f— o
Educational Materials) @

CMU/SEI-94-EM-10

T a—
T — ™oy Melion University

— Software Engineering Institute

Lecture Notes on s

AN Requirements Elicitation

Sridhar Raghavan
Gregory Zelesnik
Gary Ford

March 1994

A-A278 536

PTRDOTION STATEENY K

Approved for pablie relecse;
Olstribution UnBmited

N4

\\\\\\\\\\\\\i\?\\\\\?\\\\\\%\\\\ﬁ\\\?\\g
L L
P // N N

Carnegie Mellor University goes not discriminale and Carregie Me'ion University :§ required not to . _cnminate n admission. employment or adrminrstration
of s programs on the basis of race Coio*, national ongin. sex or hangicap in violation of Titie VI of ine Ciwil Rights Act of 1964. Title IX of the Educationa)
Amendments ot 1972 ang Sect.or 504 of the Rehabuiitation Act ot 1973 or other federal. state or local laws. Or executive orders

in agaiton Carnegre Metion Univers-ty does not discrimmnate in admission employment or adrynistration of its programs on the basis of rehgion. creed.
ancestry bevef. age veterar status Sexua onentation or i1 victaton of federal. state or local laws. or execulive orders While the legeral government does
contnue (0 exclude Gays fesbrans and brsexuals trom recewving ROTC schofarshins or serving « the mulitary ROTC ciasses on this campus are avadabie o
ai studenrs

irquines concerning appucator of these slatements shou!d be directed to the Provost. Carnegie Melion University, 5000 Forbes Avenue. Pittsburgh Pa
15213 teleprone (412) 268-6684 o ihe V-ce President for Enroliment. Carnegre Melion University. 5000 Forbes Avenue Pittsburgh, Pa 15213, telephone
(412) 268-2056

|||I|||l|l|||

Educational Materials
CMU/SEI-94-EM-10
March 1994

Lecture Notes on
Requirements Elicitation

Sridhar Raghavan
Digital Equipment Corporation

Gregory Zelesnik
CMU School of Computer Science

Gary Ford

SEI Curriculum Research Project

Approved for public release.
Distribution unlimited.

Software Engineering Institute

Camegie Mellon University
Pittsburgh, Pennsylvania 15213

This technical report was prepared for the

SEI Joint Program Office

ESC/ENS

Hanscom AFB, MA 01731-2116

The ideas and findings in this report should not be construed as an official
DoD position. It is published in the interest of scientific and technical
information exchange.

Review and Approval

This report has been reviewed and is approved for publication.

_ﬂooession Por

FOR THE COMMANDER | NTIS GRASI &
DTIC TAB 0

Unannounced 0
!2 g .'In:st.ifmmim:l__._._.1

Thomas R. Miller, Lt Col, USAF By
SE| Joint Program Office | Distributions ., |

The Software Engineering Institute is sponsored by the U.S. Department of Defense.
This report was funded by the U.S. Department of Defense.

Copyright © 1934 by Camegie Mellon University.

Copies of this document are avaiable from Research Access, Inc., 800 Vinial Street, Pittsburgh, PA 15212. Telephone: (412)
321-2992 or 1-800-685-6510, Fax: (412) 321-2004.

This document is available through the Defense Technical information Center. DTIC provides access © and wansfer of
scientific and technical information for DoD , DoD contractors and polential contractors, and other U.S. Government

agency personnel and their contractors. To obtain a copy, please contact DTIC direclly: Defense Technical information
Center, Attn: FDRA, Cameron Station, Alexandria, VA 22304-614S.

Copies of this document are aiso available through the National Technical Information Service. For information on ordering,
please contact NTIS directly: National Technical Information Service, U.S. Department of Commerce, Springfield, VA 22161.

Use of any trademarks in this report is not intended in any way 10 infringe on the rights of the frademark hoider.

Table of Contents

Preface

Information for Instructors
1. Objectives

1.1
1.2,
1.3.
1.4.
1.5.

Introduction to Requirements Elicitation

Requirements Elicitation Using Joint Application Design
Requirements Elicitation by Brainstorming
Requirements Elicitation by Interviewing

Requirements Elicitation Using the PIECES Framework

2. Pedagogical Considerations
3. A Role-Playing Exercise

3.1

3.2

3.3

3.4

Instructor’s Guide to the Exercise

3.1.1. Preparation

3.1.2 The Role-Playing Session

3.1.3. Follow-Up Activities

Descriptions of the Exercise

3.2.1. Exercise Using Joint Application Design
3.2.2. Exercise Using Brainstorming

3.2.3. Exercise Using Interviewing

3.2.4. Exercise Using the PIECES Framework
Project Descriptions and Student Roles

3.3.1. The Software Services Group

3.3.2. The Stealth Helicopter Avionics Project
3.3.3. The Customer Statement of Need

3.3.4. The Role of the Customer

3.3.5. The Role of User 1

3.3.6. The Role of User 2

3.3.7. 'The Role of the Requirements Analyst
3.3.8. The Role of the Software Engineer
Example of the Results of the Exercise

4. Small Elicitation Exercises
5. Suggestions for Further Reading

OO N U A GO BN DD = i E:

Lecture Notes
Introduction to Requirements Elicitation
Requirements Elicitation Using Joint Application Design
Requirements Elicitation by Brainstorming
Requirements Elicitation by Interviewing
Requirements Elicitation Using the PIECES Framework

Classroom Materials
Student Handouts for the Role-Playing Exercise

Transparency Masters

CMU/SEI-94-EM-10

Lecture Notes on Requirements Elicitation

Abstract: Requirements elicitation is the first of the four steps in software
requirements engineering (the others being analysis, specification, and vali-
dation). Software engineers use several elicitation techniques. To facilitate
teaching these techniques, materials are provided to support an introductory
lecture and four lectures on specific techniques: joint application design,
brainstorming, interviewing, and the PIECES framework. A role-playing
exercise is provided that allows students to experience each of the techniques.
Information for instructors includes educational objectives, pedagogical
considerations, additional exercises, and a bibliography.

Preface

Requirements engineering (consisting of requirements elicitation, analysis, specifica-
tion, and validation) is an important aspect of any engineering project, including
software engineering. In college and university computer science programs, instructors
usually create the requirements specification; students are rarely involved in the
process. It is even more rare for students to be taught the specific techniques that soft-
ware engineers use for requirements elicitation. This can probably be attributed to the
absence of these techniques from most computer science textbooks and the lack of famil-
iarity with these techniques on the part of instructors.

This package of educational materials addresses these problems. It provides five
student-oriented lecture notes documents to augment existing textbooks:

¢ Introduction to Requirements Elicitation

¢ Requirements Elicitation Using Joint Application Design
¢ Requirements Elicitation by Brainstorming

¢ Requirements Elicitation by Interviewing

¢ Requirements Elicitation Using the PIECES Framework

These documents can also be used by instructors as overviews of requirements elicita-
tion and the four techniques.

The package is organized in three parts. The first is information for instructors. It
begins with educational objectives for the lectures and a discussion of pedagogical
considerations. Next is the description of a role-playing exercise that can be used to give
students an initial experience with requirements elicitation using the four different
techniques. Additional exercises and a list of references are also included.

CMU/SEI-94-EM-10) iid

The second part of the package consists of the five lecture notes documents. Each is a
stand-alone document intended to be photocopied and distributed to the students.

The third part of the package contains masters for the student documents needed in the
role-playing exercise and masters for making overhead transparencies.

Much of the material in this package is based on the course Software Requirements
Engineering in the SEI Continuing Education Series. Gregory Zelesnik was the course
designer and producer, and Sridhar Raghavan developed and delivered the segment of
the course on requirements elicitation.

Comments on these materials are solicited. They may be directed to the Educational
Products Program at the SEI, or sent via electronic mail to education@sei.cmu.edu.

iv ' CMU/SEI-94-EM-10

g

Information for Instructors

1. Objectives

The overall objectives of the materials are to give students an understanding of the
concepts of requirements elicitation and a minimal level of skill in using one or more
specific requirements elicitation techniques.

1.1. Introduction to Requirements Elicitation

The objectives of this lecture are to enable students to

understand the requirements engineering phase of software engineering, includ-
ing requirements elicitation, analysis, specification, and validation;

describe the different outcomes of good and poor requirements elicitation
processes;

describe and recognize the underlying difficulties of requirements elicitation;
explain several generic categories of requirements elicitation techniques;
identify several specific requirements elicitation techniques.

1.2. Requirements Elicitation Using Joint Application Design

The objectives of this lecture are to enable students to

identify the underlying difficulties of requirements elicitation that are addressed
by the Joint Application Design technique;

describe in general terms how to elicit software requirements using the
“JAD/Plan” part of Joint Application Design;

identify the six kinds of participants in JAD/Plan sessions and describe their
roles;

identify and describe the customization, session, and wrap-up phases of
JAD/Plan;

describe the five classes of high-level requirements that are normally addressed
in the JAD/Plan process.

1.3. Requirements Elicitation by Brainstorming

The objectives of this lecture are to enable students to

CMU/SEI-94-EM-10

¢ identify the underlying difficulties of requirements elicitation that are addressed
by the brainstorming technique;

¢ explain the brainstorming technique, including the generation and consolidation
phases;

¢ explain Osborn’s four rules for brainstorming sessions;
¢ identify the participants in a brainstorming session and their roles.

1.4. Requirements Elicitation by Interviewing

The objectives of this lecture are to enable students to
¢ identify the underlying difficulties of requirements elicitation that are addressed
by the interviewing technique;
¢ describe the major steps and protocols in the interviewing process;
¢ give examples of the kinds of questions that should be prepared in advance of a
requirements elicitation interview;

¢ describe several of the kinds of errors that can occur in an interview and explain
how to recover from them.

1.5. Requirements Elicitation Using the PIECES Framework

The objectives of this lecture are to enable students to

¢ identify the underlying difficulties of requirements elicitation that are addressed
by the PIECES framework technique;

¢ explain how using the PIECES framework augments general interviewing
techniques;

¢ explain the six categories of requirements issues whose names are represented in
the acronym “PIECES”;

¢ give examples of the kinds of questions that might be asked to elicit require-
ments in the six categories.

2. Pedagogical Considerations

These materials are intended to be used either in a one-semester undergraduate course
in software engineering or in a graduate course focusing on the early software life-cycle
phases (requirements engineering and design). They may also be useful in other com-
puter science courses that have a significant programming project, such as a compiler
design or database systems course.

The material in the first lecture notes document, “Introduction to Requirements
Elicitation,” should provide sufficient background for an instructor preparing a single
overview lecture on elicitation. (The instructor may want to read the other four lecture
notes documents as well, even if the techniques will not be presented in detail.) To pre-
pare a lecture that is more than just an overview, the instructor should also read some
of the references listed in section 5 below.

2) CMU/SEI-94-EM-10

Likewise, students should be able to gain a high-level understanding of the nature of
requirements elicitation from reading the introductory lecture notes, and they can gain
a superficial grasp of the techniques from reading the other lecture notes.

Learning to use the four techniques effectively is a different matter. The techniques can
be taught and to some extent learned through lectures and reading, but skill in using
them comes only through practice. If the instructor’s objective is to give students that
skill, then reading the four lecture notes is not enough. Additional background reading
is necessary, and activities must be designed to give students the necessary practice,
such as those in sections 3 and 4 below.

Section 3 describes a role-playing exercise in which the students act as the various
participants in a requirements elicitation activity. Its objective is to develop the
student’s ability to apply one or more of the requirements elicitation techniques.
Although the exercise is admittedly artificial, it can help establish in the minds of the
students an appreciation of the difficulty of requirements elicitation and the need for
additional training and practice in the techniques.

It is worth noting that requirements elicitation is more a social activity than a precise
technical activity. This sometimes means that instructors are less comfortable teaching
it and students are less comfortable learning it than is the case with the technical activ-
ities of computer science. Nevertheless, it is an important and necessary aspect of
software engineering, and one that helps distinguish software engineering from
computer science.

3. A Role-Playing Exercise

Requirements elicitation normally involves several developers (the requirements
analysts and software engineers) and several customers (the buyers or users of the
software). Each of these persons brings different knowledge and skills to the effort. The
exercise described here allows students to experience the elicitation process in a group
that is structured to ensure differences in knowledge on the part of the participants.

This exercise also allows different groups of students to gain experience with different
elicitation techniques: Joint Application Design, brainstorming, interviewing, and the
PIECES framework. The outcomes of the different techniques can be compared as part
of a post-exercise discussion, and the students can draw conclusions about the relative
effectiveness of the techniques.

To accomplish these goals, each student is asked to play a particular role in the process:
customer, user 1, user 2, requirements analyst, or software engineer in the Software
Services Group of the fictional Zooming Airplane Company. Each student is given a
description of the software organization, a description of an avionics application within
that organization, and a customer statement of need for a system software product
needed by the application developers to support their development process. In addition,
each student is given a description of the role he or she will play, specifying the body of
knowledge about the software product that may be used during the exercise. These

CMU/SEI-94-EM-10 3

descriptions appear in section 3.3 below and as stand-alone documents near the end of
this package.

3.1. Instructor's Guide to the Exercise

As the instructor, you need to take several steps to prepare for and conduct the exercise.
These are described below.

3.1.1. Preparation

To prepare for the exercise, divide the class into groups of four or five students each,
depending on the elicitation technique being used:

Technique Students
Joint Application Design 5
Brainstorming 5
Interviewing 4
PIECES framework 4

It is important that all roles be played. If the class cannot be divided exactly this way,
the group sizes can be reduced by one by asking a student to play the roles of both the
customer and the second user (see the role definitions below). The size of the group
using the Joint Application Design technique can be increased to six if necessary, with
the extra student playing the role of session leader.

Inform the students of their group assignments and the elicitation technique to be used
by each group. Either you or the students themselves should decide which student will
play which role. Each student is then given copies of:

¢ the description of the Software Services Group
¢ the description of the application software project
¢ the customer statement of need

For the groups that will use the Joint Application Design and brainstorming techniques,
each student is also given the description of the role he or she will play. For the groups
that will use the PIECES framework and interviewing techniques, students receive the
role descriptions during the exercise. It is important that these student not see the role
descriptions ahead of time, so ask students in the other groups not to share their
descriptions.

The preparation time for the role play should include approximately two hours of inde-
pendent time for each student. For a class that meets two or three times per week, it is
usually appropriate to hand out the role-playing materials during the class period
immediately prior to the period in which the exercise is conducted.

We assume that lectures, discussions, and readings on the four techniques have already
been completed. However, it is useful for members of each group to reread the reference

4 ' CMU/SEI-94-EM-10

material on the technique they will be using. The exercise descriptions include specific
reading assignments, although you may wish to substitute other readings if the
suggested books are not readily available.

Ask the students to prepare for their roles carefully. To make the exercise as realistic
as possible, students should not share role information. Encourage the students to
embellish the roles in creative ways, such as adopting the personality, attitudes, and
attire of the persons they are portraying. The students should also be encouraged to
bring their own knowledge to the roles wherever appropriate.

The exercise is designed to require 75 minutes of class time. For courses that do not
meet this long each day, try to schedule a special class period or laboratory of this
length.

One or more rooms for the exercise should be scheduled and prepared. Ideally, each
student group will sit around a table and have access to a blackboard, whiteboard, or
flip chart. Arranging student desks in a circle is also acceptable.

3.1.2 The Role-Playing Session

The exercise is conducted in two steps, a preparatory step and an implementation step.
The time is allocated in this manner:

Technique Preparatory Step | Implementation Step
Joint Application Design 15 minutes 60 minutes
Brainstorming 15 minutes 60 minutes
Interviewing 35 minutes 40 minutes
PIECES framework 35 minutes 40 minutes

At the start, distribute the appropriate exercise description to each group. Ask the
students to read the descriptions and begin the exercise immediately. During the
implementation step, wander around the room to answer questions. Avoid actually
participating in any of the students’ elicitation sessions, but support each of them by
answering questions and clarifying details with respect to the elicitation techniques
themselves. Keep in mind that the goal of the exercise is to expose the students to a
real requirements elicitation activity rather than to get a perfect set of requirements.
Support their learning of the techniques.

3.1.3. Follow-Up Activities

The exercise should be followed by a discussion. Ideally, it should be conducted imme-
diately after the exercise, but in most cases it will have to be done in the subsequent
class period. If time permits, make copies of the requirements documents from each
group for distribution to the other groups.

To begin the discussion, ask each student group to spend up to five minutes summariz-
ing the requirements they elicited. Then lead a discussion to compare and contrast

CMU/SEI-94-EM-10) 5

these sets of requirements. Use the set of requirements provided in section 3.4 below as
the basis for your participation in the discussion.

Then ask each group to spend another five minutes relating any good experiences,
problems, and difficulties they encountered with the elicitation techniques during the
exercise. Compare and contrast these experiences with those of the rest of the class.
Try to come to consensus on which techniques worked and why, as well as which tech-
niques fell short.

3.2. Descriptions of the Exercise

This section contains four descriptions of the exercise, one for each requirements elicita-
tion technique. These same descriptions, formatted as stand-alone documents for
students, appear near the end of this package.

3.2.1. Exercise Using Joint Application Design

Participant Customer

Roles User 1
User 2
Requirements Analyst
Software Engineer
Session Leader (optional)

Preparation Read chapters 3, 4, and 6 of [August91].
Read the description of the Software Services Group.
Read the description of the Stealth Helicopter Avionics Project.
Read the Customer Statement of Need.
Read the description of your assigned role.

Description Your group is to perform a requirements elicitation activity using the
Joint Application Design (JAD) technique. The goal is for the group to
generate a set of requirements, written in English sentences, for the
Multiterm software system. Due to time restrictions, an entire
Multiterm JAD cannot actually take place. Therefore, the group
should concern itself with performing a JAD/Plan session phase only.

You will be given 15 minutes to prepare. During this time, reread the
description of your assigned role and start expanding on it. If you are
the customer or a user, jot down your ideas about the requirements
and expand upon the ideas in your role description. If you are the
customer, plan what you will say during the JAD/Plan session phase
orientation.

A JAD/Plan session phase normally consists of eight tasks through
which the session leader guides the participants. Again, due to time
restrictions, the group shoula concern itself with performing only five
of them:

6 ' CMU/SEI-94-EM-10

conduct JAD orientation

define requirements

bound system scope

¢ document issues and considerations

¢ conclude session phase
If no student has been designated to play the role of session leader,
that role should be played by the customer. The requirements analyst

will document the agreed-upon detailed requirements, and the soft-
ware engineer will document the issues and considerations.

Conduct JAD orientation: During this task, the session leader reiter-
ates the main points of this description to familiarize the participants
with the procedures and to define terms such as issues and considera-
tions. [5 minutes]

Define requirements: For this task, follow the normal procedures for a
JAD/Plan session, except change the category Anticipated benefits to
General requirements. Don’t concern yourself with anything outside
the scope of the system itself, such as business and legal issues. Focus
on the requirements for the software system, and make them as
detailed as you can in the time allotted. Give all participants a chance
to introduce new ideas. {40 minutes]

Bound system scope: For this task, the session leader leads the partic-
ipants through a clarification of the scope of the system; the generated
requirements are reevaluated with respect to that scope. Any
requirements falling outside the scope are removed from the list of
requirements and documented separately by the requirements
analyst. [10 minutes]

Document issues and considerations: This activity is an ongoing one.
The software engineer documents each of these as they are identified
during the JAD/Plan session phase.

Conclude the JAD/Plan session: The session leader reviews the
accomplishments of the JAD/Plan session with the participants. (5
minutes]

CMU/SEI-94-EM-10) 7

3.2.2. Exercise Using Brainstorming

Participant
Roles

Preparation

Description

Customer

User 1

User 2

Requirements Analyst
Software Engineer

Read pages 69-85, 96-103, and 107-113 of [Clark58]).

Read the description of the Software Services Group.

Read the description of the Stealth Helicopter Avionics Project.
Read the Customer Statement of Need.

Read the description of your assigned role.

Your group is to perform a requirements elicitation activity using the
brainstorming technique. The goal is for the group to generate a set of
requirements, written in English sentences, for the Multiterm soft-
ware system.

You will be given 15 minutes to prepare. During this time, reread the
description of your assigned role and start expanding on it. If you are
the customer or a user, jot down your ideas about the requirements
and expand upon the ideas in your role description.

You will have one hour to perform the brainstorming activities. Spend
20 minutes in the idea generation phase and 40 minutes in the consol-
idation phase.

