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ABSTRACT

In this paper we apply a sensitivity equation method to shape optimization problems.

An algorithm is developed and tested on a problem of designing optimal forebody simulators

for a 2D, inviscid supersonic flow. The algorithm uses a BFGS/Trust Region optimization

scheme with sensitivities computed by numerically approximating the linear partial differ-

ential equations that determine the flow sensitivities. Numerical examples are presented to

illustrate the method.
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1 Introduction

The development of practical computational methods for optimization based design and

control often relies on cascading simulation software into optimization algorithms. Black-box

methods are examples of this approach. Although the precise form of the overall "optimal

design" (OD) algorithm may change, there is an often unstated assumption that. properly

combining the "best" simulation algorithim with the "best" optimization scheme will produce

a good OD algorithm. There are many examples to show that in general this assumption is

not valid. However, in many cases it is a valid assumption and often this approach is the

only practical way of attacking complex optimal design problems. If one uses this cascading

approach, then it is still important to carefully pass information between the simulation

and the optimizer. Typically, one uses a simulation code to produce a finite dimensional

model and this discrete model is then used to supply approximate function evaluations to

the optimization algorithm. Moreover, the approximate function., are then differentiated to

supply gradients needed by the optimizer. Although there are numerous variations on this

theme, they all may be formulated as "approximate-then-optimize" approaches. There are

other approaches that first formulate the problem as an infinite dimensional optimization

problem and then use numerical schemes to approximate the optimal design. All-at-once,

one-shot and adjoint methods are examples of this "optimize-then-approximate" approach.

Regardless of which approach one chooses, some type of approximation must be introduced

at some point in the design process.

The sensitivity equation (SE) method is an approach that views the simulation scheme

as a device to produce approximations of both the function and the sensitivities. The ba-

sic idea is to produce approximations of the infinite dimensional sensitivities and to pass

these "approximate derivatives" to the optimizer along with the approximate function eval-

nations. There are several theoretical and practical issues that need to be considered when

this approach is used. For example, there is no assurance that the SE method produces "con-

sistent derivatives." This will depend on the particular numerical scheme used to discretize

the problem. However, the SE method allows one the option of using separate numerical

schemes for flow solves and sensitivities, so that consistent derivatives can be forced. We

shall not address these issues in this short paper. The goal here is to illustrate that a

SE based method can be used with standard optimization schemes to produce a practical

fast algorithm for optimal design. We concentrate on a particular application (the optimal

forebody design problem) and use a specific iterative solver for the flow equations (PAR( ,).

Many flow solvers are iterative miud for these types of codes, the SE method has perhaps the

maximum potential for improving speed and accuracy.



In the next section we describe the forebody design problem and formulate the optimal

design problem. In Sections .3 and 4 we review the derivation of the sensitivity equations

and in Section 5 we discuss modifications to an existing simulation code that are needed in

order to use that code for computing sensitivities. In Section 6, we present numerical results

for the optimal design problem and Section 7 contains conclusions and suggestions for future

work.

2 Optimal Design of a Forebody Simulator

This problem is a 2D version of the problem described in [1,4,8] . The Arnold Engineering

[)evelopment C'eniter (AEDC) is developing a free-jet test facility for full-scale testing of

engines in various free flight conditions. Although the test cells are large enough to house

the jet engines, they are too small to contain the full airplane forebody and engine. Thus,

the effect of the forward fuselage on the engine inlet flow condition- must be "simnulated."

One approach to solving this problem is to replace the actual forebody by a smaller object,

called a "forebody simulator" (FBS), and determine the shape of the FBS that produces the

best flow match at the engine inlet. The 2D version of this problem is illustrated in Figure

2.1 (see [i1,[41, [81 and [9]).

