AN RSM STUDY OF THE EFFECTS OF SIMULATION WORK AND METAMODEL SPECIFICATION ON THE STATISTICAL QUALITY OF METAMODEL ESTIMATES

THESIS

Michael Kent Taylor, Captain, USAF

AFIT/GOR/ENS/94M-15
AN RSM STUDY OF THE EFFECTS OF SIMULATION WORK AND METAMODEL SPECIFICATION ON THE STATISTICAL QUALITY OF METAMODEL ESTIMATES

THESIS

Michael Kent Taylor, Captain, USAF

AFIT/GOR/ENS/94M-15

Approved for public release; distribution unlimited

94-12283
The views expressed in this thesis are those of the author and do not reflect the official policy or position of the Department of Defense or the U.S. Government.
An RSM Study of the Effects of Simulation Work and Metamodel Specification on the Statistical Quality of Metamodel Estimates

Thesis

Presented to the Faculty of the Graduate School of Engineering
of the Air Force Institute of Technology
Air University
In Partial Fulfillment of the
Requirements for the Degree of
Master of Science in Operations Research

Michael Kent Taylor, Captain, USAF

March 1994
Approved for public release; distribution unlimited
THESIS APPROVAL

STUDENT: Capt Michael Kent Taylor
CLASS: GOR-94M

THESIS TITLE: An RSM Study of the Effects of Simulation Work and Metamodel Specification on the Statistical Quality of Metamodel Estimates

DEFENSE DATE: 01 March 94

COMMITTEE:

<table>
<thead>
<tr>
<th>NAME/DEPARTMENT</th>
<th>SIGNATURE</th>
</tr>
</thead>
</table>
| Advisor: Lt Col Paul F. Auclair
Assistant Professor of Operations Research
Department of Operational Sciences, AFIT/ENS | [signature] |
| Reader: Dr Edward F. Mykytka
Associate Professor of Operations Research
Department of Operational Sciences, AFIT/ENS | [signature] |
Acknowledgments

This research endeavor would not have been possible without the help of others. My research committee, especially Lt Col Paul Auclair, provided guidance so that I was not "all mach and no vector." Lt Col Auclair continues to distinguish himself as a professional Air Force officer and as an OR practitioner, solving the problems that face today's Air Force. His contributions to this research and my career are invaluable. My reader, Dr Ed Mykytka provided valuable "end-game" assistance, comments, and readership to round-out my thesis. Others at AFIT who assisted me are numerous -- special thanks goes to my two favorite librarians, Pam and Cindy. There are also many before AFIT who have contributed to my development academically and as a research novice -- most notably, Gloria Kearin, Neal Urquhart, Dr Charles Katholi, and Dr James Crenshaw. In addition, there are those outside of AFIT who have contributed to my development as an Air Force officer. P.J., Rocket Man, J.P., Sprengs, Gunx, Goose, and Merle are only a few that often cause me to reflect on "What have I done for Blue-4 today?" Also deserving honorable mention are Sam Adams, Riley B. King, John Lee, and Bobby Cray -- they have certainly done their share of inspiration.

I would be remiss if my parents were not mentioned here as contributing to my development as a person. Even more so, I must mention Vicky Erlanger. Her inspiration will continue beyond this thesis. No matter what the future may hold, she is truly and completely sui generis. I am the lucky one.
Table of Contents

Acknowledgments ii
List of Figures v
List of Tables vi
Abstract viii

I. Introduction
1.0. Background 1-1
1.1. Problem Statement 1-3
1.2. Objective 1-4
1.3. Methodology Overview 1-4
1.4. Summary 1-5

II. Background
2.0. Introduction 2-1
2.1. Simulation 2-1
2.2. Response Surface Methodology
 2.2.0. Introduction 2-3
 2.2.1. Least Squares Regression 2-5
 2.2.2. Experimental Design 2-5
2.3. Metamodels 2-7
2.4. M/M/k Queues 2-10
2.5. Summary 2-10

III. Methodology
3.0. Introduction 3-1
3.1. Queuing Simulations
 3.1.0. Introduction 3-1
 3.1.1. Queuing Configurations 3-1
 3.1.2. Simulation Work Cases 3-2
 3.1.3. Summary 3-4
3.2. Analytical Solutions 3-4
3.3. Simulation Estimates 3-6
3.4. Metamodel Estimates 3-7
3.5. Residual Analysis 3-13
3.6. Summary 3-15
List of Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-1.</td>
<td>Ways to Study a System</td>
<td>2-3</td>
</tr>
<tr>
<td>4-1.</td>
<td>Mean of Residuals for Simulation and All Metamodels vs. Simulation Work</td>
<td>4-2</td>
</tr>
<tr>
<td>4-2.</td>
<td>Standard Error of Residuals for Simulation and All Metamodels vs. Simulation Work</td>
<td>4-3</td>
</tr>
<tr>
<td>4-3.</td>
<td>Range of Residuals for Simulation and All Metamodels vs. Simulation Work</td>
<td>4-5</td>
</tr>
<tr>
<td>4-4.</td>
<td>R-Squared Values, Full and Fractional Metamodels</td>
<td>4-9</td>
</tr>
<tr>
<td>A-1.</td>
<td>Example SLAMSYSTEM Model, Configuration 1, Case A</td>
<td>A-1</td>
</tr>
</tbody>
</table>
List of Tables

<table>
<thead>
<tr>
<th>Table</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-1.</td>
<td>Full Factorial Design, 3 Factors at 2 Levels</td>
</tr>
<tr>
<td>2-2.</td>
<td>Fractional Factorial Design, 3 Factors at 2 Levels</td>
</tr>
<tr>
<td>2-3.</td>
<td>Metamodel Formulation</td>
</tr>
<tr>
<td>3-1.</td>
<td>Queuing Configurations</td>
</tr>
<tr>
<td>3-2.</td>
<td>Original Simulation Work Cases</td>
</tr>
<tr>
<td>3-3.</td>
<td>Final Simulation Work Cases</td>
</tr>
<tr>
<td>3-4.</td>
<td>Analytic Solutions: Average Queue Length</td>
</tr>
<tr>
<td>3-5.</td>
<td>Simulation Results: Example Data, Case A</td>
</tr>
<tr>
<td>3-6.</td>
<td>Fractional Factorial Design for M/M/k Queuing Configurations</td>
</tr>
<tr>
<td>3-7.</td>
<td>Predictive Metamodel Forms</td>
</tr>
<tr>
<td>3-8.</td>
<td>Example SAS Output: Full Linear Metamodel, Case A</td>
</tr>
<tr>
<td>3-9.</td>
<td>Example SAS Output: Full Logarithmic Metamodel, Case A</td>
</tr>
<tr>
<td>3-10a.</td>
<td>Example Data: Full Linear-Neg Metamodel Residual Statistics</td>
</tr>
<tr>
<td>3-10b.</td>
<td>Example Data: Full Linear-Zero Metamodel Residual Statistics</td>
</tr>
<tr>
<td>3-10c.</td>
<td>Example Data: Full Logarithmic Metamodel Residual Statistics</td>
</tr>
<tr>
<td>3-11.</td>
<td>Residual Analysis: Full Logarithmic Metamodel, Case A</td>
</tr>
<tr>
<td>3-12.</td>
<td>Residual Analysis: Mean of Residuals from Simulation and All Metamodels</td>
</tr>
<tr>
<td>4-1.</td>
<td>F-test Results</td>
</tr>
<tr>
<td>B-1.</td>
<td>Summary of Simulation Residual Data</td>
</tr>
</tbody>
</table>
C-1. Summary of Full Linear-Neg Metamodel Residual Statistics
C-2. Summary of Full Linear-Zero Metamodel Residual Statistics
C-3. Summary of Full Logarithmic Metamodel Residual Statistics
D-1. Summary of Fractional Linear-Neg Metamodel Residual Statistics
D-2. Summary of Fractional Linear-Zero Metamodel Residual Statistics
D-3. Summary of Fractional Logarithmic Metamodel Residual Statistics
E-1. Mean of Residuals for Simulation and All Metamodels
E-2. Standard Error of Residuals for Simulation and All Metamodels
E-3. Range of Residuals for Simulation and All Metamodels
F-1. Summary of Full Linear Metamodels
F-2. Summary of Full Logarithmic Metamodels
F-3. Summary of Fractional Linear Metamodels
F-4. Summary of Fractional Logarithmic Metamodels
Abstract

Intuitively, simulation estimates can be improved by increasing the number of simulation replications, run lengths, or both. Estimates from metamodels of simulation data can be improved by proper model selection, or model "specification." Although the individual effects of doing "more" simulation work and using a "smarter" metamodel were well known, the combined effects of fitting metamodels to simulation data with different amounts of work was unknown.

This research investigated the influence of the amount of simulation work and metamodel specification on the statistical quality of the estimates obtained from metamodels of the simulation data. A $9 \times 2 \times 2$ experiment consisting of 9 cases of simulation work, 2 levels of metamodel specification, and 2 levels of design fractionation were designed for 8 different configurations of M/M/k queues. The only observed statistic for this experiment was the average queue length. Simulation estimates for each configuration's average queue length were calculated directly from the simulation data. In addition, metamodel estimates for each configuration's average queue length were calculated using the metamodels fit to each case of simulation data.

Residuals were calculated for each of these respective estimates as the difference between the analytic solution for average queue length and the given estimate. Graphic analysis and Single-Factor ANOVA were performed on the residual data to determine if the amount of simulation work or metamodel specification affected the statistical quality of the estimates. This research showed conclusively that the amount of simulation work had no significant effect and that the metamodel specification had a significant effect on the statistical quality of the estimates found using the metamodels.
AN RSM STUDY OF THE EFFECTS OF SIMULATION WORK AND METAMODEL SPECIFICATION ON THE STATISTICAL QUALITY OF METAMODEL ESTIMATES

1. Introduction

1.0. Background

Computer simulation is the process of designing a model of a real system and conducting experiments with this model for the purpose of either understanding the behavior of the system and/or evaluating various strategies for the operation of the system [Shannon, 1992:65]. Shannon also asserts that simulation modeling is "an experimental and applied methodology" which seeks, among other things, "to predict ... the effects that will be produced by changes in the system or in its method of operation." The ability of computer simulations to "predict" system performance is often limited by several factors, most notably, restrictions on computer and analysis resources. Given the opportunity, most simulation practitioners would prefer "more" simulation rather than "less" to estimate the performance of the system under study. Such preference for "more" simulation is statistically well-founded and may be achieved primarily in either of two ways. First, the number of simulation replications can be increased. Second, the length of each simulation can be increased [Goldsman, 1992:98-99]. Thus, preference is given to simulations with more replications, run length, or both. In light of the more realistic limitations and restrictions noted above, simulation practitioners are faced with trade-offs between
replications and run length. The primary implication of these trade-offs is that the precision of the estimated performance measure is a function of the simulation length and number of replications. Several sources address these trade-offs and their implications [Law and Kelton, 1991:Ch 9; Whitt, 1991:645-665]. For this research, the amount of simulation "work" was defined as the product of the number simulation replications and the simulation run length.

Just as computer simulations can be used to estimate the performance of real systems, metamodels can be used as surrogates of the computer simulation in order to estimate the performance of the real system. The term "metamodel" was originated by Kleijnen. He defined it as a regression model of simulation input and output data [Kleijnen, 1987:Ch 11]. Sargent furthers the definition -- "the objective of a metamodel is to effectively relate the output data of a simulation model to the model's input to aid in the purpose for which the simulation model was developed" [Sargent, 1992:888].

Accordingly, the combinations of simulation input and output data may be regressed into a functional form that is, in effect, a model of the model. The metamodel can then be evaluated at points within the experimental design matrix of the input parameters, in order to estimate the desired performance characteristic without actually reaccomplishing the simulation with the new set of input parameters. Since simulations are costly to run and analyze, metamodel estimates can be used as a surrogate for the simulation at an obvious cost savings in terms of both computer and analysis time. For example, rather than run and analyze a full simulation over an entire range of input parameters, a second-order polynomial metamodel of the simulation data with few variables can be evaluated for a single set of input parameters in a matter of seconds [Yielding, 1991:78]. More complex metamodels "can be run iteratively many times for repeated 'what if' evaluation for multi-objective systems or for design optimization" [Barton, 1992:289].
The computational ease of using metamodels is done at the expense of precision in the estimated performance characteristic since the least squares metamodel is built by providing the "best" fit for all the data -- some points will be "better" fit than others [Neter, Wasserman, and Kutner, 1990:47-49]. Thus, the ability of the metamodel to provide precise estimates of the simulation performance is largely dependent on the model form or "specification" [Friedman, 1985:145]. Metamodel specification is a function of the number and type of variables used in the least squares regression equation to produce an acceptable level of predictive validity. Predictive validity is defined here as the ability of a metamodel to produce valid estimates of the computer simulation -- and therefore of the performance of the real system. Just as with regression models, the fit and predictive validity of a metamodel can be improved primarily by either transforming the existing variables in the model or by adding new terms to the model [Kleijnen, 1987:Ch 14]. Variable transformations may be applied to either the input or the response data, or both. Common transformations include the logarithmic, square root, and reciprocal transformations [Neter, Wasserman, and Kutner, 1990:142-151]. Adding terms to the metamodel may be useful when trying to fit data with curvature or interaction effects [Neter, Wasserman, and Kutner, 1990:248]. However, these methods for improving the predictive validity of the metamodel should not be done to the point of overly specifying a metamodel with insignificant terms that, when added, only contribute a relatively small improvement to the metamodel's predictive validity. Therefore, the "best" metamodels are parsimonious; they provide acceptable estimates of the computer simulation while containing as few terms as possible.

1.1. Problem Statement

Much research has been devoted to studying the topics of simulation work and metamodel specification. It has been shown that increasing the amount of simulation work
increases the statistical quality of the estimated response. In addition, much research has been devoted to improving metamodel estimates by selecting a properly specified metamodel. Absent from this research, however, is an investigation of how different amounts of simulation work affect the statistical quality of estimates from the resulting metamodels.

1.2. Objective

The purpose of this research was to determine how the amount of simulation work and the specification of the metamodel affect the statistical quality of the estimates obtained from the resulting metamodels of the simulation data.

1.3. Methodology Overview

In the pursuit of this objective and for the sake of simplicity, M/M/k queues were simulated over a range of system parameters and utilization rates (8 total configurations) and with various combinations of simulation replications and run lengths (9 total cases). The only observed output from each simulation was the average queue length.