For the idea generation phase, be creative but phrase the ideas in
terms of requirements for the Multiterm system. If your ideas
describe features, capture them in terms of functional requirements.
If your ideas describe responses, capture them as behavioral require-
ments. Designate one person in the group to write down each
complete idea on a single list.

During the consolidation phase, the requirements analyst reads
through the list of requirements (ideas) one at a time. The entire
group then classifies each requirement in two ways: first by practical-
ity (good ideas that can be investigated immediately, ideas that need
long range or involved study, and unusable ideas) and then by priority
(ideas that absolutely must be implemented, those that are desirable
but not urgently needed, and those that should be added only if time
and money permit). Any new ideas generated in this phase should be
considered for addition to the final list.

CMU/SEI-94-EM-10

3.2.3. Exercise Using Interviewing

Participant
Roles

Preparation

Description

Customer

User 1

User 2

Requirements Analyst

Read pages 64-78 of [Bingham41).

Read the description of the Software Services Group.

Read the description of the Stealth Helicopter Avionics Project.
Read the Customer Statement of Need.

Your group is to perform a requirements elicitation activity using the
interviewing technique. The goal is for the group to generate a set of
requirements, written in English sentences, for the Multiterm soft-
ware system.

You will be given 35 minutes tn prepare. For the first 30 minutes,
discuss and write down sample questions that an interviewer might
ask a customer and a user. Develop two lists of questions, one for the
customer and one for the user. Deliberate not only about the ques-
tions themselves, but also the sequencing of the questions.

During the last 5 minutes of the preparation time, decide which role
each group member will take and then distribute the descriptions of
the roles. Study your role for the remainder of the time, expanding on
your role and on the requirements enumerated in the description.

Next, the person playing the role of the requirements analyst conducts
three ten-minute interviews, one with each of the other participant
roles. The interviews can be done in any order, but each must be done
in the absence of the other participants. Since the first interview will
begin only five minutes after the descriptions of the roles are
distributed, the first person interviewed will have to develop his or her
role as the interview progresses. The others will have a chance to
develop their roles before their interviews.

The interviewer starts with the questions developed during the prepa-
ration (in the interest of time), but he or she may generate new ones
as the interviews progress. The interviewer writes down any elicited
requirements on a separate sheet of paper, in complete sentences.
After the interviews are complete, the interviewer should take ten
minutes to finish writing down and organizing the elicited set of
requirements.

CMU/SEI-94-EM-10 | 9

3.2.4. Exercise Using the PIECES Framework

Participant
Roles

Preparation

Description

Customer

User 1

User 2

Requirements Analyst

Read pages 114-124 of [Wetherbe84].

Read the description of the Software Services Group.

Read the description of the Stealth Helicopter Avionics Project
Read the Customer Statement of Need.

Your group is to perform a requirements elicitation activity using the
PIECES framework. The goal is for the group to generate a set of
requirements, written in English sentences, for the Multiterm soft-
ware system.

You will be given 35 minutes to prepare. For the first 30 minutes,
discuss and write down sample questions that an interviewer might
ask a customer and a user, using the PIECES framework as a start.
Develop two lists of questions, one for the customer and one for the
user. Deliberate not only about the questions themselves, but also the
sequencing of the questions.

During the last 5 minutes of the preparation time, decide which role
each group member will take and then distribute the descriptions of
the roles. Study your role for the remainder of the time, expanding on
your role and on the requirements enumerated in the description.

Next, the person playing the role of the requirements analyst conducts
three ten-minute interviews, one with each of the other participant
roles. The interviews can be done in any order, but each must be done
in the absence of the other participants. Since the first interview will
begin only five minutes after the descriptions of the roles are
distributed, the first person interviewed will have to develop his or her
role as the interview progresses. The others will have a chance to
develop their roles before their interviews.

The interviewer starts with the questions developed during the prepa-
ration (in the interest of time), but he or she may generate new ones
as the interviews progress. The interviewer writes down any elicited
requirements on a separate sheet of paper, 1 complete sentences.
After the interviews are complete, the interviewer should take ten
minutes to finish writing down and organizing the elicited set of
requirements.

10

CMU/SEI-94-EM-10

3.3. Project Descriptions and Student Roles

This section contains the information that is given to the students for the exercise:
* a description of the software organization that is the setting for the project

¢ a description of the software project that has created the need for the new
software

¢ the customer’s statement of need for the new software

¢ background information for the student roles: customer, user 1, user 2, require-
ments analyst, and software engineer

These same descriptions, formatted as stand-alone documents for students, appear near
the end of this package. Each of the role descriptions includes the following instructions
to the students:

Note: You are to use this role to guide your actions during the role-playing
exercise. The description provides only high-level guidance, however, and you are
encouraged to embellish the role using your own experience and the background
materials provided to you in this exercise.

3.3.1. The Software Services Group

The Software Services Group within Zooming Airplane Company is responsible for the
development of all new application, environment, and system-level support software for
the entire company. The group has three divisions that operate autonomously, provid-
ing the software for various customers within the company (see Figure 1 on page 12).
Each division is headed by a director, but right now one of the divisions is headed by a
program manager who is really the deputy acting as director. The vice president in
charge of the Software Services Group is David Greene, who has been at the site for five
years and in charge of this particular group for one year. Rumor has it that he is look-
ing forward to retirement in two years. Greene comes from a military background. He
served in the Air Force for more than 20 years, attaining the rank of Captain. His
background is in logistics, but he has worked in the computer field for the past eight
years. He was previously director of the Environments Division within the group.

The Environments Division

This division is the smallest division in the Software Services Group and is headed by
the program manager of the Case Tools program, Arnold Frost. He has been in his
current position for about a year after being promoted into it when Greene was
promoted to be the vice-president in charge of the group. He is acting as deputy director
until a suitable replacement can be found. Frost spent his first ten years in the Army in
a combat support role, and then he retired from the Army and switched over to the
computer field for a total of six years of computer operations experience. He only under-
stands the basics of operating a computer but is an excellent program manager. Arnold
Frost has his sights set on becoming the permanent division director of the
Environments Division. The Environments Division is responsible for maintaining a
standard computing environment within the remaining divisions. It is largely composed

CMU/SEI-94-EM-10 ' 11

Software Services
Group
Vice President
David Green
Applications Systems Software Environments
Division Division Division
Director Director Acting Director
Theresa Franklin Mark Collins Arnold Frost

Requirements Analyst
Software Engineer

Stealth Helicopter
Project

Project Leader

Customer

User 1
User 2

Figure 1. Organization chart for the Software Services Group

of computer operations specialists, ranging from general computer operators to special-
ized experts such as telecommunications specialists. The division employs roughly 20
software engineers, whose responsibilities entail writing software to facilicate the inte-
gration of CASE tools, purchased from different vendors, into the standard computing
environment.

The Applications Division

This is the largest division in the Software Services Group and is headed by Theresa
Franklin, who has been at the site for three years. An engineer by training, she has
been working in the computer field for about 15 of her 20 years of experience. She was
promoted to the level of division director when the previous director retired, approxi-
mately two months ago. This division handles all the applications for the company. In
particular, the division is responsible for the avionics applications for each of the air-
planes manufactured by the company.

The Applications Division enjoys a very good reputation within the group. It is com-
posed of approximately 90 software engineers of various levels of experience, and they
have a reputation of developing applications that meet their specifications on time and
with only minor cost overruns. Part of the success of the division can be attributed to
the extensive use of CASE tools and system-level support software within the group’s

12 | CMU/SEI-94-EM-10

standard computing environment. The Applications Division either purchases commer-
cial off-the-shelf (COTS) support software or has it custom made by the System
Software Division if no COTS software can satisfy the particular need. The Applications
Division then works with the Environments Division to integrate the support software
into the standard computing environment for the group.

The System Software Division

Because of the complex nature of the software developed by the Applications Division,
COTS software that can meet their special support software needs is not generally
available. Therefore, the Applications Division subcontracts to the System Software
Division to have much of their support software custom made. The System Software
Division, the second largest division in the Software Services Group , is headed by Mark
Collins, who has only recently become involved in the computer field. He spent most of
his 20-year career as the Chief Liaison Officer at a Strategic Air Command (SAC) Air
Force base. He retired from the Air Force three years ago and has been working in the
computer field since. Collins was bitten by the computer bug while in college, and has
always been interested in software systems; so after retiring from the Air Force he
acquired a master’s degree in software engineering.

This division is composed of approximately 45 computer scientists and software engi-
neers of various levels of experience, although it is starting to attract a significant
number of younger staff. The division is viewed as being composed of largely inexperi-
enced software “hackers.” They have a reputation of being difficult to work with and of
not always delivering what was originally requested by the customer. In addition to
this, they often miss delivery deadlines and run over budget.

3.3.2. The Stealth Helicopter Avionics Project

The avionics system of the new Stealth Helicopter is being developed by the Stealth
Helicopter Project within the Helicopter Program of the Applications Division. It is
being developed in Ada and is composed of multiple independent threads of executior
(programs), each dedicated to a single microprocessor in the helicopter. The threads of
execution run simultaneously, communicating with each other to complete their tasks.

Early in the design of the system, project management decided to develop the software
on a VAX 8600 minicomputer and later port it to the target microprocessors within the
helicopter. Their rationale was that, because Ada is a standard language, porting prob-
lems would be small in comparison to the problems and cost associated with testing and
debugging the system on the target hardware. Project management, however, also
knew that the members of the Stealth Helicopter Project did not have the appropriate
computing equipment to perform adequate integration testing of the multiple threads of
execution in the system.

To perform integration testing on the VAX 8600, an engineer would need the capability
of running, monitoring, and debugging all of the independent threads of execution
simultaneously on the minicomputer. This capability can easily be provided on a
VAXStation II workstation running the same version of VMS operating system and
using the same Ada compiler as those used on the VAX 8600. In this scenario, the engi-

CMU/SEI-94-EM-10) 13

neer has access to multiple windows from the same keyboard. Each independent thread
can be set up to execute in one of the windows, allowing the engineer to test and debug
the entire application from a single computer. However, because of the prohibitive cost
associated with giving every engineer a workstation, only one in ten Applications
Division staff members has one. The other nine staff members have VI220 paging
terminals hooked to a VAX 8600 running VMS. Since Digital Equipment Corporation
(DEC) does not supply VMS owners with even a primitive windowing capability for such
terminals, the only way an engineer without a workstation can test the avionics system
is to go to a place where there is more than one VIT220 terminal and set the tests up
from as many VT220 terminals as is necessary. Running such tests this way, however,
is next to impossible with only one or even a few engineers.

To solve this problem, the Applications Division investigated the availability of software
that might provide their staff with a primitive windowing capability for VIT220 termi-
nals. After having no success in the commercial market, the Applications Division
decided to subcontract to the System Software Division to solve this problem. The
System Software Division accepted the contract and set up a project called Multiterm
within the Operating Systems Program. When the project was established and a suffi-
cient number of staff was hired, the Applications Division presented the Multiterm
Project with a statement of need. This officially signaled the start of the project.

3.3.3. The Customer Statement of Need

The Stealth Helicopter Project of the Applications Division, hereafter referred to as the
contractor, has the need to run, monitor, and debug multiple, autonomous, simultane-
ously executing, communicating Ada threads of execution (programs) from a single
VT220 terminal on a VAX 8600 running VMS version 5.1.

The Multiterm Project of the System Software Division, hereafter referred to as the
subcontractor, will provide a software system, hereafter referred to as the software, that
enables the contractor to have this capability.

The software provided by the subcontractor must have a decidedly VMS-like look and
feel; must have an unobtrusive user interface; must allow the customer to operate the
VMS symbolic debugger, the VMS EDT and TPU editors, the VMS mail program, and
other VMS applications while debugging application software; and must exhibit the
same keystroke-to-display response time that VMS already provides typical user
sessions on a VAX 8600 from a VT220 terminal. The software provided by the subcon-
tractor must also allow the customer to supply input (from the keyboard) to and view
the output from any application program currently being run, monitored, or debugged.

3.3.4. The Role of the Customer

You are the customer. The customer for the Multiterm system is the technical team
leader for the Stealth Helicopter Project within the Applications Division. You have
been with the Applications Division of the Zooming company for seven years and with
the Stealth Helicopter Project since its beginning one year ago. You have 15 years of
software development experience on large projects and were awarded the technical team

14 ' CMU/SEI-94-EM-10

~

leadership position on the current project as a result of displaying outstanding commit-
ment, leadership, and design and development abilities on your past two projects.

You are a very int. lligent, experienced, capable software designer and developer who
consistently produces software that meets or exceeds the quality, performance, and
functional requirements of the customer. Because of this, you are extremely confident
in your judgment and can rarely be persuaded to look at alternatives unless an
extremely sound argument is presented. You have the uncanny ability to abstract away
from the details of a problem and design a system that not only solves the problem but
incorporates cutting-edge technology and innovative features into the solution.
However, you evolve a design over time and rarely write it down until you must. Not all
ideas come at once, therefore, and sometimes the ideas can even be general and conflict-
ing. The following paragraphs describe your general requirements for the delivered
software system.

The capability of the software system must at the very least mirror the capabilities pro-
vided on the DECStation running DECWindows under VMS version 5.1. This means
that the software must support multiple windows on the VT200 or VT300 terminal
simultaneously. It must provide the capability of running the DEC symbolic debugger,
TPU and EDT editors, and the DEC electronic mail software in any window. This, how-
ever, is the minimum requirement. It would be nice to be able to run all VMS software
and utilities in any window.

The software system must be able to allow creation and deletion of windows. It must be
able to allow input to be directed to any desired window. It must be able to connect a
desired window to the terminal display so that the user can see output from the process
running in that window (i.e., it must support switching among windows).

The user interface should be unobtrusive, and it should present the user with the look
and feel of VMS wherever possible. Performance should not be noticeably different from
the performance on the DECStation (with respect to keystroke response times).

The software system must be developed in Ada.

You have not thought about these requirements to any lower level of detail. For any
question or discussion, your responses should be consistent with your own personal
concepts regarding windowing systems, operating systems, dumb terminals, etc.

3.3.5. The Role of User 1

You are a user for the Multiterm software system. You are one of the software develop-
ers on the Stealth Helicopter project within the Applications Division. You have been
with the Applications Division of the Zooming company for three years and with the
Stealth Helicopter project for about six months. You have five years of software devel-
opment experience on large projects and were given a software development position on
the current project as a result of demonstrating tremendous productivity and superior
problem-solving skills on your last project.

CMU/SEI-94-EM-10 ' 15

You are a very intelligent, capable software developer who consistently produces soft-
ware solutions that are creative, innovative, and elegant. You have a genius intelli-
gence quotient (IQ), are highly productive, and prefer to work alone because you often
get impatient with others who do not understand your solutions. Because of this, you
are extremely confident in your abilities and are never afraid to experiment with new
data structure designs and new algorithms. You utilize every available language con-
struct at your disposal in each of the languages you use to develop software, namely C
and Ada. You are often labeled a “hacker,” but your skills are those of a software engi-
neer; your code adheres to strict software engineering principles. You have much
respect among your peers and your ideas carry much weight.

With respect to the Multiterm software system, you are not as concerned about basic
windowing functionality as you are about using the software to perform integration
testing of the Stealth Helicopter avionics software. You are more interested in acquir-
ing functionality that will make the testing not only possible, but also easier. The para-
graphs below describe your general requirements for the delivered software system.

You agree with the customer that the capability of the software system must at the very
least mirror the capabilities provided on the DECStation running DECWindows under
VMS version 5.1. However, you desire some more interesting functionality and
features. When creating a window under Multiterm, the software system should
support starting either the DEC Command Language (DCL) interpreter or a VMS
executable image. You do not know if it is possible, but you would like to be able to send
keystrokes from the keyboard to more than one window simultaneously. You wish to be
able to record input to and output from any and all windows under Multiterm control to
keep as logs for debugging purposes. It would also be nice to have the ability to have
input scripts to bring a Multiterm session to a predetermined, desired state. Output
from windows not attached to the terminal display must not be lost.

You agree with the customer with respect to user interface and performance require-
ments.

You have not thought about these requirements to any lower level of detail. For any
question or discussion, your responses should be consistent with your own personal
concepts regarding windowing systems, operating systems, dumb terminals, etc.

3.3.6. The Role of User 2

You are a user for the Multiterm software system. You are one of the software develop-
ers on the Stealth Helicopter Project within the Applications Division. You have been
with the Applications Division of the Zooming company for six months, and you have
just joined the Stealth Helicopter Project. You have two years of software development
experience, all within the Zooming company, and were given a software development
position on the current project as a result of your experience with VMS. You acquired
all of your software development skills in college on DEC VAX systems using VMS, and
you have worked on VMS systems since you joined the company.

You are a budding young software developer who shows much promise. You gained high
marks in school in all of your software engineering classes. You were hired onto the

16 ' CMU/SEI-94-EM-10

Stealth Helicopter project because of your high marks in school and because your two
years of software development experience were with Ada, on DEC workstations running
VMS. The software that you produced on your last project adhered to the principles of
software engineering you were taught in school, and the result was well-structured,
well-documented code.

Because you lack software development experience in general, though, your code was
not easily integrated with the rest of the system. However, your project manager has
every confidence that your skills will improve as you gain experience. The project man-
ager felt that you best represent the typical, intended user of the Multiterm software
system and asked that you participate in the requirements definition activities.

With respect to the Multiterm software system, you are concerned about maintaining a
VMS look and feel and supporting VMS functionality within the windows under
Multiterm control. You would like to see VMS command recall within each window pre-
served. In fact, if it is possible, you would like to see any VMS command, entered in any
window, be recallable and executed in any other window under Multiterm control. You
would not like to see borders on the windows; it takes up too much space. You want
each window to have full control of the terminal display (each window uses the entire
terminal display, overlapping every other window completely). You want to see
Multiterm support VMS top-level DCL processes as well as DCL subprocesses in a
window. You want the Multiterm commands to be simple sequences of keystrokes, not
echoed back to the terminal screen. You want a quick help screen to refresh your mem-
ory about these keystroke sequences. You want VMS messages (such as “You have new
mail.”) to come through Multiterm to processes running under it.

You have many more thoughts about user interface requirements at lower levels of
detail. For any question or discussion, your responses should be consistent with your
own personal concepts regarding the VMS operating systems, dumb terminals, etc.

3.3.7. The Role of the Requirements Analyst

You are a requirements analyst for the Multiterm Project in the System Software divi-
sion. You have been with the Zooming company for seven years and with the Multiterm
Project since it began three months ago. You have ten years of software development
experience on large projects and two additional years of experience as a requirements
analyst. You were given your current position on the Multiterm Project as a result of
demonstrating superior communication and problem-solving skills on your last project,
where you were the principle requirements analyst.

Your undergraduate degree is in mathematics, and you initially gained experience in
programming by writing statistical analysis programs in FORTRAN for your assign-
ments in college. When you graduated from school, the job market was tight for math-
ematicians, but there were plenty of jobs for programmers. Your first job was as a
FORTRAN programmer in a telephone company. While you were there, you picked up
some limited experience with C. After three years of working with the telephone com-
pany, your project delivered its software system and you were laid off because of a lack

CMU/SEI-94-EM-10) 17

of available work. At that time, the Zooming company was entering full-scale develop-
ment on three of its projects and hired you because of your C experience.

Over the next seven years, you were proficient and productive enough to continue to
find work within Zooming. You learned Ada and gained much experience in both C and
Ada. Over the years, however, you became more interested in the human aspects of
software development and less interested in developing code. As a result, you enrolled
in a program at the local university to obtain a master’s degree in behavioral psychol-
ogy, and you are about to graduate. Two years ago you applied for and obtained a
position as a systems analyst on a management information systems project within the
Applications Division. You knew immediately that you had found a home. You became
extremely productive because communicating with people was easy and fun, and you did
it well. Your first project as a systems analyst was extremely successful in that the
delivered software met or exceeded every expectation of the customer and users. You
were instrumental in the project’s success because you were able to get the customer
and users to communicate their needs, and you captured an accurate understanding of
them.

Your success inspired you to pursue more requirements-related work within Zooming;
you, therefore, learned some requirements elicitation techniques on your own.

With respect to the Multiterm software system, all you know is what you have read
from the customer’s statement of need; you are, nevertheless, excited to get started on
this project. You plan to use one of the requirements elicitation techniques you know to
get started with gathering the requirements for Multiterm. You are also confident that
your previous development experience will help you resolve technical conflicts that
might arise.

