to solve discrete problems exactly although one may

¢hoose to solve them approximately to reduce the cost.

Intractability has been proven for many problems

Using information-level arguments, unsolvability and intractability has been established
for many IBC problems. With only a few exceptions, there are no non-trivial lower bounds
on the combinatorial complexity of IBC problems. Since only combinatorial arguments are
available, intractability of many discrete problems has been conjectured. (Of course, lower
bounds, as well as unsolvability results, have been established for some combinatorial

problems.)

Real number model usually used

To date, the real number model of computation has usually been used in continuous
computational complexity. After discussing the motivation, we turn to finite models for
continuous computational complexity.

Scientific problems are usually solved using fixed precision floating point arithmetic.
The cost of floating point operations and comparisons is independent of the size of the
operands. Furthermore, all arithmetic operations and comparisons cost about the same to
execute. Our goal is to choose a model of computation that corresponds to performance of
a digital computer executing floating point arithmetic. The abstraction we choose is the
real number model, which assumes that arithmetic and comparisons on real numbers can
be executed exactly and at unit cost. (The choice of unit cost is just scaling.) Rounding
errors occur when a digital computer executes operations in fixed precision floating point
arithmetic. In our abstraction we assume arithmetic is performed without error. This
separation of complexity theory from error analysis is done for technical reasons; compu-
tational complexity theory is hard enough without including round-off error. When an
interesting new algorithm is discovered from computational complexity considerations, a
stability analysis in fixed precision floating point arithmetic must be performed.

We stress that the real number model is not polynomially equivalent to the Tu:...g
machine model. For example, TW [82] shows that the cost of Kachian’s algorithm is
not polynomial in the real number model and conjecture that linear programming is not
polynomial in this model. This conjecture is still open.

Several finite models of computations have also been analyzed. One of them is a model
based on recursive analysis, see Ko [91].

In the bit model it is assumed that one can get a rational binary approximation of a
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real number or of a function value to within any accuracy with the cost depending on the
number of bits. This model has been studied for problems with complete information, for
instance, for finding roots of polynomials, see Schonhage [86]. A mixed model, in which the
bit model is used for information operations, and the real number model for combinatory
operations, is utilized by Kacewicz and Plaskota [90] to analyze certain IBC problems.

It is, of course, desirable to fully explore finite models for IBC problems and we believe

this to be an important direction for future research.

6. A Brief History

We present a very brief history of IBC. Research in the spirit of IBC was initiated in
the Soviet Union by Kolmogorov in the late 40’s. Nikolskij [50], a student of Kolmogorov,
studied optimal quadrature. This line of research was greatly advanced by Bakhvalov, see
e.g., Bakhvalov (59, 71]. In the United States research in the spirit of IBC was initiated
by Sard [49] and Kiefer [53]. Kiefer reported the results of his 1948 MIT Master’s Thesis
that Fibonacci sampling is optimal when approximating the maximum of a unimodal
function. Sard studied optimal quadrature. Golomb and Weinberger [59] studied optimal
approximation of linear functionals. Schoenberg [64] realized the close connection between

splines and algorithms optimal in the sense of Sard.

T[61,64] initiated the study of iterative computational complexity, emphasizing the
central role of information. Maximal order results, needed to obtain lower bounds on
computational complexity, were obtained for scalar nonlinear equations. W [75] introduced
the concept of order of information in an abstract space which provides a general tool for

establishing maximal order of an algorithm.

Micchelli and Rivlin [77] studied optimal recovery and considered optimal error algo-
rithms for the approximation of linear operators. Linear noisy information was permitted.

A general formulation of IBC, primarily in the worst case deterministic setting, is pre-
sented in TW [80], where a somehow more detailed history and an annotated bibliography
of over 300 papers and books up to 1979 can be also found. At the time IBC was called
analytic complexity to differentiate it from algebraic complexity. TWW (88] extend the
study of IBC to numerous settings including average case, randomized, probabilistic, and

asymptotic settings, as well as mixed settings.
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Appendix

We present an abstract formulation of IBC. Let
S:F—=G

where F is a subset of a linear space and G is a normed linear space.