From these simulations, the mean of the average queue lengths was calculated for each queuing configuration within each case of simulation work. This mean was the "simulation estimate" used as a baseline for comparing the estimates obtained from the resulting metamodels. To calculate the estimated average queue length from the metamodels, a logarithmic and a linear metamodel were fit to the simulation data using least squares regression. The metamodels were fit using the arrival rate, service rate, and number of servers as inputs. The response variable for the metamodels was the average queue length estimated for each case of simulation work.
Analytical solutions were calculated for each configuration. These analytic results were treated as the "known" solution for each queuing configuration and were compared to the estimated average queue length obtained from simulation and the metamodels. In this research, the "residual" was defined as the difference between the analytic solution and the estimated average queue length for each of the eight queuing configurations. Residuals were used to investigate the effect of simulation work and metamodel specification on the statistical quality of the metamodel estimates. Specifically, the mean, standard error, and range of the residuals were calculated for each case of simulation work.

The residual statistics from the respective estimators (i.e., simulation and metamodels) were analyzed graphically and by Single-Factor Analysis of Variance (ANOVA). In particular, ANOVA was performed on the data for each residual statistic, using appropriate F-tests, to determine if either the amount of simulation work or the metamodel specification affected the residual statistics.

1.4. Summary

Simulation is used to study real systems as part of an overall modeling process that seeks to determine the relationship between the inputs and outputs of a given system and to estimate the performance of the system. Similarly, metamodels are part of the modeling process used to study the real system by modeling the simulation data.

The implications of increasing simulation work are well known -- quite simply, "more is better." The implications of metamodel specification are also well known -- selecting a better-specified metamodel, which includes the type and number of input factors, improves the metamodel estimates of the computer simulation. However, the effect of simulation work and metamodel specification on the statistical quality of the
resulting metamodels had not been well established in the literature available at the onset of this study.

The purpose of this research was to determine the effects of simulation work and metamodel specification on the statistical quality of the estimates obtained from metamodels of the simulation data. These effects were investigated by:

- Systematically designing and simulating M/M/k queues with different levels of simulation work,
- Fitting the simulation data with metamodels of differing specification, and
- Comparing the statistical quality of the residuals from the resulting metamodel estimates.
2. Background

2.0. Introduction

As stated in Chapter 1, the purpose of this research was to determine how the amount of simulation work and the metamodel specification affect the statistical quality of the estimates obtained from the resulting metamodels of the simulation data. The experimental approach implemented to attain this research objective relied heavily on: Computer Simulation, Response Surface Methodology, Metamodels, and M/M/k queues. Brief discussions for each subject are presented here -- interested readers are referred to respective sources listed in each section for a more detailed and lengthy discussion.

2.1. Simulation

Computer simulation is the process whereby a computer is used to evaluate a mathematical model of a system. In this context, a system is any process composed of input factors and one or more output responses. Virtually any system may be simulated via a computer. Typical applications include simulations of: inventory systems, traffic analysis, tanker refinery operations, and job-shop scheduling [Pritsker, 1986]. Quite often, managers and decision makers must determine whether to invest in new equipment or to modify existing procedures in order to best use available resources in pursuit of their objectives. Consider, for example, a manufacturing situation with an objective of maximizing its production. Faced with a decision to add an entire shift of workers or to replace aging equipment with newer, more capable equipment that doesn't require additional workers, analysts and decision makers would like a cost-effective way to analyze the effects and trade-offs of either course of action. These alternatives could be evaluated in either of two ways [Law and Kelton, 1991:3-7]. First, the actual system
could be altered. In this case, the two policy alternatives could be evaluated by hiring and training a new shift of workers and observing their productivity over a given period of time. Later, the new shift of workers could be eliminated in order to test the efficacy of the equipment modernization option. At the end of the test, the data for the two options could be compared and the superior alternative selected. However, this process has obvious drawbacks. In the first case of hiring and then laying-off a new shift of workers, the cost of training the employees as well as paying their wages during the lay-off must be considered. There is also a cost in terms of public opinion as the company runs the risk of being viewed as disingenuous with regard to their commitment to the local community and workforce. On the other hand, the investment in equipment must not be taken lightly. If the new shift option proved to be more advantageous, the company could be saddled with used equipment which may not have a market for resale. For these and other reasons, experimenting with the actual system might be impractical. The second way of determining these trade-offs would be to experiment with a model of the system.

Such experimentation is generally conducted with either physical or mathematical models [Law and Kelton, 1991:3-7]. The above manufacturing example is a case where a physical model is probably not practical since replicating a manufacturing plant would be a very difficult and costly process. There are, however, systems that avail themselves to physical models. For example, aeronautical engineers use scaled-down aircraft models to study airflow patterns in wind tunnels.

As an alternative to physical models, mathematical models use quantitative and logical relationships to characterize the system. For relatively simple mathematical models, analytical solutions can be calculated in order to characterize the performance of the system. If, in the manufacturing example, production rates of either alternative could be computed directly as a function of the number of employees and the number of machines in use, it would be a straight-forward task to determine which alternative yielded
the higher production rate. It is more often the case, however, that the complex logical and quantitative relationships that characterize the system preclude a direct solution to the model. For highly complex or intractable models, computer simulation provides a means to exercise and evaluate a given mathematical model over its full domain. Figure 2-1, modified from Law and Kelton, summarizes this approach to modeling. The shaded portion of the diagram highlights the focus of this research.

Figure 2-1. Ways to Study a System [Law and Kelton, 1989:4]

![Diagram of system study methods]

2.2. Response Surface Methodology

2.2.0. Introduction. Whereas computer simulations can be used to model a given system and metamodels can be used to model the given computer simulation of the system, Response Surface Methodology (RSM) is an efficient and systematic approach to developing either of these models of system performance. RSM
comprise: a group of statistical techniques for empirical model building and model exploitation. By careful design and analysis of experiments, it seeks to relate a response, or output variable to the level of a number of predictors, or input variables, that affect it [Box and Draper, 1987:1].

In the context of simulation models, RSM seeks to mathematically represent the real system output as a function of the system's input parameters. Likewise, for metamodels, RSM seeks to mathematically represent the simulation output as a function of the simulation's input parameters.

Response surfaces can be used to approximate the output response of a system for a given range of input factors, to choose the level of inputs necessary to achieve a desired output, and to approximate the performance of a system for a specific set of input factors [Box and Draper, 1987:17-19]. They have been used in various disciplines and have been applied to a wide variety of systems and simulation models. For example, they have been applied to military force allocation models [Harvey, Bauer, and Litko, 1992:1121], chemical reaction models [Palasota and Deming, 1992:560], and econometric models [Donovan, 1985]. In each of these examples, research efforts concentrated on finding a parsimonious representation of the subject model and estimating the model's output for the purpose of understanding the given system. In another example, Yielding's research objective was to provide a means "to rapidly answer 'what if' questions about force structure problems for the Air Force" [Yielding, 1986:viii]. The particular model studied was the Arsenal Exchange Model (AEM). The "AEM is a linear, goal-programming, weapon-to-target optimal allocation model ... and has become one of the most widely used strategic force analysis models in the defense community" [Yielding, 1986:15]. As with other published research seen to date, considerable effort was made to reduce and adequately summarize the complex AEM computer simulation. Whereas a full AEM computer run took 3 hours to answer a "what if" question, Yielding's response surface...
model generates valid answers in a matter seconds [Yielding, 1986:78]. Results such as these typify the benefits of using RSM on large, complex models.

Two specific RSM "techniques" are used in this research and are discussed here -- least squares regression and experimental design. These and other techniques, such as steepest ascent methods and multi-response systems, are discussed in detail in three notable texts, Applied Regression Analysis, [Draper and Smith, 1981], Empirical Model-Building and Response Surfaces, [Box and Draper, 1987], and Response Surfaces [Khuri and Cornell, 1987].

2.2.1. Least Squares Regression. Simply stated, least squares regression seeks to "fit" the given output data from the simulation with a function whose form is based upon the inputs of the simulation. The regression function can be used to predict the output response for a set of given inputs which may not have been in the original design matrix. In addition, the regression function can be used to determine the relative significance of input factors in the design region as determined via statistical methods [Neter, Waterman, and Whitmore, 1988:Ch 20]. Effective regression modeling also facilitates the development of parsimonious models that further the overall goal of simulation and metamodeling -- the adequate representation of a complex system or computer simulation of the system in a simpler, more efficient way.

2.2.2. Experimental Design. As noted previously, RSM is used to study the relationship between outputs and input factors of a system. Experimental Design is an RSM technique whereby "purposeful changes are made to the input factors of a process or system so that we may observe and identify the reasons for changes in the output response" [Montgomery, 1991:1].

The simplest way to systematically vary the input of k factors is to set each factor to two levels. The set of all possible combinations of factors set at their respective levels is termed a full factorial design. For example, with $k = 3$ input factors set at two levels,
there are \(2^3 = 8\) configurations of input factors for use in experimentation with the system or simulation model. Table 2-1 shows the 8 configuration resulting from three inputs (A, B, and C) set to two levels (denoted with "+" and "-" signs to indicate the two levels, respectively).

<table>
<thead>
<tr>
<th>Configuration</th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>2</td>
<td>+</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>+</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>4</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>5</td>
<td>-</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>6</td>
<td>-</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>7</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>8</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Table 2-1. Full Factorial Design, 3 Factors at 2 Levels

Factorial designs allow multiple comparisons to be made to facilitate model creation, provide highly efficient estimates of model parameters, and usually involve simple calculations [Box and Draper, 1987:106]. Box and Draper note that two level designs are especially useful in the exploratory stages of an investigation when little is known about the system and the model structure is relatively unknown. Other designs useful in experimenting with other specific model forms, are discussed in the texts noted above in Section 2.2.0.

Since the number of input combinations for a two level factorial design increases by a factor of 2 for each increase in the number of input factors, the set of all input combinations grows rapidly as the number of input factors is increased. When resources are limited and all input combinations cannot be evaluated, it is possible to study the system by carefully choosing a fraction of the full set of input factor combinations for
evaluation. Designs such as these are fractional factorial designs. Detailed methods for fraction selection, confounding, and alias structures are presented in the previously noted Box and Draper text, Chapter 5. As an example of a "half-fraction," consider the previous three factor, two level example as the full factorial design to be used for experimentation. The two half-fractions found by using the three factor interaction term ABC as the block generator are shown below in Table 2-2. Though fractional designs and experiments are less costly to perform and analyze, they provide estimates for only selected factors and interactions. Hence, consideration should be given so that all relevant factors can be estimated when using fractionated designs.

<table>
<thead>
<tr>
<th>Configuration</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>ABC</th>
<th>Fraction</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>6</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
</tr>
</tbody>
</table>

Table 2-2. Fractional Factorial Design, 3 Factors at 2 Levels

2.3. Metamodels

As noted in Chapter 1, the term "metamodel" is used to denote a model of a model [Kleijnen, 1987:147]. Sargent asserts that metamodels are used to "relate the output data of a simulation model to the model's input" [Sargent, 1991:888]. Thus, in the context of RSM, a metamodel is a response surface of simulation data. Thus, all of the RSM techniques used to "build and exploit" models of the system under study [Box and Draper, 1987:1] can be used to "build and exploit" metamodels of the computer simulation of the
system under study. Though the primary technique for developing metamodels is least squares regression, other techniques include "piecewise linear functions, splines, inverse polynomials, or Fourier transformations" [Kleijnen, 1987:149].

Metamodels are parsimonious representations of the "parent" computer simulation. As parsimonious representations, metamodels are relatively simple analytical models consisting of the most important factors in the simulation model. Once developed, such analytical models could obviate the need to simulate the system altogether [Kleijnen, 1987:150]. They are also used for validation, estimation of factor interactions, control, and optimization of computer simulation models [Kleijnen, 1987:149]. Regardless of their form, metamodels are used "as a proxy for the full-blown simulation itself in order to get at least a rough idea of what would happen for a large number of input-parameter combinations" [Law and Kelton, 1991:679] In practice, metamodels have been used in various disciplines. In one particular study, metamodels were used to validate, optimize, and perform "what-if" analysis on a complicated simulation model of the greenhouse effect. Regression metamodels were applied to several modules of the large integrated assessment model of the greenhouse effect. In this study, the metamodels gave "acceptable forecast errors" and were shown to produce valid approximations to the simulation model. Thus, metamodels can be used to perform sensitivity analysis of large models [Kleijnen and others, 1990].

In this research, metamodels were used to model M/M/k queuing simulations. Since the metamodel form was conjectured to influence the statistical quality of the metamodel estimates, two metamodels were used in this research -- a linear and a logarithmic metamodel. Both were presented by Friedman and Friedman in the context of metamodel validation of M/M/k queuing simulations. Specifically, their paper stresses the usefulness of developing a metamodel as an auxiliary model in simulation analysis and emphasizes the importance of validating the metamodel in
order to determine whether it accurately approximates the simulation-generated data [Friedman and Friedman, 1985:144].

As with most regression analyses, their initial fit to the data was linear first-order model. The poor fit of the linear model led to the development and subsequent validation of the logarithmic model, thereby fulfilling the goal of their paper. The functional forms of both metamodels are shown in Table 2-3.

<table>
<thead>
<tr>
<th>Metamodel Type</th>
<th>Metamodel Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>Linear</td>
<td>(Lq = \beta_0 + \text{Arr} \cdot \beta_1 + \text{Svc} \cdot \beta_2 + \text{Num} \cdot \beta_3)</td>
</tr>
<tr>
<td></td>
<td>(Lq = \text{Average Queue Length})</td>
</tr>
<tr>
<td></td>
<td>(\text{Arr} = \text{Arrival Rate})</td>
</tr>
<tr>
<td></td>
<td>(\text{Svc} = \text{Service Rate})</td>
</tr>
<tr>
<td></td>
<td>(\text{Num} = \text{Number of Servers})</td>
</tr>
<tr>
<td></td>
<td>(\beta_i = \text{Regression Coefficients, } i = 0, 1, 2, 3)</td>
</tr>
<tr>
<td>Logarithmic</td>
<td>(Lq = e^{\beta_0 \cdot \left(\frac{\text{Arr}^{\beta_1}}{\text{Svc}^{\beta_2} \cdot \text{Num}^{\beta_3}} \right)})</td>
</tr>
<tr>
<td></td>
<td>(Lq = \text{Average Queue Length})</td>
</tr>
<tr>
<td></td>
<td>(\text{Arr} = \text{Arrival Rate})</td>
</tr>
<tr>
<td></td>
<td>(\text{Svc} = \text{Service Rate})</td>
</tr>
<tr>
<td></td>
<td>(\text{Num} = \text{Number of Servers})</td>
</tr>
<tr>
<td></td>
<td>(\beta_i = \text{Regression Coefficients, } i = 0, 1, 2, 3)</td>
</tr>
</tbody>
</table>

Table 2-3. Metamodel Formulation

Based on Friedman and Friedman's results and prior to any data analysis, the conjecture made in this research was that the validated logarithmic metamodel would have more predictive validity than the linear metamodel. Once again, predictive validity was defined as the ability of the metamodel to produce output which approximates the output of the parent computer simulation. Metamodel predictive validity in this research was based on the calculation of residuals -- the difference between the known analytical solutions and the metamodel estimates. Further analysis of these residuals provided the basis for
determining if the amount of simulation work affected the statistical quality of estimates obtained from metamodels of the simulation data.