3.3.8. The Role of the Software Engineer

You are a software engineer on the Multiterm Project, hired to perform high-level
design of the system. You have been with the System Software Division in the Zooming
company for four years and were just brought on board the Multiterm Project last week.
You have six years of software development experience in all; your first two years were
spent writing application programs in the Applications Division at Zooming, which
hired you directly from college. You were given a software design and development
position on the current project as a result of your knowledge of VMS and the software
design skills that you demonstrated on your last project, a software simulator for the
embedded computer aboard the Stealth Fighter.

You are a very methodical software designer and developer with a reputation for
producing software systems that meet their specifications. You are very thorough,
investigating every alternative design and weighing the benefits and risks associated
with each. This gives you a reputation for working slightly slower than other engineers,
but this is acceptable because you produce systems that work and that contain few
errors.

You have read the statement of need supplied by the customer and have done some
initial investigation, experimentation, and prototyping in VMS to answer questions that

18 ' CMU/SEI-94-EM-10

came to mind while reading it. You know that using Ada increases the risk that
keystroke-to-display response times will be longer than is acceptable. You know that
there are VMS library routines, accessible from Ada programs, that will allow a pro-
gram to create multiple, dependent subprocesses in VMS. You know that it is possible
to open /O channels to each of these subprocesses via pseudo-terminal device drivers.
In short, you know that VMS will support your creation of a windowing system for dumb
terminals. The risks are with the performance that Ada will provide.

3.4. Example of the Results of the Exercise

This exercise is based on a project given to a group of students in the Master of Software
Engineering program at Carnegie Mellon University. Those studenis used a form of a
group development method similar to joint application design, although its implementa-
tion was much more ad hoc. The requirements created by those students are shown
below. They are organized into three classes: functional, user interface, and perfor-
mance requirements.

Functional Requirements

1. The software system shall have the ability to make multiple displays available
for use from a single terminal.

2. The software system shall have the ability to start a process running a program
specified by the user.

3. The software systrm shall have the ability to start a process running the Digital
Equipment Corporation (DEC) Command Language (DCL) if no program is
specified by the user.

4. The software system shall have the ability to bind one display with one process
on the host processor system.

5. The software system shall have the ability to record all user input and all
process output that occurs during a user session (similar to the SET HOST/LOG
capability in the DEC VAX/VMS operating system). The session inputs and
outputs shall be stored in a single log file. In addition, the software system
shall be able to take such a log file as input to a session and execute the previ-
ously recorded user inputs as if they were being typed at the keyboard by the
user.

6. The software system shall allow line lengths for both input and output format-
ting to be determined by the terminal device characteristics.

7. The software system shall support the binding of a defined input stream to a
process from a predesignated process.

8. The software system shall support the binding of a defined output stream to a
display from a predesignated process.

9. The software system shall provide for editing of typed system commands prior
to invocation.

CMU/SEI-94-EM-10) 19

10. The software system shall have the ability to recall, at any arbitrary display,
command line input tc any other display, including itself, up to the last 20
command lines entered.

11. The software system shall provide for selective broadcast of command lines to
multiple processes using a single system command line.

12. The software system shall provide help information compatible with the VMS
help utility in terms of the file structure, information format, and interaction
style used.

13. The software system help facility shall be accessible to any process running
DCL.

14. The soitware system help facility shall be accessible to any process running the
software system.

15. The software system shall provide functionality to terminate any process under
its control.

User Interface Requirements

1. The software system shall have the ability to support input and output viewing
of multiple processes on DEC VT220 and VT320 terminals.

2. The software system shall provide the ability to select the process to which
keyboard input is routed.

3. The software system shall have the ability to have multiple displays updated
from their predefined output streams, regardless of whether or not a given
display is selected for input from a keyboard.

4. The software system shall require at most one key (any number of keys that can
be depressed simultaneously that return a single value) on the keyboard to be
bound for its use when the keyboard is connected to displays running other
applications. That key shall provide an escape to the system command-process-
ing software.

5. The software system shall provide a means for rebinding the system escape key
to any key (or cu.nbination of keys depressed simultaneously) that generates a
one-byte character code (e.g., any character, digit, or control character). The
same binding shall apply to all processes and displays under system control.

6. The software system shall be transparent to processes under its control
running:
¢ Ada programs using TEXT_IO
e DCL

the VMS symbolic debugger

the EDT editor

the TPU editor or other editors derived from it (EVE, LSE, etc.)

20 ' CMU/SEI-94-EM-10

The behavior of these programs shall appear to be identical to that observed
when they are run on an independent terminal device, except for the binding of
the system escape key.

Performance Requirements

1. The software system shall support the use of the DEC VT220 and VT320 termi-
nal devices.

2. The software system shall transfer keystroke input to the destination process
within 0.5 seconds with the CPU load at 50% of capacity on a VAX 8600 running
the VMS operating system, version 5.1 or greater.

4. Small Elicitation Exercises

The role-playing exercise described in the previous section requires a substantial
commitment of time, on the part of both the instructor and the students. For that
reason, it is perhaps most useful in a graduate-level course on requirements engineer-
ing, rather than in a one-semester undergraduate course that covers “all” of software
engineering. In this latter setting, smaller exercises are more appropriate. Suggestions
for such exercises are described below.

Requirements elicitation by interviewing can be practiced by each student, provided
there is a customer to interview. Instructors can often arrange with colleagues, gradu-
ate students, or others within the university to play the role of customers. For example:

¢ Interview a professor to determine requirements for an online electronic grade-
book.

¢ Interview a graduate student to determine requirements for a software system
that would support his or her thesis research.

¢ Interview the appropriate campus administrator to determine requirements for a
system that schedules classrooms.

Requirements elicitation by brainstorming can be practiced by small groups of students.
The systems to be discussed should be ones that might actually be useful to students, so
that they can easily put themselves in the role of users. For example:

¢ A class electronic bulletin board system that would allow the instructor and the
students to present information of value to the whole class.

¢ A system to permit electronic submission of programming assignments and
receipt of instructor’s comments on the programs.

¢ A personal productivity system, such as an online appointment calendar, “to do”
list, or address book.

¢ A system to keep track of a music collection on records, tapes, and CDs.

The requirements for embedded control systems can sometimes be elicited by observing
the behavior of existing systems. For example, students might:

CMU/SEI-94-EM-10 21

e Observe the operations of an automatic teller machine, a vending machine, or an
automobile cruise control to “reverse engineer” the requirements for those
systems.

o Observe the behavior of the traffic lights at one or more complex intersections to
elicit requirements for a new software-controlled traffic light system.

The requirements for enhancements to existing systems can often be elicited from expe-
rienced users using either interviewing or brainstorming. Instructors should choose as
the object of such an exercise a system with which the students are very familiar.
Examples might be an electronic mail system, word processing system, or text editor.

The results of elicitation exercises are difficult for an instructor to evaluate. Although
each exercise may produce a document containing a list of requirements that an instruc-
tor can read, the real objective of the exercise is to build the students’ requirements
elicitation skills. To determine whether this objective has been met requires observa-
tion of the exercise. To some extent, this can be done.

One approach is to conduct the exercises in a laboratory setting, where the instructor or
laboratory staff can observe the students’ behavior. As was suggested in the role-
playing exercise of the previous section, the instructor can walk around the room to
observe each student group for a few minutes. For exercises involving interviewing, the
instructor can also ask to see the list of questions prepared in advance of the interview.

A second approach is to use teaching assistants or graduate students as observers. This
is especially useful for graduate students in software engineering programs, because
they can not only report results to the instructor, but they can increase their own
requirements elicitation skills by observing several student exercises.

A third approach is to have each student group designate one or more “process
observers” whose role is to observe (silently) the exercise, report on the good and bad
aspects of it, and make recommendations for improvement.

5. Suggestions for Further Reading

The lecture notes documents included in this package are derived in great part from the
books below. Instructors who are preparing to teach requirements elicitation for the
first time are encouraged to read the relevant parts of these books.

If the role-playing exercise is being used, students will also need to read more than just
the lecture notes. The exercise descriptions indicate appropriate readings from these
books.

August9l August, J. H. Join? Application Design: The Group Session Approach to
Systems Design. Englewood Cliffs, N. J.: Prentice-Hall, 1991.

Table of Contents
Section I. JAD Overview
1 Why is JAD Unique?
2 The JAD Structure: Ready, Aim, Bull’s-eye!

22 ’ CMU/SEI-94-EM-10

-—]

-y

3 How JAD Works: The JAD Phases
4 The JAD Participants
Section II. How to Perform a JAD
JAD/Plan Customization
JAD/Plan Session
JAD/Plan Wrap-up
JAD/Design Customization
JAD/Design Session
10 JAD/Design Wrap-up and Final Wrap-up
Section III. Practical Considerations
11 Session Leader Facilitation Skilils
12 How to Implement JAD
Section IV. Appendixes
A Estimating Rules of Thumb Worksheets
B Sample Completed Estimating Rules of Thumb Worksheets
C JAD/Plan Document Table of Contents
D JAD/Design Document Table of Contents
E JAD Magnetics
The author is one of the originators of the JAD techniques. In this short
(169 pages) book, she presents a highly readable description of all phases
of JAD, including examples of the many kinds of documents produced in
JAD sessions.

DW-adMon

Bingham59 Bingham, W. V. D.; & Moore, B. V. How To Interview, 4th Revised
Edition. New York: Harper & Brothers Publishers, 1959.

Table of Contents
1 General Principles of the Interview
1 First Principles
2 The Participants in the Interview
3 Some Guideposts to the Interview
4 Selection and Training of Interviewers
II The Interview for Selection and Placement
5 Interviewing Applicants for Employment
6 Oral Examining n the Civil Service
III Interviewing for Facts and Opinions
7 Public Opinion Polls and Commercial Surveys
8 Interviewing Workers about Employer-Employee Relationships
9 The Interview i Journalism
10 The Interview in Legal Practice and Law Enforcement
IV The Counseling Interview
11 The Case Study
12 The Interview in Vocational Counseling
13 The Clinical Interview
V Conclusions
14 Conclusions about Interviewing

The first four chapters of this book provide a good introduction to the pro-
cess of interviewing and to some of the psychological principles on which
that process is based. Chapter 3 is especially useful in its detailed
description of how to prepare for and conduct an interview.Brackett90

CMU/SEI-94-EM-10 ’ 23

Clark58

Davis93

Brackett, J. W. Software Requirements (Curriculum Module SEI-CM-19-
1.2, ADA235642). Pittsburgh, Pa.: Software Engineering Institute,
Carnegie Mellon University, 1990. Internet ftp host ftp.sei.cmu.edu, file
/pub/education/cm19.ps.

Abstract: This curriculum module is concerned with the definition of
software requirements—the software engineering process of determining
what is to be produced—and the products generated in that definition. The
process involves requirements identification, requirements analysis,
requirements representation, requirements communication, and development
of acceptance criteria and procedures. The outcome of requirements defini-
tion is a precursor of software design.

This module may be useful to an instructor designing a course or course
segment on requirements engineering. It helps put requirements elicita-
tion in context.

Clark, C. H. Brainstorming, the Dynamic New Way to Create Successful
Ideas. Garden City, N. Y.: Doubleday & Company, Inc., 1958.

Table of Contents
1 The Difference an Idea Makes
2 The Stork Doesn’t Bring Them
3 Brainstorming? What's That?
4 Mixing the Witch’s Brew
5 Keep 'em Rolling
6 After the Storm is Over
7 Ideas? In my Company?
8 The Preaching Practiced
9 Solos and Small Combos
10 It Comes in King Size, Too
11 Take it Home to Mama
12 The Shoe Fits, Put it On
13 Troubles are a Brainstormer’s Best Friend
14 The Compleat Brainstormer
15 Secrets of a Successful Idea Man
16 America’s Last Frontier

‘this book presents a very detailed description of brainstorming and how
it can be applied to creative problem solving. It is also entertaining, with
many “war stories,” and it should be enjoyable to both instructors and
students.

Davis, A. M. Software Requirements: Objects, Functions, and States.
Englewood Cliffs, N. J.: Prentice Hall, 1993.

Table of Contents

Introduction

Problem Analysis

The Software Requirements Specification
Specifying Behavioral Requirements
Specifying Nonbehavioral Requirements
Requirements Prototyping

Some Final Thoughts

~SIM O WM

24

CMU/SEI-94-EM-10

Keen80

Osborn53

Rockart79

SEI91

This book seems to be becoming the textbook of choice for courses on
software requirements engineering. It also contains an exhaustive,
annotated bibliography of the requirements engineering literature.

Keen, P. G. W. “Adaptive Design for DSS.” Database 12 (Fall 1980): 15-
25.

This paper discusses the adaptive loops framework.

Osborn, A. F. Applied Imagination; Principles and Procedures of Creative
Thinking. New York: Charles Scribner’s Sons, 1953.

Table of Contents
1 The all-importance of imagination
2 Indispensability of creativity in science
3 Careers depend largely upon creativity
4 Creativity in leadership and in professions
5 Imagination can improve personal relations
6 Universality of imaginative talent
7 Ways by which creativity can be developed
8 Our new environment—its effect on creativity
9 Other factors that tend to cramp creativity
10 Creative and non-creative forms of imagination
11 The processes of ideation vary widely
12 Orientation calls for setting our sights
13 Preparation and analysis go hand in hand
14 The value of thinking up plenty of hypotheses
15 Periods of incubation invite illumination
16 Synthesis, evolution and verification
17 The effect of emotional drives on ideation
18 The effect of effort on creativity
19 The element of luck in creative quests
20 Devices designed to help activate imagination
21 Questions as spurs to ideation
22 Adaptation, modification, and substitution
23 Addition, multiplication, subtraction, division
24 Rearrangement, reversal, and combination
25 Creative collaboration by teams
26 Creative collaboration by groups

The author starts from the premise that people all possess the power of
imagination and then describes a variety of techniques to develop and
apply that power. Brainstorming is one of the techniques.

Rockart, J. F. “Critical Success Factors.” Harvard Business Review
(Mar.-Apr. 1979): 81-91.

Requirements Engineering and Analysis Workshop Proceedings (Tech.
Rep. CMU/SEI-91-TR-30, ADA250415). Pittsburgh, Pa.: Software
Engineering Institute, Carnegie Mellon University, 1991. Internet ftp
host ftp.sei.cmu.edu, file /pub/documents/91.reports/tr30.91.ps.

CMU/SEI-94-EM-10 ’ 25

Wetherbe84 Wetherbe, J. C. Systems Analysis & Design: Traditional, Structured, and
Advanced Concepts and Techniques. St. Paul, Minn.: West Publishing,
1984.

Wood92 Wood, D. P.; & Kang, K. C. A Classification and Bibliography of Software
Prototyping (Tech. Rep. CMU/SEI-92-TR-13, ADA258466). Pittsburgh,
Pa.: Software Engineering Institute, Carnegie Mellon University, 1992.
Internet ftp host ftp.sei.cmu.edu, file /pub/documents/92.reports/
tr13.92.ps.

Abstract: Prototyping, the creation and enaction of models based on opera-
tional scenarios, has been advocated as a useful software engineering
paradigm because it lends itself to intense interaction between customers,
users, and developers, resulting in early validation of specifications and
designs. An extensive and widespread interest in software prototyping in
recent years has resulted in a daunting amount of literature and dozens of
proposed methods and tools. As with any immature and growing technol-
ogy, the expanding literature and approaches have resulted in correspond-
ingly expansive and confusing terminology.

This report presents an overview of technology and literature relating to the
creation and use of software system prototypes. In addition to an annotated
bibliography of recent prototyping literature, a technology framework,
taxonomy, and series of classifications are provided. The intent of this
report is to provide a basic road map through the available literature and
technology.

26) CMU/SEI-94-EM-10

Lecture Notes

Introduction to Requirements Elicitation

Requirements Elicitation Using Joint Application Design
Requirements Elicitation by Brainstorming
Requirements Elicitation by Interviewing

Requirements Elicitation Using the PIECES Framework

Introduction to Requirements Elicitation

1. Introduction: A Tale of Three Students

Once upon a time there were three students of computer science: Pat, Terry, and Chris.
In their programming class, the professor gave this assignment:

Write a program that will read in a list of 100 positive integers, sort them into
ascending order, display the sorted list, and display the average of those values.

These are the requirements that the software must satisfy, and the three students had
no difficulty in writing the program. Chris and Pat began with pencil and paper,
sketching out the algorithm and writing a first draft of the code. Terry went immedi-
ately to the keyboard and started typing in the program.

Now our three students, with new computer science degrees in hand, are beginning
their first jobs. Pat has gone to work for Consolidated Flange and Widget, a large
manufacturing company. One day, Pat and the rest of the software engineering
department are called to a meeting where the company’s vice president for sales and
marketing gives them this assignment:

Develop an automated system that will allow us to process orders at least 24
hours sooner, on the average, and will allow us to ship our products to customers
at least three days sooner than currently.

Terry has taken a job with Zooming Airplane Company and is assigned to the team
developing the avionics software for the new Z-676 airliner. The team has just been
given this task:

Develop the software that will allow the Z-676 to land itself, without pilot inter-
vention, at major airports.

Chris has gone to work for Megabuck Codemeisters, a company specializing in personal
productivity software for small computers. The company president has called all the
new software engineers together and given them this assignment:

Develop a new product that will sell at least one million copies at a retail price of
at least $200.

This document is taken from the SEI educational materials package “Lecture Notes on Requirements
Elicitation” by Sridhar Raghavan, Gregory Zelesnik, and Gary Ford, document number CMU/SEI-94-EM-
10, copyright 1994 by Carnegie Mellon University. Permission is granted to make and distribute copies for
noncommercial purposes.

Introduction to Requirements Elicitation ' 1

Software paid for
e P

Software that could but not delivered
be ués:: after changes -\ 29.7%
Software used
but later reworked ——
or abandoned

19%

Software delivered

Software that could but never used
be used as delivered — 47%

~2%

Year 1982: Nine Contracts Totalling $6.8 Million

Figure 1. Results of GAO survey of software contracts

Unlike the situation in their programming class in school, neither Pat, Terry, nor Chris
can head for the keyboard. They need a lot more information on what the software
actually must do. How do they get that information? The answer is requirements
elicitation.

To understand requirements elicitation, we first take a high-level look at the elicitation
process: what terminology is used, who participates, and what the basic procedures are.
We examine and compare the outcomes of a good elicitation process and a poor elicita-
tion process. We then discuss the underlying difficulties of requirements elicitation.
Finally, we sketch several different elicitation techniques that are currently in use by
software engineers.

2. The Requirements Elicitation Process

Requirements elicitation is one of the most critical steps in a software engineering
project. Experience over the last 30 years has shown that incorrect, incomplete, or mis-
understood requirements are the most common causes of poor quality, cost overruns,
and late delivery of software systems. The ability to employ a systematic process for
requirements elicitation is therefore one of the fundamental skills of a good software
engineer.

As an example of the importance of understanding the user’s requirements, consider the
results of a General Accounting Office (GAO) survey shown in Figure 1. If we ignore the
software that was never even delivered to the users, virtually all of the software
purchased under these contracts could not satisfy the users’ needs.

2.1. Terminology

There are many terms that are used in describing the process of understanding
requirements for a software system. We use requirements engineering as a general term

2 Introduction to Requirements Elicitation

encompassing all the activities related to requirements. In particular, requirements
engineering comprises four specific processes:

requirements elicitation the process through which the customers, buyers, or users
of a software system discover, reveal, articulate, and under-
stand their requirements.

requirements analysis the process of reasoning about the requirements that have
been elicited; it involves activities such as examining
requirements for conflicts or inconsistencies, combining
related requirements, and identifying missing require-
ments.

requirements specification the process of recording the requirements in one or more
forms, including natural language and formal, symbolic, or
graphical representations; also, the product that is the
document produced by that process.

requirements validation the process of confirming with the customer or user of the
software that the specified requirements are valid, correct,
and complete.

In an actual situation, these four processes cannot be strictly separated and performed
sequentially. All four are intertwined and performed repeatedly. For example, the
expression of requirements in a formal or graphical representation is often helpful in
identifying conflicting or missing requirements, and the validation of some requirements
often elicits requirements or details that the users had not previously recognized or
stated.