The underlying mathematical model is based on conservation Jaws for mass, mnomentum

and energy. For inviscid flow, we have that

o + FN+ aF2=o (1)

where

Q M F1 = mu + P and F.2 (2)71 M' liy •+ P()

E (E + P)u (E + P)v

The velocity components u and v, the pressure P, the temperature T, and the Mach number

M are related to the conservation variables, i.e., the components of the vector Q, by

ti it 2
u=--, v -, P=(3- 1 -y-+ ,

p p

T =y•(y,- 1) ( -§ •(u +±v2)) and M - T()

At the inflow boundary, we want to simulate a free-jet, so that we specify the total

pressure Po, the total temperature To and the Mach number Mo. We also set v = 0 at the
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inflow boundary. If iq, PI and T, denote the inflow values of the x-component of the velocity,

the pressure and the temperature, these may be recovered from Po, To and Mo by

T I = To-1-M2) p ( + P0M and u1 = MOT, MgTo( 2 .--. 0, 2 M01) (I + 21M )
(4)

The components of Q at the inflow may then be determined from (4) through the relations

"-YPi P1  2
P1 - MI = Plt11, n7 = 0 and E = + p2.

The forebody is a solid surface, so that the normal component of the velocity vanishes,

i.e.1

u171 + vri2 = 0 on the forebody, (6)

where ill and 7/2 are the components of the unit normal vector to the boundary. Note that
we impose (6) on the velocity components u and v, and not on the momentum components

m and n. Insofar as the state is concerned, it is clear that it does not make any difference

whether (6) is imposed on m and it or on u and v, since m = pu and n = pv and p # 0. It

can be shown that it does not make any difference to the sensitivities as well.

Assume that at x = /3 the desired steady state flow Q = Q(y) is given as data on the line
(called the Inlet Reference Plane)

IRP = {(x, y)lx = /1, a < y <_ 6}.

Also, we assume here that the inflow (total) Mach number M0 can be used as a design
(control) variable along with the shape of the forebody. Let the forebody be determined by

the curve r = [(x), a < x < /3 and let p = (M0, F(.)). The problem can be stated as the

following optimization problem:
Problem FBS. Given data Q = Q(y) on the IRP, find the parameters p* = (MJ, [*(.))

such that the functional

W= II Qo(03, y) - Q(y) 112 dy (7)

is minimized, where Q..(x, y) = Qoo(x, y, p) is the solution to the steady state Euler equations

(Q, p) F, +-F 2 =. (8)
ax Oy

In the FBS design problem, the data Q is generated both experimentally and numerically.

In particular, the full airplane forebody (which is longer and larger than the desired FBS) is

used to generate the data. Since the FBS is "constrained" to be shorter and smaller, we shall

:3



consider the optimization problem illustrated in Figure 2.2 below. 'The data Q is generated

by solving (1)-(6) for the long forebody in Figure 2.2-(a) and the problem is to find p" to

minimize j where the shortened FBS is constrained to be one half the length of the "real

forebody." This problem provides a realistic test of the optimal design algorithm in that the

data can not be fitted exactly. Also, we note that we have a problem with shocks in the flow

field. As shown in [2], optimization of flows with shocks can be difficult and requires some

understanding of the impact that shocks have on the smoothness of the cost functional.

Clearly the statement of the problem is not complete. For example, one should carefully

specify the set of admissible curves F(.) and questions remain about existence, uniqueness

and integrability of "the" solution Q,. We will not address these issues in this short paper.

Most optimization based design methods require the computation of the derivatives

,2_( (x y,p). These derivatives are called sensitivities and various schemes have been de-

veloped to approximate the sensitivities numerically (see [7], [8], [10] and [11]). A common

approach is to use finite differences. In particular, the steady state equation (8) is solved

for j) and again for f + Ap and then -Q.(x, y, fi) is approximated by Qoo(X,,Y,++Ap)-Q-(X,y,f).

This method is often costly and can introduce large errors. Another approach is to first

derive an equation (the sensitivity equatiop) for -Qoo(x,y,p) and then numerically solve

this equation. We shall illustrate this approach for the forebody design problem. In the next

two sections we derive the sensitivity equations. Although these derivations may be found

in [3] we repeat them here for completeness.