2.4. M/M/k Queues

M/M/k queues denote a class of queues with arrival rates and service rates that are exponentially distributed. In the general case, these queues may have \(k \) servers, where \(k \) is any integer [Ross, 1989:348-349]. A typical example of such a system is a bank with multiple tellers and single waiting line. Queues are created as customers arrive and find the server(s) busy. Customers wait in the queue until such time as a server is free and service begins for the next customer. Relevant "quantities of interest" for queues include the average queue length, the number of customers processed through the system (or queue), and the average time spent in the system (or queue) by customers [Ross, 1989:345-348]. In addition, the utilization rate for the server(s) can be determined so as to estimate the proportion of time the service facility is busy. In this research, the average queue length was the only quantity of interest observed from each simulation.

M/M/k queues were simulated in this research since the analytical solution for the average queue length for each configuration was available and relatively easy to compute. The analytical solutions for average queue length were compared to the simulation and metamodel estimates for configurations with the same input parameters for arrival rates, service rates, and number of servers.

2.5. Summary

RSM is a means to study both real systems and computer simulations of real systems. Two RSM techniques were used in this research to study M/M/k queuing simulations. Specifically, and as described further in Chapter 3, experimental design was
used to establish the various combinations of queuing configuration, simulation work, metamodel specification, and metamodel fractionation examined in this study. In addition, least squares regression was used to fit metamodels to simulation data. By using these techniques, it was possible to determine if the amount of simulation work and metamodel specification had an effect on the statistical quality of estimates obtained from the resulting metamodels of the simulation data.
3. Methodology

3.0. Introduction

As stated in Chapter 1, the purpose of this research was to determine how the amount of simulation work and metamodel specification affects the statistical quality of the estimates obtained from the resulting metamodels of the simulation data. In addition, the amount of simulation "work" was defined as the product of the number of simulation replications and the simulation run length. Using the RSM techniques discussed in Chapter Two, the queuing simulations were performed and corresponding metamodels were fit to the simulation data. This chapter describes the queuing simulations, their analytic solutions, the metamodel estimation processes, and the residual analysis in greater detail.

3.1. Queuing Simulations

3.1.0. Introduction. The queuing simulations were varied in two ways. First, the three factors for the queuing configurations were each varied at two levels. This resulted in a three factor, two level design consisting of 8 queuing configurations. Second, the two factors that constituted each case of simulation work were each initially varied at three levels. This resulted in a two factor, three level design consisting of 9 cases of simulation work. A description of the simulation language and computing resources used in this research are described in Appendix A.

3.1.1. Queuing Configurations. The factors and levels used for the queuing configurations are shown below in Table 3-1. Also shown in the table is the system utilization rate for each configuration. The configurations shown in Table 3-1 represent a Full Factorial Design as described in Chapter 2.
Table 3-1. Queuing Configurations

<table>
<thead>
<tr>
<th>Configuration</th>
<th>Arrival Rate</th>
<th>Service Rate</th>
<th># Servers</th>
<th>Sys Util Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.0</td>
<td>1.0</td>
<td>2</td>
<td>0.5</td>
</tr>
<tr>
<td>2</td>
<td>1.0</td>
<td>1.0</td>
<td>4</td>
<td>0.25</td>
</tr>
<tr>
<td>3</td>
<td>1.0</td>
<td>1.25</td>
<td>2</td>
<td>0.4</td>
</tr>
<tr>
<td>4</td>
<td>1.0</td>
<td>1.25</td>
<td>4</td>
<td>0.2</td>
</tr>
<tr>
<td>5</td>
<td>1.5</td>
<td>1.0</td>
<td>2</td>
<td>0.75</td>
</tr>
<tr>
<td>6</td>
<td>1.5</td>
<td>1.0</td>
<td>4</td>
<td>0.375</td>
</tr>
<tr>
<td>7</td>
<td>1.5</td>
<td>1.25</td>
<td>2</td>
<td>0.6</td>
</tr>
<tr>
<td>8</td>
<td>1.5</td>
<td>1.25</td>
<td>4</td>
<td>0.3</td>
</tr>
</tbody>
</table>

3.1.2. Simulation Work Cases. The factors and levels initially used for the simulation work cases are shown below in Table 3-2. The value shown for the amount of "work" is the product of the number of simulation replications, the simulation run length, and a scaling factor of 0.01 for numerical ease.

Table 3-2. Original Simulation Work Cases

<table>
<thead>
<tr>
<th>Case</th>
<th>Replications</th>
<th>Run Length</th>
<th>Work</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>5</td>
<td>2,500</td>
<td>125.0</td>
</tr>
<tr>
<td>B</td>
<td>5</td>
<td>5,000</td>
<td>250.0</td>
</tr>
<tr>
<td>C</td>
<td>5</td>
<td>10,000</td>
<td>500.0</td>
</tr>
<tr>
<td>D</td>
<td>10</td>
<td>2,500</td>
<td>250.0</td>
</tr>
<tr>
<td>E</td>
<td>10</td>
<td>5,000</td>
<td>500.0</td>
</tr>
<tr>
<td>F</td>
<td>10</td>
<td>10,000</td>
<td>1000.0</td>
</tr>
<tr>
<td>G</td>
<td>20</td>
<td>2,500</td>
<td>500.0</td>
</tr>
<tr>
<td>H</td>
<td>20</td>
<td>5,000</td>
<td>1000.0</td>
</tr>
<tr>
<td>I</td>
<td>20</td>
<td>10,000</td>
<td>2000.0</td>
</tr>
</tbody>
</table>

The levels chosen for the number of simulation replications were based on the common acceptance of 30 as an effective sample size by most statistical practitioners [Mendenhall and others, 1990:319]. To examine the effect of simulation work on the
statistical quality of the metamodel estimates, this study considered sample sizes less than 30. The specific levels for replications were set to 5, 10, and 20.

The levels chosen for the simulation length were based on Nelson's heuristic regarding the simulation length required to overcome the initial-transient conditions. Nelson recommends using a simulation length of 20 times the length of the initial transient in a simulation environment with multiple replications [Nelson, 1992:130]. Initial data analysis of these queuing simulations indicated that a conservative estimate for the initial transient period was 500 time units. Thus, the "acceptable" run length was set to 10,000 time units. Since it increasing the simulation run length would only serve to improve an already acceptable simulation estimate, this study focused on run lengths not exceeding 10,000 time units. The factor levels for run length were set to 2,500, 5,000, and 10,000.

Prior to data analysis, it was determined that an effective sample of these cases would include those cases with factors set to either their high or low levels and the case using the middle level for each factor. These cases were A, C, E, G, and I. Based on initial analysis of the simulation data from Cases A and C, however, further investigation of these cases was deemed appropriate since the observed residual statistics for Case A were better than those from Case C -- better, in the sense that the mean, standard error, and range were all lower for Case A than for Case C. This was inconsistent with the conjecture that more simulation resulted in better simulation estimates since estimates from Case C were calculated using 4 times more simulation work than estimates from Case A. With no tractable explanation for this observation readily available, additional cases of simulation work were created using 5 replications and various run lengths. Accordingly, 3 additional cases were added with simulation lengths less than 2,500 and 1 additional case was added with simulation length greater than 10,000. The final simulation work cases are shown in Table 3-3.
Table 3-3. Final Simulation Work Cases

<table>
<thead>
<tr>
<th>Case</th>
<th>Replications</th>
<th>Run Length</th>
<th>Work</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>5</td>
<td>1,000</td>
<td>50.0</td>
</tr>
<tr>
<td>A2</td>
<td>5</td>
<td>1,250</td>
<td>62.5</td>
</tr>
<tr>
<td>A3</td>
<td>5</td>
<td>1,500</td>
<td>75.0</td>
</tr>
<tr>
<td>A</td>
<td>5</td>
<td>2,500</td>
<td>125.0</td>
</tr>
<tr>
<td>C</td>
<td>5</td>
<td>10,000</td>
<td>500.0</td>
</tr>
<tr>
<td>E</td>
<td>10</td>
<td>5,000</td>
<td>500.0</td>
</tr>
<tr>
<td>G</td>
<td>20</td>
<td>2,500</td>
<td>500.0</td>
</tr>
<tr>
<td>C1</td>
<td>5</td>
<td>20,000</td>
<td>1,000.0</td>
</tr>
<tr>
<td>I</td>
<td>20</td>
<td>10,000</td>
<td>2,000.0</td>
</tr>
</tbody>
</table>

3.1.3. Summary. M/M/k queues were simulated for 8 different queuing configurations and 9 different cases of simulation work. Estimates from the simulation and metamodels, described later, were calculated for each of these cases of simulation work.

3.2. Analytical Solutions

Analytical solutions for the M/M/k queues are widely available for a number of performance measures. As noted previously, this research focused on the average queue length for each simulation, \(L_q \). The computations for \(L_q \) were made using following definitions and calculations [Turban and Meredith, 1991:717-723]:

\[
L_q = \frac{p(0)\rho^k(1-\rho)}{k!(1-\rho)^2}, \text{ the average queue length, where }
\]

\[
p(0) = \left[\frac{\rho^k}{k!(1-\rho)} + \sum_{i=0}^{k-1} \frac{\rho^i}{i!} \right]^{-1}, \text{ the probability of finding the system idle }
\]

\[
\rho = \text{Utilization factor of the single facility system} = \frac{\lambda}{\mu}
\]
\(\lambda \) = Mean arrival rate

\(\mu \) = Mean service rate of each server

\(\bar{\rho} \) = Utilization factor of the entire system

\[
\bar{\rho} = \frac{\rho}{k} = \frac{\lambda}{k \cdot \mu}
\]

\(k \) = Number of servers

For example, the calculations required to determine the average queue length for Configuration 1 (\(\lambda=1, \mu=1, k=2 \)) is as follows:

\[
\rho = \frac{\lambda}{\mu} = \frac{1}{1} = 1
\]

\[
\bar{\rho} = \frac{\lambda}{k \mu} = \frac{1}{2 \cdot 1} = 0.5
\]

\[
p(0) = \left[\frac{\rho^k}{k! \left(1 - \frac{1}{2} \right)} + \sum_{i=0}^{k-1} \frac{\rho^i}{i!} \right]^{-1} = \left[\frac{1}{2! \cdot (1 - 0.5)} + \sum_{i=0}^{1} \frac{1}{i!} \right]^{-1} = \frac{1}{3}
\]

\[
L_q = \frac{p(0) \rho^k \bar{\rho}}{k! (1 - \frac{1}{2})^2} = \frac{\frac{1}{3} \cdot 1^2 \cdot 0.5}{2! \cdot (1 - 0.5)^2} = \frac{1}{3}
\]

Analytic solutions for the average queue length for each configuration are presented in Table 3-4.
Table 3-4. Analytic Solutions: Average Queue Length

<table>
<thead>
<tr>
<th>Configuration</th>
<th>Arrival Rate</th>
<th>Service Rate</th>
<th># Servers</th>
<th>Sys Util Rate</th>
<th>L_q</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.0</td>
<td>1.0</td>
<td>2</td>
<td>0.5</td>
<td>0.3333</td>
</tr>
<tr>
<td>2</td>
<td>1.0</td>
<td>1.0</td>
<td>4</td>
<td>0.25</td>
<td>0.0068</td>
</tr>
<tr>
<td>3</td>
<td>1.0</td>
<td>1.25</td>
<td>2</td>
<td>0.4</td>
<td>0.1524</td>
</tr>
<tr>
<td>4</td>
<td>1.0</td>
<td>1.25</td>
<td>4</td>
<td>0.2</td>
<td>0.0024</td>
</tr>
<tr>
<td>5</td>
<td>1.5</td>
<td>1.0</td>
<td>2</td>
<td>0.75</td>
<td>1.9286</td>
</tr>
<tr>
<td>6</td>
<td>1.5</td>
<td>1.0</td>
<td>4</td>
<td>0.375</td>
<td>0.0448</td>
</tr>
<tr>
<td>7</td>
<td>1.5</td>
<td>1.25</td>
<td>2</td>
<td>0.6</td>
<td>0.6750</td>
</tr>
<tr>
<td>8</td>
<td>1.5</td>
<td>1.25</td>
<td>4</td>
<td>0.3</td>
<td>0.0159</td>
</tr>
</tbody>
</table>

3.3. Simulation Estimates

The average queue length was recorded as observed at the termination of each simulation run as per the specific case of simulation work. For each configuration, the mean of the average queue length was calculated as the mean of the observed values for average queue length. This mean was then compared with the analytical solution for each configuration and the difference between the analytical solution and the mean of the simulation results was defined as the "residual" for each respective configuration. The mean, standard error, and the range of all the residuals were determined in order to determine how the amount of simulation work affects the statistical quality of the estimates obtained from metamodels of the simulation data.

For example, consider the data from Case A, summarized in Table 3-5. For Case A, there were 5 replications of simulation length 2500. The 5 observed values from the simulation for the average queue length for Configuration 1 were: 0.361, 0.356, 0.328, 0.366, 0.376. The mean of these values was calculated as 0.3514 and was then entered into a spreadsheet along with the means of the other configurations found by similar calculations. The residual statistics are shown in the right-hand columns of Table 3-5. Residual statistics for all simulation cases are presented in Appendix B.
3.4. Metamodel Estimates

As described in previous chapters, the metamodels were fit to the data from each case of simulation work. Metamodel specification was varied by using a linear and logarithmic metamodels -- the "basic metamodels." In addition, two other variations of the basic metamodels were made based on data considerations.