For f € F, we wish to compute an approximation to S(f). To do this we must know
something about f. A basic assumption is that we have only partial information about
f. We gather this partial information about f by information operations L(f). Here we
will assume that L is a linear functional. Let A denote the class of information operations
we will permit. The choice of A will depend on the problem we wish to solve. If we wish
to approximate a definite integral we must exclude definite integration as a permissible
information operation, and for this problem A is usually defined as the class of function
evaluations. For other problems, such as the solution of nonlinear equations, we may

permit any linear functional. Let

N(f) =L (f)+.-, La ()],

for L; € A. Here L;, as well as n, can be adaptively chosen depending on the already
computed information operations.

N(f) is called the information on f and N the information operator. The motivation
for introducing the information operator N is to replace the element f, which is often from
an infinite-dimensional space, by n numbers. An idealized algorithm® ¢ is an operator
é : N(F) — G. The approximation U(f) is then computed by

U(f) = (N (f)).

(The assumption that the approximation is the composition of ¢ with N is made without
loss of generality.) We seek U(f) such that

IS -UHIl <Le.

We say U(f) is an -approzimation.
We illustrate the abstract model by an integration example with

1
() = /o f(tt,

$By using such a general definition of algorithm, we strengthen the lower bound conclusions. For upper
bounds, we restrict the algorithms to those constructed from permissible combinatory operations.
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F={f: feC"(0,1) and |fll ., S 1},
and G as the set of real numbers. The functionals are chosen as L,(f) = f(t;). An example
of an algorithm is

U = (N () ==Y fito).

i=1

To define computational complexity we must first introduce our model of computation,
which is defined by two postulates:

(i) Let Q denote the set of permissible combinatory operations including the addition
of two elements in G, multiplication by a scalar in G, arithmetic operations on
real numbers, and comparison of real numbers. We assume that each combinatory
operation is performed exactly with unit cost.

(i1) We assume that we are charged for each information operation. That is, for every
L € A and f € F, the computation of L(f) costs ¢, where ¢ > 0. Typically, ¢ > 1.

We assume the real number model, that is, we can perform operations on real numbers
exactly and at unit cost. See Section 5 for a discussion and motivations underlying the
model of computation and the real number model.

We briefly describe how the computation is carried out and how its cost is calculated. Let
cost(V, f) denote the cost of computing the information N(f). Knowing the information
N(f), the approximation U(f) = ¢ (N (f)) is computed by combining the information to
produce an element of G which approximates S(f).

Let cost(¢, N (f)) denote the cost of computing U(f) = ¢ (N (f)), given N(f). Then
the total cost of computing U(f), cost(U, f), is

cost(U, f) = cost(N, f) + cost (4, N (f)).
We are ready to define the computational complexity, comp(z), as
comp(e) = inf {cost (U) : U such that e(U) < ¢},

with the convention that inf@ = co. The definition of cost(U) and e(U) varies according
to the setting. Settings studied in IBC include worst case, average case, probabilistic,
randomized and asymptotic. Mixed settings are also studied. We confine ourselves here

to the definition of just the worst case and average case settings.

Worst Case Setting: The worst case error and worst case cost of U are defined by
e(U) =sup|IS(f) - U (NIl
JEF
cost(U) = sup cost (U, f).
feF
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Average Case Setting: Let u be a probability measure defined on F. The average

case error and average case cost of U are defined by

(V) = \/ /F ISCF) = UCHI? w(df),

cost(U) =Lcost (U, fiu(df).

The concept of complexity permits us to introduce the fundamental concepts of optimal
information and optimal algorithm. Information N and an algorithm ¢ that uses NV are
called optimal information and optimal algorithm, respectively, iff U = ¢ - N satisfies
cost(U) = comp(e) and e(U) < e.

We define the verification problem. For given g € G we want to check whether ||S(f) —
gll < €. That is, we define VER(f,g) =YES if ||S(f) — g]] < &, and VER(f,g) =NO
otherwise. In the worst case setting, we wish to find an approximation operator U such

that
U(f.9) = VER(f,9g) VfeF gegG.

In the probabilistic setting, we assume that the set F is equipped with a probability
measure u. For a given confidence parameter § € [0, 1}, we wish to find an approximation

operator U such that
pw{f € F; U(f,9) = VER(f,g)} 2 1-§, Vge@G.