We should note that the term elicitation is not universally accepted for the process
described above. Some software engineers use terms such as requirements identifying,
gathering, determining, formulating, extracting, or exposing. Each of these terms has
different connotations. For example, gathering suggests that the requirements are
already present somewhere and we need only bring them together; formulating suggests
that we get to make them up; extracting and exposing suggest that the requirements are
being hidden by the users. There is some truth to all of these connotations, as we will
see in our discussion of requirements elicitation.

2.2. A General Elicitation Procedure

By far, the most common kind of requirements elicitation effort is one that gets infor-
mation directly from the people who will use the system. In such cases, the elicitation
procedure can be described in very general terms as five steps:

1. Identify relevant sources of requirements (the users).

2. Ask them appropriate questions to gain an understanding of their needs.

Introduction to Requirements Elicitation) 3

3. Analyze the gathered information, looking for implications, inconsistencies, or
unresolved issues.

4. Confirm your understanding of the requirements with the users.
5. Synthesize appropriate statements of the requirements.

Specific elicitation techniques have evolved from this general procedure by defining
detailed processes, specific questions or categories of questions to ask, structured meet-
ing formats, specific individual or group behaviors, or templates for organizing and
recording information. We sketch some of these techniques in section 5.

23. Participants in Requirements Elicitation

A requirements elicitation effort normally involves many people. The software engineer
who is responsible for producing the requirements specification (sometimes designated a
software requirements engineer) leads the effort. He or she is often supported by other
software engineers, documentation specialists, or clerical staff.

The potential users of the software are also involved. In a typical information system
project, such as that encountered by Pat at Consolidated Flange and Widget, there are
many kinds of users who will use the system directly: sales representatives, order pro-
cessing personnel, shipping department personnel, and accounting personnel. Depart-
ment managers and company executives are also involved, especially those who have
authorized the building of the new system.

At Zooming Airplane Company, Terry sees a different kind of user. The engineers
designing the Z-676 airliner know how the various subsystems of the aircraft work and
how the avionics software interacts with those subsystems. They are the users who can
answer questions about what the software must be able to do. In addition, because the
U. S. Federal Aviation Administration (FAA) certifies civilian commercial aircraft and
operates the air traffic control system, there are government regulations and standards
that must be considered as software requirements. FAA representatives may need to be
part of the requirements elicitation effort. Airline pilots also need to be involved, espe-
cially in the elicitation of user interface requirements.

Chris faces still different problems at Megabuck Codemeisters. If the new software
package they decide to build is a “new and improved” word processor or spreadsheet, a
representative sample of users of existing packages should participate in the require-
ments elicitation process. They can be asked about their likes and dislikes for the pack-
ages they now use, and about new features that they would like to have. On the other
hand, if the new package is an unprecedented kind of system, it is more difficult to elicit
detailed requirements. Market research may identify the need for the system, and
hence identify very general requirements, but the detailed requirements may have to
come from a series of prototypes and user tests.

The lesson to be learned is simple: no one person knows everything about what a soft-
ware system should do. There are always many participants in a successful require-
ments elicitation effort.

4 Introduction to Requirements Elicitation

3. Outcomes of Requirements Elicitation

The tangible result of requirements elicitation is a set of requirements that can be used
by the software development team. However, there are many other intangible outcomes
of the process that can affect the overall success of the project. Those outcomes differ,
depending on whether the elicitation process was conducted well or poorly.

3.1. Outcomes of a Good Process

The buyers or users of a software system often come to the requirements elicitation
process with only a vague idea of what they really need and with little idea of what
software technology might offer. A good elicitation process helps them explore and fully
understand their requirements, especially in the separation of what they want and what
they need. Their interactions with the software engineer help them understand the
constraints that might be imposed on the system by technology, organizational prac-
tices, or government regulations. They understand alternatives, both technological and
procedural, that might be considered in the proposed system. They come to understand
the tradeoffs that might need to be made when two requirements cannot both be satis-
fied fully.

Overall, the buyers and users have a good understanding of the implications of the deci-
sions they have made in developing the requirements. This results in fewer surprises
when the system is built and delivered. The buyers and users share with the software
engineer a vision of the problems they are trying to solve and the kinds of solutions that
are feasible. They feel a sense of ownership of the products of the elicitation process.
They are satisfied with the process, feel informed and educated, believe their risk is
minimized, and are committed to the success of the project.

Similarly, the software engineers and developers who have participated in the require-
ments elicitation process are solving the right problem for the users. This is obviously
the most important result of a good process; otherwise the whole project will fail. The
developers have clear, Ligh-level specification of the system to be built.

The developers are also confident that they are solving a problem that is feasible from
all perspectives, not only technical but human. They know that the customers will be
able to use the system, like it, make effective use of it, and that the system will not have
undesirable side effects. They have the trust and confidence of the customers; they
know the customers will cooperate if clarifications are needed during development, but
they also believe such interaction will be minimal.

The developers have gained knowledge of the domain of the system; they have a variety
of peripheral or ancillary information about the system that will be useful later when
making low-level tradeoffs and design decisions. However, they do not feel that the
system is overly specified; they are comfortable that they have freedom to make imple-
mentation decisions.

Introduction to Requirements Elicitation ’ 5

_

3.2. Outcomes of a Poor Process

The most serious outcome of a poor requirements elicitation process is that the develop-
ers are solving the wrong problem. This guarantees the failure of the whole project.
(Take another look at Figure 1 at the beginning of section 2.)

Even if the developers are solving essentially the right problem, a poor elicitation
process can have other negative outcomes. The buyers and users can be dissatisfied;
this often happens if the developers did not really listen to them, or if the developers
dominated the process and tended to force their own views and interpretations on the
buyers and users. Dissatisfaction may result in less effective participation by the
buyers and users, resulting in less complete answers to the developer’s questions. The
dissatisfaction can continue to affect the project through development and delivery of
the software.

A poor elicitation process often leads to a chaotic development process. The developers
may discover that they are missing important information, resulting in additional meet-
ings with the buyers and users. The developers may make the wrong decisions or
tradeoffs because of a lack of understanding of the users’ needs. Requirements may
change more often, resulting in greater need for configuration management, or in delays
or wasted effort in design and implementation. The result is cost and schedule over-
runs, and sometimes failed or canceled projects.

All of these effects can result in a loss of money for the company developing or buying
the software, loss of reputation or credibility for the developers, and a decline in the
developers’ morale.

4. Underlying Difficuities of Requirements Elicitation

Requirements elicitation is an imprecise and difficult process. To do it successfully
requires that we overcome the underlying difficulties. In this section we discuss those
difficulties, and in the next section we see some of the elicitation techniques that have
been created to overcome the difficulties.

Throughout this discussion, we use the term user to mean both the actual user of the
software (in the case where there is a human user) and the buyer or customer. For
example, at Consolidated Flange, the users of Pat’s software are the sales staff and the
clerical staff that process orders. Terry’s “users” might be considered to be the pilots or
passengers of the Z-676 airliner being flown by the software, but the “customers” are
really the engineers designing the flight controls for the aircraft. At Megabuck
Codemeisters, the ultimate users of the new package that Chris is developing are the
unknown buyers of the package, but the customers who understand the requirements
are the people within the company who have done the market research to determine
what kind of package is likely to be a big seller and who have examined competitors’
products to identify how the Codemeisters product can be better.

6 Introduction to Requirements Elicitation

4.1. Articulation Problems

The first class of difficulties includes those related to the articulation of the user’s needs.
These include problems both with the user’s expression of needs and the developer’s
understanding.

1. The users of a proposed software system may be aware of their needs, but they are
unable to articulate them appropriately. This is analogous to a situation where you
recognize you are hungry and go into a restaurant. If you cannot decide what you want
to eat, or if you cannot understand the menu, you cannot articulate your requirements.
Telling the waiter “I'm hungry” is a statement of need but not a sufficiently articulate
requirement to which the waiter can respond.

2. The users may not be aware of their needs. They may not understand how the tech-
nology may be able to help them. For example, the sales staff at Consolidated Flange
may not know that with portable computers, modems, and appropriate software, they
could send orders via telephone lines back to the main office during a sales trip, rather
than waiting until they returned.

3. The user may be aware of a need but be afraid to articulate it. For example, a rela-
tively new user at Consolidated Flange knows that he has trouble remembering all the
part numbers when filling out customer order forms. He would like the system to
display the part numbers in a menu, rather than having to type them in. However, he
knows the other users don’t have this problem, and he believes they would think him to
be incompetent if he articulated his need. So he says nothing.

4. Users and developers misunderstand concepts or relationships because they have
different meanings for common terms. Words like system and integration are widely
used but understood differently by developers and users in many domains. To the
developer, the word implementation means the writing of source code. To the user it
means the process of making the software system operational in an organization,
including the associated changes in human behavior, management procedures, and
accounting procedures.

5. Users cannot make up their minds on some issues because they don’t understand the
consequences of the decision or they don’t understand the alternatives.

6. No single person has the complete picture. No matter how articulate a user may be
in expressing needs, other users may have different or additional needs or different
priorities. This is especially true for complex systems, where each individual user may
have only a limited view or perspective of the system to be built. For example, some
users of a word processing system may never have produced a document with an index
and therefore will probably not ask for this feature. Only a few users might think of
features like text change bars or switching from portrait to landscape mode in the
middle of a document.

7. Developers may not really be listening to the users. The developers don’t hear all the
detailed information that the users are providing. This usually happens when the

Introduction to Requirements Elicitation - 7

developers believe they already understand the user’s needs, or when they begin to
think ahead to particular designs and implementations.

8. Developers may fail to understand, appreciate, or relate to the users. They may not
empathize with the user’s problems or be able to see the problems from the user’s
perspective. In such situations, the developers will not understand the users’ context,
issues, or concerns.

9. Developers tend to overrule or dominate the users. They may have an overly
assertive style, projecting an image of knowing all about the technology and the buyers’
domain. The users feel threatened and are unable to articulate their actual require-
ments.

4.2. Communication Barriers

Many requirements elicitation difficulties are a direct result of differences in communi-
cations among users and developers.

1. Users and developers come from different worlds and have different professional
vocabularies. The users may come from a financial, engineering, aeronautics, or manu-
facturing domain. Developers belong to the software domain. A term such as process an
order might be well understood by the user but not by the developer.

At Zooming Airplane, Terry and the other developers discover that the users give them
a blank stare when they start discussing class hierarchies and module cohesion. Terry
has a similar reaction when the users mention VOR radials and RF interference.

2. The users have different concerns from those of developers; these are usually high-
level aitributes like usability and reliability. In contrast, developers are concerned with
low-level technical issues, such as resource utilization, algorithms, and hard-
ware/software tradeoffs.

3. Problems exist with each form or medium of communication. Natural languages,
such as English, are inherently ambiguous. This often proves useful in normal commu-
nication but it is a significant problem for requirements communication. So why would
we choose natural language for requirements elicitation? Usually, it is the only common
communication medium between developers and the users.

Other forms of communication, such as diagrams, charts, pictures, and artificial
languages, can sometimes be used. However, every form has some things it communi-
cates well and some that it communicates poorly. It is usually helpful to use several
forms in order to cover all the blind spots.

4. Requirements elicitation, by its very nature, has significant social interaction, and
the people involved are all different. Some are assertive, some are submissive; some
deal with details and others with abstraction. Incompatible styles of interaction can
lead to a breakdown of communication. The elicitor must try to recognize the incompat-
ibilities and adjust the communication appropriately.

8 Introduction to Requirements Elicitation

-

5. There are different personality types and different value systems among people.
This can lead to unexpected difficulties in communication, as was discovered by a
company that contracted to build an information system for a university. The project
leader was a high-level person in the company, and he would only talk to comparably
high-level people in the university—deans and vice presidents. The developers on the
project would only talk to the lower level clerical staff in the university who would
actually use system.

4.3. Knowledge and Cognitive Limitations

Buyers, users, and developers are human beings, and each brings some knowledge and
cognitive limitations to the process. They vary from person to person.

1. The requirements elicitor must have adequate domain knowledge. A common error
is that the team of users and the developers don’t have adequate domain knowledge, so
they make wrong decisions. Developers should not make domain tradeoffs, and the
users should not make technical tradeoffs.

2. No person has perfect memory. The users and developers may not remember exactly
what was said or decided. Furthermore, we all interpret oral and written communica-
tions differently. Even if we believe we are being careful to record what was decided, we
may misinterpret that information later.

3. We often try to use quantitative information and statistics to express needs and
requirements. However, informal or intuitive statistics are frequently interpreted dif-
ferently by different people because of our own experiences and biases.

4. People sometimes have difficulty with scale and complexity. As problems become
larger, we deal with them in different ways. Some people try to simplify the problem,
but not always in a valid way. Some people simply ignore parts of the problem because
they can’t deal with them. Our perspective of the problem can become distorted.

5. We often have a preconceived approach to the solution of a problem that affects our
ability to state the problem clearly. We tend to state the problem in terms of the
favored solution.

6. Some people develop a kind of “tunnel vision” when discussing a problem—they
quickly focus all their attention on a few narrow aspects of the problem, usually those
aspects that they believe they understand best or that affect them most directly.

7. On large systems, we usually need to explore a variety of novel formulations of the
problem before reaching consensus on the nature of the problem. Some people are
uncomfortable or impatient with this kind of exploration.

4.4. Human Behavior Issues

Requirements elicitation is a social process, so human behavior issues are involved.

Introduction to Requirements Elicitation) 9

-

1. There are sometimes conflicts and ambiguities in the roles that the users and devel-
opers play in the requirements elicitation process. Each user may assume that it is
some other user’s responsibility to tell the developers a particular aspect of the require-
ments, with the result being that no one tells the developer. The developer may assume
that the user is a domain expert and will give all the needed domain information, and
the user may assume that the developer will ask appropriate questions to get the
domain information. This misunderstanding often leads to gaps in the requirements.

2. The development of a software system to support an organization usually results in
an expectation or fear that installation of the software will necessitate all kinds of
changes in behavior of individuals and groups (including the potential loss of jobs). This
can cause individuals to withhold information from the developers or, in extreme cases,
actively sabotage the development effort.

4.5. Technical Issues

There are many other difficulties that we might characterize as technical that must be
overcome by the requirements elicitation process if it is to be successful. Some of the
more important of these are summarized below.

1. Problems to be solved by software systems are becoming increasingly complex. The
requirements of these systems are based on increasingly detailed knowledge of the
user’s domain. The impact of the systems on society must be considered, but neither the
users nor the developers may be skilled at identifying that impact.

2. Requirements change over time. The requirements elicitation process itself is a
learning experience for users, and ideas discussed at one point may cause them to
change their minds about prior decisions. We must be careful to avoid having a set of
requirements that is obsolete by the time the elicitation process is completed.

3. Software and hardware technologies are changing rapidly. A technological advance
may make feasible a requirement that was unacceptably complex or expensive yester-
day.

4. There are many sources of requirements. The users of a system are not necessarily
aware of all the requirements that the system must satisfy. There may be requirements
best elicited from computer operators or users’ support personnel. Corporate manage-
ment may have guidelines for performing certain tasks or constraints that must be
satisfied. There may be government regulations or industry standards for particular
aspects of a system. The marketing and sales departments may have requirements that
would help improve the commercial viability of a product, especially when there are
already similar competitors’ products on the market.

5. The nature or novelty of the system often imposes constraints on the elicitation pro-
cess. A new system that is very similar to several other systems previously built by the
development team may be able to benefit from previous requirements elicitation efforts
and feedback from users of the previous systems. An unprecedented system requires a
much more substantial requirements elicitation effort.

10 Introduction to Requirements Elicitation

- 0

Requirements elicitation for a one-of-a-kind system built for a specific customer can
normally assume that the customer is the ultimate authority on what is needed. On the
other hand, if the system will be offered for sale to customers other than the original
buyer, the developers should look also at competing systems and additional or different
requirements from those other customers.

Requirements elicitation for a typical shrink-wrapped, personal productivity software
package depends heavily on market research, examination of competing products, and
some kind of communication with a sample of typical users. A software system that
goes through many versions over many years needs a continuing elicitation process to
identify defects in the current version and to track users’ requests for enhancements.

For a real-time control system, requirements elicitation often includes detailed collabo-
ration with hardware and systems engineers to decide what functionality will be imple-
mented in hardware (computer or otherwise) and what in software.

H 5. Overview of Requirements Elicitation Techniques

The requirements elicitation techniques that have been developed and used by software
engineers have usually been designed to overcome one or more of the underlying diffi-
culties. Some address communications difficulties, while others address human behav-
ior or technical difficulties. Some are high-level, in that they are broad frameworks for
a process that elicits general requirements; some are low-level, in that they provide
specific tactics for eliciting details about a particular part of the system or from a
particular user.

We can, to some extent, describe requirements elicitation techniques in broad, generic
categories:

Asking. Identify the appropriate person, such as the buyer or user of the software, and
ask what the requirements are.

Observing and inferring. Observe the behavior of users of an existing system
(whether manual or automated), and then infer their needs from that behavior.

Discussing and formulating. Discuss with users their needs and jointly formulate a
common understanding of the requirements.

Negotiating with respect to a standard set. Beginning with an existing or standard
set of requirements or features, negotiate with users which of those features will be
included, excluded, or modified.

Studying and identifying problems. Perform investigations of problems to identify
requirements for improving a system. For example, if a system is too slow, it may
require complex performance monitoring to identify the requirements to change the
system. For a system with thousands or millions of users, a statistically valid survey
using questionnaires may be needed to identify significant problems with the system.

Introduction to Requirements Elicitation ' 11

Discovering through creative processes. For very complex problems with no obvi-
ous solutions, employ creative processes involving developers and users.

Postulating. When there is no access to the user or customer, or for the creation of an
unprecedented product, use creative processes or intuition to identify features or capa-
bilities that the user might want.

To illustrate these generic techniques, let’s reconsider the software engineering projects
described in section 1 and ask which of these techniques are Pat, Terry, and Chris likely
to find most useful or least useful.

Pat faces a relatively common requirements elicitation task. The best technique is
probably discussing and formulating requirements with the users. Joint Application
Design, described below, is this kind of technique, and it is widely used for information
systems. Postulating requirements would probably be the least useful technique in this
situation, especially since Pat is new to the company.

Terry will certainly have to discuss and formulate requirements with the hardware
engineers who understand the flight characteristics and controls of the aircraft.
Observing pilots landing might also be helpful. Because this kind of software is almost
unique and unprecedented, negotiating requirements with respect to a standard set is
not possible, nor is studying and identifying problems with an existing system.

Chris may have the most difficult task, although the resulting requirements may not be
as complex as those of Terry’s project. Postulating the requirements may be necessary if
Codemeisters decides to create an unprecedented product. If they instead choose to
build a product that will compete head-to-head with those of competitors, it will be
useful to study the existing systems to identify their weaknesses. The least useful tech-
niques might be asking and discussing with users, because the users have not been
identified.

We should note that no one technique is sufficient for realistic projects. A software
engineer must be able to choose an assortment of techniques that best fit the kind of
system being built.

We take a brief look at several techniques below. For each, we try to identify some of
the underlying difficulties of requirements elicitation that are addressed by the
technique.

5.1. High-Level Techniques

High-level requirements elicitation techniques are broad frameworks for processes that
elicit general requirements.

5.1.1. Joint Application Design

Joint Application Design (JAD) is a technique for promoting cooperation, understand-
ing, and teamwork among buyers, users, and developers. It provides a process that
facilitates creating a shared vision of what the system should be. Using that process,

12 Introduction to Requirements Elicitation

the developers help the users formulate problems and explore solutions, and the users
gain a feeling of involvement, ownership, and commitment to the success of the system.

There are four main tenets of JAD: group dynamics (using facilitated group sessions to
enhance the capabilities of individuals); the use of visual aids to enhance communica-
tion and understanding; maintaining an organized, rational process; and a “what you
see is what you get” documentation philosophy (using standard document forms that are
filled in and endorsed by all participants in a session).

JAD has two major steps, called JAD/Plan and JAD/Design. The first step addresses
requirements elicitation and specification, and the second addresses software design.

Each step in JAD consists of three phases: customization, session, and wrap-up. The
customization phase consists of preparation tasks for the session. This includes organiz-
ing the team, tailoring the process for the particular system to be built, and preparing
materials. The session phase consists of one or more structured and facilitated meet-
ings involving the developers and users. It is during these meetings that the require-
ments (or the design) are developed and documented. The wrap-up phase is devoted to
converting the information from the session phase into its final form, such as the
requirements specification document.