The first variation was made by using the full and fractional design principles discussed in Chapter 2. The linear and logarithmic metamodels fit to data from all 8 configurations were denoted as "Full Linear" and "Full Logarithmic," respectively. Fractional metamodels were formed by fitting the data from only 4 of the configurations. The fractional factorial design was chosen by using the three-factor interaction as the block generator [Box and Draper, 1987:148-152]. Both fractions are shown in Table 3-6. The range of system utilization rates for Fraction 1 was 0.4 and the range for Fraction 2 was 0.50. Of the two resulting half-fractions, Fraction 2 was chosen since it represented the greatest range of system utilization rates. Though somewhat arbitrary, this was the
only "criteria" used for selecting Fraction 2. The metamodels formulated from the Fraction 2 queuing configurations denoted "Fractional Linear" and "Fractional Logarithmic," respectively.

<table>
<thead>
<tr>
<th>Configuration</th>
<th>Arrival Rate</th>
<th>Service Rate</th>
<th># Servers</th>
<th>Sys Util Rate</th>
<th>Fraction</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.0</td>
<td>1.0</td>
<td>2</td>
<td>0.5</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>1.0</td>
<td>1.0</td>
<td>4</td>
<td>0.25</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>1.0</td>
<td>1.25</td>
<td>2</td>
<td>0.4</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>1.0</td>
<td>1.25</td>
<td>4</td>
<td>0.2</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>1.5</td>
<td>1.0</td>
<td>2</td>
<td>0.75</td>
<td>2</td>
</tr>
<tr>
<td>6</td>
<td>1.5</td>
<td>1.0</td>
<td>4</td>
<td>0.375</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>1.5</td>
<td>1.25</td>
<td>2</td>
<td>0.6</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>1.5</td>
<td>1.25</td>
<td>4</td>
<td>0.3</td>
<td>2</td>
</tr>
</tbody>
</table>

Table 3-6. Fractional Factorial Design for M/M/k Queuing Configurations

The second variation resulted from initial data analysis. Preliminary calculations indicated that the linear metamodel for both full and fractional designs yielded negative estimates for the average queue length for configurations 2 and 4, which had analytic solutions near zero. Though negative queue lengths are impossible, the data was retained for analysis since the mean over all the configurations within the case was the statistic of interest. This data was classified as "Linear-Neg" to indicate that the data set included average queue length values less than zero. For comparison, however, another data set was classified as "Linear-Zero" to indicate that any negative values for predicted queue length were rounded up to zero. No attempt is made here to justify any preference toward either the Negative or the Zero data sets. The negative estimates may be more "pure" in the sense that they are the estimate actually obtained from the metamodel. However, the zero estimates may be more "practical" since negative queue lengths are impossible.

Thus, there were only 4 least squares regression metamodels actually fit to the data -- Full Linear, Full Logarithmic, Fractional Linear, and Fractional Logarithmic. These metamodels produced the 6 metamodel forms used to estimate the average queue length.
for each configuration when the additional distinction between the negative and zero estimates were taken into account -- Full Linear-Neg, Full Linear-Zero, Full Logarithmic, Fractional Linear-Neg, Fractional Linear-Zero, and Fractional Logarithmic.

The functional forms of the basic metamodels are shown in Table 3-7 using the definitions given in Chapter 2. The 4 least squares regression metamodels for each case

<table>
<thead>
<tr>
<th>Metamodel Type</th>
<th>Metamodel Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>Linear</td>
<td>$Lq = \beta_0 + \text{Arr} \cdot \beta_1 + \text{Svc} \cdot \beta_2 + \text{Num} \cdot \beta_3$</td>
</tr>
<tr>
<td>Logarithmic</td>
<td>$Lq = e^{\beta_0} \cdot \left(\frac{\text{Arr} \cdot \beta_1}{\text{Svc} \cdot \text{Num} \cdot \beta_3} \right)$ or $\ln(Lq) = \beta_0 + \beta_1 \cdot \ln(\text{Arr}) - \beta_2 \cdot \ln(\text{Svc}) - \beta_3 \cdot \ln(\text{Num})$</td>
</tr>
</tbody>
</table>

Table 3-7. Predictive Metamodel Forms

of simulation work were developed using Statistical Analysis System (SAS) least squares regression routines. For the linear metamodels, inputs to the regression models were the average queue length, arrival rate, service rate, and number of servers for each respective configuration. The logarithmic model used the logarithms of the same inputs. The resulting metamodel coefficients from the SAS output for both metamodels were transformed into their respective functional form such that the average queue length was estimated.

For example, in the formulation of the full metamodels for Case A, there were 8 simulation configurations evaluated with 5 replications, so there were 40 (8 x 5 = 40) observations of the average queue length used to calculate the least squares regression coefficients used in the metamodels. The regression coefficients are displayed as part of the SAS output for each model. Example SAS printouts for both the Full Linear and the Full Logarithmic models are shown in Tables 3-8 and 3-9, respectively.
Analysis of Variance

<table>
<thead>
<tr>
<th>Source</th>
<th>DF</th>
<th>Sum of Squares</th>
<th>Mean Square</th>
<th>F Value</th>
<th>Prob>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>3</td>
<td>9.94504</td>
<td>3.31501</td>
<td>21.833</td>
<td>0.0001</td>
</tr>
<tr>
<td>Error</td>
<td>36</td>
<td>5.46595</td>
<td>0.15183</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C Total</td>
<td>39</td>
<td>15.41099</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Root MSE: 0.38966
Dep Mean: 0.39900
C.V.: 97.65820

Parameter Estimates

| Variable | DF | Parameter Estimate | Standard Error | T for H0: Parameter=0 | Prob > |T| |
|-----------|----|--------------------|----------------|-----------------------|--------|--------|
| INTERCEP | 1 | 1.762800 | 0.66356063 | 2.657 | 0.0117 |
| ARRIVAL | 1 | 1.078800 | 0.24644023 | 4.378 | 0.0001 |
| SERVICE | 1 | -1.393600 | 0.49288046 | -2.827 | 0.0076 |
| NUMBER | 1 | -0.381500 | 0.06161006 | -6.192 | 0.0001 |

Table 3-8. Example SAS Output: Full Linear Metamodel, Case A

Analysis of Variance

<table>
<thead>
<tr>
<th>Source</th>
<th>DF</th>
<th>Sum of Squares</th>
<th>Mean Square</th>
<th>F Value</th>
<th>Prob>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>3</td>
<td>187.81476</td>
<td>62.60492</td>
<td>938.910</td>
<td>0.0001</td>
</tr>
<tr>
<td>Error</td>
<td>36</td>
<td>2.40042</td>
<td>0.06668</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C Total</td>
<td>39</td>
<td>190.21518</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Root MSE: 0.25822
Dep Mean: -2.59946
C.V.: -9.93366

Parameter Estimates

| Variable | DF | Parameter Estimate | Standard Error | T for H0: Parameter=0 | Prob > |T| |
|-----------|----|--------------------|----------------|-----------------------|--------|--------|
| INTERCEP | 1 | 2.780640 | 0.14143366 | 19.660 | 0.0001 |
| LOGARR | 1 | 4.255964 | 0.20139036 | 21.133 | 0.0001 |
| LOGSERV | 1 | -3.628686 | 0.36593826 | -9.916 | 0.0001 |
| LOGNUM | 1 | -5.615028 | 0.11780581 | -47.663 | 0.0001 |

Table 3-9. Example SAS Output: Full Logarithmic Metamodel, Case A

The coefficients from the least squares regression were used in their respective models to estimate the value of the average queue length for each configuration in each.
case for each metamodel type. The Full Linear metamodel estimation for Case A, Configuration 1 was calculated as follows:

\[L_q = \beta_0 + (\beta_1 \cdot \text{Arr}) + (\beta_2 \cdot \text{Svc}) + (\beta_3 \cdot \text{Num}) \]

\[L_q = 1.7628 + (1.0788 \cdot 1) + (-1.3936 \cdot 1) + (-0.3815 \cdot 2) \]

\[L_q = 0.6850 \]

The Full Logarithmic metamodel estimation for Case A, Configuration 1 was calculated as follows, after multiplying the SAS coefficients for \(I \) and \(N \) by a factor of -1:

\[\ln(L_q) = \beta_0 + \beta_1 \cdot \ln(\text{Arr}) - \beta_2 \cdot \ln(\text{Svc}) - \beta_3 \cdot \ln(\text{Num}) \]

\[\ln(L_q) = 2.7806 + 4.2560 \cdot \ln(1) - 3.6287 \cdot \ln(1) - 5.6150 \cdot \ln(2) \]

\[\ln(L_q) = 2.7806 + 0 + 0 - 3.8920 \]

\[\ln(L_q) = -1.1114 \]

\[L_q = 0.3291 \]

Recall that for Configuration 1, the analytic solution for the Average Queue Length was 0.3333.

As with the simulation results, these metamodel estimates were compared to the analytical solution, residuals calculations made, and descriptive statistics of the residuals were calculated for the entire case. Examples of residual statistic data for Case A are shown in Table 3-10a for the Full Linear-Neg metamodel, Table 3-10b for the Full Linear-Zero metamodel, and Table 3-10c for the Full Logarithmic metamodel. In each table, the metamodel estimates for Configuration 1 are shaded.
Table 3-10a. Example Data: Full Linear-Neg Metamodel Residual Statistics, Case A

<table>
<thead>
<tr>
<th>Config</th>
<th>Sys Util</th>
<th>Analytic Lq</th>
<th>Meta Estimate</th>
<th>Residual</th>
<th>Residual Mean</th>
<th>Rel Err (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.5</td>
<td>0.3333</td>
<td>0.6850</td>
<td>-0.3517</td>
<td>0.3517</td>
<td>105.52</td>
</tr>
<tr>
<td>2</td>
<td>0.25</td>
<td>0.0068</td>
<td>-0.0780</td>
<td>0.0848</td>
<td>0.0848</td>
<td>124.706</td>
</tr>
<tr>
<td>3</td>
<td>0.4</td>
<td>0.1524</td>
<td>0.3366</td>
<td>-0.1842</td>
<td>0.1842</td>
<td>120.87</td>
</tr>
<tr>
<td>4</td>
<td>0.2</td>
<td>0.0024</td>
<td>-0.4264</td>
<td>0.4288</td>
<td>0.4288</td>
<td>178.667</td>
</tr>
<tr>
<td>5</td>
<td>0.75</td>
<td>1.9286</td>
<td>1.2244</td>
<td>0.7042</td>
<td>0.7042</td>
<td>36.51</td>
</tr>
<tr>
<td>6</td>
<td>0.375</td>
<td>0.0448</td>
<td>0.4614</td>
<td>-0.4166</td>
<td>0.4166</td>
<td>929.91</td>
</tr>
<tr>
<td>7</td>
<td>0.6</td>
<td>0.6750</td>
<td>0.8760</td>
<td>-0.2010</td>
<td>0.2010</td>
<td>29.78</td>
</tr>
<tr>
<td>8</td>
<td>0.3</td>
<td>0.0159</td>
<td>0.1130</td>
<td>-0.0971</td>
<td>0.0971</td>
<td>610.69</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Residual Statistics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean: -0.0041</td>
</tr>
<tr>
<td>Std Error: 0.1381</td>
</tr>
<tr>
<td>Median: -0.1407</td>
</tr>
<tr>
<td>Mode: #N/A</td>
</tr>
<tr>
<td>Std Dev: 0.3906</td>
</tr>
<tr>
<td>Variance: 0.1525</td>
</tr>
<tr>
<td>Kurtosis: 0.0071</td>
</tr>
<tr>
<td>Skewness: 0.9933</td>
</tr>
<tr>
<td>Range: 1.1208</td>
</tr>
<tr>
<td>Minimum: -0.4166</td>
</tr>
<tr>
<td>Maximum: 0.7042</td>
</tr>
<tr>
<td>Sum: -0.0328</td>
</tr>
<tr>
<td>Count: 8</td>
</tr>
</tbody>
</table>

Table 3-10b. Example Data: Full Linear-Zero Metamodel Residual Statistics, Case A

<table>
<thead>
<tr>
<th>Config</th>
<th>Sys Util</th>
<th>Analytic Lq</th>
<th>Meta Estimate</th>
<th>Residual</th>
<th>Residual Mean</th>
<th>Rel Err (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.5</td>
<td>0.3333</td>
<td>0.6850</td>
<td>-0.3517</td>
<td>0.3517</td>
<td>105.52</td>
</tr>
<tr>
<td>2</td>
<td>0.25</td>
<td>0.0068</td>
<td>0.0000</td>
<td>0.0068</td>
<td>0.0068</td>
<td>100.00</td>
</tr>
<tr>
<td>3</td>
<td>0.4</td>
<td>0.1524</td>
<td>0.3366</td>
<td>-0.1842</td>
<td>0.1842</td>
<td>120.87</td>
</tr>
<tr>
<td>4</td>
<td>0.2</td>
<td>0.0024</td>
<td>0.0000</td>
<td>0.0024</td>
<td>0.0024</td>
<td>100.00</td>
</tr>
<tr>
<td>5</td>
<td>0.75</td>
<td>1.9286</td>
<td>1.2244</td>
<td>0.7042</td>
<td>0.7042</td>
<td>36.51</td>
</tr>
<tr>
<td>6</td>
<td>0.375</td>
<td>0.0448</td>
<td>0.4614</td>
<td>-0.4166</td>
<td>0.4166</td>
<td>929.91</td>
</tr>
<tr>
<td>7</td>
<td>0.6</td>
<td>0.6750</td>
<td>0.8760</td>
<td>-0.2010</td>
<td>0.2010</td>
<td>29.78</td>
</tr>
<tr>
<td>8</td>
<td>0.3</td>
<td>0.0159</td>
<td>0.1130</td>
<td>-0.0971</td>
<td>0.0971</td>
<td>610.69</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Residual Statistics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean: -0.0672</td>
</tr>
<tr>
<td>Std Error: 0.1225</td>
</tr>
<tr>
<td>Median: -0.1407</td>
</tr>
<tr>
<td>Mode: #N/A</td>
</tr>
<tr>
<td>Std Dev: 0.3466</td>
</tr>
<tr>
<td>Variance: 0.1201</td>
</tr>
<tr>
<td>Kurtosis: 4.0343</td>
</tr>
<tr>
<td>Skewness: 1.7839</td>
</tr>
<tr>
<td>Range: 1.1208</td>
</tr>
<tr>
<td>Minimum: -0.4166</td>
</tr>
<tr>
<td>Maximum: 0.7042</td>
</tr>
<tr>
<td>Sum: -0.5372</td>
</tr>
<tr>
<td>Count: 8</td>
</tr>
</tbody>
</table>

3-12
Though the fractional metamodels were formulated differently than the full metamodels, the fractional metamodel estimates and residual statistics were calculated in a similar manner as the full metamodels shown above and identical residual analysis was performed for the residual statistics from the fractional metamodels.