For relaxed verification, we assume that a € [0, 1] and we redefine VER(f, g) as follows.
We set VER(f,g) =YES if ||S(f) — gll < &, VER(f,9) =NO if ||S(f - g]| > (1 + a)e, and
VER(, g) =DON'T CARE, otherwise. '

The complexity of verification or relaxed verification is defined similarly as for compu-
tational problems, that is, by minimizing the cost of computing U that solves the corre-

sponding verification problem.
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Breaking Intractability

Problems that would otherwise be impossible
to solve can now be computed, as long as one
settles for what happens on the average

by Joseph F. Traub and Henryk Wozniakowski

entists must rank among the

most rational people in the

world, they will often admit to falling
prey to a curse. Called the curse of di-
mension, it is one many people experi-

5 Ithough mathematicians and sci-

A potentially intractable problem
2 SCIENTIFIC AMERICAN January 1994

ence in some form. For example, a fam-
ily’s decision about whether to refinance
their mortgage with a 15- or 30-year
loan can be extremely difficult to make,
because the choice depends on an in-
terplay of monthly expenses, income,
future tax and interest rates
and other uncertainties. In sci-
ence, the problems are more
esoteric and arguably much
harder to cope with. In the
computer-aided design of
pharmaceuticals, for instance,
one might need to know how
tightly a drug candidate will
bind to a biological receptor.
Assuming a typical number of
8,000 atoms in the drug, the
biological receptor and the
solvent, then because of the
three spatial variables needed
to describe the position of
each atom, the calculation in-
volves 24,000 variables. Sim-
ply put, the more variables, or
dimensions, there are to con-
sider, the harder it is to ac-
complish a task. For many
problems, the difficulty grows
exponentially with the number
of variables.

The curse of dimension can
elevate tasks to a level of diffi-
culty at which they become in-
tractable. Even though scien-
tists have computers at their
disposal, problems can have
s0 many variables that no
future increase in computer
speed will make it possible to
solve them in a reasonable
amount of time.

Can intractable problems be
made tractable—that is, solv-
able in a relatively modest
amount of computer time?
Sometimes the answer is, hap-
pily, yes. But we must be will-
ing to do without a guarantee
of achieving a small error in
our calculatons. By settling
for a small error most of the

time (rather than always), some kinds
of multivariate problems become trac-
table. One of us (Wozniakowski) for-
mally proved that such an approach
works for at least two classes of math-
ematical problems that arise quite fre-
quently in scientific and engineering
tasks. The first is integration, a funda-
mental component of the calculus. The
second is surface reconstruction, in
which pieces of information are used
to reconstruct an object, a technique
that is the basis for medical imaging.

Fields other than science can benefit
from ways of Lreaking intractability.
For example, financial institutions often
have to assign a value to a pool of mort-
gages, which is affected by mortgagees
who refinance their loans. If we assume
a pool of 30-year mortgages and per-
mit refinancing monthly, then this task
contains 30 years times 12 months, or
360 variables. Adding to the difficulty
is that the value of the pool depends
on interest rates over the next 30 years,
which are of course unknown.

We shall describe the causes of in-
tractability and discuss the techniques
that sometimes allow us to break it.
This issue belongs to the new field of
information-based complexity, which
examines the computational complexi-
ty of problems that cannot be solved
exactly. We shall also speculate briefly
on how information-based complexity
might enable us to prove that certain
scientific questions can never be an-
swered because the necessary comput-
ing resources do not exist in the uni-
verse. If so, this condition would set lim-
its on what is scientifically knowable.

nformation-based complexity fo-

cuses on the computational diffi-

culty of so-called continuous prob-
lems. Calculating the movement of the
planets is an example. The motion is
governed by a system of ordinary dif-
ferential equations—that is, equations
that describe the positions of the plan-
ets as a function of time. Because time
can take any real value, the mathemati-
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cal model is said to be continuous. Con-
tinuous problems are distinct from dis-
crete problems, such as difference equa-
tions in which time takes only integer
values. Difference equations appear in
such analyses as the predicted number
of predators in a study of predator-
prey populations or the anticipated pol-
lution levels in a lake.