3 Sensitivities with Respect to the Inflow Mach Num-
ber

First, we consider the design parameter MO. We will derive equations for the sensitivity

P1 I

Q'= I9Q = , (9)

E'

where
Op M i_ it, = and On =' iE (10)

- Ma' = M' - =_ 0M0 a 0M2"

The differential equation system (1) has no explicit dependence on the design parameter

M0, so that equations for the components of Q' are easily determined by formally differen-

tiating (1) with respect to MO. The result is the system

OQ' F• d F.• ,(1'9Q, + 9-g7 + 0-F2 =
Ot ax a9Y
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where

7111u' + 1Wu + P, , Iu' + Wlu
F'= mu' + 711u and F2 = ? + W + P/ (12)I fly + ?fl'V ) I ) tv P

(E + P)u' + (E' + P')u (E + P)v' + (E' + P')v

and where,

09u ' av p,= P T-OT
ju- aV' pO2 ' P and OT (13)

and where, through (3), the sensitivities (10) and (13) are related by

U = -P M p P, = (-Y -1) ( E 2p (U2 + v+) - p(uu' + V,,),

7'=l'-p'2 and T'=7(7-1)(E' -p2p - (uu' + vv')) . (14)

Note that (11) is of the same form as (1), with a different flux vector. In particular, (11)

is in conservation form. As a result of the fact that (11) is linear in the primed variables,

and that by (14) u', v' and P' are linear in the components of Q', (11) is a linear system in

the sensitivity (9), i.e., in the components of Q'.

Now, we need to discuss the boundary conditions for Q'. Except for the inflow conditions,

all boundary conditions are independent of the design parameter Mf. Thus, the latter may

be differentiated with respect to Mg to obtain boundary conditions for the sensitivities. For

example, at the forebody where (6) holds, we simply would have that

u'711 + v'r/2 = 0 on the forebody. (15)

Similar operations yield boundary conditions for the sensitivities along symmetry lines, other

solid surfaces and at the outflow boundary. Note that if instead of (6), one interprets the no

penetration condition as one on the momentum, i.e., m 1 1 + nr72 = 0 on the forebody, then

instead of (15) we would have that

71'1 + n'+12 = 0 on the forebody (16)

which is seemingly different from (15). However, (6) and (14) can be used to show that

1' 1 71 +i 7111 2 = P(u'711 + V'72) + P'(Urt 1 + Vr/ 2) = P(U'It1 + vi/7 2) (17)

so that, since p # 0, (15) and (16) are identical.

The inflow boundary conditions for the sensitivities may be determined by differentiating

(4) and (5) with respect to the design parameter M02. Note that this parameter appears

5



explicitly in the right-hand-sides of the equations in (4) and (5). Without difficulty, one

finds from (5) that

p,= -,P; - -•TT;, m1 = P,,,; + a,,p,,
, 1 12,

0 2it/= and E, I "-1P', 2 u~p + 1~~u (18)

where, from (4),

1, = P- 0  POT" 2 "T01 oý ) P 1 + - Y- 1 M 2)

T, M0  _____+_2).and /T± TV / +(7-1)M/) (19)d uj = +M0 + Tj =2M0 (I + -•- 2M2)312

4 Sensitivities with Respect to the Forebody Design
Parameters

We assume that the forebody is described in terms of a finite number of design parameters

which we denote by Pk, k = I,..., K, and that the forebody may be described by the relation

y = 4I)(x; ,P1, P2,...- , PK), av _< X _< f3 (20)

We express the dependence of the state variable Q on the coordinates and the design

parameters by Q = Q(t, x, y; M2,, P1. P-2 ,... PK). We have already seen what equations can

be used to determine the sensitivity of the state with respect to Mo/, i.e., for Q'. We now

discuss what equations can be used to determine the sensitivities with respect to the forebody

design parameters Pk, k = 1,..., K, i.e., for

QQ = = ,k (21)

Ek

where

= dp 077 an O E
Pk = 'Pk' = P9 A__k a A and Ek =-k' k = 1,..., K. (22)

System (1) has no explicit dependence on the design parameters Pk, so that equations

for the components of Qk are easily determined by differentiating (1) with respect to Pk,

k = 1,..., I. This produces the systems, k = I..., K, given by

Qk OFkl dFk.2
at = 0, (23)
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where

( 111. (Ilk
Fk = MUk + 71ku + Pk- and Fk..2 =lUk + TlkU

?IlVk + " Ilkl ) 1 t'k + -- lkV + Pk-

(E + P )u1k + (Ek + PIk)u (E + P)vk + (Ek + Pk)v
(24)

and where,

du dv dP OT
V Pk =z and Tk- (25)"O"k-01'.' dP. - ' a. Pi."