3.5. Residual Analysis

The residual statistics (mean, standard error, and range) were calculated for case of simulation work for each of the seven respective estimation types: Simulation, Full Linear-Neg metamodel, Full Linear-Zero metamodel, Full Logarithmic metamodel, Fractional Linear-Neg metamodel, Fractional Linear-Zero metamodel, and Fractional Logarithmic metamodel. Graphic comparisons and Single-Factor Analysis of Variance (ANOVA) calculations were made for each residual statistic in order to determine if the residual statistics were affected by the case of simulation work or the metamodel type. An example of these calculations within a case are shown in the shaded portion of the row in

Table 3-10c. Example Data: Full Logarithmic Metamodel Residual Statistics, Case A
Table 3-11 for the Full Logarithmic Metamodel Case A, Configuration 1. As calculated previously, the estimated average queue length for this configuration was 0.3291. Similar estimations and residual calculations were performed for each configuration in the case and are shown in Table 3-11. The shaded column of data in Table 3-11 is the residual data for which the mean, standard error, and range of residuals was calculated for the entire case as shown in the columns of data on the right-hand side of the table.

<table>
<thead>
<tr>
<th>Config</th>
<th>Sys Util</th>
<th>Analytic Lq</th>
<th>Meta Predict Residual</th>
<th>Residual</th>
<th>Rel Err (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.5</td>
<td>0.3333</td>
<td>0.3291</td>
<td>0.0042</td>
<td>0.0042</td>
</tr>
<tr>
<td>2</td>
<td>0.25</td>
<td>0.0068</td>
<td>0.0067</td>
<td>0.0001</td>
<td>0.0001</td>
</tr>
<tr>
<td>3</td>
<td>0.4</td>
<td>0.1524</td>
<td>0.1464</td>
<td>0.0060</td>
<td>0.0060</td>
</tr>
<tr>
<td>4</td>
<td>0.2</td>
<td>0.0024</td>
<td>0.0030</td>
<td>-0.0006</td>
<td>0.0006</td>
</tr>
<tr>
<td>5</td>
<td>0.75</td>
<td>1.9286</td>
<td>1.8482</td>
<td>0.0804</td>
<td>0.0804</td>
</tr>
<tr>
<td>6</td>
<td>0.375</td>
<td>0.0448</td>
<td>0.0377</td>
<td>0.0071</td>
<td>0.0071</td>
</tr>
<tr>
<td>7</td>
<td>0.6</td>
<td>0.6750</td>
<td>0.8224</td>
<td>-0.1474</td>
<td>0.1474</td>
</tr>
<tr>
<td>8</td>
<td>0.3</td>
<td>0.0159</td>
<td>0.0168</td>
<td>-0.0009</td>
<td>0.0009</td>
</tr>
</tbody>
</table>

Table 3-11. Residual Analysis: Full Logarithmic Metamodel, Case A

The residual statistics for each case of simulation work and for each of the 7 sources of estimation were then merged into tabular form as shown in Table 3-12. The summary data for each residual statistic is presented in Appendix E. In Table 3-12, the highlighted data cell represents the mean of the residuals from Case A as calculated in Table 3-11. Thus, each of the residual statistics was summarized: 1) row-wise, by the amount of simulation work and 2) column-wise, by the estimator type.
3.6: Summary

The experimental design for this research was structured to investigate the effects of simulation work and metamodel specification on the average queue length estimates from the resulting metamodels. The 8 queuing configurations provided the basis for functionally relating the customer arrival rate, the service rate, and the number of servers to the average queue length in the form of a metamodel. The nine levels of simulation work, two metamodel forms (linear and logarithmic), and two levels of fractionation resulted in a $9 \times 2 \times 2$ factorial experimental design. The results of the experiment and the corresponding analysis are presented in the following chapter.
4. Results and Analysis

4.0. Introduction

The experiment was conducted as presented in Chapter 3 and residuals were analyzed for each case of simulation work. Analysis of these residuals was used to determine if the amount of simulation work affected the statistical quality of estimates of average queue length obtained from metamodels of the simulation data. Specifically, this analysis was done in two ways. First, by a graphic comparison of the residual statistic data for all estimation types. Secondly, a Single-Factor ANOVA on each set of residual statistic data from the different metamodels was performed to determine if the different cases of simulation work yielded similar residual statistics and to determine if the different metamodel types yielded similar residual statistics.

The graphic analysis for the residual statistics is presented in Section 4.1. The ANOVA results for residual statistics are presented in Section 4.2. In addition to the simulation and metamodel residual analysis, the R^2 values from the Full Linear, Full Logarithmic, Fractional Linear, and Fractional Logarithmic metamodels were graphically compared. These results are presented in Section 4.3.

4.1. Graphic Analysis

4.1.0. Introduction. A summary of the residual data for each statistic and respective estimation type is presented in Appendix E. The corresponding graphs and summaries of the residual statistics are presented in Section 4.1.1. through Section 4.1.3.

4.1.1. Mean of Residuals. The graph of the mean of the residuals from the simulation and all the metamodels is shown in Figure 4-1.
The effect of simulation work and metamodel specification on the mean of residuals was observed in two ways. First, the effect of simulation work was observed by examining the graph of any single estimation source -- either simulation or any of the metamodel forms. It is apparent that the mean of the residuals does not change as the amount of work as increases for any given estimator. For example, the graph corresponding to the mean of residuals from the Fractional Linear-Zero metamodel is relatively straight from left to right over the entire range of simulation work cases. Although there was some apparent fluctuation corresponding to the residual means from Cases A1 and A2, it should be noted that Case I is effectively the point at which traditional statistical inference begins -- Case I was the combination of 20 replications and simulation length 10,000 time units. Thus, the apparent deviations for Cases A1 and A2 were not deemed significant based on this...
graphical analysis since they represent extreme "worst case" scenarios in this research. The remaining cases are did not demonstrate this degree of variation. Secondly, the effect of metamodel specification was observed by examining the graph at any level of simulation work. It is apparent that for any case of simulation work chosen, there was a difference in the mean of the residuals. For example, in Case C, 6 of the 7 observed values for the mean of the residuals are clearly distinguishable in this graph.

4.1.2. Standard Error of Residuals. The graph of the standard error of the residuals from the simulation and all the metamodels is shown in Figure 4-2. The effect of simulation work and metamodel specification on the standard error of residuals was observed as previously described in Section 4.1.1.
Again, it is apparent that the standard error of the residuals did not change appreciably as the amount of work was increased for the specific estimator. For example, the graph corresponding to the standard error of residuals from the Full Logarithmic metamodel is relatively straight from left to right over the entire range of simulation work cases. The apparent fluctuation corresponding to the standard error of the residuals from Cases A1 and A2 is only observed for the Fractional Logarithmic metamodel. Again, these apparent deviations for Cases A1 and A2 were not deemed significant based on this graphical analysis since they represent extreme "worst case" scenarios in this research and the remaining cases did not demonstrate this characteristic.

Secondly, the examination of the graph at any level of simulation work yields similar results as before. It is apparent that for any case of simulation work chosen there was a difference in the standard error of the residuals. For example, at almost all of the 9 cases of simulation work, the observed values for the standard error of the residuals are clearly distinguishable in this graph.

In addition, it is evident that the Full and Fractional Logarithmic metamodel estimates produced standard errors that best approximated the standard errors from the simulation estimates and confirms Friedman and Friedman's validation of the logarithmic metamodels for estimating the average queue length of M/M/k queues.

4.1.3. Range of Residuals. The graph of the range of the residuals from the simulation and all the metamodels is shown in Figure 4-3. The effect of simulation work and metamodel specification on the range of residuals was observed as previously described in Section 4.1.1.
Again, it is apparent that the range of the residuals did not change as the amount of work was increased for the specific estimator. For example, the graph corresponding to the range of residuals from the Full Logarithmic metamodel is relatively straight as observed from left to right over the entire range of simulation work cases. The apparent fluctuation corresponding to the range of the residuals from Cases A1 and A2 was only observed for the Fractional Logarithmic metamodel. Again, these apparent deviations for Cases A1 and A2 were not deemed significant based on this graphical analysis since they represent extreme "worst case" scenarios in this research and the remaining cases did not demonstrate this characteristic.

Secondly, examination of the graph at any level of simulation work yields similar results as before. It is apparent that for any case of simulation work chosen there was a
difference in the range of the residuals. For example, at all of the 9 cases of simulation work, the observed values for the range of the residuals are clearly distinguishable in this graph.

In addition, it is evident that the Full and Fractional Logarithmic metamodel estimates produced ranges that best approximated those from the simulation estimates and confirms Friedman and Friedman's validation of the logarithmic metamodels for estimating the average queue length of M/M/k queues.

4.1.4. Summary of Graphic Analysis. It is apparent from the graphs of the residual statistic data that differences in the means, standard errors, and ranges of the residuals were not due to the amount of simulation work in the metamodels. In addition, it is apparent from these graphs that differences were due to the metamodel used to estimate the average queue length.

4.2. Single-Factor ANOVA

4.2.0. Introduction. Single-Factor ANOVA was performed on the metamodel data to determine the effects of simulation work on the statistical quality of estimates obtained from metamodels of the simulation data. For each residual statistic, a set of data was collected as shown previously for the residual means in Table 3-12. ANOVA calculations and F-tests were performed on the data in two ways. First, a row-wise test was used to determine if any of the respective residual statistics from metamodel estimates were significantly different between the different cases of simulation work -- do the residuals vary based on the level of simulation work? Secondly, a column-wise test was used to determine if any of the respective residual statistics from metamodel estimates were significantly different between the different metamodel types -- do the residuals vary based on metamodel specification?
4.2.1. **Null Hypotheses for the F-tests.** For the row-wise test regarding the effects of simulation work, the null hypothesis was that the amount of simulation work caused no significant difference in the residual statistics of the metamodel estimates from simulation data. For the column-wise test regarding metamodel specification, the null hypothesis was that the metamodel specification caused no significant difference in the residual statistics of the metamodel estimates from the simulation data.

4.2.2. **F-test Results.** F-test results are shown in Table 4-1 for each residual statistic and null hypothesis. The null hypotheses are distinguished in the table as indicated in the "Source" column. The conclusions shown are based on rejection of the respective null hypotheses.

<table>
<thead>
<tr>
<th>Residual Statistic</th>
<th>Source</th>
<th>F-stat</th>
<th>F-crit</th>
<th>P-value</th>
<th>Conclusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>Sim Work</td>
<td>0.3975</td>
<td>2.1521</td>
<td>0.9161</td>
<td>Same</td>
</tr>
<tr>
<td></td>
<td>Meta Type</td>
<td>97.0921</td>
<td>2.4085</td>
<td>0.0000</td>
<td>Different</td>
</tr>
<tr>
<td>Standard Error</td>
<td>Sim Work</td>
<td>0.0267</td>
<td>2.1521</td>
<td>1.0000</td>
<td>Same</td>
</tr>
<tr>
<td></td>
<td>Meta Type</td>
<td>371.5573</td>
<td>2.4085</td>
<td>0.0000</td>
<td>Different</td>
</tr>
<tr>
<td>Range</td>
<td>Sim Work</td>
<td>0.0337</td>
<td>2.2085</td>
<td>1.0000</td>
<td>Same</td>
</tr>
<tr>
<td></td>
<td>Meta Type</td>
<td>298.3038</td>
<td>2.6060</td>
<td>0.0000</td>
<td>Different</td>
</tr>
</tbody>
</table>

Table 4-1. F-test Results

4.2.3. **Summary of the ANOVA and F-tests.** For each residual statistic, the null hypothesis regarding the effects of simulation work could not be rejected. Thus, the conclusion from the analysis of this data is that the amount of simulation work does not affect on the residual statistics from estimates from the different metamodels. Also, the null hypothesis regarding the effects of metamodel specification was rejected. Thus, the conclusion from the analysis of this data is that the metamodel specification does affect the residual statistics from estimates from the different metamodels.
4.3. Metamodel Comparison.

The SAS output used in calculating the respective metamodel coefficients included R^2 values for each metamodel. Consequently, a comparison was made of the R^2 values for the different metamodels. For example, the R^2 statistic for the Case A, Full Linear Metamodel is 0.6453 as shown in the example SAS output of Table 3-8. Data for all metamodels is presented in Appendix F. A graphical summary is shown in Figure 4-4. This graph shows that the Full Logarithmic and both Fractional Metamodels have similar R^2 values, approximately 0.94 and higher. In addition, the Full Linear Metamodel has a distinctly lower R^2 value of approximately 0.64.

Friedman and Friedman's research produced an R^2 value of 0.74 for their validated logarithmic model. The relative disparity between the best case from this research, the Full Logarithmic metamodel with an approximate $R^2 = 0.94$ and the Friedman and Friedman logarithmic metamodel may be due to the fitting the respective metamodels to different sets of simulation data. The range of system utilization rates for this research was from 0.2 to 0.75. The Friedman and Friedman experimental design resulted in a range of 0.90 to 0.95. Although the lack of fit of their linear metamodel was discussed in their research, no R^2 values for their linear metamodel were given [Friedman and Friedman, 1985:145].
4.4. Summary

The graphic analysis and the results from the F-tests provide convincing evidence that the amount of simulation work does not affect on the residual statistics from estimates from the different metamodels and that the metamodel specification does affect the residual statistics from estimates from the different metamodels. Analysis of the metamodel \(R^2 \) data is consistent with Friedman and Friedman's research with respect to the difference between the \(R^2 \) values for the Full Logarithmic and the Full Linear metamodels. No inference is made regarding the \(R^2 \) values for the fractional metamodels.
5. Conclusions and Recommendations

5.0. Introduction

As stated previously, the purpose of this research was to determine how the amount of simulation work affects the statistical quality of the estimates obtained from metamodels of the simulation data. Conclusions from the preceding chapters are formalized here. In addition, recommendations for additional research are presented.

5.1. Conclusions

The graphical analysis and ANOVA analysis in Chapter 4 clearly address the problem statement and research objective stated in Chapter 1. Specifically, the amount of simulation work has no significant effect on the statistical quality of the estimates obtained from metamodels of the simulation data. Also, the metamodel specification has a significant effect on the statistical quality of the estimates obtained from metamodels of the simulation data.

Though the conclusion regarding the effect of simulation work is somewhat counter-intuitive, it is supported by graphic analysis and rather conclusive F-tests. The conclusion regarding the effect of metamodel specification is also supported by graphic analysis and rather conclusive F-tests. It confirms intuition regarding metamodel specification and also confirms the research findings of Friedman and Friedman.