By bringing users and developers together in a structured process, JAD can help over-
come many of the articulation problems, communications barriers, and human behavior
issues of the requirements elicitation process. Through the use of standard document
forms, JAD can also address some of the cognitive limitations of the participants in the
process.

5.1.2. Adaptive Loops Framework

The adaptive loops framework is similar in spirit to JAD, in that it provides a process
framework that closely links the users, developers, and system. It derives its name
from the idea that the users’ requirements can be elicited by an adaptive process of
learning cycles or loops.

There are three learning cycles, as shown in Figure 2. The developers are assisted by
the users in gaining new viewpoints about their requirements, and through reformulat-
ing the requirements, the user learns more about them. The system receives pressure
for evolution as the users learn more about how it can be used, and the system induces
that learning on the users. The system evolves by actions of the developers, who in turn
gain enhanced understanding of the system through that evolution.

The requirements elicitation process using the adaptive loops framework focuses on
addressing, supporting, and facilitating these learning cycles. It is especially useful
when there are requirements articulation problems, and it is helpful in overcoming
some of the technical issues of requirements elicitation for the evolution of complex
systems.

Introduction to Requirements Elicitation) 13

Reformulates

Figure 2. Adaptive loops learning cycles

5.1.3. Prototyping

In some situations, users may be better able to understand and express their needs by
comparing those needs to an existing or reference system. When there is no similar
existing system, prototyping can be used to create a system that illustrates the relevant
features. By examining prototypes, the users can learn what their needs really are.

The prototyping process begins with a preliminary study of user requirements. Next
comes an iterative process of building a prototype and evaluating it with the users.
Each iteration allows the users to understand their requirements better, including
understanding the implications of the requirements articulated in previous iterations.
Eventually, a final set of requirements can be formulated and the prototypes discarded.

We sometimes distinguish the terms prototype and mock-up, with the former being
something that demonstrates behavior of a part of the desired system, and the latter
being something that demonstrates the appearance of the desired system. Mock-ups of
user interfaces are especially common.

Clearly, prototyping of a system is beneficial only if the prototype can be built substan-
tially faster than the actual system. For this reason, the process has sometimes been
called rapid prototyping. Many software tools have been developed to facilitate building
prototypes and mock-ups.

We also note that prototyping should not be viewed as a euphemism for trial-and-error
programming or “hacking.” These are wasteful practices. Prototyping is properly used
to elicit and understand requirements; it is followed by a structured and managed pro-
cess to build the actual system. Software engineers need to be careful to avoid making
an inappropriate commitment to any prototype as the basis for full development.

When properly used, prototyping can be remarkable in overcoming articulation prob-
lems and communication barriers. At one time or another, we have all had experiences
that cause us to think “I don’t know what I want, but I'll know it when I see it,” or “I
didn’t know I wanted one of those until I saw one.” Prototyping provides this kind of
experience during requirements elicitation.

14 Introduction to Requirements Elicitation

Goal
Leads to

@ new goals
Subgoal
Preconditions exist
}% * controllable -—<
. uncontrollable
Actlon do not
doslnble exist
¢ undesirable

Figure 3. Goal-directed elicitation process

5.1.4. Critical Success Factors Analysis

The basic premise of this techniques is that the effectiveness of a system typically
depends on a small set of critical factors. A strategy for ensuring success is to enhance
performance of the system relative to those factors, and thus an effective requirements
elicitation approach is to identify and concentrate on those factors.

The process has six major steps:
1. Understand the operation of the system.
2. Identify the factors that are critical for the effectiveness of the system.

3. Identify the strengths and weaknesses of the system with respect to each of
these factors.

4. Identify areas of problems and opportunities.

5. Gather relevant details for enhancing system performance relative to these
critical success factors.

6. Formulate requirements using these details.

A goal-oriented structuring process can be used for eliciting details. Typical primitive
objects in such a process are goal, subgoal, action strategy, constraint, precondition
(controllable, uncontrollable), effect, and implementation mode. The critical success
factors are used to identify goals, and then the elicitation process works its way down
through the subgoals, etc., as shown in Figure 3.

This technique is widely used in building information and decision support systems. It
provides a systematic elicitation process, although identifying the right critical success

Introduction to Requirements Elicitation) 15

factors can be challenging. It is especially useful in addressing some of the difficult
technical and cognitive issues of requirements elicitation.

5.2. Detailed Techniques

The detailed techniques for requirements elicitation generally provide operational-level
tactics and guidelines. They usually focus narrowly on specific aspects of the elicitation
process.

5.2.1. Brainstorming

Brainstorming is a simple group technique for generating ideas. It allows people to
suggest and explore ideas in an atmosphere free of criticism or judgment.

A brainstorming session works best with four to ten people. One person is the leader,
but the role of the leader is more to get the session started than to constrain it.

The session consists of two phases. In the generation phase, participants are encour-
aged to offer as many ideas as possible, without discussion of the merits of the ideas. In
the consolidation phase, the ideas are discussed, revised, and organized.

For purposes of software requirements elicitation, brainstorming can be helpful in
generating a wide variety of views of the problem and in formulating the problem in
different ways. It is especially useful very early in the elicitation process.

Good brainstorming sessions are very helpful in overcoming some of the cognitive limi-
tations of participants by allowing (or forcing) them to expand their thinking. The lack
of criticism and judgment during the generation phase also helps overcome some of the
communication barriers of requirements elicitation.

5.2.2. Interviewing

Interviewing is an important technique for eliciting detailed information from an indi-
vidual. It is commonly used in requirements elicitation for large systems as part of
some of the high-level elicitation techniques. It can also be used for small projects as
the only requirements elicitation technique

Interviewing is not simply a matter of asking question. It is a more structured tech-
nique that can be learned, and software engineers can gain proficiency with training
and practice. It requires the development of some general social skills, the ability to
listen, and knowledge of a variety of interviewing tactics.

A skilled interviewer can help the user to understand and explore software require-
ments, thus overcoming many of the articulation problems and communications
barriers.

5.2.3. The PIECES Framework

Often the main problem for an inexperienced requirements analyst is determining how
to get started. It is not at all clear what questions should be asked to elicit require-

16 Introduction to Requirements Elicitation

ments from the users. The PIECES framework helps solve this problem by providing a
set of categories of issues that can help the analyst structure the elicitation process.

PIECES is an acronym for the six issue categories: performance, information and data,
economy, control, efficiency, and services. In each category there are several issues that
the analyst should explore with the users. The framework can be tailored to include
initial or seed questions that are especially appropriate for the kinds of systems that an
organization is likely to build.

The PIECES framework is best used for analyzing existing systems, whether manual or
automated. It is especially appropriate for eliciting requirements for enhancing or
improving information systems. As with interviewing, it helps overcome articulation
problems and communications barriers.

5.2.4. Market Analysis

Market analysis is a common activity performed by almost all companies who make
products for sale. Clearly, if there is little market for a particular product, there will not
be many sales, so the companies need to know the market before building the product.
This activity is often used for software requirements elicitation when the product is a
personal productivity software package for small computers, or a business support
product that will be marketed to many companies.

Large companies employ market analysis specialists, who have skills in the social
sciences and statistics. Smaller companies are more likely to hire consultants when
contemplating a market analysis task.

There are several aspects of market analysis. Competitive analysis looks carefully at
similar products of competing vendors to identify strengths to be copied and weaknesses
to be avoided. (Note that copying a competitor’s strengths too accurately often leads to
copyright or patent infringement lawsuits.) Market research usually involves collecting
statistical data on products being purchased, and then identifying trends in that data to
predict the need for future products. Customer questionnaires, when carefully designed
by experts, can elicit very detailed information about the needs of potential buyers and
users of a software package.

Market analysis helps address the technical issues of requirements elicitation for new or
enhanced mass-market products.

6. Summary

We have seen that a good requirements elicitation process is critical for a software
project to succeed. The process must be more than just an information-gathering activ-
ity; it must be a collaborative effort that allows all the participants to become better
informed about the system and thus to make better decisions about it.

Introduction to Requirements Elicitation ' 17

We have also seen that there are many underlying difficulties in performing the

requirements elicitation process. Awareness of these difficulties is the first step toward
improving the elicitation process.

Many techniques are used by software engineers in requirements elicitation. Each has
advantages and disadvantages. A good software engineer understands several of these
techniques and knows when to use each.

18 Introduction to Requirements Elicitation

Requirements Elicitation Using
Joint Application Design

Joint Application Design (JAD) is a technique for promoting cooperation, understand-
ing, and teamwork among buyers, users, and developers. It provides a process that
facilitates creating a shared vision of what the system should be. Using that process,
the developers help the users formulate problems and explore solutions, and the users
gain a feeling of involvement, ownership, and commitment to the success of the system.

JAD was developed at IBM in 1977, and it has been applied successfully on hundreds of
projects. It has been best used on information systems projects, particularly for identi-
fying system requirements, package requirements, and modification requirements for
existing products. IBM reports that the use of JAD has resulted in 20% to 60% gains in
productivity.

There are four main tenets of JAD: group dynamics (using facilitated group sessions to
enhance the capabilities of individuals); the use of visual aids to enhance communica-
tion and understanding; maintaining an organized, rational process; and a “what you
see is what you get” documentation philosophy (using standard document forms that are
filled in and endorsed by all participants in a session).

As its name implies, JAD is a technique for software design. However, it is understood
that the design effort involving both developers and users must be based on a set of
software requirements that are well understood by both the developers and the users.
Therefore, JAD has two major steps, called JAD/Plan and JAD/Design. The first step
addresses requirements elicitation and specification, and the second addresses software
design. We focus on the first step.

Each step in JAD consists of three phases: customization, session, and wrap-up.

The customization phase consists of preparation tasks for the session. This includes
organizing the team, tailoring the process for the particular system to be built, and
preparing materials.

The session phase consists of one or more structured and facilitated meetings involving
the developers and users. It is during these meetings that the requirements (or the
design) are developed and documented.

This document is taken from the SEI educational materials package “Lecture Notes on Requirements
Elicitation” by Sridhar Raghavan, Gregory Zelesnik, and Gary Ford, document number CMU/SE]1-94-EM-
10, copyright 1994 by Carnegie Mellon University. Permission is granted to make and distribute copies for
noncommercial purposes.

Joint Application Design 1

:—

The wrap-up phase is devoted to converting the information from the session phase into
its final form, such as the requirements specification document.

Participants in JAD

There are six kinds of participants in JAD, although not all participate in all the phases.

The session leader is responsible for the overall success of a JAD effort and is the leader
and facilitator at meetings. He or she must be familiar with all aspects of JAD, have
good meeting management skills, and have sufficient experience in the application area
to be able to plan and understand the various JAD tasks and outputs.

Although all participants require training in JAD techniques, the session leader must
be especially competent. In choosing employees to be trained as session leaders, an
organizatiou usually chooses individuals who have good interpersonal skills and who
have shown general leadership qualities. Through practice and experience, session
leaders develop the ability to

¢ understand and facilitate group dynamics;

¢ initiate and focus discussions;

¢ recognize when meetings are getting off the track and to put them back on track;
deal effectively with different personalities and behaviors of participants;

¢ remain enthusiastic through sometimes long and difficult meetings.

The session leader also needs some general management skills, because he or she is also
responsible for planning the JAD process, estimating resource requirements, and
tracking the process.

The analyst is the participant who is most directly responsible for the production of the
output documents of the JAD sessions. However, this is not simply a clerical role. The
analyst must be an experienced developer who can undevstand the technical issues and
details that are discussed during the sessions. Analysts should be selected also because
they have the ability to organize ideas and to express them clearly in writing. They
should also be skilled in the use of any software tools that are needed, such as document
production or software prototyping tools.

The executive sponsor is the manager or executive who has ultimate responsibility for
the product being built. He or she has two major responsibilities in the JAD process.
The first is giving the other participants high-level or strategic insight into the system
being built, such as why it is needed and how the organization is expected to be
improved by the use of the system. The second responsibility is making executive-level
decisions and commitments, such as resource allocations, that can affect the require-
ments and design of the new system.

User representatives are people in the organization who will use the new software sys-
tem. During requirements elicitation, user representatives are often managers or key
people within the organization; they tend to have a better view of the whole system and

2 ' Joint Application Design

how it will be used. During design, user representatives may also include a variety of
other users, so that their particular needs can be addressed as well.

User representatives should be selected on the basis of their knowledge of their own
needs within the organization, an understanding of how their departments interact with
other departments, and some knowledge of software-based systems. In addition, user
representatives should be innovative and creative thinkers, and they should not be
afraid to speak up in meetings.

Information systems representatives are people that are very familiar with the capabili-
ties of information systems. Their role is to help the users understand what is and is
not reasonable or feasible in the new system. In some cases, this involves educating the
users about new hardware or software technologies, so that the users can “think big”
and define a significant, forward-looking system. In other cases, the information sys-
tems representatives can help users understand tradeoffs among various approaches to
solving a problem. This is important when there are two or more approaches that are
equally satisfactory from the user’s point of view, but very different in cost or complexity
from the implementor’s point of view.

A specialist is a person who can provide detailed information on a narrow, well-defined
topic. A specialist from the user community, for example, might be the one person in
the organization that handles a particular kind of order or uses a specific report. Thus,
no one else in the organization would know the requirements for such orders or reports.
A specialist from the developer community might be someone who knows the details of
an organization’s internal network, such as its hardware connections or message proto-
cols. Participation from this person would be required when defining networking
aspects of a new system.

The JAD/Plan Customization Phase

The JAD technique provides a general structure for requirements elicitation. To be
most effective, it should be customized for each particular software project. This is the
responsibility of the session leader, with the assistance of one or two analysts. The
steps in the customization are outlined below.

Conduct orientation. By the time the executive sponsor has authorized a JAD/Plan
effort, some thought has already been given to the purpose of the new software system.
Usually this has occurred in the user community, because the users are the first to
recognize a potential need for the system. The first step for the session leader and the
analysts is to gain an understanding of whst has been accomplished so far, what kind of
system is being discussed, and what, if any, commitments or decisions have already
been made. This typically requires short meetings witk one or more users, and perhaps
a meeting with the sponsor.

The session leader and analysts may also need to familiarize themselves with the orga-
nization or department for whom the system is being built. A company organization

Joint Application Design . 3

chart can be helpful in identifying the key people who will ultimately contribute to the
JAD effort.

Organize the team. The session leader next selects the participants for the session.
The executive sponsor may already have identified some of the participants, but the
session leader has the final responsibility for ensuring that all the needed people are
identified and invited.

The session leader also should prepare the participants for the session. In addition to
telling them the date, time, and location of the session, the leader gives them a list of
questions to think about before the session. The questions are chosen to match the
high-level requirements addressed in the session (objectives; anticipated benefits;
strategic and future considerations; constraints and assumptions; and security, audit,
and control), and they are tailored to the particular system. The participants are asked
to address the issues from their own perspectives; for example, the users address
constraints from the business point of view and the information systems representatives
address constraints from the technology point of view. The participants are asked to
make notes on these issues to bring to the meeting.

Tailor the process. The session leader uses experience and judgment to adjust the
general JAD process to the system being built. Typically this includes deciding how
much time and how many meetings will be required for the session phase. It also
includes tailoring the generic JAD document formats to match the needs of the current
system.

Prepare materials. The session leader makes the necessary logistical arrangements
for the session, including reserving and setting up a meeting room. Visual aids and
supplies are ordered and placed in the room; these typically include blank transparen-
cies, flip chart paper, marking pens, and “magnetics”—vinyl magnetic rectangles that
can be written on and moved around on a whiteboard to facilitate visualization of the
system.

To facilitate the smooth running of the session, the session leader also prepares several
overhead transparencies or flip charts in advance. These include a welcome message, a
meeting agenda, a review of the JAD process, a review of high-level requirements cate-
gories and system scope issues (described below), and the blank forms required by the
JAD process for recording information, decisions, and issues.

The JAD/Plan Session Phase

The JAD/Plan session consists of one or more group meetings to define the high-level
requirements for the new system and to define its scope. The subsequent JAD/Design is
also planned in the session.

All the participants bring different ideas and views of the system to the session.
Through carefully facilitated discussions, these ideas and views are presented, analyzed,
and refined, so that by the end of the session, everyone is in agreement. To achieve this
goal, the session follows a well-defined process, as outlined below.

4 ' Joint Application Design

e

Conduct orientations. The session begins with a welcome to the participants from
the executive sponsor and from the session leader. All the participants are introduced.
The executive sponsor gives a brief summary of the history of the effort to date and
describes the expectations of the participants during the session.

The session leader then gives an overview of the JAD process, including the amount of
time to be spent on each task. However, this overview is not a detailed training course.
As each new task is begun, the leader provides more detailed information about the
task. This includes the purpose of the task, the roles of the participants, how the task is
performed, and how the output is recorded and formatted.

Define high-level requirements. The session leader facilitates the group discussion
that elicits the high-level requirements. Five major topics are addressed:

1. Objectives: what is the reason for building this system; what purpose will it
serve?

2. Anticipated benefits: what benefits (quantifiable or unquantifiable; tangible or
intangible) will be derived from the use of this system?

3. Strategic and future considerations: how can this system help our company in
the future; how will it give us a competitive or strategic advantage over our
competitors?

4. Constraints and assumptions: what constraints exist for the system we are
building (resources, organizational structure, standards, laws); what constraints
exist for the project that is developing the system?

5. Security, audit, and control: are there internal or external security require-

ments for the system and its data; are their audits or controls that will be
required?

Typically, to begin the discussion the leader asks general questions (that have been
prepared in advance) on each of these topics. As requirements are identified by the
participants, they are recorded by the analyst on flip charts or transparencies, which
remain available throughout the discussion. The participants discuss, refine, and
assess the requirements.

Bound the scope of the system. The discussion generates a large number of
requirements. The next step is to begin to organize the requirements and agree on the
scope of the system to be built. For an information system, a helpful way to proceed is
to identify who will actually use the system and what major tasks the system will help
them do. For example, sales representatives may be identified as users, and the major
task for them is submitting an order from a customer. Note that it is also important to
identify tasks that are outside the scope of the system. The goal is to bound the scope,
so that the system is large enough to meet its objectives but not so large as to be too
costly or complex to build.

It is in this step that the magnetic visual aids can be most useful. The names of tasks
can be written on the magnetics, which are then placed on a whiteboard and connected
with arrows that represent data flows. As the discussion proceeds, the shape of the
system changes, and the magnetics can be moved to show the evolving system.

Joint Application Design 5

|

At this point, the requirements elicitation part of the JAD/Plan session is essentially
complete. The next three parts of the session identify information that will be needed in
the JAD/Design step.

Identify and estimate JAD/designs. A critical step in the planning for a software
project is estimating resource needs (especially people and time). Some estimating
techniques (including one called function point analysis) depend on estimates of the
number of inputs to the system (input files or data entry screens) and the number of
outputs from the system (output files or reports). This kind of information is also useful
in predicting how much time will be needed for the JAD/Design step.

The session leader conducts a discussion in which this kind of estimating is done by the
group. The data is recorded and estimates for the length of the JAD/Design step are
made.

Identify participants for JAD/Design step. The group next determines who should
participate in the JAD/Design step. It may be desirable to have different design steps
for different subsystems. Different user representatives and specialists may be needed
for each subsystem.

Schedule JAD/Design meetings. The group discusses the structure for the JAD/
Design step. This is particularly important in sequencing several design steps for sub-
systems. Some organizations choose to have sequential design steps, while others inter-
leave the phases (customization, session, and wrap-up) of the separate design steps.

Document issues and considerations. During the course of the session, there arise
issues that affect the requirements for the system, but for which none of the participants
has the necessary information or the authority to resolve. It is important that these be
documented and resolved. Sometimes there arise considerations that don’t affect the
current JAD process, but that can affect how the system is built or how it is used in the
organization. These are also be documented for later reference.

The JAD process specifies document forms for recording issues and considerations.
Figure 1 (page 7) shows an example of an issue recording form. Note that each issue is
assigned to a person for resolution by a particular date. Considerations are generally
recorded simply as a list.

Conclude the session phase. The session leader concludes the session by reviewing
with the participants the information collected and the decisions made. Each partici-
pant is given an opportunity to express any remaining concerns about the requirements.
The session leader conducts this discussion so that everyone gains a sense of ownership
of and commitment to the requirements that have been documented. Concluding the
session on a psychologically high note helps ensure future productive contributions from
everyone involved.