Moreover, by (3), the sensitivities (22) and (25) are related by

Uk = -P - -Pk, Pk = ( Ek - 1) E Pk(U + V2) - p(uuk + VVk)

Vk =Ik - -~Pk and Tk=( - 1) Ek - -Pk - (U'tk + VVk) , (26)
p p P

for k=l,...,K.

All boundary conditions except the one on the forebody also do not depend on the

forebody design parameters Pk., k = 1,..., K. For example, consider the inflow boundary

conditions (4)-(5). Differentiating these with respect to Pk, k = 1, K, A yields that

PkI = Mk = Ilk] = EkI = TkI = PkI = uk J = vkO = 0 (27)

at the inflow boundary. Now consider the boundary condition (6) on the forebody. We have

that on the forebody
=- (28)

I'2 Ox

Combining (6) and (28) we have that

'It (- v = 0 (29)
dx

along the forebody or, displaying the full functional dependence on the coordinates and

design parameters, we have at a point (x, y) on the forebody, and at any time t,

u (t,z,Y = 4(x;PI, P2 , ,PK);MO, P,,P 2 , ,PK) d4K

-v (t,X, y = t(X; Pl, P2,..., PK); M, Pl, P2,..., PK) = 0. (30)

We can lIproceed to differentiate (30) with respect to any of the forebody design parameters

Pk, k = 1....K. The result is that, along tile forebody for k = 1,, K,

"Ikd =- IF (d) (alt)_+d (04)) (-- (31)
01• . k ( dy) IdTk/ Ox dxlPk dyJ kPk
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where u, v and their derivatives are evaluated at the forebody (x,y =

If an iterative scheme is used to find a steady state solution of this system ((23), (27),

(31)), then we assume that present guesses for the state variables u and v and their deriva-

tives du/iy and Ovgdy and for the design parameters M0 and Pk, k = 1. K, are known.

It follows that the right-hand-side of (31) is known as well and equation (31), the bound-

ary conditions along the forebody for the sensitivities with respect to the forebody design

i)arameters, is merely an inhomogeneots version of (29), the boundary condition along the

forebody for the state.

Let us now specialize to the type of forebodies considered by Iltuddleston, [8,!9], i.e.,

K

4"(x; P1, P2 .... , PK,) = 1 Pk•k(x), (32)
k=l

wher '.r), k 1, . . , K, are prescribed functions, e.g., Bezier curves (see [61). It this

case,
04D 0 tdF - d~p~(BO (1(ndt P-)xW

andx) ad -i -

04,) •k.
--- = E Pi. Wx. (34)
Ox d kk=1 d

(Combining (31)-(34), one obtains that, at any point (x, ýt(x)) on the forebody and for each

j=, dx )d ( Y 9(Y35)

For forebodies of the type (32), (35) gives the boundary conditions along the forebody for

the sensitivities with respect to the forebody design parameters Pk, k = 1, . . ., K. It is now

clear that, given guesses for the state variables u and v and their derivatives Ou/dy and

dy/Oy and for the design parameters M0 and Pk., k = 1,... , K, then the right-hand-side of

(35) is known.

Consider now the problem of minimizing J(p) as defined above. Most optimization

algorithms use gradient information. In particular, if Pk. denotes one of the shape l)arameters,

then the derivative

= < Q.(13, y, ml , Qo'o y, fi) - Q(y) > dy (36)

may be required in the optimization loop. The sensitivity _Q_,(x, y, t ) satisfies the steady-

state version of the sensitivity equations (23). In practice one must construct approximations

to %Qc,(x, y, P) and feed this information into the optimizer.