Based on this research, it would seem more prudent to develop a better specified metamodel than to simply increase the amount of simulation work in an attempt to develop a metamodel with more predictive validity.
5.2. Recommendations

5.2.0 Introduction. Though the focus of this research was on a relatively simple system and corresponding computer simulation, additional research is warranted in the areas described below.

5.2.1 Queuing Networks. In many Department of Defense simulation and metamodel applications, it is quite common that multiple simulations are used in a hierarchical manner. For example, a one-on-one air engagement model may be used as input to an air campaign model, which in turn, may be used as input to a theater-level combat simulation model. If metamodels were applied to any, or all, of these "cascading" simulations, it would be of crucial importance to know how different levels of simulation work and different levels of metamodel specification affect the statistical quality of any estimates gained from the simulation and or metamodels -- who won the dogfight, air campaign, or war? To better understand the relationship of simulation work and metamodel specification in a scenario such as this, the research presented here could be modified to include queuing networks. In the simplest case, tandem queues could be simulated using identical queuing configurations, cases of simulation work, and metamodels for the purpose of estimating the average queue length. Though some of the analytical solution procedures and metamodel prediction procedures would require slight modification due to the nature of tandem queues, the analysis should be as straightforward as that for single queues. In a more demanding case, the queuing configurations, work amount, and metamodel specification could be varied for different queues in the network.

5.2.2 Queuing Statistics. To better understand the single queues studied in this research, other performance measures of M/M/k queues could be analyzed using the same methodology presented in Chapter 3. This research benefited by using the validated metamodel for estimating the average queue length as presented by Friedman and
Friedman. Further investigation of M/M/k queuing performance measures would require validation of any metamodels used.

5.2.3 Different System. To extend the investigation of the effects of simulation work on metamodel estimation, this methodology could be applied to a system other than M/M/k queues. The range of potential systems under study would be limited primarily by the requirement for a valid simulation and metamodel.

5.2.4 Fractionation and Metamodels. Just as the amount of simulation work was used as a factor in this experiment, the effects of fractionation used in metamodel formulation could also be studied. In all likelihood, such research would involve using more simulation configurations since the level of fractionation possible in was limited by a "full" factorial design consisting of only 8 design points.

5.3 Summary

This research provided relatively simple conclusions. Essentially, it is better to work smarter in developing a metamodel than it is to work harder by increasing the amount of simulation work. Given the conclusions presented previously, further investigation of the relationship between simulation work and metamodel estimation is essential to establishing a bound, or "comfort zone," for analysts and decision makers who are faced with problems involving different levels of simulation and metamodel specification. Quite often, simulations and metamodels are used in sequence or combination with little thought as to what happens to the quality of the "answer" provided by one simulation as it is literally "fed" into another simulation as an input. Ultimately, an answer emerges with untold amounts of statistical baggage acquired along the way as a result of the multiple simulation and metamodel environments.

This research begins to address this problem and the aforementioned recommendations should provide a basis for research whereby analysts and decision
makers can begin to understand, and hopefully avoid, any potential pitfalls of using different amounts of simulation work and using metamodels of different specification in their computer simulations.
Appendix A: Simulation Overview

The queuing configurations for this research were simulated using the SLAMSYSTEM simulation language. Neither a SLAM or SLAMSYSTEM tutorial is presented here. Interested readers are referred to Priskter's text for a detailed explanation of the SLAM simulation language and many other simulation topics. Example model statements are shown below in Figure A-1 for Configuration 1, Case A. Recall that Case A was for 5 replications of simulation length 2,500.

Figure A-1. Example SLAMSYSTEM Model, Configuration 1, Case A

```
GEN,MKT,MKT META 1,12/17/93,5,Y,Y/Y,Y,Y/1,132;
LIMITS,1,2,100;
NETWORK;
;
START CREATE,EXPON(1.0,1),,,1;
   ACTIVITY;
   QUEUE(1),,,;
   ACTIVITY(2),EXPON(1.0),2;
   COLCT,INT(1),TOTAL TIS;
   ACTIVITY,,END;
END TERMINATE,50000;
END;
SEEDS,61954987(1),75128931(2);
initialize,,2500,Y;
FIN;
```

The seeds for all simulations were generated using Mathcad's pseudo-random number generator for Uniformly (0,1) distributed random deviates. All queues were simulated
using a GATEWAY 2000 personal computer, model 4DX2-50V. This particular model had an Intel 50MHz 80486DX2 Microprocessor and 8 MB Ram. The above simulation model, seeds, and hardware produced average queue lengths of 0.361, 0.356, 0.328, 0.336, and 0.376. This simulation configuration and case was simulated in approximately 1:50 minutes of clock time. For comparison, Configuration 1 and Case I (20 replications of simulation length 10,000) was simulated in approximately 18:20 minutes.
Appendix B: Simulation Residual Data

Simulation residual data for each case of simulation work is shown in Table B-1.

<table>
<thead>
<tr>
<th>Reps</th>
<th>A1</th>
<th>A2</th>
<th>A3</th>
<th>A</th>
<th>C</th>
<th>E</th>
<th>G</th>
<th>C1</th>
<th>I</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>10</td>
<td>20</td>
<td>5</td>
<td>20</td>
</tr>
<tr>
<td>Length</td>
<td>1000</td>
<td>1250</td>
<td>1500</td>
<td>2500</td>
<td>10000</td>
<td>5000</td>
<td>2500</td>
<td>20000</td>
<td>10000</td>
</tr>
<tr>
<td>Work</td>
<td>50</td>
<td>62.5</td>
<td>75</td>
<td>125</td>
<td>500</td>
<td>500</td>
<td>500</td>
<td>1000</td>
<td>2000</td>
</tr>
<tr>
<td>Mean</td>
<td>0.0305</td>
<td>-0.0102</td>
<td>0.0093</td>
<td>-0.0041</td>
<td>0.0208</td>
<td>0.0058</td>
<td>0.0037</td>
<td>0.0040</td>
<td>-0.0011</td>
</tr>
<tr>
<td>Std Error</td>
<td>0.0284</td>
<td>0.0084</td>
<td>0.0207</td>
<td>0.0082</td>
<td>0.0182</td>
<td>0.0047</td>
<td>0.0034</td>
<td>0.0053</td>
<td>0.0021</td>
</tr>
<tr>
<td>Range</td>
<td>0.2347</td>
<td>0.0748</td>
<td>0.2098</td>
<td>0.0832</td>
<td>0.1500</td>
<td>0.0433</td>
<td>0.0316</td>
<td>0.0406</td>
<td>0.0197</td>
</tr>
</tbody>
</table>

Table B-1. Summary of Simulation Residual Data
Appendix C: Full Metamodel Residual Data

Full metamodel residual data for each case of simulation work is shown in Tables C-1 through C-3.

Table C-1. Summary of Full Linear-Neg Metamodel Residual Statistics

<table>
<thead>
<tr>
<th></th>
<th>A1</th>
<th>A2</th>
<th>A3</th>
<th>A</th>
<th>C</th>
<th>E</th>
<th>G</th>
<th>C1</th>
<th>I</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reps</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>10</td>
<td>20</td>
<td>5</td>
<td>20</td>
</tr>
<tr>
<td>Length</td>
<td>1000</td>
<td>1250</td>
<td>1500</td>
<td>2500</td>
<td>10000</td>
<td>5000</td>
<td>2500</td>
<td>20000</td>
<td>10000</td>
</tr>
<tr>
<td>Work</td>
<td>50</td>
<td>62.5</td>
<td>75</td>
<td>125</td>
<td>500</td>
<td>500</td>
<td>500</td>
<td>1000</td>
<td>2000</td>
</tr>
<tr>
<td>Mean</td>
<td>0.0305</td>
<td>0.0025</td>
<td>0.0093</td>
<td>-0.0041</td>
<td>0.0209</td>
<td>0.0058</td>
<td>0.0037</td>
<td>0.0039</td>
<td>-0.0111</td>
</tr>
<tr>
<td>Std Error</td>
<td>0.1395</td>
<td>0.1386</td>
<td>0.1386</td>
<td>0.1386</td>
<td>0.1386</td>
<td>0.1386</td>
<td>0.1386</td>
<td>0.1386</td>
<td>0.1386</td>
</tr>
<tr>
<td>Range</td>
<td>1.1920</td>
<td>1.0780</td>
<td>1.1454</td>
<td>1.1208</td>
<td>1.1716</td>
<td>1.1386</td>
<td>1.1360</td>
<td>1.1372</td>
<td>1.1260</td>
</tr>
</tbody>
</table>

Table C-2. Summary of Full Linear-Zero Metamodel Residual Statistics

<table>
<thead>
<tr>
<th></th>
<th>A1</th>
<th>A2</th>
<th>A3</th>
<th>A</th>
<th>C</th>
<th>E</th>
<th>G</th>
<th>C1</th>
<th>I</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reps</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>10</td>
<td>20</td>
<td>5</td>
<td>20</td>
</tr>
<tr>
<td>Length</td>
<td>1000</td>
<td>1250</td>
<td>1500</td>
<td>2500</td>
<td>10000</td>
<td>5000</td>
<td>2500</td>
<td>20000</td>
<td>10000</td>
</tr>
<tr>
<td>Work</td>
<td>50</td>
<td>62.5</td>
<td>75</td>
<td>125</td>
<td>500</td>
<td>500</td>
<td>500</td>
<td>1000</td>
<td>2000</td>
</tr>
<tr>
<td>Mean</td>
<td>-0.0268</td>
<td>-0.0729</td>
<td>-0.0532</td>
<td>-0.0672</td>
<td>-0.0379</td>
<td>-0.0563</td>
<td>-0.0594</td>
<td>-0.0572</td>
<td>-0.0653</td>
</tr>
<tr>
<td>Std Error</td>
<td>0.1295</td>
<td>0.1171</td>
<td>0.1254</td>
<td>0.1225</td>
<td>0.1267</td>
<td>0.1232</td>
<td>0.1224</td>
<td>0.1234</td>
<td>0.1218</td>
</tr>
<tr>
<td>Range</td>
<td>1.1920</td>
<td>1.0780</td>
<td>1.1454</td>
<td>1.1208</td>
<td>1.1716</td>
<td>1.1386</td>
<td>1.1360</td>
<td>1.1372</td>
<td>1.1260</td>
</tr>
</tbody>
</table>

Table C-3. Summary of Full Logarithmic Metamodel Residual Statistics

<table>
<thead>
<tr>
<th></th>
<th>A1</th>
<th>A2</th>
<th>A3</th>
<th>A</th>
<th>C</th>
<th>E</th>
<th>G</th>
<th>C1</th>
<th>I</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reps</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>10</td>
<td>20</td>
<td>5</td>
<td>20</td>
</tr>
<tr>
<td>Length</td>
<td>1000</td>
<td>1250</td>
<td>1500</td>
<td>2500</td>
<td>10000</td>
<td>5000</td>
<td>2500</td>
<td>20000</td>
<td>10000</td>
</tr>
<tr>
<td>Work</td>
<td>50</td>
<td>62.5</td>
<td>75</td>
<td>125</td>
<td>500</td>
<td>500</td>
<td>500</td>
<td>1000</td>
<td>2000</td>
</tr>
<tr>
<td>Mean</td>
<td>-0.0068</td>
<td>-0.0257</td>
<td>-0.0152</td>
<td>-0.0064</td>
<td>-0.0053</td>
<td>-0.0081</td>
<td>-0.0169</td>
<td>-0.0202</td>
<td>-0.0226</td>
</tr>
<tr>
<td>Std Error</td>
<td>0.0329</td>
<td>0.0260</td>
<td>0.0141</td>
<td>0.0223</td>
<td>0.0091</td>
<td>0.0109</td>
<td>0.0183</td>
<td>0.0149</td>
<td>0.0192</td>
</tr>
<tr>
<td>Range</td>
<td>0.3043</td>
<td>0.2088</td>
<td>0.1206</td>
<td>0.2278</td>
<td>0.0852</td>
<td>0.1021</td>
<td>0.1709</td>
<td>0.1185</td>
<td>0.1560</td>
</tr>
</tbody>
</table>

C-1
Appendix D: Fractional Metamodel Residual Data

Fractional metamodel residual data for each case of simulation work is shown in Tables D-1 through D-3.