In the everyday process of doing sci-
ence and engineering, however, contin-
uous mathematical formulations pre-
dominate. They include a host of prob-
lems, such as ordinary and partial dif-
ferential equations, integral equations,
linear and nonlinear optimization, inte-
gration and surface reconstruction.
These formulations often involve a large
number of variables. For example, com-
putations in chemistry, pharmaceutical
design and metallurgy often entail cal-
culations of the spatial positions and
momenta of thousands of particles.

Often the intrinsic difficulty of guar-
anteeing an accurate numerical solu-
tion grows exponentially with the num-
ber of variables, eventually making the
problem computationally intractable.
The growth is so explosive that in many
cases an adequate numerical solution
cannot be guaranteed for situations
comprising even a modest number of
variables.

To state the issue of intractability
more precisely and to discuss possible
cures, we will consider the example of
computing the area under a curve. The
process resembles the task of comput-
ing the vertical area occupied by a col-
lection of books on a shelf. More explic-
itly, we will calculate the area between
two bookends. Without loss of general-
ity, we can assume the bookends rest
at 0 and 1. Mathematically, this sum-
ming process is called the computation
of the definite integral. (More accurate-
ly, the area is occupied by an infinite
number of books, each infinitesimally
thin.) The mathematical input to this
problem is called the integrand, a func-
tion that describes the profile of the
books on the shelf.

Calculus students learn to compute
the definite integral by following a set
of prescribed rules. As a result, the stu-
dents arrive at the exact answer. But
most integration problems that arise in
practice are far more complicated, and
the symbolic process learned in school
cannot be carried out. Instead the inte-
gral must be approximated numerical-
ly—that is, by a computer. More exactly,
one computes the integrand values at
finitely many points. These integrand
values result from so-called information
operations. Then one combines these
values to produce the answer.

Knowing only these values does not
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completely identify the true integrand.
Because one can evaluate the integrand
only at a finite number of points, the in-
formation about the integrand is par-
tial. Therefore, the integral can, at best,
only be approximated. One typically
specifies the accuracy of the
approximation by stating that
the error of the answer falls
within some error threshold.
Mathematicians represent this
error with the Greek letter ep-
silon, €.

Even this goal cannot be
achieved without further re-
striction. Knowing the inte-
grand at, say, 0.2 and 0.5 indi-
cates nothing about the curve
between those two points. The
curve can assume any shape
between them and therefore
enclose any area. In our book-
shelf analogy, it is as if an art
book has been shoved be-
tween a run of paperbacks. To
guarantee an error of at most
€, some global knowledge of
the integrand is needed. One
may need to assume, for ex-
ample, that the slope of the
function is always less than
45 degrees—or that only pa-
perbacks are allowed on that
shelf.

In summary, an investiga-
tor trying to solve an integral
must usually do it numerically
on a computer. The input to
the computer is the integrand
values at some points. The
computer produces an output
that is a number approximat-
ing the integral.

he basic concept of
computational complex-
ity can now be intro-
duced. We want to find the in-
trinsic difficulty of solving the
integration problem. Assume
that determining integrand
values and using combinatory

operations, such as addition, multipli-
cation and comparison, each have a
given cost. The cost could simply be the
amount of time a computer needs to
perform the operation. Then the com-
putational complexity of this integra-

One solution to an intractable problem
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SAMPLING POINTS indicate where to evaluate functions in the randomized and av-
erage-case settings. The points are plotted in two dimensions for visual clarity. The
points chosen can be spaced over regular intervals such as grid points (a), or in
random positions (b). Two other types, so-called Hammersley points (c) and hy-
perbolic-cross points (d), represent optimal places in the average-case setting.

tion problem can be defined as the min-
imal cost of guaranteeing that the com-
puted answer is within an error thresh-
old, €, of the true value. The optimal
information operations and the opt-
mal combinatory algorithm are those

* that minimize the cost.

Theorems have shown that the com-
putational complexity of this integra-
tion problem is on the order of the re-
ciprocal of the error threshold (1/€). In
other words, it is possible to choose a
set of information operations and a
combinatory algorithm such that the
solution can be approximated at a cost
of about 1/¢. It is impossible to do
better. With one variable, or dimension,
the problem is rather easy.- The compu-
tational complexity is inversely propor-
tional to the desired accuracy.