8



Assume that one has a particular simulation scheme (finite differences, finite elements,

etc.) to approximate the flow Q,,,(, . j,, P) on a given grid, i.e.

Q/(Xy, P) - Q. (x,y, P). (37)

as the "step size" h * 0. Given the design parameter j, one constructs a grid (depending

on P) and then .'omputes Qh(x, y, P) - Q,((x, y, P). This process may require some type of

iterative scheme. We will address this issue below. In theory, one could use the same grid and

computational scheme to approximate " -Q,,(xry, p) so that one generates -approximate

sensitivities"
Q×(~, J - pQ,,(x,y4f) (38)

as h --+ 0. It is important to note that in general

i.e. this approach may not provide "consistent sensitivities". However, some schemes do

provide consistent derivatives and even if (39) holds, the error

EDh = [ Q.,(x, y, P)] - [Q,(x, y, P)I (40)

may be sufficiently small so that the optimization algorithm converges. Trust region methods

are particularly well suited for problems of this type, where derivative information may con-

tain (small) errors. As we shall see below, there are certain cases where [-ý)-Q.(x, y, P)], can

be computed fast and accurately. Hence, the SE method provides estimates for sensitivities

that may prove "good enough" for optimization and yet relatively cheap to compute. A coin-

parison of Q,,c, xy. P)]h and various finite difference approximations of ,Q,(x, y, f)]

may be found in [3].

It is important to note that the details of the computations needed to approximate a

sensitivity are not the central issue here. For example, the sensitivity equations (II) and

(23) are viewed as independent partial differential equations that must he solved by "some"

numerical scheme. This scheme does not necessarily have to be the same scheme used to

solve the flow equation (1), although as we shall see below, there are cases where using the

same scheme is a useful approach.

Also, note that the sensitivity equations are derived for the problem formulated on the
"physical" domain. If one uses a coml)utational method that maps the problem to a com-

putational domain (as does PAR(,), then the SE method does not require derivatives of

this mapping. One simply maps the sensitivity equation (including the necessary bound-

ary conditions), grids the computational domain, solves the resulting transformed equations

9



Aliti then iiiaps back tot th.eit phy~sical lomla i If, on th lit'hler lhand, (,iit' maiwi i ~tiI he' lhow

e'tiilat loll (I) aiid dlerive it'( astlsi t ivit'. c(jliatil (1 Ill the14 coin plia ld ollal 'Ion hlai.l bllt' 1o ob? aiii

t he correct seinsit ivitites oniet woiiltl have- to coliplilt' lie itiappi hg' s'iisit iv it . Ilit-reforte. 'It i

more etficietiit to derive thle setisitiv~ity' t'qiatioiis Ill thle physical Ionlialin

Fiinally. we note that thlit SE iiietio'l described hiere has ont' addlitionial be-t''iefj .o iTOIll-

puite a sen~sit i vit. say _Q4 (x. yj5). then oilt' first selects the parameitetr vil iw 1'. 4oiust rut? 1,

it coil.p)ittjotial grid and solves for [- 4.,( .r. y. i,4J /. I beirt' I., noit) n'd to coil ut' gijld

st'iisitivit It's.

5 Computing Sensitivities using an Existing Code for
the State

Suz ppost. olne bas available a codle to comipute t he state variables. I Ae.. to finid approx imiate1

solult ions of (1I) along with lomiiirarv and jijit al coiidit ions. Iil~ II(I pricil. it Is All t'asv M at ter

toi amnend suich a code so t hat it caii also coipi1 iitt' Senisitiv~it.ies5.

First . let ius comipar' ( I) with I~ (I). If onle wishecs to airieui'l the existinig cod' thlat call

liaiitlh.' ( I) so I hat 'it call treat (II) as well, one bas to chianige the dlei lilit ionls of th I' lui x

functilons fromn those given ill (2) to those given inl ( 12). Note that the soluitloli for thet si alt'

is nieededt iii orde(r to evaluate the flux finiictions of (12).