<table>
<thead>
<tr>
<th></th>
<th>A1</th>
<th>A2</th>
<th>A3</th>
<th>A</th>
<th>C</th>
<th>E</th>
<th>G</th>
<th>C1</th>
<th>I</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reps</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>10</td>
<td>20</td>
<td>5</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>Length</td>
<td>1000</td>
<td>1250</td>
<td>1500</td>
<td>2500</td>
<td>10000</td>
<td>5000</td>
<td>2500</td>
<td>20000</td>
<td>10000</td>
</tr>
<tr>
<td>Work</td>
<td>50</td>
<td>62.5</td>
<td>75</td>
<td>125</td>
<td>500</td>
<td>500</td>
<td>500</td>
<td>1000</td>
<td>2000</td>
</tr>
<tr>
<td>Mean</td>
<td>-0.0775</td>
<td>-0.1478</td>
<td>-0.1026</td>
<td>-0.1220</td>
<td>-0.0931</td>
<td>-0.1317</td>
<td>-0.1265</td>
<td>-0.1321</td>
<td></td>
</tr>
<tr>
<td>Std Error</td>
<td>0.1661</td>
<td>0.1961</td>
<td>0.1748</td>
<td>0.1855</td>
<td>0.1740</td>
<td>0.1851</td>
<td>0.1898</td>
<td>0.1851</td>
<td>0.1895</td>
</tr>
<tr>
<td>Range</td>
<td>1.5004</td>
<td>1.7982</td>
<td>1.5890</td>
<td>1.7022</td>
<td>1.5896</td>
<td>1.6996</td>
<td>1.7458</td>
<td>1.6932</td>
<td>1.7409</td>
</tr>
</tbody>
</table>

Table D-1. Summary of Fractional Linear-Neg Metamodel Residual Statistics

<table>
<thead>
<tr>
<th></th>
<th>A1</th>
<th>A2</th>
<th>A3</th>
<th>A</th>
<th>C</th>
<th>E</th>
<th>G</th>
<th>C1</th>
<th>I</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reps</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>10</td>
<td>20</td>
<td>5</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>Length</td>
<td>1000</td>
<td>1250</td>
<td>1500</td>
<td>2500</td>
<td>10000</td>
<td>5000</td>
<td>2500</td>
<td>20000</td>
<td>10000</td>
</tr>
<tr>
<td>Work</td>
<td>50</td>
<td>62.5</td>
<td>75</td>
<td>125</td>
<td>500</td>
<td>500</td>
<td>500</td>
<td>1000</td>
<td>2000</td>
</tr>
<tr>
<td>Mean</td>
<td>-0.1722</td>
<td>-0.2615</td>
<td>-0.2030</td>
<td>-0.2301</td>
<td>-0.1937</td>
<td>-0.2279</td>
<td>-0.2419</td>
<td>-0.2336</td>
<td>-0.2421</td>
</tr>
<tr>
<td>Std Error</td>
<td>0.1179</td>
<td>0.1301</td>
<td>0.1207</td>
<td>0.1246</td>
<td>0.1205</td>
<td>0.1249</td>
<td>0.1272</td>
<td>0.1248</td>
<td>0.1270</td>
</tr>
<tr>
<td>Range</td>
<td>0.9674</td>
<td>0.8881</td>
<td>0.9132</td>
<td>0.8710</td>
<td>0.9304</td>
<td>0.8742</td>
<td>0.8676</td>
<td>0.8636</td>
<td>0.8608</td>
</tr>
</tbody>
</table>

Table D-2. Summary of Fractional Linear-Zero Metamodel Residual Statistics

<table>
<thead>
<tr>
<th></th>
<th>A1</th>
<th>A2</th>
<th>A3</th>
<th>A</th>
<th>C</th>
<th>E</th>
<th>G</th>
<th>C1</th>
<th>I</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reps</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>10</td>
<td>20</td>
<td>5</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>Length</td>
<td>1000</td>
<td>1250</td>
<td>1500</td>
<td>2500</td>
<td>10000</td>
<td>5000</td>
<td>2500</td>
<td>20000</td>
<td>10000</td>
</tr>
<tr>
<td>Work</td>
<td>50</td>
<td>62.5</td>
<td>75</td>
<td>125</td>
<td>500</td>
<td>500</td>
<td>500</td>
<td>1000</td>
<td>2000</td>
</tr>
<tr>
<td>Mean</td>
<td>-0.0193</td>
<td>-0.0450</td>
<td>-0.0071</td>
<td>-0.0215</td>
<td>0.0053</td>
<td>-0.0122</td>
<td>-0.0116</td>
<td>-0.0237</td>
<td>-0.0215</td>
</tr>
<tr>
<td>Std Error</td>
<td>0.0804</td>
<td>0.0533</td>
<td>0.0245</td>
<td>0.0360</td>
<td>0.0265</td>
<td>0.0242</td>
<td>0.0156</td>
<td>0.0244</td>
<td>0.0215</td>
</tr>
<tr>
<td>Range</td>
<td>0.7932</td>
<td>0.4697</td>
<td>0.2293</td>
<td>0.3296</td>
<td>0.2798</td>
<td>0.2282</td>
<td>0.1425</td>
<td>0.2190</td>
<td>0.1799</td>
</tr>
</tbody>
</table>

Table D-3. Summary of Fractional Logarithmic Metamodel Residual Statistics
Appendix E: Simulation, Full, and Fractional Metamodel ANOVA Data

Summary data for each residual statistic from simulation, full metamodel, and fractional metamodel predictions are shown in Tables E-1 through E-3.

<table>
<thead>
<tr>
<th>Work</th>
<th>Simulation</th>
<th>Full Lin-Neg</th>
<th>Full Lin-Zero</th>
<th>Full Log</th>
<th>Frac Lin-Neg</th>
<th>Frac Lin-Zero</th>
<th>Frac Log</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1: 50</td>
<td>0.0305</td>
<td>0.0305</td>
<td>-0.0268</td>
<td>-0.0068</td>
<td>-0.0775</td>
<td>-0.1722</td>
<td>-0.0193</td>
</tr>
<tr>
<td>A2: 62.5</td>
<td>-0.0102</td>
<td>0.0025</td>
<td>-0.0729</td>
<td>-0.0257</td>
<td>-0.1478</td>
<td>-0.2615</td>
<td>-0.0450</td>
</tr>
<tr>
<td>A3: 75</td>
<td>0.0093</td>
<td>0.0093</td>
<td>-0.0532</td>
<td>-0.0152</td>
<td>-0.1026</td>
<td>-0.2030</td>
<td>-0.0071</td>
</tr>
<tr>
<td>A: 125</td>
<td>-0.0041</td>
<td>-0.0041</td>
<td>-0.0675</td>
<td>-0.0064</td>
<td>-0.1220</td>
<td>-0.2301</td>
<td>-0.0215</td>
</tr>
<tr>
<td>C: 500</td>
<td>0.0208</td>
<td>0.0209</td>
<td>-0.0379</td>
<td>-0.0053</td>
<td>-0.0931</td>
<td>-0.1937</td>
<td>0.0053</td>
</tr>
<tr>
<td>E: 500</td>
<td>0.0058</td>
<td>0.0058</td>
<td>-0.0563</td>
<td>-0.0081</td>
<td>-0.1203</td>
<td>-0.2279</td>
<td>-0.0122</td>
</tr>
<tr>
<td>G: 500</td>
<td>0.0037</td>
<td>0.0037</td>
<td>-0.0594</td>
<td>-0.0169</td>
<td>-0.1317</td>
<td>-0.2419</td>
<td>-0.0116</td>
</tr>
<tr>
<td>Cl: 1000</td>
<td>0.0040</td>
<td>0.0039</td>
<td>-0.0572</td>
<td>-0.0202</td>
<td>-0.1265</td>
<td>-0.2336</td>
<td>-0.0237</td>
</tr>
<tr>
<td>I: 2000</td>
<td>-0.0011</td>
<td>-0.0111</td>
<td>-0.0653</td>
<td>-0.0226</td>
<td>-0.1321</td>
<td>-0.2421</td>
<td>-0.0215</td>
</tr>
</tbody>
</table>

Table E-1. Mean of Residuals for Simulation and All Metamodels

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A1: 50</td>
<td>0.0284</td>
<td>0.1395</td>
<td>0.1295</td>
<td>0.0329</td>
<td>0.1661</td>
<td>0.1179</td>
<td>0.0804</td>
</tr>
<tr>
<td>A2: 62.5</td>
<td>0.0084</td>
<td>0.1388</td>
<td>0.1171</td>
<td>0.0260</td>
<td>0.1961</td>
<td>0.1301</td>
<td>0.0533</td>
</tr>
<tr>
<td>A3: 75</td>
<td>0.0207</td>
<td>0.1386</td>
<td>0.1254</td>
<td>0.0141</td>
<td>0.1748</td>
<td>0.1207</td>
<td>0.0245</td>
</tr>
<tr>
<td>A: 125</td>
<td>0.0082</td>
<td>0.1381</td>
<td>0.1225</td>
<td>0.0223</td>
<td>0.1855</td>
<td>0.1246</td>
<td>0.0360</td>
</tr>
<tr>
<td>C: 500</td>
<td>0.0182</td>
<td>0.1386</td>
<td>0.1267</td>
<td>0.0091</td>
<td>0.1740</td>
<td>0.1205</td>
<td>0.0265</td>
</tr>
<tr>
<td>E: 500</td>
<td>0.0047</td>
<td>0.1381</td>
<td>0.1232</td>
<td>0.0109</td>
<td>0.1851</td>
<td>0.1249</td>
<td>0.0242</td>
</tr>
<tr>
<td>G: 500</td>
<td>0.0034</td>
<td>0.1381</td>
<td>0.1224</td>
<td>0.0183</td>
<td>0.1898</td>
<td>0.1272</td>
<td>0.0156</td>
</tr>
<tr>
<td>Cl: 1000</td>
<td>0.0053</td>
<td>0.1381</td>
<td>0.1234</td>
<td>0.0149</td>
<td>0.1851</td>
<td>0.1248</td>
<td>0.0244</td>
</tr>
<tr>
<td>I: 2000</td>
<td>0.0021</td>
<td>0.1394</td>
<td>0.1218</td>
<td>0.0192</td>
<td>0.1895</td>
<td>0.1270</td>
<td>0.0215</td>
</tr>
</tbody>
</table>

Table E-2. Standard Error of Residuals for Simulation and All Metamodels
<table>
<thead>
<tr>
<th>Case:</th>
<th>Work</th>
<th>Simulation</th>
<th>Full Lin-Neg</th>
<th>Full Lin-Zero</th>
<th>Full Log</th>
<th>Frac Lin-Neg</th>
<th>Frac Lin-Neg</th>
<th>Frac Log</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1: 50</td>
<td></td>
<td>0.2347</td>
<td>1.1920</td>
<td>1.1920</td>
<td>0.3043</td>
<td>1.5004</td>
<td>0.9674</td>
<td>0.7932</td>
</tr>
<tr>
<td>A2: 62.5</td>
<td></td>
<td>0.0748</td>
<td>1.0780</td>
<td>1.0780</td>
<td>0.2088</td>
<td>1.7982</td>
<td>0.8881</td>
<td>0.4697</td>
</tr>
<tr>
<td>A3: 75</td>
<td></td>
<td>0.2098</td>
<td>1.1454</td>
<td>1.1454</td>
<td>0.1206</td>
<td>1.5890</td>
<td>0.9132</td>
<td>0.2293</td>
</tr>
<tr>
<td>A: 125</td>
<td></td>
<td>0.0832</td>
<td>1.1208</td>
<td>1.1208</td>
<td>0.2278</td>
<td>1.7022</td>
<td>0.8710</td>
<td>0.3296</td>
</tr>
<tr>
<td>C: 500</td>
<td></td>
<td>0.1500</td>
<td>1.1716</td>
<td>1.1716</td>
<td>0.0852</td>
<td>1.5896</td>
<td>0.9304</td>
<td>0.2798</td>
</tr>
<tr>
<td>E: 500</td>
<td></td>
<td>0.0433</td>
<td>1.1386</td>
<td>1.1386</td>
<td>0.1021</td>
<td>1.6996</td>
<td>0.8742</td>
<td>0.2282</td>
</tr>
<tr>
<td>G: 500</td>
<td></td>
<td>0.0316</td>
<td>1.1360</td>
<td>1.1360</td>
<td>0.1709</td>
<td>1.7458</td>
<td>0.8676</td>
<td>0.1425</td>
</tr>
<tr>
<td>C1: 1000</td>
<td></td>
<td>0.0406</td>
<td>1.1372</td>
<td>1.1372</td>
<td>0.1185</td>
<td>1.6932</td>
<td>0.8636</td>
<td>0.2190</td>
</tr>
<tr>
<td>I: 2000</td>
<td></td>
<td>0.0197</td>
<td>1.1260</td>
<td>1.1260</td>
<td>0.1560</td>
<td>1.7409</td>
<td>0.8608</td>
<td>0.1799</td>
</tr>
</tbody>
</table>

Table E-3. Range of Residuals for Simulation and All Metamodels
Appendix F: Metamodel Comparison Data

A summary of each full linear and full logarithmic metamodel is shown in Tables F-1 and F-2. A summary of each fractional linear and fractional logarithmic metamodel is shown in Tables F-3 and F-4.

<table>
<thead>
<tr>
<th></th>
<th>A1</th>
<th>A2</th>
<th>A3</th>
<th>A</th>
<th>C</th>
<th>E</th>
<th>G</th>
<th>C1</th>
<th>I</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSE</td>
<td>0.1281</td>
<td>0.1886</td>
<td>0.1444</td>
<td>0.1518</td>
<td>0.1245</td>
<td>0.1415</td>
<td>0.1579</td>
<td>0.1424</td>
<td>0.1409</td>
</tr>
<tr>
<td>Prob>F</td>
<td>0.0001</td>
<td>0.0001</td>
<td>0.0001</td>
<td>0.0001</td>
<td>0.0001</td>
<td>0.0001</td>
<td>0.0001</td>
<td>0.0001</td>
<td>0.0001</td>
</tr>
<tr>
<td>R²</td>
<td>0.6379</td>
<td>0.6187</td>
<td>0.6389</td>
<td>0.6453</td>
<td>0.6610</td>
<td>0.6425</td>
<td>0.6168</td>
<td>0.6532</td>
<td>0.6471</td>
</tr>
<tr>
<td>Adj-R²</td>
<td>0.6077</td>
<td>0.5860</td>
<td>0.6088</td>
<td>0.6158</td>
<td>0.6328</td>
<td>0.6284</td>
<td>0.6094</td>
<td>0.6243</td>
<td>0.6403</td>
</tr>
<tr>
<td>Intercept</td>
<td>1.5018</td>
<td>1.9709</td>
<td>1.5198</td>
<td>1.7628</td>
<td>1.6721</td>
<td>1.8068</td>
<td>1.8514</td>
<td>1.8466</td>
<td>1.7957</td>
</tr>
<tr>
<td>StdErr</td>
<td>0.6094</td>
<td>0.7427</td>
<td>0.6471</td>
<td>0.6636</td>
<td>0.6008</td>
<td>0.4530</td>
<td>0.3383</td>
<td>0.6426</td>
<td>0.3196</td>
</tr>
<tr>
<td>T-stat</td>
<td>2.464</td>
<td>2.654</td>
<td>2.349</td>
<td>2.657</td>
<td>2.783</td>
<td>3.988</td>
<td>5.473</td>
<td>2.873</td>
<td>5.618</td>
</tr>
<tr>
<td>Prob></td>
<td>T</td>
<td></td>
<td>0.0186</td>
<td>0.0119</td>
<td>0.0244</td>
<td>0.0117</td>
<td>0.0085</td>
<td>0.0002</td>
<td>0.0001</td>
</tr>
<tr>
<td>Arr</td>
<td>0.9902</td>
<td>1.1651</td>
<td>1.0647</td>
<td>1.0788</td>
<td>1.0123</td>
<td>1.0603</td>
<td>1.0789</td>
<td>1.0476</td>
<td>1.0979</td>
</tr>
<tr>
<td>StdErr</td>
<td>0.2263</td>
<td>0.2784</td>
<td>0.2403</td>
<td>0.2464</td>
<td>0.2231</td>
<td>0.1682</td>
<td>0.1256</td>
<td>0.2387</td>
<td>0.1187</td>
</tr>
<tr>
<td>Prob></td>
<td>T</td>
<td></td>
<td>0.0001</td>
<td>0.0002</td>
<td>0.0001</td>
<td>0.0001</td>
<td>0.0001</td>
<td>0.0001</td>
<td>0.0001</td>
</tr>
<tr>
<td>Serv</td>
<td>-1.1888</td>
<td>-1.6233</td>
<td>-1.2066</td>
<td>-1.3936</td>
<td>-1.329</td>
<td>-1.4447</td>
<td>-1.4997</td>
<td>-1.4624</td>
<td>-1.4538</td>
</tr>
<tr>
<td>StdErr</td>
<td>0.4526</td>
<td>0.5368</td>
<td>0.4806</td>
<td>0.4929</td>
<td>0.4463</td>
<td>0.3365</td>
<td>0.2513</td>
<td>0.4773</td>
<td>0.2374</td>
</tr>
<tr>
<td>Prob></td>
<td>T</td>
<td></td>
<td>0.0126</td>
<td>0.0062</td>
<td>0.0167</td>
<td>0.0076</td>
<td>0.0001</td>
<td>0.0001</td>
<td>0.0001</td>
</tr>
<tr>
<td>Num</td>
<td>-0.3459</td>
<td>-0.4029</td>
<td>-0.3692</td>
<td>-0.3815</td>
<td>-0.3561</td>
<td>-0.3726</td>
<td>-0.3739</td>
<td>-0.3733</td>
<td>-0.3789</td>
</tr>
<tr>
<td>StdErr</td>
<td>0.0566</td>
<td>0.0696</td>
<td>0.0601</td>
<td>0.0616</td>
<td>0.0558</td>
<td>0.0421</td>
<td>0.0314</td>
<td>0.0597</td>
<td>0.0297</td>
</tr>
<tr>
<td>Prob></td>
<td>T</td>
<td></td>
<td>0.0001</td>
<td>0.0001</td>
<td>0.0001</td>
<td>0.0001</td>
<td>0.0001</td>
<td>0.0001</td>
<td>0.0001</td>
</tr>
</tbody>
</table>