6 ’ Joint Application Design

ISSUES

issue Resolution
Description | Assignto Date

1

Resolution
Description

Figure 1. Issue recording form

The JAD/Plan Wrap-Up Phase

The main goal of the wrap-up phase is to transform the transparencies, flip charts, and
other handwritten documents from the session phase into formal planning documents,
including the software requirements specification. The analysts work full time during
this phase, assisted by the session leader. The phase has three distinct parts.

Complete the JAD/Plan document. An organization normally has a set format for a
JAD/Plan document, although it may be customized somewhat for a particular software
project. The analysts are responsible for translating the outputs of the session into a

document that conforms to this format.

Review the JAD/Plan document. After the analysts have produced a complete
JAD/Plan document, all participants in the session are given an opportunity to review

Joint Application Design

and comment on it. Usually, this can be done by giving each participant a copy of the
document and asking for written comments.

If there are substantive comments from the reviewers, a meeting is called to discuss the
comments. All the participants in the original session are invited, so that changes in
the document are agreed to by everyone.

Obtain executive sponsor approval. After the analysts have revised the plan docu-
ment to reflect the comments of the reviewers, the session leader submits it to the exec-
utive sponsor for approval. Such approval gives the weight of authority to the document
and brings closure to the JAD/Plan process. All of the session participants are then
given copies of the final document.

Professional Facilitation Services

Facilitating a group process is considerably more difficult than it sounds. A large
company that builds many systems over a long period of time can benefit from an
investment in training of their own staff members to be JAD session leaders and facili-
tators. Other companies can employ consultants, skilled in facilitating JAD sessions, to
work with company users and developers during the JAD sessions. This can greatly
improve the success of the JAD process.

Suggested Reading

This book is perhaps the most detailed description of the JAD technique.

August, Judy H. Joint Application Design: The Group Session Approach to
Systems Design. Englewood Cliffs, N. J.: Prentice-Hall, 1991.

8 ' Joint Application Design

Requirements Elicitation by Brainstorming

Brainstorming is a simple group technique for generating ideas. It allows people to
suggest and explore ideas in an atmosphere free of criticism or judgment.

A brainstorming session works best with four to ten people. One person is the leader,
but the role of the leader is more to get the session started than to constrain it.

The session consists of two phases. In the generation phase, participants are encour-
aged to offer as many ideas as possible, without discussion of the merits of the ideas. In
the consolidation phase, the ideas are discussed, revised, and organized.

For purposes of software requirements elicitation, brainstorming can be helpful in
generating a wide variety of views of the problem and in formulating the problem in
different ways. It is especially useful very early in the elicitation process. When used
correctly, it can help overcome some of the underlying difficulties of requirements elici-
tation:

It stimulates imaginative thinking to help users become aware of their needs.

It helps build a more complete picture of the users’ needs.
¢ It can avoid the tendency to focus too narrowly too soon.

e For some personality types, it provides a more comfortable social setting than
some of the more structured group techniques.

Brainstorming also has the advantage that it is easy to learn and requires very little
overhead With practice, the participants can become very good at it. On the other
hand, because it is an unfacilitated and relatively unstructured process, it may not
produce the same quality or level of detail of some other processes.

Conducting a Brainstorming Session

Preparation for a brainstorming session requires identifying the participants, designat-
ing the leader, scheduling the session with all participants, and preparing the meeting
room.

The participants are those who normally participate in requirements elicitation: cus-
tomers, buyers, and users who need the software, and the software engineers who will

This document is taken from the SEI educational materials package “Lecture Notes on Requirements
Elicitation” by Sridhar Raghavan, Gregory Zelesnik, and Gary Ford, document number CMU/SE]-94-EM-
10, copyright 1994 by Carnegie Mellon University. Permission is granted to make and distribute copies for
noncommercial purposes.

Brainstorming) 1

develop the software. The outcome of the session depends on the ideas generated by the
participants, so it is essential to include people with knowledge and expertise appropri-
ate to the system being built.

The leader opens the session by expressing a general statement of the problem. This
seed expression should be general, but still sufficiently focused to put the session on the
right track.

The participants are then free to generate new ideas relevant to the problem expression.
Some leaders prefer to give each participant in turn an opportunity to express one idea,
going around the table as many times as necessary. Other leaders take ideas from par-
ticipants in any order, selecting them on the basis of a raised hand. The process contin-
ues as long as ideas are being generated.

Alex F. Osborn, a researcher and writer on creating thinking, offers four rules for the
generation phase of the session:

1. Criticism of ideas is absolutely forbidden. Participants must feel totally free to
express any idea.

2. Wild, offbeat, or unconventional ideas are encouraged. Such ideas often stimu-
late the thinking of participants in unintended and unpredictable directions,
which can lead to really creative approaches to the problem.

3. The number of ideas generated should be very large. The more ideas proposed,
the more good ones are likely to be present.

4. In addition to suggesting totally new ideas, participants should be encouraged
to combine or embellish ideas of others.

To facilitate this last rule, it is necessary for all ideas to remain visible to the partici-
pants. Several techniques can be used to do this; the technique used may depend on the
equipment available in the meeting room.

® One person, either the leader or a scribe, is designated to record all ideas on a
whiteboard or large sheets of paper. Unless the meeting room has wall-to-v all
whiteboards, flip chart pads are probably better. As each sheet is filled, it is
posted in view of all participants.

¢ Participants step to the whiteboard or flip chart to record their own ideas.

¢ Several smaller sheets of paper are used, and they are placed in the middle of the
table where all participants can reach them. When an idea is proposed, it is
added to any of the sheets.

The generation phase can conclude in either of two ways. If the leader believes that not
enough ideas are being generated, the meeting can be stopped. The group reconvenes
and continues at another time when people (and their ideas) are fresh. If enough ideas
have been generated and recorded, the leader can move the meeting to the next phase.

The consolidation phase permits the group to organize the ideas in ways that they can
best be used. It is in this phase that evaluation of ideas takes place.

2 ' Brainstorming

The first step is usually to review the ideas for the purpose of clarification. It may be
necessary to reword some of the ideas so that they are better understood by all partici-
pants. During this step, it is also common for two or more ideas to be recognized as
being essentially the same, so they may be combined and reworded to capture the sense
of the originals.

Next, the participants can usually agree that some of the ideas are too wild to be usable.
These are discarded.

The remaining ideas are then discussed with a goal of ranking or prioritizing them. In
the case of software requirements, it is often necessary to identify those that are abso-
lutely essential, those that would be nice but not essential, and those that might be
appropriate for a second or subsequent release of the system.

After the session, the leader or other designated person produces a record of all the
remaining ideas, along with their priorities or other relevant comments from the consol-
idation phase.

Tools to Support Brainstorming

There is an area of research called computer-supported cooperative work (CSCW) that is
developing tools and techniques by which people can work together without necessarily
being located in the same room or building. A few tools are starting to appear that could
be applied to brainstorming.

Videoconferencing tools are an example. With appropriately configured and networked
workstations, the participants in a brainstorming session could remain in their offices
and still be seen and heard by all other participants. The ideas could be entered by the
individual participants or by a scribe, with each participant seeing the ideas immedi-
ately on the workstation screen.

The effectiveness of these tools is still uncertain. Some people believe the tools may first
be useful in the consolidation phase, which involves editing and reordering the state-
ments of the ideas. Doing this online provides the group an opportunity to evolve the
final idea list during the session.

Suggested Reading

These books contain detailed discussions of brainstorming, although not in the context
of software requirements elicitation.

Clark, C. H. Brainstorming. Garden City, N. Y.: Doubleday & Company, Inc.,
1958.

Osborn, Alex F. Applied Imagination, Principles and Procedures of Creative
Thinking. New York: Charles Scribner’s Sons, 1953.

Brainstorming . 3

Requirements Elicitation by Interviewing

Interviewing is an important technique for eliciting detailed information from an indi-
vidual. As a software engineer, you will use it in requirements elicitation for large
systems as part of some of the high-level elicitation techniques. For small projects, you
may also use interviewing as your only requirements elicitation technique.

Interviewing is not simply a matter of asking questions. It is a more structured tech-
nique that you can learn, and you can gain proficiency with training and practice. It
requires the development of some general social skills, the ability to listen, and knowl-
edge of a variety of interviewing tactics.

Interviewing has four phases: identifying candidates, preparing, conducting the inter-
view, and following up. We discuss these phases in detail below.

Identifying Candidates for interviewing

Requirements elicitation by interviewing begins with identifying the people to be inter-
viewed. You usually start with the person who has authorized or is sponsoring the pro-
ject to build the software system,; this is often a manager or executive. The organization
chart for a company helps identify other relevant people—those who report to that
manager. These are the people who know why the system is being built and who will
use it.

A requirements elicitation effort may involve interviewing many people, but it is not
necessary to identify all of them before starting the interviews. One line of inquiry in
each interview is the determination of other people who should be interviewed. This is
done with questions such as:

¢ “Who else should I talk to?”

¢ “Who else may use the system?”

¢ “Who will agree with you on this?”

¢ “Who will disagree with you on this?”
You should also consider people who may not be actual users of the system “o be built,

but who interact with the users. Those interactions may be changed or d.sru . ted after
the system is installed, and you want to minimize these negative effects. You can ask:

This document is taken from the SEI educational materials package “Lecture Notes on Requirements
Elicitation” by Sridhar Raghavan, Gregory Zelesnik, and Gary Ford, document number CMU/SEI-94-EM-
10, copyright 1994 by Carnegie Mellon University. Permission is granted to make and distribute copies for
noncommercial purposes.

Interviewing ' 1

¢ “Who else interacts with you?”

Preparing for an Interview

There are two major activities in preparing for an interview: making arrangements
with the people to be interviewed and preparing a list of questions.

Interviews must always be scheduled in advance, both as a matter of courtesy and to
allow the interviewees to be prepared. You should make them aware of the goals of the
interview, agree on the length of the interview, and give them any relevant materials
they will need in order to prepare. You should also remind them of the interviews a day
or two in advance; this can help ensure that they do the preparation.

Interviews are sometimes recorded on audio or video tape. Because taping makes some
people nervous and thus affects the quality of the information gained from the inter-
view, you should secure permission of the interviewees in advance.

Prepare in advance a list of questions to be asked at the interviews. Because interview-
ing is used to elicit detailed software requirements, you already have general ideas of
the kind of system to be built. These general ideas will guide you in the preparation of
questions. On the other hand, you cannot prepare all questions in advance. Informa-
tion that you get during the interview will open new areas of inquiry, and you will need
to create additional questions as you go.

Organize the list of questions into a logical order and arrange it as groups of questions
about related issues. Finally, decide how much time to devote to each issue.

Interview Process Protocol

Beginning the interview. To get the interview started, introduce yourself (assuming
you do not already know the interviewee). Next, review the goals of the interview: why
you are here, what will be done with the information collected, the kinds of issues that
will be covered, and the time allocation among the issues. During this review you can
assess the extent to which the interviewee is prepared. In rare instances, the lack of
preparation by the interviewee will necessitate stopping and rescheduling the interview
at a later time.

Software requirements are often expressed in mathematical or graphical notations, such
as data flow diagrams or state transition diagrams. If you are using any such notations,
you should explain them at the start of the interview in order to be sure they are under-
stood.

General guidelines. During the interview, you of course ask your prepared questions.
However, there are oral communication skills and strategies that you can use to
increase the quality of the information received.

First, you should keep in mind the fact that a person’s first answer to a question will not
necessarily be complete and correct, nor will it necessarily be expressed in language that

2 ' Interviewing

you understand as clearly as the interviewee. You will need to explore most answers to
improve your understanding. Some of the best ways to do this are to summarize,
rephrase, and show implications of what you hear, so that the interviewee can confirm
your understanding.

Summarizing is useful throughout the interview, not just at the end. It helps confirm
understanding and it can elicit useful generalizations and higher level abstractions.

Rephrasing answers—stating information in your own words—is an important strategy
for dealing with ambiguity in language. It helps you understand an issue by forcing you
to translate the understanding into words. Rephrasing also helps uncover misunder-
standings of specialized terminology.

For interviews in the context of software requirements elicitation, you as the software
professional bring a range of technical knowledge to the interview that the interviewee
does not have. This often gives you insight into the implications of a particular user
requirement. It is helpful to explain those implications to the user, who may then
decide that is not what was wanted after all.

Be an active listener during the interview. Look at the interviewee when he or she is
speaking. When making notes, avoid the tendency to stop listening. If necessary, you
can ask the interviewee to pause while you are writing.

Be courteous during the interview and try to keep the interviewee at ease. Avoid ques-
tions that might seem threatening, such as “I want an answer! Yes or no?”

You should allow the interviewee the opportunity to answer questions fully. Sometimes
this results in wandering from topic to topic. This is acceptable, but you then must
choose your next questions carefully to bring the interview back on track. You must
remain in control of the interview.

You can also make use of some non-verbal communication techniques during interviews.
In particular, body language can be an important indication of the mood of the intervie-
wee. If body language suggests that he or she is becoming closed or less receptive to
questions, you may need to move the discussion to a different issue or take other action
to reduce the stress.

Keeping the process visible. From time to time it is useful to make comments or ask
questions about the interview itself, in addition to the questions about the software
requirements. Questions such as these help ensure that the process is going well:

* “Are we doing all right?”

¢ “Have we ignored anything?”

¢ “Did we spend enough time on this issue?”

Make sure the interviewee understands the rationale for your questions. If asked, you
should explain the purpose of a question.

You should take care, however, to remain in control of the interview. Don’t accept too
many questions, and if the discussion moves away from the subject of the interview, be
prepared to point it out to the interviewee.

Interviewing ' 3

Types of questions. There are a few general types of questions that you will almost
always use in interviews. Protocol questions address the context for the software
system rather than the behavior of the system itself.

¢ “Why are we building this system?”

¢ “What do you expect from it?”

¢ “Who are other users of this system?”

Open-ended questions encourage unconstrained answers and can elicit a large amount
of information. They can be very useful when you don’t yet know enough about the
system to ask more detailed questions.

¢ “Tell me what you do.”
¢ “What aspects of your job are tedious?”

Closed-ended questions are useful when you need to educate the interviewee about a
particular issue and force a precise or detailed answer.

You should be careful when asking some kinds of leading questions, depending on the
personality and mind-set of the interviewee. For example, compare these two questions:

¢ “Should the sales report be produced weekly?”
¢ “How often should the sales report be produced?”

A “yes or no” question allows the interviewee to make a complete response without
giving the question much thought. If you use too many such questions with a passive
user, you may end up with your own view of the requirements instead of those of the
user.

Avoid the tendency to anticipate an answer. When you have asked your question, stop
talking. For example, if you ask, “How often should the sales report be produced?” don’t
follow immediately with “Daily? Weekly? Monthly?”

Software requirements are often complex, and the user may not have a fully developed
understanding of his or her needs. This normally means that a single question about an
issue may not elicit a complete or meaningful response. You should explore issues with
questions that approach the issue from different directions, or that are at different
levels of abstraction.

You should also ask questions to raise the level when the interview begins to get too
detailed or too focused on a single solution to the problem. When the user says that a
specific function is needed, you can ask a series of laddering questions to raise the level:

¢ “What is the goal of that?”
e “What is its purpose?”
¢ “By what means will that be accomplished?”

You may need to ask these questions two or three times, each time forcing the answer to
be at a higher level.

Putting questions in context. During the course of the interview, you will switch
topics or question contexts from time to time. Make sure the interviewee understands

4 ' Interviewing

the context in which you are asking each question. You can often depend on the context
of previous question, but after changing topics, you should explicitly state the new
context. Otherwise you may get unreliable details.

For example, if you pose a question about the format of particular data items, the
answer may depend on whether the context is a discussion of input data or output data.

Avoid switching context tco often, because this prolongs the interview and increases
confusion.

Checking for errors. During the interview, you must be sensitive to communication
errors, check for them periodically, recognize when they occur, and correct them. Some
of the most common kinds of errors are:

e Observational errors: when viewing a phenomenon, different people focus on dif-
ferent aspects and may “see” different things.

* Recall errors: the interviewee may be relying on recall of specific information,
and human memory is fallible.

¢ Interpretation errors: you and the interviewee may have different interpreta-
tions of common words, such as “small amount of data” or “special characters.”

¢ Focus errors: you may be thinking broadly, while the interviewee is thinking
narrowly about an issue (or vice versa), which affects the level of abstraction in
the discussion of that issue.

e Ambiguities: there are inherent ambiguities in most forms of communication,
and especially in natural language.

¢ Conflicts: you and the interviewee may have conflicting opinions on an issue,
resulting in a tendency to record your own view rather than what the intervie-
wee is saying.

¢ Facts that are simply not true: the interviewee may give information as fact that
is really judgment or opinion; you should check facts with other sources, espe-
cially those facts on which you will base significant decisions.

With experience, you can learn to recognize when errors like these might have occurred.
You can then ask a question to confirm the error, and ask additional questions to correct
the error.

Ending the interview. The interview can end when all the questions have been asked
and answered, when the allotted time has been exhausted, or when you sense that the
interviewee is becoming too fatigued or “drained” to continue.

Be sure to leave five to ten minutes for summarizing and consolidating the information
you have received. Describe briefly the major issues that you believe you have ade-
quately explored and those, if any, that you believe require additional information.
Explain the follow-up actions that will be taken, including an opportunity for the inter-
viewee to review a written summary of the interview. Solicit and answer questions
about the interview, the follow-up actions, or what will happen to the information col-
lected. Finally, thank the interviewee for the time and effort he or she has given.

Interviewing 5

Follow-up Activities

After conducting an interview, there are a few activities that you should perform. As a
courtesy, it is usually appropriate to send the interviewee a written expression of
thanks.

The most significant post-interview activity is to produce a written summary of the
interview. The process of writing the summary provides an opportunity to reorganize or
reorder the topics discussed and to consolidate related information. It may also help
you uncover ambiguities, conflicting information, or missing information.

Give the interviewee a copy of the summary and request confirmation that the summary
accurately reflects the information exchanged in the interview.

If the interview produced statistical or other factual information that depended solely on
the memory of the interviewee, you should confirm that information with reliable
sources.

Finally, you should review the procedures you used to prepare for and conduct the
interview, with the goal of finding ways to improve the process in the future. You may
want to pay particular attention to the kinds of questions that you found most or least
successful in eliciting useful information. If you will conduct interviews with several
potential users of a new software system, you can revise your prepared questions before
the next interview.

Suggested Reading

This book contains a variety of information about interviewing, including an especially
helpful section titled “General Suggestions for Beginners.”

Bingham, W. V. D.; & Moore, B. V. How To Interview, 4th Revised Edition. New
York: Harper & Brothers Publishers, 1959.

6 . Interviewing

Requirements Elicitation Using the
PIECES Framework

Often the main problems for an inexperienced requirements engineer is how to get
started. It is not at all clear what questions you should ask to elicit requirements from
the users. The PIECES framework helps solve this problem by providing a set of cate-
gories of issues that can help you structure the elicitation process.

PIECES is an acronym for the six issue categories: performance, information and data,
economy, control, efficiency, and services. In each category there are several issues that
you should explore with the users. The framework can be tailored to include initial or
seed questions that are especially appropriate for the kinds of systems that an organiza-
tion is likely to build.

The PIECES framework is best used for analyzing existing systems, whether manual or
automated. It is especially appropriate for eliciting requirements for enhancing or
improving information systems.

For example, the processing of customer orders at a company may involve filling out
paper forms of various kinds and delivering copies to various departments. This a
manual system whose components, the forms themselves and the flow of those forms,
can be analyzed to elicit requirements for an automated system for order processing.

The framework can also be tailored to a specific application domain. With experience,
you can develop a set of detailed questions and checklists to help ensure that you have
done a thorough requirements elicitation for each system you want to build or enhance.

Six Categories of issues

Performance. The performance of a system is usually measured in one of two ways.
The throughput is the number of tasks completed in a unit of time, such as the number
of orders processed in a day. The response time is the amount of time required to
perform a single task. (Note that mathematically, these two measures are inverses of
each other: tasks per time and time per task.)

To elicit performance requirements, you need to ask questions that will help identify the
tasks that the system must perform, and then identify the throughput or response time

This document is taken from the SEI educational materials package “Lecture Notes on Requirements
Elicitation” by Sridhar Raghavan, Gregory Zelesnik, and Gary Ford, document number CMU/SEI-94-EM-
10, copyright 1994 by Carnegie Mellon University. Permission is granted to make and distribute copies for
noncommercial purposes.