Next. njote that ( I1I andt (23) are idlentical differenitial equiatioiis. Thus, lt'e chianiges

Made to thle code iii order to treat ( I I) c-al also be used to treat (23). lii fact ,as long as t lie

Ifi leren t ial eq uat ion and any ot her part of th li'problemtii speci ficat ion do niot vx pl ict.lv tdt pt 'Iuu

oil th li' esigii paraimieters. the aiialogoiis relat ions will be the samne for all lthe sen.d hivi lit's.

The oinly chuanges that vary from onie senisitivity calcuflation to aniothetr art' thiose' that

arise from conmidtiomis iii which th fledesign parameters appear explicitly. lII oiir examplpe. ftor

the senisitivity withi respect to A114. out'- must c'hange the portioti of the code t hat tre'at s lt'e

inflow conditions (41)- (5) so that it (-ali instead treat ( I f)-(1). InI tht' prob~lemi conisidere'd

here, the nat ure (i.e. what variables are specified) of the boliiidary t'onititioiis att thn' inflow.

aiid everywhere else, is niot affected. Note that for the' senisitivity withI rtespect to .I lt'e

boundary comidit jon ( 135) onl the forehiody is the' saint' a~s that for t het state. givt'n by (6).

For the sensitivities with respect to the forebody detsigni paramecters. Ilt il-Infltow bouind'ary

COiilidtioiis simplify to (27), i.e.. tlit' bt'comet loitniogrt'neos. Tlit bomiimuary conditition at tlic

forebotly is now giveni by (:;1) or (353). Once again. tlit' nature of il( InbIounldary condition1s

is unchrlanged fromt that for the state and only tbn' spt'cift'd tdata is tdiffereiit. For th lIt'nfulow

boundary conditions, we may still specify the samne conditions for thet st'nsitivil its. buit now

t hey would b~e homogeneous. The boundary condit ions along thlit forebothv chanige' iiI that

1 0



they heconm iInhomiogeneous, (compare (29) and (35)).

In sunmmary, to change a code for the state so that it also handles the sensitivities, one

Iniist redelii" the flux functions in the differential equations, and the data in the boundary

conlditions. The changes necessary in the code to account for any particular relation that

does not explicitly involve tile design parameters are independent of which sensitivity one is

p)resently considering.

The previous remarks are concerned only with the changes one must effect in a state code

in Order to handle the fact that one is discretizing a different problem when one considers the

seIIsitivities. We, have seen that these changes are not major in nature. However, there are

additional changes that may be needed when one attempts to solve the discrete equations.

II the ijmmerical results presented below we use tile finite difference code "PAR( "' (see [4]

and [i]) to solve the state and sensitivity equations. However, the following comments apply

e(qually well to other ('FD codes of this type.

Since we are interested in steady design problems, the time derivative in (1) is considered

only to provide a means for marching to a steady state. Now, suppose that at any stage of a

Gauss-Newton. or other iteration, we have used PARC to find an approximate steady state

sollution of (1) plus boundary conditions. In order to do this, one has to solve a sequence of

linear algel)raic systems of the type

(I J1 + Qv ))) QXHI) QOL) ± AtB(Q(7))), 1 = 0, 1,2,. . . , (41)

where tile sequence is terminated when one is satisfied that a steady state has been reached

and where Q,(2) denotes the (liscrete apl)roximation to the state Q at the time f = nAt. We

denote this steady state solution for the approximation to the state by Qh- One l)roblem of

the tYl)e (.41) is solved for every time step. In (41), the matrix A and vector B arise from

l he spatial discretizat-ioi of the fluxes and the boundary conditions. Both of these depend

on t lhe staltv at Itlhe previous time level.

HIaving compiuted I a steady state solution by (41), the task at hand is now to compute the

seisit ivit i's. We will focus on Q', the sensitivity with respect to the inflow Mach number.

Analogous results hold for the sensitivities with respect to the forebody design parameters.