But if there are more dimensions to
this integration problem, then the com-
putational complexity scales exponen-
tially with the number of variables. If
d represents the number of variables,
then the complexity is on the order of
(1/€)9—that is, the reciprocal of the
error threshold raised to a power equal
to the number of variables. If one
wants eight-place accuracy (down to
0.00000001) in computing an integral
that has three variables, then the com-

plexity is roughly 10%4. In other words,
it would take a trillion trillion inte-
grand values to achieve that level of ac-
curacy. Even if one generously assumes
the existence of a sequential computer
that performs 10 billion function evatu-
ations per second, the job would take
100 trillion seconds, or more than three
million years. A computer with a million
processors would still take 100 million
seconds, or about three years.

To discuss multivariate problems
more generally, we must introduce one
additional parameter, called r. This pa-
rameter represents *he smoothness of
the mathematical inputs. By smooth-
ness, we mean that the inputs consist
of functions that do not have any sud-
den or dramatic changes. (Mathemati-
cians say that all partial derivatives of
the function up to order r are bound-
ed.) The parameter takes on nonnega-
tive integer values; increasing values in-
dicate more smoothness. Hence, r=0
represents the least amount of smooth-
ness (technically, the integrands are
only continuous—they are rather jagged
but still connected as a single curve).

Numerous problems have a compu-
tational complexity that is on the order
of (1/€)4/". For those of a more techni-
cal persuasion, multivariate integra-

tion, surface reconstruction, partial dif-
ferential equations, integral equations
and nonlinear optimization all have this
computational complexity.

If the error threshold and the smooth-
ness parameter are fixed, then the com-
putational complexity depends expo-
nentially on the number of dimensions.
Hence, the problems become intractable
for high dimensions. An impediment
even more serious than intractability
may occur: a problem may be unsolv-
able. A problem is unsolvable if one
cannot compute even an approxima-
tion at finite cost. This is the case when
the mathematical inputs are continu-
ous but jagged. The smoothness pa-

Developing a Random Approach

n the 1940s physicists working on

the Manhattan Project at Los Alamos
National Laboratory realized that some
of the problems they were trying to
solve, such as the movement of neu-
trons through materials, lay beyond the
reach of deterministic calculations.
They tumed to the Monte Carlo method
of Nicholas C. Metropolis and Stanislaw
M. Ulam. The strength of the method is
that its error does not depend on the
number of variables in the problem.
Hence, if applicable, it breaks the curse
of dimension. The classical Monte Carlo
method for multivariate integration re-
quires at most of order 1/¢? evalua-
tions at random points, where € is the
error bound. An alternative statement

is that if the integrand is evaluated at n random points,
then the expected error of randomization is at most of or-
der 1/Vn. Since its formulation, the Monte Carlo method
and its variations have proved to be useful to calculate a

Stanislaw M. Ulam, 1909-84

variety of phenomena, from the size of
cosmic showers to the percolation of a liq- -
uid through a solid.

For multivariate integration, the classi-
cal Monte Carlo method is optimal only if
the smoothness parameter, 7, of integrands
is zero. In 1959 the Russian mathemati-
cian N. S. Bakhvalov began pioneering re-
search on the computational complexity
of multivariate integration in the random-
ized setting and devised an alternative to
the Monte Carlo method. Later, in 1988,
Erich Novak of the University of Erlangen-
Nirnberg extended the work of Bakhvalov
to establish that the computational com-
plexity in the randomized setting is of or-
der (1/€)%, with s=2/(1+2r/d). Note
that 0 < s < 2. If the smoothness parame-