The PIECES Framework) 1

for each type of task. When analyzing an existing system, you may find that experi-
enced users already know where performance problems exist. These problems represent
opportunities for improving the system.

Information and data. It is the nature of information systems to provide information
or data that is useful in decision making. To be most effective, the system should pro-
vide access to the right kind of information, neither too much nor too little of it, at the
right time, and in a usable form.

You should explore these issues with the users. If users tend not to use the system, it
may be a symptom of the wrong kind of information being provided. If they use it but
express frustration, it may mean that the system presents too much information or pre-
sents it in a form other than what the users need. The system may provide information
in a daily report that is only needed monthly, or a monthly report that is really needed
daily. Or the reports may have good information, but it is tedious to have to look for
data several times a day in a 100-page report, suggesting that online access may be
better than printed reports.

Economy. Issues related to the cost of using a process or system are always important.
Generally speaking, there are two interrelated cost factors that must be considered in
the design of the system: service level and excess capacity. The service level is a mea-
sure of the system’s performance (throughput or response time or both). For some
systems, the demand on the system varies considerably from minute to minute or hour
to hour, but the users would like to have a relatively stable service level or performance.
This can be accomplished by building into the system the excess capacity needed to
handle the peak demands.

Unfortunately, excess capacity is usually expensive. In manufacturing processes, for
example, seasonal demand for certain products might suggest having several extra fac-
tories that can be activated as demand increases and then shut down. This is clearly
not an economical solution, both in terms of the buildings and machinery that would
often be idle and in terms of the hiring and firing of workers for those factories.

In a software system, excess capacity may mean having additional processors, disk
drives, or network connections that can be brought online as needed, or it could mean
designing internal data structures to handle information of unexpected size or complex-
ity from time to time. As in the manufacturing example, such excess capacity can be
expensive.

You should explore these issues with the users. A thorough understanding of the
expected load on the system and the appropriate service level will help the developers
make appropriate tradeoffs to balance service level and excess capacity.

Control. Processes are normally designed to have predictable performance and
outputs. W* 'n the process deviates from the expected performance, control is achieved
by taking correciive action. Many information systems must provide the information to
managers who control such processes. In real-time control systems, the control is
exerted directly by the software through appropriate hardware interfaces.

2 ' The PIECES Framework

e

Security is a type of control that is important in some software systems. Access to the
system may have to be restricted to certain users or certain times of the day. Access to
some of the information in the system may be restricted to certain users, or the kind of
access (read-only vs. read-write) may be restricted.

Another type of control is auditing—the ability to see, monitor, or reconstruct system
behavior during or after the fact. An example is the kind of auditing that is done in
financial or accounting systems

Requirements elicitation should address control issues carefully; otherwise a system
may be built that provides too little or too much control. Too little control can let a pro-
cess get out of hand, while too much can impede getting the real work done.

Efficiency. It is not always the case that all the energy or resources devoted to a task
actually go to doing useful work; sometimes there is waste. Efficiency is, in a sense, a
measure of the waste. It is usually defined as the ratio of the resources resulting in
useful work to the total of all resources expended.

Note that this differs from economy (discussed earlier). To improve the economy of a
process, the total amount of resources devoted to it must be reduced. To improve effi-
ciency, the waste in the use of those resources must be reduced.

Consider, for example, a company that is growing and has found that its accounting
software is no longer able to provide an adequate service level. One potential solution is
to purchase faster processors and larger storage devices, and then to continue to use the
same software. Another potential solution is to revise the software to use faster algo-
rithms or more compact data structures, and then use the revised software on the
current hardware.

There are many opportunities for efficiency in software systems. During requirements
elicitation, you must explore these opportunities with the users. Some inefficiencies can
be characterized as unnecessary redundancy; examples are acquiring data more than
once, storing it in multiple places, or computing a particular value more than once.
Inefficiencies also result from the use of poor algorithms and poor data structures. A
poor user interface to the software may waste the user’s time.

Services. A software system normally provides services to the users, and the users
may be in the business of providing services to customers. Thinking in terms of services
can be very helpful during the requirements elicitation process. You normally ask the
users what kinds of services they need from the software and how those services should
be provided. But you should also ask what kinds of services are needed by the users’
customers and how the software system can help provide those services. The new soft-
ware system may also provide services to other software systems, and you musk ask
about the needed interfaces between the systems. All of these kinds of questions will
help elicit the major functional requirements of the software system.

There is one particularly difficult aspect of understanding how the services should be
provided: should the software simply provide automated assistance to users who will
continue to do essentially the same work in essentially the same way, or should the

The PIECES Framework 3

software provide an opportunity for users to do different work in different ways?
However this question is answered, some changes in the behaviors of the users are
likely to be required.

Consider, for example, a company that wants to automate its customer order processing.
Currently, the company sends sales personnel to customer sites; the orders are recorded
on paper forms and then carried back to the home office for processing. There are
several parts of this process that could be automated, and each causes some kind of
disruption in the work of the company’s employees. One approach is to provide auto-
matic scanning of the order forms, reducing the need for data entry clerks. Another
approach is to give the sales personnel portable computers with modems, so that orders
could be entered directly into the computer at a customer’s site and then transmitted
back to the home office via telephone lines. This approach requires the sales staff to
change the way they work (and perhaps acquire keyboarding skills and computer liter-
acy), and it may eliminate part of the jobs of the persons who design, print, stock, and
deliver the paper order forms. Still another approach is to install an online terminal at
each customer site, so that they can enter their own orders directly. Such a solution
would vastly change the jobs of the sales personnel.

Issues such as these often cannot be resolved by eliciting requirements only from the
direct users of the system (in this example, the data entry clerks and sales staff). When
the behavior of whole departments of a company will be affected, you must also talk to
managers within and above those departments. Failure to do so can result in the devel-
opment of a software system that technically meets its requirements, but that cannot be
made to function within an organization.

Suggested Reading

This book contains a more detailed description of systems analysis using the PIECES
framework.

Wetherbe, J. Systems Analysis & Design: Traditional, Structured, and
Advanced Concepts and Techniques. St. Paul, Minn.: West Publishing, 1984.

4 ' The PIECES Framework

Classroom Materials

Student Handouts for the Role-Playing Exercise

Requirements Elicitation Exercise: Joint Application Design
Requirements Elicitation Exercise: Brainstorming
Requirements Elicitation Exercise: Interviewing
Requirements Elicitation Exercise: the PIECES Framework
The Software Services Group

The Stealth Helicopter Avionics Project

The Customer Statement of Need

The Role of the Customer

The Role of User 1

The Role of User 2

The Role of the Requirements Analyst

The Role of the Software Engineer

Transparency Masters

GAO Survey of Software Contracts
Adaptive Loops Framework
Goal-Directed Elicitation Process

Requirements Elicitation Exercise:
Joint Application Design

Participant Customer:

Roles
User 1:

User 2:
Requirements Analyst:
Software Engineer:
Session Leader (optional):
Preparation Read chapters 3, 4, and 6 of [August91].
Read the description of the Software Services Group.
Read the description of the Stealth Helicopter Avionics Project.
Read the Customer Statement of Need.
Read the description of your assigned role.

Description Your group is to perform a requirements elicitation activity using the
Joint Application Design (JAD) technique. The goal is for the group to
generate a set of requirements, written in English sentences, for the
Mul-~ software system. Due to time restrictions, an entire
Mui. ~a JAD cannot actually take place. Therefore, the group
should concern itself with performing a JAD/Plan session phase only.
You will be given 15 minutes to prepare. During this time, reread the
description of your assigned role and start expanding on it. If you are
the customer or a user, jot down your ideas about the requirements
and expand upon the ideas in your role description. If you are the
customer, plan what you will say during the JAD/Plan session phase
orientation.

A JAD/Plan session phase normally consists of eight tasks through
which the session leader guides the participants. Again, due to time
restrictions, the group should concern itself with performing only five
of them:

¢ conduct JAD orientation

¢ define requirements

¢ bound system scope

Requirements Elicitation Exercise: Joint Application Deéign 1

Reference

¢ document issues and considerations
¢ conclude session phase

If no student has been designated to play the role of session leader,
that role should be played by the customer. The requirements analyst
will document the agreed-upon detailed requirements, and the soft-
ware engineer will document the issues and considerations.

Conduct JAD orientation: During this task, the session leader reiter-
ates the main points of this description to familiarize the participants
with the procedures and to define terms such as issues and considera-
tions. [5 minutes]

Define requirements: For this task, follow the normal procedures for a
JAD/Plan session, except change the category Anticipated benefits to
General requirements. Don’t concern yourself with anything outside
the scope of the system itself, such as business and legal issues. Focus
on the requirements for the software system, and make them as
detailed as you can in the time allotted. Give all participants a chance
to introduce new ideas. [40 minutes]

Bound system scope: For this task, the session leader leads the partic-
ipants through a clarification of the scope of the system; the generated
requirements are reevaluated with respect to that scope. Any
requirements falling outside the scope are removed from the list of
requirements and documented separately by the requirements
analyst. [10 minutes]

Document issues and considerations: This activity is an ongoing one.
The software engineer documents each of these as they are identified
during the JAD/Plan session phase.

Conclude the JAD/Plan session: The session leader reviews the
accomplishments of the JAD/Plan session with the participants. [§
minutes]

August, Judy H. Joint Application Design: The Group Session
Approach to Systems Design. Englewood Cliffs, N. J.: Prentice-Hall,
1991.

Requirements Elicitation Exercise: Joint Application Design

Requirements Elicitation Exercise:

Brainstorming
Participant Customer:
Roles
User 1:
User 2:
Requirements Analyst:
Software Engineer:

Preparation

Description

Read pages 69-85, 96-103, and 107-113 of [Clark58].

Read the description of the Software Services Group.

Read the description of the Stealth Helicopter Avionics Project.
Read the Customer Statement of Need.

Read the description of your assigned role.

Your group is to perform a requirements elicitation activity using the
brainstorming technique. The goal is for the group to generate a set of
requirements, written in English sentences, for the Multiterm soft-
ware system.

You will be given 15 minutes to prepare. During this time, reread the
description of your assigned role and start expanding on it. If you are
the customer or a user, jot down your ideas about the requirements
and expand upon the ideas in your role description.

You will have one hour to perform the brainstorming activities. Spend
20 minutes in the idea generation phase and 40 minutes in the consol-
idation phase.

For the idea generation phase, be creative but phrase the ideas in
terms of requirements for the Multiterm system. If your ideas
describe features, capture them in terms of functional requirements.
If your ideas describe responses, capture them as behavioral require-
ments. Designate one person in the group to write down each
complete idea on a single list.

During the consolidation phase, the requirements analyst reads
through the list of requirements (ideas) one at a time. The entire
group then classifies each requirement in two ways: first by practical-

Requirements Elicitation Exercise: Brainstorming ' 1

ity (good ideas that can be investigated immediately, ideas that need
long range or involved study, and unusable ideas) and then by priority
(ideas that absolutely must be implemented, those that are desirable
but not urgently needed, and those that should be added only if time
and money permit). Any new ideas generated in this phase should be
considered for addition to the final list.

Reference Clark, C. H. Brainstorming. Garden City, N. Y.: Doubleday &
Company, Inc., 1958.

2 Requirements Elicitation Exercise: Brainstorming

Requirements Elicitation Exercise:

Interviewing
Participant Customer:
Roles
User 1:
User 2:
Requirements Analyst:
Preparation Read pages 64-78 of [Bingham41].

Description

Read the description of the Software Services Group.
Read the description of the Stealth Helicopter Avionics Project.
Read the Customer Statement of Need.

Your group is to perform a requirements elicitation activity using the
interviewing technique. The goal is for the group to generate a set of
requirements, written in English sentences, for the Multiterm soft-
ware system.

You will be given 35 minutes to prepare. For the first 30 minutes,
discuss and write down sample questions that an interviewer might
ask a customer and a user. Develop two lists of questions, one for the
customer and one for the user. Deliberate not only about the ques-
tions themselves, but also the sequencing of the questions.

During the last 5 minutes of the preparation time, decide which role
each group member will take and then distribute the descriptions of
the roles. Study your role for the remainder of the time, expanding on
your role and on the requirements enumerated in the description.

Next, the person playing the role of the requirements analyst conducts
three ten-minute interviews, one with each of the other participant
roles. The interviews can be done in any order, but each must be done
in the absence of the other participants. Since the first interview will
begin only five minutes after the descriptions of the roles are dis-
tributed, the first person interviewed will have to develop his or her
role as the interview progresses. The others will have a chance to
develop their roles before their interviews.

The interviewer starts with the questions developed during the prepa-
ration (in the interest of time), but he or she may generate new ones

Requirements Elicitation Exercise; Interviewing 1

as the interviews progress. The interviewer writes down any elicited
requirements on a separate sheet of paper, in complete sentences.
After the interviews are complete, the interviewer should take ten
minutes to finish writing down and organizing the elicited set of
requirements.

Reference Bingham, W. V. D.; & Moore, B. V. How To Interview, 4th Revised
Edition. New York: Harper & Brothers Publishers, 1959.

2 Requirements Elicitation Exercise: Interviewing

Requirements Elicitation Exercise:
the PIECES Framework

Participant
Roles

Preparation

Description

Customer:

User 1:

User 2:

Requirements Analyst:

Read pages 114-124 of [Wetherbe84].

Read the description of the Software Services Group.

Read the description of the Stealth Helicopter Avionics Project.
Read the Customer Statement of Need.

Your group is to perform a requirements elicitation activity using the
PIECES framework. The goal is for the group to generate a set of
requirements, written in English sentences, for the Multiterm soft-
ware system.

You will be given 35 minutes to prepare. For the first 30 minutes,
discuss and write down sample questions that an interviewer might
ask a customer and a user, using the PIECES framework as a start.
Develop two lists of questions, one for the customer and one for the
user. Deliberate not only about the questions themselves, but also the
sequencing of the questions.

During the last 5 minutes of the preparation time, decide which role
each group member will take and then distribute the descriptions of
the roles. Study your role for the remainder of the time, expanding on
your role and on the requirements enumerated in the description.

Next, the person playing the role of the requirements analyst conducts
three ten-minute interviews, one with each of the other participant
roles. The interviews can be done in any order, but each must be done
in the absence of the other participants. Since the first interview will
begin only five minutes after the descriptions of the roles are
distributed, the first person interviewed will have to develop his or her
role as the interview progresses. The others will have a chance to
develop their roles before their interviews.

Requirements Elicitation Exercise: PIECES Framework 1

The interviewer starts with the questions developed during the prepa-
ration (in the interest of time), but he or she may generate new ones
as the interviews progress. The interviewer writes down any elicited
requirements on a separate sheet of paper, in complete sentences.
After the interviews are complete, the interviewer should take ten
minutes to finish writing down and organizing the elicited set of
requirements.

Reference Wetherbe, J. Systems Analysis & Design: Traditional, Structured,
and Advanced Concepts and Techniques. St. Paul, Minn.: West Pub-
lishing, 1984.

2 Requirements Elicitation Exercise: PIECES Framework

%‘ Zooming Airplane Company

2000 Infinite Loop. Cupertino, Califomia

The Software Services Group

The Software Services Group within Zooming Airplane Company is responsible for the
development of all new application, environment, and system-level support software for
the entire company. The group has three divisions that operate autonomously, provid-
ing the software for various customers within the company (see the figure below). Each
division is headed by a director, but right now one of the divisions is headed by a
program manager who is really the deputy acting as director. The vice president in
charge of the Software Services Group is David Greene, who has been at the site for five
years and in charge of this particular group for one year. Rumor has it that he is look-
ing forward to retirement in two years. Greene comes from a military background. He
served in the Air Force for more than 20 years, attaining the rank of Captain. His
background is in logistics, but he has worked in the computer field for the past eight
years. He was previously director of the Environments Division within the group.

Software Services
Group
Vice President
David Green
1
Applications Systems Software Environments
Division Division Division
Director Director Acting Director
Theresa Franklin Mark Collins Arnold Frost

Requirements Analyst

Stealth Helicopter Software Engineer

Project
Project Leader

Customer

User 1
User 2

Software Services Group 1

The Environments Division

This division is the smallest division in the Software Services Group and is headed by
the program manager of the Case Tools program, Arnold Frost. He has been in his
current position for about a year after being promoted into it when Greene was
promoted to be the vice-president in charge of the group. He is acting as deputy director
until a suitable replacement can be found. Frost spent his first ten years in the Army in
a combat support role, and then he retired from the Army and switched over to the
computer field for a total of six years of computer operations experience. He only under-
stands the basics of operating a computer but is an excellent program manager. Arnold
Frost has his sights set on becoming the permanent division director of the
Environments Division. The Environments Division is responsible for maintaining a
standard computing environment within the remaining divisions. It is largely composed
of computer operations specialists, ranging from general computer operators to special-
ized experts such as telecommunications specialists. The division employs roughly 20
software engineers, whose responsibilities entail writing software to facilitate the inte-
gration of case tools, purchased from different vendors, into the standard computing
environment.

The Applications Division

This is the largest division in the So.tware Services Group and is headed by Theresa
Franklin, who has been at the site for three years. An engineer by training, she has
been working in the computer field for about 15 of her 20 years of experience. She was
promoted to the level of division director when the previous director retired, approxi-
mately two months ago. This division handles all the applications for the company. In
particular, the division is responsible for the avionics applications for each of the air-
planes manufactured by the company.

The Applications Division enjoys a very good reputation within the group. It is com-
posed of approximately 90 software engineers of various levels of experience, and they
have a reputation of developing applications that meet their specifications on time and
with only minor cost overruns. Part of the success of the division can be attributed to
the extensive use of case tools and system-level support software within the group’s
standard computing environment. The Applications Division either purchases commer-
cial off-the-shelf (COTS) support software or has it custom made by the System
Software Division if no COTS software can satisfy the particular need. The Applications
Division then works with the Environments Division to integrate the support software
into the standard computing environment for the group.

The System Software Division

Due to the complex nature of the software developed by the Applications Division, COTS
software that can meet their special support software needs is not generally available.
Therefore, the Applications Division subcontract~ to the System Software Division to
have much of their support software custom made. The System Software Division, the
second largest division in the Software Services Group , is headed by Mark Collins, who
has only recently become involved in the computer field. He spent most of his 20-year

2) Software Services Group

career as the Chief Liaison Officer at a Strategic Air Command (SAC) Air Force base.
He retired from the Air Force three years ago and has been working in the computer
field since. Collins was bitten by the computer bug while in college, and has always
been interested in software systems; so after retiring from the Air Force he acquired a
master’s degree in software engineering.

This division is composed of approximately 45 computer scientists and software engi-
neers of various levels of experience, although it is starting to attract a significant
number of younger staff. The division is viewed as being composed of largely inexperi-
enced software “hackers.” They have a reputation of being difficult to work with and of
not always delivering what was originally requested by the customer. In addition to
this, they often miss delivery deadlines and run over budget.

Software Services Group 3

% Zooming Airplane Company

2000 Infinite Loop. Cupertino, Cdlifomia

The Stealth Helicopter Avionics Project

The avionics system of the new Stealth Helicopter is being developed by the Stealth
Helicopter Project within the Helicopter Program of the Applications Division. It is
being developed in Ada and is composed of multiple independent threads of execution
(programs), each dedicated to a single microprocessor in the helicopter. The threads of
execution run simultaneously, communicating with each other to complete their tasks.

Early in the design of the system, project management decided to develop the software
on a VAX 8600 minicomputer and later port it to the target microprocessors within the
helicopter. Their rationale was that, because Ada is a standard language, porting prob-
lems would be small in comparison to the problems and cost associated with testing and
debugging the system on the target hardware. Project management, however, also
knew that the members of the Stealth Helicopter Project did not have the appropriate
computing equipment to perform adequate integration testing of the multiple threads of
execution in the system.

To perform integration testing on the VAX 8600, an engineer would need the capability
of running, monitoring, and debugging all of the independent threads of execution
simultaneously on the minicomputer. This capability can easily be provided on a
VAXStation II workstation running the same version of VMS operating system and
using the same Ada compiler as those used on the VAX 8600. In this scenario, the engi-
neer has access to multiple windows from the same keyboard. Each independent thread
can be set up to execute in one of the windows, allowing the engineer to test and debug
the entire application from a single computer. However, because of the prohibitive cost
associated with giving every engineer a workstation, only one in ten Applications divi-
sion staff members has one. The other nine staff members have VT220 paging termi-
nals hooked to a VAX 8600 running VMS. Since Digital Equipment Corporation (DEC)
does not supply VMS owners with even a primitive windowing capability for such ter-
minals, the only way an engineer without a workstation can test the avionics system is
to go to a place where there is more than one VT220 terminal and set the tests up from
as many VT220 terminals as is necessary. Running such tests this way, however, is
next to impossible with only one or even a few engineers.