Iif-call that given, a state, tilie sensitivity equations are linear in the sensitivities. Therefore,

ionfe is it erested in the steady state sensitivities, instead of (11) one may directly treat its

stat uniarvN version
i)F"; i)Il'•a, + =0. (42)i).r i)y

Siicte (12) is linear iI lIhe c omlpenlts of Q', one does not. need to consider marching algo-

rilihis inl order to complute a steady sensitivity. One merely discretizes (42) and solves the

I I



resultant linear system, which has the form

A(Q,)Q'= 13(Q0), (43)

where Q'h denotes the discrete approximation to the steady sensitivity. The matrix A and

vector B differ from the A and B of (41) because we have discretized different differential

equations and boundary conditions. Note that A and B in (43) depend only on the steady

state Q1, and thus (43) is a linear system of algebraic equations for the discrete sensitivity

Q111
The cost of finding a solution of (43) is similar to that for finding the solution of (41) for a

single value of n, i.e. for a single time step. The differences in the assembly of the coefficient

matrices and right-hand-sides of (41) and (43) are minor. Thus, in theory at least, one can

obtain a steady sensitivity in the same computer time it takes to perform one time step in a

state calculation. If one wants to obtain all the sensitivities, e.g., K + I in our example, one

can do so at a cost similar to , e.g., K+1 time steps of the state calculation. This is very

cheap compared to the multiple state calculations necessary in order to compute sensitivities

through the use of difference quotients.

Although (43) is in theory no more complex than one time step in (41), we can solve

(42) by using the same iterative (or another) scheme. The simplest approach (but certainly

not the optimal approach) is to use the PARC code to solve (42) by time marching. In

particular, assume that Q(7) is a solution to (41), then the system

S+ AtA(Q())] (Q,)I:'+') = [(Q')(") + AtB'(Q(j (44)

can be used to find (Q')("+') given (Q')(,). Thus, one makes an initial guess for Q(°) and4t It it

(Q',)(0) and then iterates (41) and (44) simultaneously. Also, the same scheme can be used

to compute any Qk = ' i.e.,

[I + AtA'(Q("))] (Qkf(,"+l)_ [,Q=,(,) + AtB'(Q"))] . (45)

In practice, these "optimal" estimates of speed up are rarely achieved. Moreover, as

noted above, it is important to note that finite difference (FD) and sensitivity equation (SE)

methods do not necessarily produce the same results. Since the ultimate goal is to find useful

and cheap gradients for optimization, the most important issue is whether or not the SE

method combined with an optimization algorithm produces a convergent optimal design as

fast as possible. We have tested this scheme on the forebody design problem and the next

section contains a summary of these results.

12



6 An Optimal Design Example

In order to illustrate the SE method and to test its use in an optimization prol)Iem, we used

the PARC code as described above to compute sensitivities and the used these sensitivities

in a BFGS/Trust Region scheme to find an optimal shortened forebody simulator. As shown

in Figure 2.2, data was generated by solving the Euler equations over the long forebody at

a Mach number of 2.0. The objective is to find a forebody simulator with length one half of

the long forebody and such that the resulting flow matches the data as well as possible, i.e.

minimizes J along the outflow boundary.

The shortened forebody was parameterized by a Bezier curve using two parameters.

Thus, there are three design parameters p = (M', P1, P2). The algorithm used in this

numerical experiment was based on using the PARC code to simultaneously march to the

steady state solutions of the flow and sensitivity equations. We made no attempt to optimize

the algorithm since the main goal was to test for convergence.

The design algorithm proceeds as follows. First, an initial guess for the optimal design is

made, i.e., we select a p0 
= ((M02)0, P, Po2'). A good selection of initial parameters can be

made knowing the operating conditions of the aircraft and some rough guess of the shape

from the aircraft forebody. In our example, we chose Mo as the inlet Mach number from

the computation which generated our data. The initial guess for the parameters were those

used to generate the long forebody (although corresponding to different x-locations). These

parameters, p0, are used to generate a grid, the inflow and forebody boundary conditions

for both the flow (1) and sensitivity equations ((11) and (23)) and an initial guess for both(0 / (0)