ter equals zero, then s = 2, and the classical Monte Carlo
method is optimal. On the other hand, if ris positive, then
the classical Monte Carlo method is no longer optimal,
and Bakhvalov's method can be used instead. ..
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rameter is zero, and the computational
complexity becomes infinite. Hence, for
* many problems with a large number of
variables, guaranteeing that an approx-
imation has a desired error becomes an
unsolvable or intractable task.
Mathematically, the computational
complexity results we have described
apply to the so-called worst-case deter-
ministic setting. The “worst case” phras-
ing comes from the fact that the ap-
proximation provides a guarantee that
the error always falls within €. In other
words, for multivariate integration, an
approximation within the error thresh-
old is guaranteed for every integrand
that has a given smoothness. The word
“deterministic” arises from the fact
that the integrand is evaluated at deter-
ministic (in contrast to random) points.
In this worst-case deterministic set-
ting, many multivariate problems are
unsolvable or intractable. Because these
results are in‘rinsic to the problem,
one cannot get around them by invent-
ing other methods.

ne possible way to break un-

solvability and intractability is

through randomization. To il
lustrate how randomization works, we
will again use multivariate integration.
Instead of picking points deterministi-
cally or even optimally, we allow (in an
informal sense) a coin toss to make the
decisions for us. A loose analogy might
be sampling polls. Rather than ask ev-
ery registered voter, a pollster conducts
a small, random sampling to determine
the likely winner,

Theorems indicate that with a ran-
dom selection of points, the computa-
tional complexity is at most on the or-
der of the reciprocal of the square of
the error threshold (1/€2). Thus, the
problem is always tractable, even if the

e

smoothness parameter is equal to zero.
The workhorse of the randomized
approach has been the Monte Carlo
method. Nicholas C. Metropolis and
Stanislaw M. Ulam suggested the idea
in the 1940s. In the classical Monte
Carlo method the integrand is evaluat-
ed at uniformly distributed random
points. The arithmetic mean of these
function values then serves as the ap-
proximation of the integral.
Amazingly enough, for multivariate
integration problems, randomization
of this kind makes the computational
complexity independent of dimension.
Problems that are unsolvable or intrac-
table if computed from the best possi-
ble deterministic points become trac-
table if approached randomly. (If r is
positive, however, then the classical
Monte Carlo method is not the optimal
one; see box on the opposite page.)
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One does not get so much for noth-
ing. The price that must be paid for
breaking the unsolvability or intracta-
bility is that the ironclad guarantee that
the error is at most € is lost. Instead
one is left only with a weaker guaran-
tee that the error is probably no more
than ¢ —much as a preelection poll is
usually correct but might, on occasion,
predict a wrong winner. In other words,
a worst-case guarantee is impossible;
one must be content with a weaker
assurance.

Randomization makes multivariate
integration and many other important
problems computationally feasible. It
is not, however, a cure-all. Randomiza-
tion fails completely for some kinds of
problems. For instance, in 1987 Greg W.
Wasilkowski of the University of Ken-
tucky showed that randomization does
not break intractability for surface re-

ate integration is bounded by

construction is bounded by

g3(d) < ]

e2

Average-Case Complexity
n the text, we mention that the average-case complexity of multivariate in-
tegration is on the order of the reciprocal of the error threshold (1/€) and
that for surface reconstruction, it is the square of that reciprocal (1/€2). For
simplicity, we ignored some multiplicative factors that depend on dand €.

Here we provide more rigorous statements.
The average computational complexity, comp *9(g, 4; INT), of multivari-

9:(d) 1 \@hr2 g(d) 1 @2
€ ('OQE‘) < comp™¥(g, d;INT) < € (log-E-

The average computational complexity, comp *39(¢, d; SUR), of surface re-

24-1) gu(d) 1 \2td-n
'093‘) < comp™9(g, 4;SUR) < g7 <|og-5)

Good estimates of g,(d), g,(d), g3(d) and g,(d) are currently not known.
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construction. Is there an approach that
does and that works over a broad class
of mathematics problems?

There is indeed. It is the average-case
setting, in which we seek to break un-
solvability and intractability by replac-
ing a worst-case guarantee with a weak-
er one: that the expected error is at
most €. The average-case setting im-
poses restrictions on the kind of math-
ematical inputs. These restrictions are
chosen to represent what would hap-
pen most of the time. Technically, the
constraints are described by probabili-
ty distributions; the distributions de-
scribe the likelihood that certain inputs
occur. The most commonly used distri-
butions are Gaussian measures and, in
particular, Wiener measures.