Table F-1. Summary of Full Linear Metamodels
<table>
<thead>
<tr>
<th></th>
<th>A1</th>
<th>A2</th>
<th>A3</th>
<th>A</th>
<th>C</th>
<th>E</th>
<th>G</th>
<th>C1</th>
<th>I</th>
</tr>
</thead>
<tbody>
<tr>
<td>SSR</td>
<td>203.410</td>
<td>205.111</td>
<td>202.645</td>
<td>187.815</td>
<td>191.524</td>
<td>394.157</td>
<td>796.998</td>
<td>194.361</td>
<td>793.777</td>
</tr>
<tr>
<td>MSR</td>
<td>67.803</td>
<td>68.370</td>
<td>67.548</td>
<td>62.6049</td>
<td>63.8414</td>
<td>131.386</td>
<td>374.695</td>
<td>2405.09</td>
<td>9691.89</td>
</tr>
<tr>
<td>SSE</td>
<td>6.1401</td>
<td>4.6340</td>
<td>7.6168</td>
<td>2.4004</td>
<td>1.1304</td>
<td>0.0667</td>
<td>0.0314</td>
<td>0.0350</td>
<td>0.9977</td>
</tr>
<tr>
<td>MSE</td>
<td>0.1706</td>
<td>0.1324</td>
<td>0.2116</td>
<td>0.0667</td>
<td>0.0314</td>
<td>0.0350</td>
<td>0.0977</td>
<td>0.0269</td>
<td>0.0273</td>
</tr>
<tr>
<td>F</td>
<td>397.536</td>
<td>516.398</td>
<td>319.261</td>
<td>938.910</td>
<td>2033.15</td>
<td>3749.65</td>
<td>2719.66</td>
<td>2405.09</td>
<td>9691.89</td>
</tr>
<tr>
<td>Prob>F</td>
<td>0.0001</td>
<td>0.0001</td>
<td>0.0001</td>
<td>0.0001</td>
<td>0.0001</td>
<td>0.0001</td>
<td>0.0001</td>
<td>0.0001</td>
<td>0.0001</td>
</tr>
<tr>
<td>R^2</td>
<td>0.9707</td>
<td>0.9779</td>
<td>0.9638</td>
<td>0.9874</td>
<td>0.9941</td>
<td>0.9933</td>
<td>0.9812</td>
<td>0.9950</td>
<td>0.9947</td>
</tr>
<tr>
<td>Adj-R^2</td>
<td>0.9683</td>
<td>0.9760</td>
<td>0.9608</td>
<td>0.9863</td>
<td>0.9936</td>
<td>0.9930</td>
<td>0.9809</td>
<td>0.9946</td>
<td>0.9946</td>
</tr>
</tbody>
</table>

Table F-2. Summary of Full Logarithmic Metamodels
<table>
<thead>
<tr>
<th></th>
<th>A1</th>
<th>A2</th>
<th>A3</th>
<th>A</th>
<th>C</th>
<th>E</th>
<th>G</th>
<th>C1</th>
<th>I</th>
</tr>
</thead>
<tbody>
<tr>
<td>SSE</td>
<td>0.6105</td>
<td>0.9375</td>
<td>0.6582</td>
<td>0.4895</td>
<td>0.0877</td>
<td>0.5504</td>
<td>2.6303</td>
<td>0.0024</td>
<td>0.4116</td>
</tr>
<tr>
<td>MSE</td>
<td>0.03815</td>
<td>0.0586</td>
<td>0.0411</td>
<td>0.0306</td>
<td>0.0055</td>
<td>0.0153</td>
<td>0.0343</td>
<td>0.0001</td>
<td>0.0054</td>
</tr>
<tr>
<td>F</td>
<td>88.681</td>
<td>80.432</td>
<td>92.07</td>
<td>137.923</td>
<td>681.077</td>
<td>553.014</td>
<td>17.7080</td>
<td>28185.1</td>
<td>32658.2</td>
</tr>
<tr>
<td>Prob>F</td>
<td>0.0001</td>
<td>0.0001</td>
<td>0.0001</td>
<td>0.0001</td>
<td>0.0001</td>
<td>0.0001</td>
<td>0.0001</td>
<td>0.0001</td>
<td>0.0001</td>
</tr>
<tr>
<td>R²</td>
<td>0.9433</td>
<td>0.9378</td>
<td>0.9452</td>
<td>0.9628</td>
<td>0.9922</td>
<td>0.9788</td>
<td>0.9533</td>
<td>0.9998</td>
<td>0.9923</td>
</tr>
<tr>
<td>Adj-R²</td>
<td>0.9326</td>
<td>0.9262</td>
<td>0.9350</td>
<td>0.9558</td>
<td>0.9908</td>
<td>0.9770</td>
<td>0.9514</td>
<td>0.9998</td>
<td>0.9920</td>
</tr>
<tr>
<td>StdErr</td>
<td>0.4704</td>
<td>0.5829</td>
<td>0.4885</td>
<td>0.4213</td>
<td>0.1783</td>
<td>0.2106</td>
<td>0.2229</td>
<td>0.0296</td>
<td>0.0886</td>
</tr>
<tr>
<td>Prob>T</td>
<td>0.0371</td>
<td>0.0001</td>
<td>0.0001</td>
<td>0.0001</td>
<td>0.0001</td>
<td>0.0001</td>
<td>0.0001</td>
<td>0.0001</td>
<td>0.0001</td>
</tr>
<tr>
<td>Arr</td>
<td>1.5624</td>
<td>1.853</td>
<td>1.6366</td>
<td>1.7472</td>
<td>1.6414</td>
<td>1.7512</td>
<td>1.7977</td>
<td>1.7450</td>
<td>1.7929</td>
</tr>
<tr>
<td>StdErr</td>
<td>0.1747</td>
<td>0.2165</td>
<td>0.1814</td>
<td>0.1565</td>
<td>0.0662</td>
<td>0.0782</td>
<td>0.0828</td>
<td>0.0110</td>
<td>0.0329</td>
</tr>
<tr>
<td>Prob>T</td>
<td>0.0001</td>
<td>0.0001</td>
<td>0.0001</td>
<td>0.0001</td>
<td>0.0001</td>
<td>0.0001</td>
<td>0.0001</td>
<td>0.0001</td>
<td>0.0001</td>
</tr>
<tr>
<td>StdErr</td>
<td>0.3494</td>
<td>0.4330</td>
<td>0.3628</td>
<td>0.3129</td>
<td>0.1325</td>
<td>0.1564</td>
<td>0.1655</td>
<td>0.0220</td>
<td>0.0658</td>
</tr>
<tr>
<td>Prob>T</td>
<td>0.0001</td>
<td>0.0001</td>
<td>0.0001</td>
<td>0.0001</td>
<td>0.0001</td>
<td>0.0001</td>
<td>0.0001</td>
<td>0.0001</td>
<td>0.0001</td>
</tr>
<tr>
<td>Num</td>
<td>-0.4582</td>
<td>-0.5324</td>
<td>-0.4853</td>
<td>-0.5064</td>
<td>-0.4767</td>
<td>-0.5048</td>
<td>-0.5141</td>
<td>-0.5101</td>
<td>-0.5155</td>
</tr>
<tr>
<td>StdErr</td>
<td>0.0437</td>
<td>0.0541</td>
<td>0.0454</td>
<td>0.0391</td>
<td>0.0166</td>
<td>0.0196</td>
<td>0.0207</td>
<td>0.0027</td>
<td>0.0082</td>
</tr>
<tr>
<td>Prob>T</td>
<td>0.0001</td>
<td>0.0001</td>
<td>0.0001</td>
<td>0.0001</td>
<td>0.0001</td>
<td>0.0001</td>
<td>0.0001</td>
<td>0.0001</td>
<td>0.0001</td>
</tr>
</tbody>
</table>

Table F-3. Summary of Fractional Linear Metamodels

F-3
<table>
<thead>
<tr>
<th></th>
<th>A1</th>
<th>A2</th>
<th>A3</th>
<th>A</th>
<th>C</th>
<th>E</th>
<th>G</th>
<th>C1</th>
<th>I</th>
</tr>
</thead>
<tbody>
<tr>
<td>SSR</td>
<td>100.456</td>
<td>113.160</td>
<td>92.1069</td>
<td>100.005</td>
<td>93.7513</td>
<td>201.050</td>
<td>377.018</td>
<td>96.1377</td>
<td>387.412</td>
</tr>
<tr>
<td>MSR</td>
<td>33.4853</td>
<td>37.7200</td>
<td>30.7023</td>
<td>33.3352</td>
<td>31.2504</td>
<td>67.017</td>
<td>125.673</td>
<td>32.0459</td>
<td>129.138</td>
</tr>
<tr>
<td>SSE</td>
<td>1.6747</td>
<td>2.5417</td>
<td>3.9095</td>
<td>1.3235</td>
<td>0.3778</td>
<td>1.0320</td>
<td>5.3466</td>
<td>0.1528</td>
<td>1.0106</td>
</tr>
<tr>
<td>MSE</td>
<td>0.1047</td>
<td>0.1587</td>
<td>0.2444</td>
<td>0.0827</td>
<td>0.0236</td>
<td>0.0287</td>
<td>0.0704</td>
<td>0.0096</td>
<td>0.0133</td>
</tr>
<tr>
<td>F</td>
<td>319.917</td>
<td>237.445</td>
<td>125.651</td>
<td>402.993</td>
<td>1323.40</td>
<td>2337.90</td>
<td>1786.42</td>
<td>3354.88</td>
<td>9711.48</td>
</tr>
<tr>
<td>Prob>F</td>
<td>0.0001</td>
<td>0.0001</td>
<td>0.0001</td>
<td>0.0001</td>
<td>0.0001</td>
<td>0.0001</td>
<td>0.0001</td>
<td>0.0001</td>
<td>0.0001</td>
</tr>
<tr>
<td>R²</td>
<td>0.9836</td>
<td>0.9780</td>
<td>0.9593</td>
<td>0.9869</td>
<td>0.9977</td>
<td>0.9949</td>
<td>0.9860</td>
<td>0.9984</td>
<td>0.9974</td>
</tr>
<tr>
<td>Adj-R²</td>
<td>0.9805</td>
<td>0.9739</td>
<td>0.9516</td>
<td>0.9845</td>
<td>0.9973</td>
<td>0.9945</td>
<td>0.9855</td>
<td>0.9981</td>
<td>0.9973</td>
</tr>
</tbody>
</table>

Table F-4. Summary of Fractional Logarithmic Metamodels
Bibliography

Captain Michael Kent Taylor was born on March 3, 1964 in Fort Walton Beach, Florida. He graduated from Choctawhatchee High School in Fort Walton Beach in 1982 and attended the University of Alabama at Birmingham, graduating with a Bachelor of Science Degree in Mathematics in June 1986. Upon graduation he received a reserve commission in the USAF and served his first tour of duty at Eglin AFB, Florida in October 1986. He began as a Tactical Command, Control, and Communications Countermeasures Operations Analyst for the Tactical Air Warfare Center where he supported the Operational Test and Evaluation of the Compass Call Airborne Jammer until August 1989. He then was selected for assignment to Headquarters, Tactical Air Command, DCS/Requirements at Langley AFB, Virginia where he was a Command, Control, Communications, and Intelligence (C3I) Operations Analyst assigned to the Directorate of Battle Management. In that position, he was responsible for the interoperability of C3I and weapons platforms via digital data links of the USAF, US, NATO, and allies until entering the School of Engineering, Air Force Institute of Technology (AFIT), in August 1992. In June 1993, he received his regular commission. Upon completion of his studies at AFIT, he was selected for assignment to the Air Force Studies and Analyses Agency in the Force Applications Directorate as a Theater Command and Control Analyst in the Theater Air Defense Division, DSN 225-5282.

Permanent Address: 120 Boyce Drive
Shalimar FL 32579

V-1
This research investigated the combined influence of simulation work and metamodel specification on the statistical quality of the estimates obtained from the resulting metamodels of the simulation data. A 9 x 2 x 2 experiment consisting of 9 cases of simulation work, 2 levels of metamodel specification, and 2 levels of design fractionation were designed for 8 different configurations of M/M/k queues. The only observed statistic for this experiment was the average queue length. Simulation estimates for each configuration's average queue length were calculated directly from the simulation data. In addition, the metamodels were fit to the simulation data and were used to estimate the average queue length for each configuration. Residuals were calculated for each estimate as the difference between the analytic solution for average queue length and the given estimate. The residuals were analyzed graphically and via Single-Factor ANOVA to determine if the amount of simulation work or metamodel specification affected the statistical quality of the estimates. This research showed conclusively that the amount of simulation work had no significant effect and that the metamodel specification had a significant effect on the statistical quality of the estimates obtained from metamodels.