To solve this problem, the Applications Division investigated the availability of software
that might provide their staff with a primitive windowing capability for VT220 termi-
nals. After having no success in the commercial market, the Applications Division
decided to subcontract to the System Software Division to solve this problem. The
System Software Division accepted the contract and set up a project called Multiterm
within the Operating Systems Program. When the project was established and a suffi-
cient number of staff was hired, the Applications Division presented the Multiterm
Project with a statement of need. This officially signaled the start of the project.

Stealth Helicopter Avionics Project

% Zooming Airplane Company

2000 Infinite Loop. Cupertino. California

The Customer Statement of Need

The Stealth Helicopter Project of the Applications Division, hereafter referred to as the
contractor, has the need to run, monitor, and debug multiple, autonomous, simultane-
ously executing, communicating Ada threads of execution (programs) from a single
VT220 terminal on a VAX 8600 running VMS version 5.1.

The Multiterm Project of the System Software Division, hereafter referred to as the
subcontractor, will provide a software system, hereafter referred to as the software, that
enables the contractor to have this capability.

The software provided by the subcontractor must have a decidedly VMS-like look and
feel; must have an unobtrusive user interface; must allow the customer to operate the
VMS symbolic debugger, the VMS EDT and TPU editors, the VMS mail program, and
other VMS applications while debugging application software; and must exhibit the
same keystroke-to-display response time that VMS already provides typical user
sessions on a VAX 8600 from a VT'220 terminal. The software provided by the subcon-
tractor must also allow the customer to supply input (from the keyboard) to and view
the output from any application program currently being run, monitored, or debugged.

Customer Statement of Need

The Role of the Customer

You are the customer. The customer for the Multiterm system is the
technical team leader for the Stealth Helicopter Project within the Multiterm
Applications Division. You have been with the Applications Division

in the Zooming company for seven years and with the Stealth Helicopter Project since
its beginning one year ago. You have 15 years of software development experience on
large projects and were awarded the technical team leadership position on the current
project as a result of displaying outstanding commitment, leadership, and design and
development abilities on your past two projects.

You are a very intelligent, experienced, capable software designer and developer who
consistently produces software that meets or exceeds the quality, performance, and
functional requirements of the customer. Because of this, you are extremely confident
in your judgment and can rarely be persuaded to lock at alternatives unless an
extremely sound argument is presented. You have the uncanny ability to abstract away
from the details of a problem and design a system that not only solves the problem but
incorporates cutting-edge technology and innovative features into the solution.
However, you evolve a design over time and rarely write it down until you must. Not all
ideas come at once, therefore, and sometimes the ideas can even be general and conflict-
ing. The following paragraphs describe your general requirements for the delivered
software system.

The capability of the software system must at the very least mirror the capabilities
provided on the DECStation running DECWindows under VMS version 5.1. This means
that the software must support multiple windows on the VI200 or VI'300 terminal
simultaneously. It must provide the capability of running the DEC symbolic debugger,
TPU and EDT editors, and the DEC electronic mail software in any window. This, how-
ever, is the minimum requirement. It would be nice to be able to run all VMS software
and utilities in any window.

The software system must be able to allow creation and deletion of windows. It must be
able to allow input to be directed to any desired window. It must be able to connect a
desired window to the terminal display so that the user can see output from the process
running in that window (i.e., it must support switching among windows).

The user interface should be unobtrusive, and it should present the user with the look
and feel of VMS wherever possible. Performance should not be noticeably different from
the performance on the DECStation (with respect to keystroke response times).

The software system must be developed in Ada.

You have not thought about these requirements to any lower level of detail. For any
question or discussion, your responses should be consistent with your own personal
concepts regarding windowing systems, operating systems, dumb terminals, etc.

Note: You are to use this role to guide your actions during the role-playing exercise. The
description provides only high-level guidance, however, and you are encouraged to
embellish the role using your own experience and the background materials provided to
you in this exercise.

The Role of User 1

You are a user for the Multiterm software system. You are one of the
software developers on the Stealth Helicopter Project within the Multiterm
Applications Division. You have been with the Applications Division

of the Zooming company for three years and with the Stealth Helicopter Project for
about six months. You have five years of software development experience on large
projects and were given a software development position on the current project as a
result of demonstrating tremendous productivity and superior problem-solving skills on
your last project.

You are a very intelligent, capable software developer who consistently produces soft-
ware solutions that are creative, innovative, and elegant. You have a genius intelli-
gence quotient (I1Q), are highly productive, and prefer to work alone because you often
get impatient with others who do not understand your solutions. Because of this, you
are extremely confident in your abilities and are never afraid to experiment with new
data structure designs and new algorithms. You utilize every available language
construct at your disposal in each of the languages you use to develop software, namely
C and Ada. You are often labeled a “hacker,” but your skills are those of a software
engineer; your code adheres to strict software engineering principles. You have much
respect among your peers and your ideas carry much weight.

With respect to the Multiterm software system, you are not as concerned about basic
windowing functionality as you are about using the software to perform integration
testing of the Stealth Helicopter avionics software. You are more interested in acquir-
ing functionality that will make the testing not only possible, but also easier. The para-
graphs below describe your general requirements for the delivered software system.

You agree with the customer that the capability of the software system must at the very
least mirror the capabilities provided on the DECStation running DECWindows under
VMS version 5.1. However, you desire some more interesting functionality and
features. When creating a window under Multiterm, the software system should
support starting either the DEC Command Language (DCL) interpreter or a VMS
executable image. You do not know if it is possible, but you would like to be able to send
keystrokes from the keyboard to more than one window simultaneously. You wish to be
able to record input to and output from any and all windows under Multiterm control to
keep as logs for debugging purposes. It would also be nice to have the ability to have
input scripts to bring a Multiterm session to a predetermined, desired state. Qutput
from windows not attached to the terminal display must not be lost.

You agree with the customer with respect to user interface and performance require-
ments.

You have not thought about these requirements to any lower level of detail. For any
question or discussion, your responses should be consistent with your own personal
concepts regarding windowing systems, operating systems, dumb terminals, etc.

Note: You are to use this role to guide your actions during the role-playing exercise. The
description provides only high-level guidance, however, and you are encouraged to
embellish the role using your own experience and the background materials provided to
you in this exercise.

-

The Role of User 2

You are a user for the Multiterm software system. You are one of the
software developers on the Stealth Helicopter Project within the Multiterm
Applications Division. You have been with the Applications Division

of the Zooming company for six months, and you have just joined the Stealth Helicopter
Project. You have two years of software development experience, all within the Zooming
company, and were given a software development position on the current project as a
result of your experience with VMS. You acquired all of your software development
skills in college on DEC VAX systems using VMS, and you have worked on VMS
systems since you joined the company.

You are a budding young software developer who shows much promise. You gained high
marks in school in all of your software engineering classes. You were hired onto the
Stealth Helicopter project because of your high marks in school and because your two
years of software development experience were with Ada, on DEC workstations running
VMS. The software that you produced on your last project adhered to the principles of
software engineering you were taught in school, and the result was well-structured,
well-documented code.

Because you lack software development experience in general, though, your code was
not easily integrated with the rest of the system. However, your project manager has
every confidence that your skills will improve as you gain experience. The project man-
ager felt that you best represent the typical, intended user of the Multiterm software
system and asked that you participate in the requirements definition activities.

With respect to the Multiterm software system, you are concerned about maintaining a
VMS look and feel and supporting VMS functionality within the windows under
Multiterm control. You would like to see VMS command recall within each window
preserved. In fact, if it is possible, you would like to see any VMS command, entered in
any window, be recallable and executed in any other window under Multiterm control.
You would not like to see borders on the windows; it takes up too much space. You want
each window to have full control of the terminal display (each window uses the entire
terminal display, overlapping every other window completely). You want to see
Multiterm support VMS top-level DCL processes as well as DCL subprocesses in a
window. You want the Multiterm commands to be simple sequences of keystrokes, not
echoed back to the terminal screen. You want a quick help screen to refresh your
memory about these keystroke sequences. You want VMS messages (such as “You have
new mail.”) to come through Multiterm to processes running under it.

You have many more thoughts about user interface requirements at lower levels of
detail. For any question or discussion, your responses should be consistent with your
own personal concepts regarding the VMS operating systems, dumb terminals, etc.

Note: You are to use this role to guide your actions during the role-playing exercise. The
description provides only high-level guidance, however, and you are encouraged to
embellish the role using your own experience and the background materials provided to
you in this exercise.

The Role of the Requirements Analyst

You are a requirements analyst for the Multiterm Project in the
System Software division. You have veen with the Zooming company Muttiterm
for seven years and with the Multiterm Project since it began three

months ago. You have ten years of software development experience on large projects
and two additional years of experience as a requirements analyst. You were given your
current position on the Multiterm Project as a result of demonstrating superior
communication and problem-solving skills on your last project, where you were the
principle requirements analyst.

Your undergraduate degree is in mathematics, and you initially gained experience in
programming by writing statistical analysis programs in FORTRAN for your assign-
ments in college. When you graduated from school, the job market was tight for math-
ematicians, but there were plenty of jobs for programmers. Your first job was as a
FORTRAN programmer in a telephone company. While you were there, you picked up
some limited experience with C. After three years of working with the telephone com-
pany, your project delivered its software system and you were laid off because of a lack
of available work. At that time, the Zooming company was entering full-scale develop-
ment on three of its projects and hired you because of your C experience.

Over the next seven years, you were proficient and productive enough to continue to
find work within Zooming. You learned Ada and gained much experience in both C and
Ada. Over the years, however, you became more interested in the human aspects of
software development and less interested in developing code. As a result, you enrolled
in a program at the local university to obtain a master’s degree in behavioral psychol-
ogy, and you are about to graduate. Two years ago you applied for and obtained a
position as a systems analyst on a management information systems project within the
Applications Division. You knew immediately that you had found a home. You became
extremely productive because communicating with people was easy and fun, and you did
it well. Your first project as a systems analyst was extremely successful in that the
delivered software met or exceeded every expectation of the customer and users. You
were instrumental in the project’s success because you were able to get the customer
and users to communicate their needs, and you captured an accurate understanding of
them.

Your success inspired you to pursue more requirements-related work within Zooming;
you, therefore, learned some requirements elicitation techniques on your own.

With respect to the Multiterm software system, all you know is what you have read
from the customer’s statement of need; you are, nevertheless, excited to get started on
this project. You plan to use one of the requirements elicitation techniques you know to
get started with gathering the requirements for Multiterm. You are also confident that
your previous development experience will help you resolve technical conflicts that
might arise.

Note: You are to use this role to guide your actions during the role-playing exercise. The
description provides only high-level guidance, however, and you are encouraged to
embellish the role using your own experience and the background materials provided to
you in this exercise.

P TN

|7 omm—— Y ;
!s-—;
[,,“ s —
14 :
|ar

sk 8 |

The Role of the Software Engineer

You are a software engineer on the Multiterm Project, hired to
perform high-level design of the system. You have been with the Multitem
System Software Division in the Zooming company for four years and

were just brought on board the Multiterm Project last week. You have six years of
software development experience in all; your first two years were spent writing
application programs in the Applications Division at Zooming, which hired you directly
from college. You were given a software design and development position on the current
project as a result of your knowledge of VMS and the software design skills that you
demonstrated on your last project, a software simulator for the embedded computer
aboard the Stealth Fighter.

You are a very methodical software designer and developer with a reputation for
producing software systems that meet their specifications. You are very thorough,
investigating every alternative design and weighing the benefits and risks associated
with each. This gives you a reputation for working slightly slower than other engineers,
but this is acceptable because you produce systems that work and that contain few
errors.

You have read the statement of need supplied by the customer and have done some
initial investigation, experimentation, and prototyping in VMS to answer questions that
came to mind while reading it. You know that using Ada increases the risk that
keystroke-to-display response times will be longer than is acceptable. You know that
there are VMS library routines, accessible from Ada programs, that will allow a
program to create multiple, dependent subprocesses in VMS. You know that it is possi-
ble to open I/O channels to each of these subprocesses via pseudo-terminal device
drivers. In short, you know that VMS will support your creation of a windowing system
for dumb terminals. The risks are with the performance that Ada will provide.

Note: You are to use this role to guide your actions during the role-playing exercise. The
description provides only high-level guidance, however, and you are encouraged to
embellish the role using your own experience and the background materials provided to
you in this exercise.

GAO Survey of Software Contracts

d for
ered

[
29.7%

Software pa
/ but not deliv

be used after changes
~3%

Software that could

Software used

but later reworked
or abandoned

19%

— Software delivered
but never used
47%

be used as delivered
~2%

Software that could

Contracts Totalling $6.8 Million

ine

N

Year 1982

Figure 1

Introduction to Requirements Engineering

2 inBiy :uoneyd3 siuewelnbey o} LOONPOIIU]

sale|nW.0joy

1adojanaq | SjUI0dMaIA MaN 498
Buiuses)
soonpu|
SOA|OAT
UOIINIOAD
Buipuejsiapun 10§ aunssaid

saoueyusy

woalsAs

yiomaweld sdoo aAndepy

€ aunBiy uonepx3 suewesnbey o} uoldNPONUY

a|qedisapun «
ISIXd 9|qelisap . ABayens
jou op S109))3 uonoy
a|qejjosuodun ¢ £B
V|| 9|qe]|0JIu09 « " M_uw_um » M_#Msm
1siXo SUoI}ipuodaid n <M oy
jeobqng
jeobqnsg jeobqgnsg
sjeob mau
0} spean
jeod

— ———— et ——
e ——

SS920.d UOoI}e}Id1|g paloalig-|eoy)

UNLIMITED, UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE

1a. REPORT SECURITY CLASSIFICATION
Unclassified

1b. RESTRICTIVE MARKINGS
None

2a. SECURITY CLASSIFICATION AUTHORITY
N/A

2b. DECLASSIFICATION/DOWNGRADING SCHEDULE
N/A

3. DISTRIBUTION/AVAILABILITY OF REPORT

Approved for Public Release
Distribution Unlimited

4. PERFORMING ORGANIZATION REPORT NUMBER(S)
CMU/SEI-94-EM-10

5. MONITORING ORGANIZATION REPORT NUMBER(S)

6a. NAME OF PERFORMING ORGANIZATION 6b. OFBCE SYMBOL 7a. NAME OF MONITORING ORGANIZATION
Software Engineering Institute é‘fE';"’““""’ SEI Joint Program Office
6¢c. ADDRESS (city, state, and zip code) 7b. ADDRESS (city, state, and zip code)
Carnegie Mellon University HQ ESC/ENS
Pittsburgh PA 15213 5 Eglin Street
Hanscom AFB, MA 01731-2116
8a. NAME OFFUNDING/SPONSORING 8b. OFFICE SYMBOL | 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER 1
ORGANIZATION (if applicabie)

SEI Joint Program Office ESC/ENS

F1962890C0003

8c. ADDRESS (city, sute, and zip code))

10. SOURCE OF FUNDING NOS.

CambegiehNFI)ellor% University PROGRAM PROIECT TASK WORK UNTT
Pittsburgh PA 15213 ¥O. v ~
9 63756E N/A N/A N/A
11. TITLE (Include Secusity Classification)
Lecture Notes on Requirements Elicitation
12. PERSONAL AUTHOR(S)
Sridhar Raghavan, Gregory Zelesnik, and Gary Ford
13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (year, month, day) 15. PAGE COUNT
Final FROM TO March 1994 86 pp.

16. SUPPLEMENTARY NOTATION

l 17. COSATI CODES 18. SUBJECT TERMS (continue on reverse of necessary and identify by block number)
FIELD GROUP SUB. GR. joint application design software engineering education H
requirements
requirements elicitation software requirements
19. ABSTRACT on if ry and idenufy by block number)

Requirements elicitation is the first of the four steps

ations, additional exercises, and a bibliography.

being analysis, specification, and validation). Software engineers use several elicitation technioes.
To facilitate teaching these techniques, materials are provided to support an introductory lecture and
four lectures on specific techniques: joint application design, brainstorming, interviewing, and the
PIECES framework. A role-playing exercise is provided that allows students to experience each of
the techniques. Information for instructors includes educational objectives, pedagogical consider-

in software requirements engineering (the others

(please um over)

20. DISTRIBUTION/AVAILABILITY OF ABSTRACT
UNCLASSIFIED/UNLIMITED] SAME AS mD DTIC USERS .

21. ABSTRACT SECURITY CLASSIFICATION
Unclassified, Unlimited Distribution

22a. NAME OF RESPONSIBLE INDIVIDUAL

I Thomas R. Miller, Lt Col, USAF

DD FORM 1473, 83 APR

EDITION of 1 JAN 731S OBSOLETE

22b. TELEPHONF NUMBER (include arca code)
(412) 268-7631

22¢. OFFICE SYMBOL
ESC/ENS (SE|)

UNLIMITED, UNCLASSIFIED
SECURITY CLASSIFICATION OF T1iiS

BSTRACT — continued from page one, block 19

The Software Engineering Institute (SEI) is a federally funded research and development center, operated by Carnegie
Mellon University under contract with the United States Department of Defense.

The SEI Educational Products Program is developing a wide range of materials to support software engineering
education. A curriculum module (CM) identifies and outlines the content of a specific topic area, and is intended to be
used by an instructor in designing a course. A support materials package (SM) contains materials related to a module
that may be helpfui in teaching a course. An educational materials package (EM) contains other materials not necessarily
related to a curriculum module. Other publications include software engineering curriculum recommendations and course
designs.

SEI educational materials are being made available to educators throughout the academic, industrial, and government
communities. The use of these materials in a course does not in any way constitute an endorsement of the course by the
SEI, by Carnegie Mellon University, or by the United States government.

Permission to make copies or derivative works of SEI curriculum modules, support materials, and educational materials
listed below is granted, without fee, provided that the copies and derivative works are not made or distributed for direct
commaercial advantage, and that all copies and derivative works cite the original document by title, author's name, and
document number and give notice that the copying is by permission of Carnegie Mellon University.

Most of the documents listed below are available in PostScript format on Internet host ftp.sei.cmu.edu in
directory/pub/education. They may be accessed with the anonymous ftp protocol.

Comments on SE! educational materials and requests for additional information shouid be addressed to SEI Products,
Software Engineering Institute, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213. Electronic mail can be sent
to education@sei.cmu.edu on the Internet.

Curriculum Modules (* Support Materials available) Educational Materials

CM-1 [superseded by CM-19] EM-1 Software Maintenance Exercises for a Software
CM-2 Introduction to Software Design Engineering Project Course

CM-3 The Software Technical Review Process® EM-2 /™SE Interactive Monitor: An Artifact for Software

tangineering Education

EM-3 Reading Computer Programs: Instructor's Guide and
Exercises

CM-4 Software Configuration Management®
CM-5 Information Protection

CM-6 Software Safety o ; ;

CM7 Assurance of Sofware Quality EM-4 Iélg%fttware Engineering Project Course with a Real

CM-8 Formal Specification of Software® EM-5 Scenes of Software Inspections: Video Dramatizations

CM-9 Unit Analysis and Testing for the Classroom

CM-10 Models of Software Evolution: Life Cycle and Process EM-6 Materials to Support Teaching a Project-Intensive

CM-11 Software Specifications: A Framework Introduction to Software Engineering

CM-12 Software Metrics EM-7 Materials for Teaching Sofiware Inspections

CM-13 Introduction to Software Verification and Validation EM-8 Lecture Notes on Software Process Improvement

CM-14 Intellectual Property Protection for Software EM-9 Lecture Notes on Engineering Measurement for Software
. Engineers

CM-15 [no longer available} £ . N

CM-16 Software Development Using VDM M-10 Lecture Notes on Requirements Elicitation

CM-17 User Interface Development*

CM-18 [superseded by CM-23]

CM-19 Software Requirements

CM-20 Formal Verification of Programs

CM-21 Software Project Management

CM-22 Software Design Methods for Real-Time Systems

CM-23 Technical Writing for Software Engineers

CM-24 Concepts of Concurrent Programming

CM-25 Language and System Support for Concurrent
Programming*

CM-26 Understanding Program Dependencies

CM-27 Formal Specification and Verification of Concurrent
Programs