Although it was »nown since thd
1960s that multivariate integration is
tractable on the average, the proof was
nonconstructive. That is, it did not spec-
ify the optimal points to evaluate the
integrand, the optimal combinatory al-
gorithm and the average computation-
al complexity. Attempts to apply ideas
from other areas of computation to de-
termine these unknowns did not work.

For example, evaluating the integrand
at regularly spaced points, such as those
on a grid, are often used in computa-
tion. But theorems have shown them to
be poor choices for the average-case
setting. A proof was given in 1975 by
N. Donald Ylvisaker of the University
of California at Los Angeles. It was later
generalized in 1990 by Wasilkowski and
Anargyros Papageorgiou, then studying
for his Ph.D. at Columbia University.

The solution came in 1991, when
WozZniakowski found the construction.
As sometimes happens in science, a re-
sult from number theory, a branch of
mathematics far removed from aver-
age-case complexity theory, was crucial.
Part of the key came from work on
number theory by Klaus F. Roth of Im-
perial College, London, a 1958 Fields
Medalist. Another part was provided by
recent work by Wasilkowski.

Let us describe the result more pre-
cisely. First, put the smoothness para-
meter at zero—that is, tackle a problem
that is unsolvable in the worst-case de-
terministic setting. Next, assume that
integrands are distributed according to
a Wiener measure. If we ignore certain

Discrete Computational Complexity

his article discusses intractability and breaking of intractability for muiti-

variate integration and surface reconstruction. These are two examples
of continuous problems. But what is known about the computational com-
plexity of discrete, rather than continuous, problems? The famous traveling
salesman problem is an example of a discrete problem, in which the goal is
to visit various cities in the shortest distance possible.

A discrete problem is in-
tractable if its computational
complexity increases exponen-
tially with the number of its in-
puts. The intractability of many
discrete problems in the worst-
case deterministic setting has
been conjectured but not yet
proved. What is known is that
hundreds of discrete problems
all have essentially the same
computational complexity. That
means they are all tractable or
all intractable, and the common
belief among experts is that
they are all intractable. For tech-
nical reasons, these problems
are said to be NP-complete. One
of the great open questions in
discrete computational complex-
ity theory is whether the NP-
complete problems are indeed
intractable [see “Turing Ma-
chines,” by John E. Hopcroft; SCi-
ENTIFIC AMERICAN, May 1984].
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multiplicative factors for simplicity’s
sake, the average computational com-
plexity has been proved to be inversely
proportional to the error threshold (on
the order of 1/¢) [see box on page 5].
For small errors, the result is a major
improvement over the classical Monte
Carlo method, in which the cost is in-
versely proportional to the square of
the error threshold (1/€2).

The average case offers a different
kind of assurance from that provided
by the randomized (Monte Carlo) set-
ting. The error in the average-case set-
ting depends on the distribution of the
integrands, whereas the error in the
randomized setting depends on a dis-
tribution of the sample points. In our
books-on-a-shelf analogy, the distribu-
tion in the average-case setting might
rule out the inclusion of many oversize
books, whereas the distribution in the
randomized setting determines which
books are to be sampled.

In the average-case setting the opti-
mal evaluation points must be deter-
ministically chosen. The best points are
Hammersley points or hyperbolic-cross
points (see illustration on pages 4
and 5). These deterministic points
offer a better sampling than randomly
selected or regularly spaced (or grid)
points. They make what would be im-
possible to solve tractable on average.

Is surface reconstruction also tracta-
ble on the average? This query is par-
ticularly important because, as already
mentioned, randomization does not
help. Under the same assumptions we
used for integration, we find that the
average computational complexity is on
the order of 1/€2. Hence, surface re-
construction becomes tractable on av-
erage. As was the case for integration,
hyperbolic-cross points are optimal.

We are now testing whether the aver-
age case is a practical alternative. A
Ph.D. student at Columbia, Spassimir H.
Paskov, is developing software to com-
pare the deterministic techniques with
Monte Carlo methods for integration.
Preliminary results obtained by testing
certain finance problems suggest the
superiority of the deterministic meth-
ods in practice.