Q1°) and --Q)(0). In our example, a rough guess for the flow field Q() uses the constant

inflow boundary condition throughout the flow domain. Likewise, the initial guess for (Qt)(°)

is taken as the inflow boundary conditions (given in equation (18)) throughout the flow

domain. The initial guess for (Qk)( 1) is initially taken as zero (except on the forebody). The

systems (41), (44) and (45) are then solved simultaneously (in our case the left hand side

matrix is the same for (41) as for the sensitivity equations (44) and (45), i.e. A = A') for

the updated \) and ()Q " The updated Q(" is then used to formulate

(41), (44) and (45) and solve for (Qh)('L+l) and (+ )' . Then one iterates until the

desired convergence is achieved. In our example, the residuals, AQh = [Q 1 It- I) were

converged to approximately 10-'" (in 800 time steps). The outflow data Q1, and ()Q), are

then used to compute 3(pO) and VJ(p0 ).

The optimization algorithm consisted of a BFGS secant method coupled with a "hook"

step model trust region method [5]. The initial Hessian was obtained by finite differences

on VJ(j)). The function and gradient information needed by the optimization algorithm is

13



obtained by calling the modified PARC code with p = /.

This algorithm was tested for the case where the forebody simulator was allowed to have

the full length of the body generating the data. In this case the optimization algorithm

produced exact data fits, i.e. J(p*) = 0 and it recovered the parameters used to generate

the data. However, the more realistic test (constraining the length of the forebody simulator)

also produced a convergent design and reduced the cost functional significantly.

Figure 6.1 shows the flow field over the long forebody. Observe, that there is a shock in

the flow. As noted in [2], shocks can cause difficulties if one is not careful in the selection of

an appropriate numerical scheme. High order schemes can produce (numerically generated)

local minimum that can cause the optimization loop to fail. This problem is avoided here

because the numerical viscosity in PARC (required for stability) is sufficient to "smooth"

the cost functional (see [2] for details).

Figure 6.2 shows the shape and flow field of the optimal shortened forebody. This design

was obtained after 12 iterations of the optimization loop. Figures 6.3-6.6 show the 1", 2"d,

3rd, 5 "' and 12" iterations for each of the flow variables. The initial guess for the parameters

were

=0 (M2) 0 ,P,, P) = (2.0,0.10,0.15)

and

J(p 0 ) = 3.2339.

The "converged" optimal parameters are

p* = p1 2 = (2.020,0.294,0.156)

with

J(p*) = 0.2229.

Observe that the cost function was decreased by more than 93%. Figures 6.7-6.10 show a

comparison of the flow fields for the optimal shortened forebody simulator and the data. The

optimization loops converged rapidly. For example, J(p 3 ) = 0.23:34 and J(p') = 0.2289.

This is due to the fact that the shock location was found quickly.

Note that although the flows are close, there is a significant error near the forebody. This

can also be seen in the plots in Figures 6.11-6.14. It is worthwhile to note that the match

is good considering the fact the shortened forebody is constrained to be one half the length

of the "real" forebody and only two Bezier parameters are used to model F(.). It is also

important to note that the shock is captured by the optimal design. In particulat •erve

in Figures 6.3-6.6 how the optimization algorithm "shapes" the shortened forebod that

the optimal shape has a blunt nose. This is necessary in order to generate the correct shock

location at the outflow.

14



7 Conclusions

The numerical experiment above illustrates that the SE method can produce sensitivities

suitable for optimization based design. There are a number of interesting theoretical issues

that need to be addressed in order to analyze the convergence of this approach. Moreovw,

one should investigate "fast solvers" for the sensitivity equations (multi-grid, etc.) as wel

develop numerical schemes that are not only fast, but produces consistent derivatives wh1
possible.

Finally, we note that we have conducted a number of timing tests which compute sen-

sitivities to compare the SE method with the finite difference method. In particular, we

observed that for the problem above (with three design parameters), the SE method needed

only 58% of the CPU time required by finite differencing. When twenty design parameters

were used, the SE method produced these sensitivities in about 38% of the time required by

finite differencing. These early numerical results indicate that considerable computational

savings may be possible if one extends and refines the basic SE method presented here.
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