In our simplified description, we ig-
nored a multiplicative factor that affects
the computational complexity. This fac-
tor depends on the number of variables
in the problem. When the number of
variables is large, that factor can be-
come huge. Good theoretical estimates
of the factor are not known, and obtain-
ing them is believed to be very hard.

Wozniakowski uncovered a solution:
get rid of that factor. Specifically, we say
a problem is strongly tractable if the
number of function evaluations needed




for the solution is completely indepen-
dent of the number of variables. Instead
it woudd depend only an a power of

1/¢. The possibility seems too much

to hope for, but it was proved last year

* that multivariate integration and sur-
. face reconstruction are both strongly

tractable on the average.

A final obstacle must be owercome
before these new results can be used.
We know there must exist evaluation
points and a combinatory’ algorithm
that make integration and surface re-
construction strongly tractable on the
average. Unfortunately, the proof of
this result does not tell us what the
points and algorithms are, thus leaving
a beautiful challenge for the future.

ork on information-based
complexity has led one of us
(Traub) to speculate that it
might be possible to prove formally
that certain scientific questions are un-
answerable. The proposed attack is to
prove that the computing resources
(time, memory, energy) do not exist in
the universe to answer such questions.

One important achievement of math-
ematics over the past 60 years is the
idea that mathematical problems may
be undecidable, noncomputable or in-
tractable. Kurt Gddel proved the first
of these results. He established that in
a sufficiently rich mathematical sys-
tem, such as arithmetic, there are theo-
rems that can never be proved.

We believe it is time to up the ante
and try to prove there are unanswer-
able scientific questions. In other words,
we would like to establish a physical
Godel's theorem. The process offers a
markedly different challenge from prov-
ing results about mathematical prob-
lems, because a scientific question does
not come equipped with a mathemati-
ca' formulation. Such questions include
when the universe will stop expanding
and what the average global tempera-
ture will be in the year 2001.

Why do intractability results suggest
that some scientific questions might be
unanswerable? Recall the results. In the
worst-case deterministic setting, the
computational complexity of many con-
tinuous problems grows exponentially
with dimension. Also, the computation-
al complexity of many discrete prob-
lems is conjectured to grow exponen-
tially with the number of inputs [see
box on opposite page). Furthermore, al-
though some problems are tractable in
the randomized or average-case set-
tings, it has been proved that others re-
main intractable. Such problems may
lurk in certain supercomputing tasks
or questions regarding the foundations
of physics. After all, they involve a large

REENTRY OF SPACE SHUTTLE provides an example of a computationally complex
task: modeling of the airflow around the craft. This job is difficult even though

only seven variables govern the d

Added dimensions may yield problems

that can never be solved and thus limit what is sclentifically knowable,

number of variables or particles. Even
worse, many physics problems require
solutions to a kind of integral called
a path integral, which has an infinite
number of dimensions. Solutions of
path integrals invite high-dimensional
approximations. Thus, the intractabili-
ty results and conjectures are certainly
daunting because they suggest that
many tasks with a large number of
variables or objects might be impossi-
ble to solve.

We emphasize the possibility of oth-
er impediments to answering scientific
questions. One is chaos, the extreme
sensitivity to initial conditions. Because
the prerise initial conditions are either
not knowi: or cannot be exactly entered
into a dipital computer, certain ques-
tions about the behavior of a chaotic
system cannot be answered. To focus
on the issue at hand, we limit ourselves
to intractability.

As we have already observed, a scien-
tific question does not come equipped
with a mathematical formulation. Each
of a number of models might capture
the essence of a scientific question. Be-
cause intractability results refer to a
particular mathematical formulation, it
might happen that although a partic-
ular mathematical formulation is in-
tractable, another formulation may be
found that is indeed tractable. This
prospect indicates a possible way to
prove the existence of unanswerable
scientific questions. We can attempt to
show that there exist scientific ques-
tions such that every mathematical for-
mulation that captures the essence of

the question is intractable. We would
therefore have science’s version of G6-
del’s theorem.

Humans are intrigued not only by the
unknown but also by the unknowable.
Here we have suggested one possible
attack to establish what may be forever
unknowable in science. The curse of di-
mension, broken now for many kinds
of problems, may yet cast its spell.
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